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Abstract

Many different studies have shown that a wealth of cosmological information resides on small, nonlinear scales.
Unfortunately, there are two challenges to overcome to utilize that information. First, we do not know the optimal
estimator that will allow us to retrieve the maximum information. Second, baryonic effects impact that regime
significantly and in a poorly understood manner. Ideally, we would like to use an estimator that extracts the
maximum cosmological information while marginalizing over baryonic effects. In this work we show that neural
networks can achieve that when considering some simple scenarios. We made use of data where the maximum
amount of cosmological information is known: power spectra and 2D Gaussian density fields. We also contaminate
the data with simplified baryonic effects and train neural networks to predict the value of the cosmological
parameters. For this data, we show that neural networks can (1) extract the maximum available cosmological
information, (2) marginalize over baryonic effects, and (3) extract cosmological information that is buried in the
regime dominated by baryonic physics. We also show that neural networks learn the priors of the data they are
trained on, affecting their extrapolation properties. We conclude that a promising strategy to maximize the
scientific return of cosmological experiments is to train neural networks on state-of-the-art numerical simulations
with different strengths and implementations of baryonic effects.

Unified Astronomy Thesaurus concepts: Cosmology (343)

1. Introduction

Cosmology is becoming a precise and accurate branch of
physics. The Λ cold dark matter (ΛCDM) model is now well
established, and accurately explains a large variety of cosmo-
logical observations. This model describes how the large-scale
structure of the universe originates from primordial quantum
fluctuations in the very early universe through amplification by
nonlinear gravitational evolution.

The ΛCDM model contains a set of parameters describing
fundamental physical quantities, such as the energy fraction of
dark matter and dark energy, the geometry and expansion rate of
the universe, and the sum of neutrino masses. One of the most
important goals in modern cosmology is to determine the value
of those cosmological parameters with the highest accuracy. The
motivation for doing so is improving our knowledge on the
fundamental constituents and laws of the universe.

In order to constrain the value of the cosmological parameters,
observational data are collected and summary statistics are
computed from them. Next, predictions from theory are made for
these summary statistics as a function of the value of the
cosmological parameters. Finally, data is confronted with theory
and bounds on the parameters are deduced.

It has been recently shown that much tighter constraints on
the value of the cosmological parameters can be established by
extracting the information embedded on small, nonlinear scales

(Krause & Eifler 2017; Friedrich et al. 2020; Hahn et al. 2020;
Massara et al. 2019; Uhlemann et al. 2020; Banerjee &
Abel 2021; Dai & Xia 2020; Dai et al. 2020; Villaescusa-
Navarro et al. 2020b). This motivates the usage of these scales
in order to maximize the scientific return of cosmological
surveys. Unfortunately, two major theoretical obstacles appear
in this regime. First, it is unknown what statistic will allow
extracting the maximum information from nonlinear scales.7

Second, poorly understood baryonic effects such as supernova
and active galactic nuclei feedback are believed to significantly
affect the distribution and properties of both dark and baryonic
matter on these scales. We will use the term baryonic effects
when referring to these processes.
Ideally, we would like to use summary statistics that allow us

to extract the maximum information from the entire field (e.g.,
galaxy number density field or 21 cm field), while marginalizing
over baryonic effects at the same time. The purpose of this paper
is to show that neural networks can achieve these two goals.
Furthermore, we will show that neural networks can extract
cosmological information buried in the regime dominated by
baryonic effects.
To demonstrate this, we create two different types of toy

mock data: (1) power spectra, representing a summary statistic,
and (2) 2D Gaussian density fields. In both cases, the maximum
cosmological information embedded into the data is known
a priori. We then train neural networks to predict the value of
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7 We note that in the case of Gaussian density fields, the power spectrum (or
the two-point correlation function) is the statistic that will completely
characterize the properties of those fields. However, most cosmological
surveys observe non-Gaussian density fields.
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the cosmological parameters from these data. Next, we use a
simple prescription to mimic the effects of baryons on the data
and repeat the above exercise. In both cases, we compare the
constraints from the network against the theoretical floor,
showing that neural networks can learn optimal unbiased
estimators that extract all the available cosmological informa-
tion from the data. The analysis on the two types of data sets is
almost identical in order to show the robustness of our
conclusions.

We emphasize that we made use of these simplistic data sets
since their theoretical information floor, as well as the optimal
estimator, is well known. However, the neural networks do not
know anything about the structure of the data, that they learn
by looking at the examples. Furthermore, in the case of
baryonic effects, we never tell the network the scale where
these effects show up, so the network has to learn that as well.

While in this work we consider the power spectrum and the
matter field from a Gaussian density field (that is not observable),
the methodology we use is generic can be used for any generic
summary statistic, such as bispectrum, trispectrum, void size
function... etc., as well as any generic 2D or 3D field that can be
observed such as converge maps, 21 cm fields from single-dish, or
X-ray observations. Either the summary statistics or the 2D/3D
fields will be affected by baryonic effects in different ways on
different scales, and in order to extract robust cosmological
information from them, one needs to marginalize over them. Our
aim in this paper is to illustrate the potential of neural networks in
achieving this task by employing toy examples where the optimal
solution is known.

It is important to emphasize that in this work we show that
neural networks can extract the maximum amount of
cosmological information while marginalizing over baryonic
effects for the toy models considered. However, we do not
demonstrate that this statement can be made for any
generic field.

This paper is organized as follows. In Section 2 we present
the data from the first toy model, the power spectra, and
compare the performance of the traditional maximum like-
lihood estimator against neural networks. Then in Section 3 we
describe the data from our second toy model, the 2D Gaussian
density fields, and carry out the corresponding analysis with
neural networks. Finally, we summarize the main results of this
work in Section 4.

2. Toy Model I: Power Spectrum

In this section we first explain how we generate data from
our first toy model: mock power spectra. We then train neural
networks with power spectra that may, or may not, be affected
by baryonic effects. Next, we compare the results we obtain
using the maximum likelihood estimate against those from the
neural networks.

2.1. Data

The data from this toy model consist of simple power laws
representing mock power spectra

=P k Ak , 1B( ) ( )

where A and B are the cosmological parameters. Our goal is to
train neural networks to predict the value of A and B from
measurements of the amplitude of the power spectrum in
different k-bins. We use this very simple model, instead of

more realistic power spectra from Boltzmann codes (Lewis
et al. 2000; Lesgourgues 2011) to keep things as simple and
interpretable as possible.
We consider three different data sets, depending on the way

baryonic effects are modeled:

1. AstroNone. This set assumes that there are no baryonic
effects. Thus, the form of the power spectrum is just
given by P(k)= AkB.

2. AstroDis. This set incorporates baryonic effects, imple-
mented as follows. On large scales, the power spectrum is
not affected by baryons, and therefore, it just follows the
power law P(k)= AkB. On scales k> kpivot, baryons
affect the power spectrum, inducing a different power
law8 P(k)= CkD.

3. AstroCon. This set implements baryonic effects in the
same way as AstroDis, with the only difference being that
here the power spectrum is required to be continuous at
kpivot, implying that =Ak CkB D

pivot pivot.

