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Abstract

We use a generic formalism designed to search for relations in high-dimensional spaces to determine if the total
mass of a subhalo can be predicted from other internal properties such as velocity dispersion, radius, or star
formation rate. We train neural networks using data from the Cosmology and Astrophysics with MachinE Learning
Simulations project and show that the model can predict the total mass of a subhalo with high accuracy: more than
99% of the subhalos have a predicted mass within 0.2 dex of their true value. The networks exhibit surprising
extrapolation properties, being able to accurately predict the total mass of any type of subhalo containing any kind
of galaxy at any redshift from simulations with different cosmologies, astrophysics models, subgrid physics,
volumes, and resolutions, indicating that the network may have found a universal relation. We then use different
methods to find equations that approximate the relation found by the networks and derive new analytic expressions
that predict the total mass of a subhalo from its radius, velocity dispersion, and maximum circular velocity. We
show that in some regimes, the analytic expressions are more accurate than the neural networks. The relation found
by the neural network and approximated by the analytic equation bear similarities to the virial theorem.

Unified Astronomy Thesaurus concepts: Large-scale structure of the universe (902); Astrostatistics (1882); Galactic

and extragalactic astronomy (563); Computational methods (1965)

1. Introduction

Galaxies are fascinating objects that host dark matter, gas, stars,
and black holes. These elements interact in rich and complex
manners whose details we do not yet fully understand (Somerville
& Davé 2015). Improving our knowledge on the processes and the
physics driving galaxy formation and evolution is not only
important for galactic physics, but will also benefit other fields
such as cosmology, where the uncertainty in galactic physics
represents a major obstacle in extracting fundamental physics
information from cosmic surveys (Villaescusa-Navarro et al. 2021).

Galaxies are characterized by many different properties, such as
stellar mass, gas metallicity, neutral hydrogen mass, and luminosity
in a given band. However, most of these properties are not
independent and there are well-known correlations among them. In
some cases, the correlations are tight enough to become actual
relations such as the Tully—Fisher relation (Tully et al. 1975), the
Faber—Jackson relation (Faber & Jackson 1976), and the funda-
mental plane defined by velocity dispersion, effective radius, and
effective surface brightness (Dressler et al. 1987; Bender et al.
1992; Burstein et al. 1997). Some of these correlations and relations
are induced by physical mechanisms, and therefore their existence
reflects the underlying laws governing a particular process. In that
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regard, it is important to search for such relationships in high-
dimensional spaces, like the one concerning galaxies, as those
relations can help us learn about the underlying physics.
Unfortunately, it is not easy to find relations in high-dimensional
spaces. On the other hand, machine-learning techniques can
perform this task in a relatively straightforward way.

In this work we outline a generic methodology that can be used
to search for such relations in high-dimensional spaces and apply
it to the case of the properties of subhalos and the galaxies within
them. We identify a potentially new and universal relation
between the total mass of a subhalo and other internal properties
such as radius, velocity dispersion, and gas metallicity by training
neural networks on subhalo properties from state-of-the-art
hydrodynamic simulations. We then derive a new analytic
expression that is able to parameterize the found relationship in
an accurate way.

This paper is organized as follows. In Section 2 we describe the
data and the machine-learning algorithm we use. We then present
our findings in Section 3. Finally, we draw the main conclusions
of this work in Section 4.

2. Methods

In this work we search for a relation between the total mass of a
subhalo and its other properties. In this section we first outline the
generic methodology we employ to search for relationships
between different variables in high-dimensional spaces and how
to identify analytic expressions that approximate them. We then
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describe in detail the ingredients needed to carry out this task: the
data used, the neural network architecture and training procedure,
and the method used to find the analytic equations.

2.1. Methodology

The generic idea behind this method is to find a relation
between a given variable, y, and a set of other variables
x = {xq, X2,...,xx}, i.€.,

y =f@). (1)

In the first step, one can train a neural network to approximate
the function f. By testing the accuracy of the network on the
test set, one can quantify the accuracy reached by the model. If
the accuracy is high, there may be an actual relationship
between the variables. One can then use methods such as
saliency maps to identify the most important variables that
contribute to the relationship. These values can be obtained by
computing the average of the gradients of the neural network
outputs with respect to the input variable. By training neural
networks using only the most important variables, one can
check if the model extrapolates better or not than the model
trained on all properties; in other words, whether the model
may be extracting spurious information from some variables.
Next, if the set of variables that contribute the most and achieve
a good accuracy is small enough, one can use techniques such
as symbolic regression to approximate the found relationship
with analytic expressions. If the derived expression is not
accurate enough, one can try with simpler models (e.g., power
laws) guided by physical principles (if possible). For instance,
the symbolic-regression algorithm may find equations that,
although not perfect, may capture the main trend, and one can
improve on them based on physical principles or by adding
additional dependencies not captured by the model. We note
that a similar methodology was also used in Wadekar et al.
(2021) to improve the connection between halos and their
neutral hydrogen mass.