In all data sets, the values of A and B are drawn from uniform
distributions from 0.1 to 10, and −1.0 to 0, respectively. For
AstroCon and AstroDis, D is taken randomly between −0.5
and +0.5, following a uniform distribution. For AstroCon, the
value of C is fixed to = -C Ak B D

pivot
¯ , while for AstroDis, C is

sampled from a uniform distribution between C0.5 ¯ and C1.5 ¯ .
Once the amplitude and shape of the power spectrum is known,

we consider a set of k-bins Î ¼k k k k k3 , 4 , 5 ,F F F max[ ], where kF
is the fundamental frequency and kmax represents the smallest
scale we consider. We take kF to be 7× 10−3 hMpc−1,
corresponding to a volume of -h1 Gpc1 3( ) . We start from
3× kF, instead of kF, to avoid negative values on the power
spectrum when adding cosmic variance (see below).
For each realization, we generate a measured power spectrum

with no noise but with cosmic variance as follows. For each k-
bin, ki, we draw the amplitude from a Gaussian distribution
with mean μi= P(ki), and variance s = P k N2i i k

2 2
i( ) , where

p=N k k k4k i F F
2 3

i is the number of modes in the considered k-
bin. For simplicity, we assume that the different scales are
independent; thus, the covariance matrix is diagonal.
Figure 1 shows examples of power spectra from the

AstroNone, AstroCon, and AstroDis data sets. Table 1
summarizes the characteristics of the different sets. Generating
these mock power spectra is so fast that we train the networks
with data generated on the fly.
We note that the discontinuity that will be present in the

power spectrum of the AstroDis is, in general, not physical.
The reason of having such sharp feature is to guarantee that
there is no leakage of information from large to small scales.

2.2. Neural Networks

We train several simple neural networks to predict the value
of the cosmological parameters, A and B, from measurements
of the amplitude of the power spectrum in different k-bins
down to a maximum k of kmax. Each network is trained for a
different value of kmax.
Our architecture consists of four fully connected hidden

layers, with leaky ReLU activation functions. The hidden fully
connected layers have 60 neurons each. We use the Adam

8 We note that baryonic effects are neither strictly multiplicative not strictly
additive, so we simply represent them as a new power law below a pivot scale
in our toy model.
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optimizer with beta parameters of 0.9 and 0.999. We use a
learning rate of 10−4 and a batch size of 128. When the loss
flattens out, we decrease the learning rate by a factor between 5
and 10. We repeat this procedure until we observe no further
improvement. We emphasize that since producing these power
spectra is computationally very cheap, we can generate as
many of them as desired. Thus, overfitting is not a concern in
our model. Depending on the value of kmax and the data set, we
use between 107 and 109 power spectra to train the networks.

We first train the networks on power spectra from the
AstroNone data set, which do not incorporate baryonic effects.
Once the model is trained, we test its accuracy using a set of
N= 100,000 power spectra. The left panel of Figure 2 shows
with solid lines the error on A and B as a function of kmax. The
error is defined as the mean square error between the prediction
of the neural network and the true value

å= -
=N

X Xerror
1

, 2
i

N

i i
1

NN, true,
2( ) ( )

where X can be either A or B. XNN,i and Xtrue,i are the prediction
of the neural network and the true value, respectively, of the
parameters for the ith power spectrum.
As expected, the error on the parameters shrinks as kmax

increases: more modes are available and their cosmological
information is extracted by the network.

2.3. Optimal Estimator

Since our data is so simple, we can write down its exact
likelihood. Taken into account that the amplitude of the power
spectrum in each k-bin follows a Gaussian distribution, and that
there is no correlation between different scales, the likelihood
for a power spectrum with m k-bins will be given by

å

p d d d

d

=

´ -
-

=

P k P k P k

P k Ak

P k

1

2
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1
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where δP(ki) is the error on the amplitude of the power spectrum
of bin i. We note that in the above function, the errors on the
power spectrum are computed as d =P k Ak N2i i

B
k

2 2
i( ) ( ) ,

namely, based on the amplitude of the power spectrum before
adding cosmic variance.
For a given power spectrum, we can determine the value of

A and B that maximizes the likelihood. Given a set of
predictions for these parameters from multiple power spectra,
we can quantify the error on the parameters inherent to this
method by using Equation (2); we just replace the prediction of
the neural network by the maximum likelihood estimate.
The dashed lines in the left panel of Figure 2 show the results

using the maximum likelihood estimate as a function of kmax.
For large values of kmax, the accuracy on the parameters
reached by the neural network equals that of the maximum
likelihood estimate. This shows how our neural network is
behaving as the optimal estimator with the lowest variance
needed to extract all the cosmological information embedded in
the power spectra.
Interestingly, we find that for low values of kmax, the neural

network estimator has a much lower variance than the one of
the maximum likelihood method; for = -k h0.05 Mpcmax

1, the
neural network predicts the value of A and B with an accuracy
∼2.3× and ∼1.4× better than the maximum likelihood
method. The reason for this, as we shall see below, is that
the neural network learns the priors on the distribution of the
parameters.
To show this, we take 100,000 power spectra from the

AstroNone data set and input them into the network trained for
= -k h0.05 Mpcmax

1. For each power spectrum we estimate
the value of A and B using the output of both the neural
network and the maximum likelihood method. We show the
resulting distributions of A and B in Figure 3. We find that the
neural network always predicts the value of A and B to be
within [0.1, 10] and [−1, 0], respectively; those values
correspond to the range of variation of A and B in the training
set. On the other hand, the maximum likelihood method
predicts values well outside that range. This shows how the
neural network has learned the priors on the distribution of the
cosmological parameters, explaining why the variance of the
network estimate is lower than the one of the maximum
likelihood method.

Figure 1. Data examples from the first toy model: mock power spectra. The data
consist of three different sets. AstroNone contains power spectra that are not
affected by baryonic effects; hence, its power spectra are simply power laws
P(k) = AkB. AstroCon simulates the effect of baryons by implementing a
different power law, P(k) = CkD, on scales k > kpivot. This model assumes that
the power spectrum is continuous. AstroDis is identical to AstroCon, but does
not require the power spectrum to be continuous. Cosmic variance, for a volume
of -h1 Gpc1 3( ) , is added to the underlying power spectra on all scales.

Table 1
Summary of the Properties of the Data Set of Our First Toy Model: Power

Spectra

Data Set

AstroNone AstroCon AstroDis

P(k) AkB AkB if k � kpivot AkB if k � kpivot
CkD if k > kpivot CkD if k > kpivot

A [0.1, 10.0] [0.1, 10.0] [0.1, 10.0]
B [−1, 0] [−1, 0] [-1, 0]
C L -Ak B D

pivot ´-Ak B D
pivot [0.5, 1.5]

D L [−0.5, 0.5] [−0.5, 0.5]

Note. We consider three different sets: AstroNone, AstroCon, and AstroDis.
The functional form of the power spectra is given in the P(k) row while the
range in which the cosmological (A and B) and astrophysical (C and D)
parameters is varied is shown below.
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One important thing to note is that the distribution of the
parameters A and B predicted by the network is not uniform
within the priors, but presents a rich and complex structure. We
investigate in more detail the structure of the space, together
with the role played by the priors on the maximum likelihood
estimate in Appendix C.

In order to better understand the effect of priors on the network,
we generated 100,000 power spectra from the AstroNone set that
have the same value of the cosmological parameters: A= 8 and
B=−0.8. We input these maps into the networks trained for

= -k h0.9 Mpcmax
1 and = -k h0.05 Mpcmax

1, as well as to
the maximum likelihood pipeline. We show the distribution
of the parameters for these configurations in Figure 4. For

= -k h0.90 Mpcmax
1, we can see that the network has found an

unbiased estimator of the parameters, whose distribution matches
almost perfectly the one from the maximum likelihood. On the
other hand, for = -k h0.05 Mpcmax

1, the distributions of the
parameters are very different. In the case of the neural network,
the parameters are concentrated into a smaller region that is
bounded by the priors, while the maximum likelihood expands a
much broader area. In this case, the network is behaving as a
biased estimator of the parameters. We however note that the
variance of the neural network estimator is much smaller than the
one of the maximum likelihood.

Thus, there could be situations where the variance from a
neural network estimator may be smaller than the one of an
optimal estimator, simply because the network is using additional
information from priors. In order to provide an apples-to-apples
comparison one needs to account for priors information in the
optimal estimator (in our case the maximum likelihood).

In Appendix A we show that by construction, the network
learns to approximate the posterior mean, which accounts for
the prior. We shall see below, that similar behavior is observed
in the case of 2D Gaussian density fields.

2.4. Baryonic Effects

We now investigate how accurately the network can predict
the value of the cosmological parameters given power spectra
that are affected by baryonic effects. We train a neural network
using power spectra from the AstroDis set setting kpivot=
0.5 hMpc−1. The green lines on the right panel of Figure 2
show the error on the parameters achieved by the neural
network.
For k� kpivot, the network can constrain the value of the

cosmological parameters with the same accuracy as the
network trained using power spectra from the AstroNone set.
This is expected, since baryonic effects only appear on scales
k> kpivot. For k� kpivot, we find that constraints saturate, i.e.,
no improvement on the cosmological parameters can be
achieved by going to smaller scales. This is expected, because
on those scales, the power spectrum follows a power law
P(k)= CkD, where both C and D are not related to the
cosmological parameters9 A and B.
This shows how neural networks can learn to marginalize on

scales where baryonic effects dominate and no cosmological
information is available. We emphasize that we did not input
any information to the network with respect to kpivot. The
network has learned that scale from the examples it has been
trained on.
By repeating the above exercise with the maximum likelihood

method we find that in the cases where k kmax pivot we obtain
the same results as in the AstroNone case, as expected. On the
other hand, for values of >k kmax pivot, the error on the parameters
rises dramatically. This is expected, as in this case, the likelihood
function we wrote in Equation (3) does not describe the baryonic

Figure 2. Left panel: we train neural networks to predict the value of the cosmological parameters A and B from power spectra of the AstroNone set down to kmax. The
solid lines show the mean square error on A and B as a function of kmax. We also determine the value of the cosmological parameters by maximizing the value of the
likelihood function, and show the corresponding errors with dashed lines. We find that the neural network always performs equally, or better, than the maximum
likelihood method, showing that neural networks can find the optimal solution to extract the cosmological information. Right panel: we train neural networks to predict
the value of the cosmological parameters from power spectra of the AstroNone (red), AstroDis (green), and AstroCon (blue) sets, setting kpivot = 0.5 hMpc−1. We find
that for k � kpivot constraints on A and B from the AstroDis flattens out, pointing out that the network has learned the scale where baryonic effects show up, and it has
learned to marginalize over scales smaller than that. For data from the AstroCon set, we find that going to higher kmax helps reducing the error on the cosmological
parameters. This happens because the network has learned to extract the cosmological information that is buried in the regime dominated by baryonic effects (see text
for further details).

9 This is not strictly true as the value of C is drawn from an uniform
distribution C0.5 1.5[ – ] ¯ , where = -C Ak B D

pivot
¯ . However, in practice, that range

is large enough to consider that C is independent of A and B.
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effects imprinted in these power spectra. In order to do this
analysis in a proper way with the maximum likelihood method,
we would need to specify the value of kpivot and truncate the
likelihood function at that scale. These things, on the other hand,
are automatically learned by the network just from the examples it
is given.

2.5. Regime Dominated by Baryonic Effects

Finally, we train neural networks with power spectra from
the AstroCon set, setting the value of kpivot to 0.5 hMpc−1, as
above. We show the error achieved by that network on
estimating A and B in the right panel of Figure 2 with blue
lines. As expected, for k kmax pivot , the network is able to
determine the parameters with the same accuracy as the
networks trained using power spectra from the AstroNone and
AstroDis sets.

For k� kpivot, we find that the network can determine the
value of the cosmological parameters more accurately as we
increase kmax. This behavior is different from what we observed
using power spectra from the AstroDis set. The reason is that in
the regime dominated by baryonic effects, the power spectrum

follows the law P(k)= CkD, but while the value of D is not
related to the value of the cosmological parameters, the value of
= = -C C Ak B D

pivot
¯ is. The higher the value of kmax, the better the

network can constrain C and D, and therefore the more
information it can pull to determine A and B. This shows how
neural networks can extract cosmological information that is
buried in the regime dominated by baryonic effects.
In all three cases, AstroNone, AstroCon, and AstroDis, we

checked whether the estimator found by the network is a biased
or unbiased one. For this, given a fixed values of A and B we
generated 100,000 power spectra. We then feed these power
spectra into the trained networks and obtain the predicted
values of A and B. Finally, we plot the distribution of the
recovered parameters. We carried out this exercise for several
values of A, B, kpivot, and kmax and find the distribution of the
parameters to be unbiased. However, when the values of the
parameters are close to the boundary of the distribution they
have been trained on, we observe a significant bias in the
distribution of the parameters, indicating that the network has
learned the priors of the distribution and is using that
information when making its predictions.
We conclude this section by summarizing our findings with

the power spectra. We find that neural networks can be trained
to (1) find an optimal unbiased estimator that allows to extract
the maximum cosmological information available, (2) margin-
alize the scales that are affected by baryonic effects, and (3)
extract cosmological information that is buried in the regime
dominated by baryonic effects. These conclusions are derived
from the analysis on the data from our toy model I: power
spectra. We now investigate whether these conclusions hold for
a more complex problem: 2D density fields.

3. Toy Model II: Gaussian Density Fields

In this section, we repeat the analysis carried out for toy
model I, but using more complex and rich data: 2D Gaussian
density fields. We made use of Gaussian density fields since
their statistical properties can be fully characterized by their
power spectrum. This is very useful, as it allows us to quantify
the maximum information content of these fields in a simple
and robust way. In other words, for these fields, we know the
optimal estimator to extract the maximum information and we
can write its likelihood. Our goal is to train neural networks to
predict the value of cosmological parameters from 2D Gaussian
density fields that may or may not be affected by baryonic
effects.

3.1. Data

A generic 2D density field can be characterized by the value
of its density contrast, d r r= -x x 1( ) ( ) ¯ , or by its Fourier
transform δ(k):

òd d= -k x xd e . 4k xi2( ) ( ) ( )·

For each mode k, δ(k) is a complex number, and therefore can
be written as

d a= qk e , 5k
i k( ) ( )

where αk and θk are the mode’s amplitude and phase,
respectively. In a Gaussian density field, θk follows a uniform
distribution between 0 and 2π, while y= αk follows a Rayleigh

Figure 3. We take 100,000 power spectra from the AstroNone set with
= -k h0.05 Mpcmax

1, and predict the values of the cosmological parameters A
and B for each using the neural network (top panel) and the maximum
likelihood (bottom panel) methods. Cells are color coded according to the
number of points within each cell. The neural network always predicts values
of A and B within the range of [0.1, 10] and [−1, 0], while the least squares
method output values in a much wider range: A ä [0, 425], B ä [−1.7, 0.8].
This shows how the neural network has learned the priors on the distribution of
the parameters and never predicts values outside that range. This is the reason
why the variance of the neural network is lower than the one of the maximum
likelihood method.
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distribution:

s
= s-p y dy

y
e dy, 6y

2
22 2( ) ( )

where σ2= βP(k)/(8π2), while β is the area covered by the
density field, and P(k) the power spectrum. p(y)dy denotes the
probability that the value of y is in the interval [y, y+ dy].
The way we construct the 2D Gaussian density fields is as

follows. First, we need an input power spectrum, P(k), that will
characterize the Gaussian density field. We then populate the
density field modes. For each mode, d a= qk ek i k( ) , we select
the value of θk by taking a random number between 0 and 2π,
with uniform sampling. The mode amplitude, αk, is drawn
from the distribution of Equation (6), which implicitly depends
on the amplitude of the power spectrum at the wavenumber
k= |k|. When populating the modes in Fourier space it is very
important to fulfill the Hermitian condition, δ(−k)= δ(k)

*

,
which arises from the fact that the Gaussian density field in
configuration space is real, i.e., δ(x)

*

= δ(x). Finally, we make a
Fourier transform to obtain the Gaussian density field in
configuration space. The random numbers used to draw the
mode’s amplitude and phases can be recovered from an initial
integer number, called the initial random seed. In this paper we
work with Gaussian density fields containing 128× 128 pixels
and simulating an area of -h1 Gpc1 2( ) .

Similarly to toy model I, we consider three different sets of
2D Gaussian density fields:

1. AstroNone. These maps are not affected by baryonic
effects. Thus, their underlying power spectrum is simply
given by =P k A k( ) .

2. AstroDis. Maps in this data set are affected by baryonic
effects on scales k> kpivot. As for the case of toy model I, we
model baryonic effects as a change in the amplitude and

shape of the power spectrum on those scales. In these maps,
the underlying power spectrum is given by =P k A k( )
for scales k� kpivot, and as P(k)=CkD for k> kpivot. The
power spectrum is not required to be continuous at kpivot.

3. AstroCon. Maps in this data set are affected by baryonic
effects that are modeled in the same way as for AstroDis,
with the only difference being that these maps are
required to have a continuous power spectrum, i.e.,

=A k Ck Dpivot pivot.

We note that for simplicity and to keep the data as small and
interpretable as possible, we have considered a single
cosmological parameter A. We showed in the previous section
that neural networks can find the optimal solution also in the
presence of several, correlated, variables. Our conclusions thus
do not depend on this choice.
Although the generation of these maps is very computationally

efficient, it is not fast enough to generate them on the fly while
training the neural networks. Thus, we create different catalogs
containing Gaussian density fields from the different data sets. We
create 100,000 AstroNone, 100,000 AstroDis, and 100,000
AstroCon maps. Within each of those sets, we split the maps
into 70,000, 15,000, and 15,000 subsets that we use for training,
validation, and testing, respectively. In all cases, the value of A is
taken by sampling a uniform distribution from 0.8–1.2. For
AstroCon and AstroDis, the value of D is taken from a uniform
distribution between −1 and +1. In the case of AstroCon, C is
fixed to = +C A k D

pivot
0.5¯ , while for AstroDis its value is taken by

randomly sampling a uniform distribution between C0.7 ¯ and C1.3 ¯ .
We also generated a set of catalogs containing maps with a

fixed value of A: 0.8, 0.9, 1.0, 1.1, and 1.2. Each of these
catalogs contains 100,000 maps and we use them to test the
network and to compare the variance of the estimator learned by

Figure 4. We generated 100,000 power spectra with no baryonic effects (AstroNone set) but the same value of A = 8 and B = −0.8. We input this data into the
networks trained for = -k h0.05 Mpcmax

1 (left panel) and = -k h0.90 Mpcmax
1 (right panel). The panels show the distribution of the parameters output by the

network, together with their projected 1D distributions. For = -k h0.90 Mpcmax
1, we can see that the network and the maximum likelihood approaches produce

almost identical results. On the other hand, for = -k h0.05 Mpcmax
1 we see that the distribution of the parameters is much larger for the maximum likelihood than for

the network. From the 1D distributions we can see that the output of the network is affected by the priors the network was trained on: for instance, the network never
saw a power spectrum with A higher than 10, so the network never predicts values of A above that. In this case, the network is computing a biased estimator of the
parameters.
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the network against the variance of the optimal estimator from
the Fisher matrix. We emphasize that all the Gaussian maps
generated have a different value of the initial random seed.

A summary with the different sets and their characteristics is
shown in Table 2. We show six examples of the generated
Gaussian density fields in Figure 5.

3.2. Neural Networks

We train a model that combines convolutional with fully
connected layers; the details on the architecture we use are
outlined in Appendix B. We use the Adam optimizer with a
learning rate of 10−5, with values of the beta parameters equal

Table 2
Summary of the Different Data Sets Used When Working with the 2D Gaussian Density Fields (Toy Model II)

Name Baryonic P(k) Number of Maps/Usage A D C kpivot
Effects? (hMpc−1)

AstroNone No A k 70,000/training [0.8, 1.2] L L L
15,000/validation
15,000/testing

AstroNone0.8 No A k 100,000/testing 0.8 L L L
AstroNone0.9 No A k 100,000/testing 0.9 L L L
AstroNone1.0 No A k 100,000/testing 1.0 L L L
AstroNone1.1 No A k 100,000/testing 1.1 L L L
AstroNone1.2 No A k 100,000/testing 1.2 L L L
AstroCon Yes A k if k � kpivot 70,000/training [0.8, 1.2] [−1.0, 1.0] C̄ 0.3

CkD if k > kpivot 15,000/validation
15,000/testing

AstroDis Yes A k if k � kpivot 70,000/training [0.8, 1.2] [−1.0, 1.0] [0.7, 1.3]C̄ 0.3
CkD if k > kpivot 15,000/validation

15,000/testing

Note. A represents the value of the cosmological parameter, while C and D are the astrophysics parameters, controlling the amplitude and shape of the power

spectrum on scales k > kpivot, where baryonic effects show up. C̄ is defined as the value of C that makes the power spectrum continuous at kpivot: =A k Ck Dpivot pivot
¯ .

All maps from the different data sets have a different value of the initial random seed. Numbers in brackets indicate that the value of that parameter is randomly chosen
from a uniform distribution within the quoted values.

Figure 5. We generate 2D Gaussian density fields with 128 × 128 pixels. The power spectrum of the maps is given by =P k A k( ) , where A is a free,
cosmological, parameter. Our goal is to train neural networks to predict the value of A from these density fields. This plot shows six examples of such density fields.
The value of A is approximately 0.8, 0.9, 1.0, 1.0, 1.1, and 1.2, from top-left to bottom-right. All these maps belong to the AstroNone data set, i.e., they are not affected
by baryonic effects. We shall see that neural networks can determine the value of A with an accuracy of ;1% from these maps.
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to β= {0.5, 0.999}. We use as loss function the standard mean
square error:

å= -
=N

A A
1

, 7
i

N

1
NN true

2( ) ( )

where Atrue and ANN are the true and predicted values of the
cosmological parameter A. The sum runs over all maps in the
training set. We do not make use of dropout, but we use a value
of the weight decay equal to 2× 10−4. We train the network
using a batch size equal to 128. We did not performed data
augmentation while training the network, as we find that our
data set is large enough to avoid concerns with overfitting. We
train the network for approximately 6000 epochs. When the
loss plateaus, we decrease the learning rate by a factor of 10,
and continue training.

Once the network is trained, we feed it with the 15,000
Gaussian maps of the AstroNone test set. Figure 6 shows the
predicted values of A as a function of their true values. We can see
that the network is able to predict the value of the cosmological
parameter with a high accuracy: the MSE and RMSE are
1.28× 10−4 and 0.0113, respectively. Furthermore, from visual
inspection it seems that the network has found an unbiased
estimator (besides for low or high values of A). Next we compare
these results against the variance of the optimal estimator that we
obtain by employing the Fisher matrix formalism.

3.3. Optimal Estimator

The statistical properties of Gaussian density fields can be
fully characterized by their power spectrum. In other words, the
power spectrum is the optimal estimator to extract information
from Gaussian density fields. Thus, if we want to quantify how
accurately we can constrain the value of some parameters from

Gaussian density fields, we can simplify the question as: how
well can the power spectrum determine the value of these
parameters?
In this case, we use a different formalism to the one

employed for toy model I, and instead of finding the value of A
that maximizes the likelihood, we use the Fisher matrix
formalism to quantify the variance of the optimal estimator.
While using the maximum likelihood method employed in the
previous section will not change our conclusions, we use this
alternative method to probe that the estimator learned by the
network is the one with the lowest variance.
We now briefly outline the Fisher matrix formalism.

Consider a given statistic S= {S0, S1,K,SN}, and some
parameters θ= {θ0, θ1,K,θM}. The Cramer–Rao bound
(Rao 1945; Cramér 1999) states that the error on the parameter
θi, sqi from an optimal unbiased estimator saturates at

sq -F , 8ii
1

i ( )
where Fij is the Fisher matrix:

q q
=

¶
¶

¶
¶

a
ab

b-F
S
C

S
, 9ij

i j

1 ( )

and ab
-C 1 is the covariance matrix. In our case, the statistic

used is the power spectrum, =P k A k( ) , while the only
parameter considered is A. Both the derivatives and the
covariance are trivial:

¶
¶

=a aP k

A

P k

A
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where aNk is the number of modes in the kα-bin, and δαβ is the
Kronecker delta. The Fisher matrix (which in this case is a
scalar) thus reduces to

å=
a

aF
A

N
1

2
. 12k2

( )

We note that the above sum goes through all k-bins in the
power spectrum. That sum should thus be equal to the total
number of pixels in the Gaussian field, Npixels. The error on the
parameter A is finally given by

s A
N

2
. 13A

pixels
( )

The above expression provides the lower bound on the square
root of the variance of the optimal unbiased estimator when the
fiducial value of the cosmological parameter is A. We may be
interested in the average error on the parameter A when A
varies within a given range Î -A A Amin max[ ]. That error can
be computed as

ò

ò
s

s
= =

+ +dA

dA

A A A A

N1.5
. 14A

A

A
A

A

A

2

max
2

max min min
2

pixels

min

max

min

max
¯ ( )

For =A 1.2max and =A 0.8min , and for Gaussian fields with
128× 128 pixels, the above expression yields s = 0.0111A¯ .

Figure 6. We train a convolutional neural network to predict the value of the
cosmological parameter A from 2D Gaussian density fields. This plot shows the
predicted value of A as a function of its true value for the 15,000 Gaussian
maps in the AstroNone test set. The solid black line indicates a perfect
agreement, i.e., ANN = Atrue. The network is able to predict the value of A with
a high accuracy (RMSE) of 0.0113, while the expected maximum performance
from the Fisher matrix will be 0.0111.
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That number can be directly compared with the RMSE
achieved by the neural network over the same A range: 0.0113.
Our neural network behaves as an estimator of the parameter A
whose variance is only 1.8% larger than the one of the optimal
estimator. It is feasible to further decrease the error on the
neural network and get closer to the Fisher results, e.g., with
more hyperparameter tuning, an improved model architecture,
or more training data. We emphasize that the network did not
know, or was informed, that the data it was trained on, were
Gaussian density fields.

We now investigate the effect of priors by comparing the
prediction of the network against the expectation from the
Fisher analysis for maps with fixed value of the cosmological
parameter A. We made use of the AstroNone1.0 data set, where
all maps have a value of A equal to 1. We feed each map into
the neural network, and obtain the value of A predicted by the
network. We then compute the distribution of the values of A.

The Fisher expectation can be obtained as follows. First, the
error on the parameter for its fiducial value, Afid, can be
calculated using Equation (13), and the distribution of the
parameter A is expected to follow a Gaussian distribution with
mean Afid and standard deviation σA:

ps s
= -

-
p A dA

A A
dA

1

2
exp

2
. 15

A A
2

fid
2

2
( ) ( ) ( )⎜ ⎟

⎛
⎝

⎞
⎠

We show the results of this analysis in Figure 7; blue lines
show Fisher bounds while red lines are the distributions from
the neural network predictions.

When the value of Afid is equal to 1, the agreement between
the Fisher and the neural network is very good. The means and
standard deviations of the two distributions are 1.0013±
0.0112 (network) and 1.0000± 0.0110 (Fisher). We find that
the neural network behaves as an optimal unbiased estimator of

the parameter A: its standard deviation is only ∼1.8% higher
than the one from the theoretical optimal estimator.
We repeated the above exercise for maps with different

values of Afid: 0.8, 0.9, 1.1, and 1.2, using AstroNone0.8,
AstroNone0.9, AstroNone1.1, and AstroNone1.2, respectively.
We show the results in Figure 7. For values of Afid equal to 0.9
and 1.1, we reach similar conclusions as for Afid= 1.0: the
network found an unbiased estimator that achieves almost the
same error as the optimal estimator: 5% and 3% larger errors
than Fisher for Afid equal to 0.9 and 1.1, respectively. We
emphasize that the error on the parameter A depends on its
fiducial value (see Equation (13)). This dependence is
automatically incorporated into the neural network.
For values of Aref equal to 0.8 and 1.2, the network provides

a distribution of values of A that significantly differs from the
optimal one from Fisher. Not only the mean value is biased, but
the width of the distribution is smaller than the one expected.
We note that the network biases the value of A toward small/
high values when Afid is high/small. This happens because the
network has, at least partially, learned the priors. In other
words, the network has never seen a Gaussian map whose
value of A is larger/smaller than 1.2/0.8, and is making use of
that information. As can be seen, in this regime, the network
behaves as a biased estimator of A that has a lower variance
than the optimal one from Fisher. As we found for the cases of
toy model I, the effects of the priors can produce that the
network finds an estimator with a lower variance than the
theoretical floor;10 this happens at the expenses of being a
biased estimator.
We thus conclude that for values of A sufficiently far away

of the training boundaries, the neural network has learned an
unbiased estimator to determine the value of A. It automatically

Figure 7.We train a neural network to predict the value of the cosmological parameter A from 2D Gaussian density fields of the AstroNone data set. Once the network
has been trained, we use it to predict the value of the cosmological parameter from the AstroNone0.8, AstroNone0.9, AstroNone1.0, AstroNone1.1, and AstroNone1.2
data sets. The red lines show the distribution function of the values of A predicted by the network while the blue line represents the optimal bounds from the Fisher
matrix calculation. The numbers on the top show the mean and standard deviation. As can be seen, the agreement is excellent; the network is able to get an unbiased
value of A with an error that is only 1%( ) worst than the one from the optimal estimator. The hatch areas represent regions of the parameter space not shown to the
network when training it. Near those regions, the network behaves as a biased estimator. This happens because the network learns the priors of the distribution it has
been trained on.

10 We emphasize that this happens because our theory calculation did not
include the priors. If we would have included the priors on the Fisher matrix
calculation, its variance would have been lower than the one of the network.
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includes the dependence of σA with A. The comparison with the
error from the optimal unbiased estimator from the Fisher
matrix calculation shows that the learned estimator is almost
optimal. However, near the edges of the interval where the
network has been trained, we observe some effects that indicate
that the network may be make use of additional information
from priors.

3.4. Baryonic Effects

We now investigate the effect of contaminating Gaussian
density fields with baryonic effects. To this end, we train a
neural network to predict the value of the cosmological
parameter A when the input are Gaussian density fields that are
generated from power spectra with the shape

=
>

P k
A k k k

Ck k k

if

if .D

pivot

pivot

( ) ⎧
⎨⎩



We illustrate this in Figure 8, where we show three Gaussian
density fields that have the same value of A and the initial
random seed, but different values of D. For this example, we
set kpivot= 0.12 hMpc−1 and we considered three different
values of D: −1, −0.5, and 1. In these maps C is determined by
requiring that the power spectrum is a continuous function
(AstroCon set): =A k Ck Dpivot pivot. It can easily be appreciated
that the amplitude of the power spectrum on small scales can
produce large visual differences on the maps.

We train a neural network to predict the value of A from
maps of the AstroDis set, i.e., Gaussian maps contaminated by
baryonic effects on scales k> kpivot. The architecture, setup,
and training procedure are identical to the neural network

presented in Section 3.2, with the only difference being the
value of the weight decay, which is set to 4× 10−4.
Once the network is trained, we use the 15,000 maps of the

AstroDis test set to determine its accuracy. The network
achieves a MSE= 2.838× 10−4 and RMSE= 0.0168. We
note that these numbers are worse than those obtained from the
maps that did not incorporate baryonic effects, as expected.
We now compare the network performance against the error

from the optimal estimator using the Fisher matrix. For this, we
need to take into account that we created the 2D Gaussian maps
of the AstroDis data set in such a way that the power spectrum
at k> kpivot has no information about the clustering pattern on
larger scales.11 Thus, we expect that all cosmological
information will reside in the regime where k� kpivot. We
can thus quantify the maximum cosmological information
embedded into these fields by using the Fisher formalism. In
this case we made use of Equation (12) and cut the sum for
modes with k< kpivot. For maps with 128× 128 pixels and a
side length of 1000 h−1 Mpc, there are 7,154 modes with
k� 0.3 hMpc−1, yielding an error estimate on A for an optimal
unbiased estimator of

s = A0.0167 . 16A ( )

If we consider the mean error in the range of Aä [0.8–1.2],
following the same procedure used to derive Equation (14), we
obtain

s = 0.0169. 17A¯ ( )

Figure 8. The upper panels show three Gaussian density fields. The maps have the same mode phases, but differ in their mode amplitudes. The bottom panel displays
their power spectra. While the three fields have the same power on large scales, they differ on small scales: the map on the right has the highest power on small scales,
while the left map has the lowest.

11 Strictly speaking, the value of C is drawn from the value of C̄ , that knows
about cosmology. However, the priors are so large that in practice the value of
C can be considered as independent of the large-scale clustering.
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This number can be directly compared with the RMSE from the
network: 0.0168. Thus, the agreement between the prediction
of the neural network and the Fisher matrix, in terms of
constraining power on the parameter A, is excellent. We note
that in this case the network is slightly outperforming the Fisher
matrix. This happens because the network accounts for priors
effects near its boundaries, while we did not take this into
account in the Fisher matrix calculation. We repeated the above
exercise for different values of kpivot, reaching similar
conclusions.12

We now investigate the performance of the network in a bit
more detail. Once the network is trained, we feed it with the
100,000 Gaussian density fields of the AstroNone1.0 data set.
We feed the network with these maps, that do not contain
baryonic effects, to investigate if the network has learned to
marginalize over scales smaller than kpivot. In Figure 9, we
show with a solid green line the distribution of the predicted
value of A from the neural network. The magenta line in that
plot shows the Fisher expectation. As can be seen, the
agreement is excellent. The mean and standard deviation from
the two distributions are 0.9998± 0.01700 (network) and
1.0000± 0.01672 (Fisher). The agreement in the error of A is
around 1.5%. This points out that the network has learned an
almost optimal unbiased estimator; that estimator is one that
has learned to marginalize over baryonic effects. This can be
better visualized when comparing the results against those
obtained when no baryonic effects are present, shown as blue
and red curves in Figure 9. We repeated the same exercise

using maps contaminated by baryonic effects at kpivot=
0.5 hMpc−1, reaching the same conclusions as with the maps
from the AstroNone1.0 data set.
While the above results seem to clearly indicate that the

network has learned to marginalize over the scales affected by
baryonic effects, we would like to have a more direct probe of
it. To show this more explicitly, we make use of saliency maps.
Saliency maps are just the derivative of the loss function with
respect to the input field. They can help with the interpretation
of what the neural network is doing, since largest derivatives
(in modulus) indicate more sensitive pixels/regions to the
particular parameter considered.
We took a 2D Gaussian density field from the AstroNone

test set and fed it to the two networks considered above; i.e.,
networks trained using maps without and with baryonic effects.
Next, we computed the saliency map of each network. We
show the results in Figure 10. The saliency map obtained from
the network trained on maps affected by baryonic effects has a
lower resolution: the observed features are coarser than those
from the other network. This points out, in a more direct way,
that the network has indeed learned to marginalize over the
scales that are affected by baryonic effects, as naïvely expected.

3.5. Regime Dominated by Baryonic Effects

We now investigate the implications of using a continuous
power spectrum when generating the Gaussian fields con-
taminated by baryonic effects. We train a neural network using
maps from the AstroCon training set, whose underlying power
spectra are required to be continuous.
The architecture of the network used is the same as in the

previous cases. Once the network is trained, we evaluate its
performance using the 15,000 maps of the AstroCon test set,
achieving an MSE equal to 2.210× 10−4. We also evaluated the

Figure 9. We trained neural networks to predict the value of the cosmological parameter A from 2D Gaussian density fields. One network is trained using maps with
no baryonic effects while the other network is fed with maps contaminated with baryonic effects at k > kpivot = 0.3 hMpc−1. Once the networks have been trained, we
input to them 100,000 Gaussian maps of the AstroNone1.0 set that have a true value of A = 1. The red and green lines show the distribution of the values predicted by
the network. As expected, the width of the distribution for the maps affected by baryons is higher, showing that baryonic effects erase some information. The blue and
magenta lines show the distribution on A derived from a Fisher matrix calculation assuming that the cosmological information is located on all scales and on scales
larger than kpivot, respectively. The agreement between the distributions from the networks and optimal unbiased estimator from the Fisher matrix is excellent, pointing
out that the neural network has learned an optimal estimator that extracts all cosmological information while marginalizing over baryonic effects. The numbers in the
interior of the plot indicate the mean and standard deviation of the different distributions.

12 For small values of kpivot, we find that the network outperforms the Fisher
matrix. This happens because the prior information becomes more important on
those scales, as constraints on the parameters are quickly decreasing with
decreasing kpivot, in the same fashion as with toy model I.
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performance of the network using the 100,000 maps of the
AstroNone1.0 set; the MSE is 2.243× 10−4. We show the
results of this analysis, and its comparison with the other
networks, in Table 3.

We find that the network trained on maps affected by baryonic
effects and with a continuous power spectrum yield tighter
constraints on A than the network trained with maps with a
discontinuous power spectrum (AstroDis). Given the tests
performed in the previous subsection, this clearly indicates that
the extra cosmological information the network is extracting
arises from scales k> kpivot. In other words, the neural network
has learned to extract the cosmological information embedded in
the regime dominated by baryonic effects.

We believe that what the network is doing is the following.
Since the optimal estimator requires computing the power
spectrum (or some equivalent quantity), the network may be
computing that statistic from the maps. While the power spectrum
on scales k> kpivot is dominated by a power law, CkD, whose
amplitude and shape are independent of the cosmological
parameter A, there is a relation between these three parameters
that is required for having a continuous power spectrum:

=A k Ck . 18D
pivot pivot ( )

By going into the regime dominated by baryonic effects, the
network can learn the values13 of C and D. As we have seen in

the previous subsection, the network can also learn the value of
kpivot, so it can use the previous equation to better constrain the
value of A. We emphasize that constraining the value of A
using the previous equation is a method completely different

Figure 10. We take the neural networks trained on maps with and without baryonic effects and feed them with the Gaussian map shown in the left panel. We then
compute the saliency maps for the two networks, and show the results in the right panels. It can be seen that the saliency map of the network trained with maps
contaminated by baryonic physics has a lower resolution, i.e., there is no gradient information on small scales. This points out that the network trained with maps
affected by baryonic effects is not looking at small scales when predicting the value of A, as expected.

Table 3
Three Neural Networks Trained Using Three Different Data Sets: (1) Maps
with No Baryonic Effects (AstroNone), (2) Maps with Baryonic Effects Where
the Underlying Power Spectrum is Discontinuous at kpivot (AstroDis), and (3)

Maps with Baryonic Effects Where the Underlying Power Spectrum is
Continuous (AstroCon)

Neural Network Trained on Maps with

Data Set
No Baryonic

Effects
Baryonic Effects

P(k)
Baryonic Effects

P(k)
Discontinuous Continuous

AstroNone 1.281 × 10−4 2.838 × 10−4 2.196 × 10−4

(test set)
AstroNone1.0 1.269 × 10−4 2.986 × 10−4 2.243 × 10−4

Note. The numbers in the table show the MSE predicted by the three networks
when using maps with no baryonic effects with A ä [0.8–1.2] (AstroNone), and
for maps with no baryonic effects with a value of A fixed to 1.0
(AstroNone1.0). We find that a network trained on maps with baryonic effects
and a continuous power spectrum can provide tighter constraints on the
cosmological parameter than a network trained using maps with discontinuous
baryonic effects. This shows that the network has learned to extract
cosmological information from scales k > kpivot, i.e., the regime completely
dominated by baryonic effects.

13 We note that the deeper we go into this regime, the better we can constrain
these parameters.
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from determining its value from the clustering of the Gaussian
density field.

Using this larger, more complex and richer data set of 2D
Gaussian density fields, we reach the same conclusion as with
the power spectra of toy model I. Neural networks can extract
cosmological information that is buried in the regime
dominated by baryonic effects, a regime that the network also
learns to marginalize over.

4. Summary

The most important findings of this paper can be
summarized as follows:

1. Neural networks can find an optimal unbiased estimator
that allows extracting the maximum information
embedded into cosmological data.

2. Neural networks can learn to marginalize over scales
affected baryonic effects.

3. Neural networks can extract cosmological information
that may be buried in the regime dominated by baryonic
effects.

We reached the above conclusions by training neural networks
with two different toy model data sets: (1) a summary statistic,
the power spectrum, and (2) 2D Gaussian density fields. The
reason behind using these simple data sets is that the optimal
solution is known, which allows us to compare it against the
results from the neural network. We emphasize however that
while it may be tempting to extrapolate these conclusions to the
generic cases of fully non-Gaussian density fields in regimes
dominated by baryonic effects, in this paper we do not
prove that.

In both considered scenarios, we have shown that neural
networks learn the priors on the distribution they have been
trained on. In other words, we find that if neural networks are
trained to predict a given parameter that is only shown during
training in the range [A, B], then neural networks will not
predict outside that range. This phenomenon is similar to what
happens when a likelihood function is sampled making use of
priors (e.g., in a Markov chain Monte Carlo calculation),
impeding the evaluation of the likelihood outside the priors.
This property severely affects the extrapolation properties of
the networks, and in situations where the priors are tight, it can
lead to overconfident constraints. A simple fix for this is to train
the network over very broad parameter ranges.

We emphasize that we have not provided the network with
information about the structure of the data, e.g., whether the 2D
maps are Gaussian density fields. The networks learned that by
themselves. This is the reason why we believe that similar
conclusions should be reached in the case of non-Gaussian
density fields, although we do not provide proof for it in this
work. Furthermore, in the case of data contaminated by
baryonic effects, we never give information to the network on
the scale where baryonic effects show up. The networks were
able to learn that information just from the examples we
fed them.

Our implementation of baryonic effects has been carried out
using simplistic models. We however expect that our findings
will hold for more complex, and realistic, implementations of
the baryonic effects (e.g., from full numerical simulations). In
Villaescusa-Navarro et al. (2021a, 2021b), we repeated this
exercise using 2D maps of 13 different physical fields from
thousands of state-of-the-art hydrodynamic simulations

showing that neural network can also extract cosmological
information while marginalizing over baryonic effects at the
field level. Furthermore, it has been shown that baryonic effects
leave distinct signatures on different statistics (see Foreman
et al. 2020, for the case of power spectrum and bispectrum).
This opens the door to combining different statistics in a clever
way that allows for the extraction of cosmological information
on the regime dominated by baryonic effects.
This paper justifies the approach followed recently by the

CAMELS project (Villaescusa-Navarro et al. 2021c).
CAMELS is a suite of more than 4000 state-of-the-art
numerical simulations, run with thousands of different
cosmological and astrophysical models using the baryonic
subgrid physics implementations of the IllustrisTNG (Wein-
berger et al. 2017; Pillepich et al. 2018) and SIMBA (Davé
et al. 2019) simulations, where several key parameters are
varied across a wide range. One of the main goals of CAMELS
is to train neural networks to extract the maximum cosmolo-
gical information from 3D fields while marginalizing over
astrophysical effects.
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Appendix A
Relation between the Neural Network Estimator and the

Posterior Mean

In this appendix, we show that the way we train neural
networks guarantee that the estimator found approaches the
posterior mean. Consider solving the following least squares
optimization problem:

ò q q q= -I f f d p d d, , A12[ ] ( ( ) ) ( ) ( )

=f I fargmin . A2f
ˆ [ ] ( )

This is the form of optimization problem that is solved when
training a neural network with squared loss to estimate a
parameter θ from a data d. The integral is typically
approximated by averaging the squared loss from the training
set. The training set is a set of pairs (d, θ) that are generated by
first sampling from the prior θ← p(θ) and then simulating the
data d from the likelihood d← p(d|θ).
If we assume that the space of neural network functions f (x,

w) parameterized by the weights w is sufficiently rich to contain
an excellent approximation to f̂ , we can simply consider the
properties of the optimal function f̂ .
We can explicitly show that solution to the optimization

problem f̂ is the posterior mean:

ò q q q
¶
¶

= - =
I

f
f d p d p d d2 0 A3( ˆ ( ) ) ( ∣ ) ( ) ( )
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ò òq q q q q=f d p d p d d p d p d d A4⟺ ˆ ( ) ( ) ( ∣ ) ( ) ( ∣ ) ( )

ò q q q=f d p d d . A5⟺ ˆ ( ) ( ∣ ) ( )

Going from the middle to the last line we used the fact that the
posterior is normalized and that p(d)> 0 for any d (otherwise
that d would have probability 0 of being in the training set).

Appendix B
Neural Network Architecture

In this appendix we outline the architecture used to train the
neural networks whose inputs are the 2D Gaussian density
fields and their outputs are the value of the cosmological
parameter A. The model we use is as follows:

1. Input: Gaussian map with 128× 128 pixels
2. 2D convolution: kernel= 4, stride= 2, padding= 1→ 16

channels× 64× 64
3. LeakyReLU activation (0.2)
4. 2D convolution: kernel= 4, stride= 2, padding= 1→ 32

channels× 32× 32
5. BatchNorm
6. LeakyReLU activation (0.2)
7. 2D convolution: kernel= 4, stride= 2, padding= 1→ 64

channels× 16× 16
8. BatchNorm
9. LeakyReLU activation (0.2)
10. 2D convolution: kernel = 4, stride = 2, padding =

1→ 128 channels× 8× 8
11. BatchNorm
12. LeakyReLU activation (0.2)
13. 2D convolution: kernel = 4, stride = 2, padding =

1→ 256 channels× 4× 4
14. BatchNorm
15. LeakyReLU activation (0.2)

16. 2D convolution: kernel = 4, stride = 2, padding =
1→ 512 channels× 2× 2

17. BatchNorm
18. LeakyReLU activation (0.2)
19. Flatten 512× 2× 2 tensor to 2048 array
20. Fully connected layer→ Output= A

Appendix C
Maximum Likelihood with Priors versus Neural Networks

In this appendix, we attempt to shed light on the structure of
the parameter distribution output by the neural network in the
case of toy model I; upper panel of Figure 3.
We discussed in the main text that the reason why the

network never outputs values of A and B outside the range
0.1� A� 10, −1� B� 0 is because those are the priors of the
distribution it has been trained on. When we computed the
values of A and B from the maximum likelihood method we did
not take into account the presence of these priors. In Figure 11,
we show the results when the priors are accounted for when
evaluating the likelihood.
While both methods yield similar results, there are some

intriguing differences. In the case of the maximum likelihood
estimator, the method places a large number of examples in the
edges of the parameter distribution. This happens because those
points, in the absence of priors, will reside outside the priors
region, and the priors move them to the edges, where their
likelihood maximizes. This behavior is however different to the
one of the neural network. For instance, the network does not
seem to cover the region with A> 9 and 0� B� 0.9.
In order to explore this in more detail, we carried out the

following exercise. We first take a point in parameter (A, B),
and we generate 100,000 power spectra with no baryonic
effects (AstroNone set) with the value of those cosmological
parameters. We input these power spectra to the network
trained for = -k h0.05 Mpcmax

1 and compute the distribution
of the A and B parameters. We have taken nine different points

Figure 11. Same as Figure 3 but using the priors 0.1 � A � 10, −1 � B � 0 to determine the value of the parameters through the maximum likelihood method. As can
be seen, the effects of priors on the maximum likelihood method is overpopulating the edges; values that will be outside the region constrained by priors are forced to
be located on the edges since their likelihood is larger there. We note that results of both methods are different. For instance, the neural network does not seem to make
predictions in the region where A > 9 and 0 � B � 0.9. The network exhibits a lower variance as an estimator, when tested on values across the whole input parameter
space, than the maximum likelihood method when priors are taken into account.
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in parameter space near the boundaries, and show the results in
Figure 12.

For values of A smaller than ;9, we find that the true values
lie within the distribution of the neural network predictions,
independently of the value of B. On the other hand, for values
of A larger than 9, the network predicts values of A, and to a
lesser extent of B, that are significantly smaller than the true
ones. This seems to be the reason why the neural network does
not make predictions for the value of the parameters on that
regime. This behavior can be qualitatively explained taking
into account that the network is trying to find an approximation
to the posterior mean (see Appendix A) by integrating over the

full support of the posterior. In other words, the posterior mean
may be significantly biased due to the proximity to the
boundaries/priors. The regions not covered by the posterior
mean may however be sampled by the rest of posterior that
may exhibit a sharp boundary at the prior. However, a more
quantitative interpretation of this effect is beyond the scope of
this work, and we will address it in a future work.
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1. From the predictions of the network, we compute the

contours showing the distribution of the data. We did this exercise for different
points in parameter space, (A, B) equal to (9, −0.95), (5, −0.95), (1, −0.95), (1,
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parameter space is within the main confidence intervals of the network
predictions, independently of the value of B. On the other hand, for values of A
greater than ;9, the network makes most of its predictions far away of the true
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