We apply the above scheme to internal subhalo properties
from state-of-the-art hydrodynamic simulations, and derive a
new relation between the total mass of a subhalo and its other
internal properties and also the properties of the galaxy it hosts.
We then provide an equation that approximates such a relation
and attempt to understand the physics behind it.

2.2. Data

We made use of data from IlustrisTNG100 and Ilu-
striSTNG300 simulations (Marinacci et al. 2018; Naiman et al.
2018; Nelson et al. 2018; Pillepich et al. 2018a; Springel et al.
2018; Nelson et al. 2019) together with the CAMELS project
(Villaescusa-Navarro et al. 2021), which we briefly describe now.

1. HllustrisTNGI100. A state-of-the-art magneto-hydrody-
namic simulation run with the moving mesh AREPO
code (Weinberger et al. 2020). The simulation samples a
periodic comoving volume of (75 A~ 'Mpc)? using 1820°
dark matter particles and 1820* fluid elements down to
z7=0. The details of the subgrid galaxy formation model
used in this simulation can be found in Pillepich et al.
(2018b) and Weinberger et al. (2017), including super-
nova-driven galactic winds and active galactic nuclei
(AGN) feedback. Out of the three simulations run at
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different resolutions, we use the one with the highest
resolution: IlustrisTNG100-1. This simulation has the
highest mass and spatial resolution of the ones considered
in this work. We use this simulation to quantify how our
networks and analytic expressions behave for subhalos
from a simulation with higher resolution and larger
volume than the ones they have been trained on.

. HlustrisTNG300. This simulation is identical to Illu-

strisTNG100 with the only difference being its volume,
(205 h~'"Mpc)? and its resolution, with 25007 dark matter
particles plus 2500° fluid elements. Out of the three
simulations run at different resolutions, we use the one
with the highest resolution: IlustrisTNG300-1. We use
this simulation to quantify how our networks and analytic
expressions behave for subhalos from a simulation with a
much larger volume and slightly different resolution than
the ones they have been trained on.

. CAMELS-1llustrisTNG. A suite of 1000 magneto-hydro-

dynamic simulations run with the AREPO code and using
the same subgrid model as the lustrisTNG simulations
above. Each simulation follows the evolution of 256°
dark matter particles plus 256 fluid elements in a
periodic comoving volume of (25 A~ 'Mpc)® down to
z=0. Each of the 1000 simulations has a different
cosmology (varying €2, and og) but also astrophysics by
varying the value of four astrophysical parameters
controlling the efficiency of supernova and AGN feed-
back. These simulations are part of the CAMELS project
(Villaescusa-Navarro et al. 2021). We use the subhalos
from these simulations to train the neural networks.

. CAMELS-SIMBA. A suite of 1000 hydrodynamic

simulations run with the GIZMO code (Hopkins 2015)
employing the same subgrid model as the SIMBA
simulation (Davé et al. 2019). These simulations are
comparable to CAMELS-I1lustrisTNG in the sense that
each simulation follows the evolution of 256> dark
matter particles plus 256° fluid elements in a periodic
comoving volume of (25 7~ 'Mpc)? down to z = 0. Each
of the 1000 simulations has a different cosmology
(varying ), and og) but also astrophysics by varying
the value of four astrophysical parameters controlling
the efficiency of supernova and AGN feedback. We
emphasize that the subgrid physics of SIMBA is very
different to that of IllustrisTNG, including parameter-
ized galactic winds based on higher resolution FIRE
simulations (Muratov et al. 2015; Anglés-Alcazar et al.
2017b) and gravitational torque-driven black hole
growth coupled to kinetic outflows (Anglés-Alcazar
et al. 2017a). These simulations are part of the
CAMELS project (Villaescusa-Navarro et al. 2021).
We use the subhalos of these simulations to quantify
the accuracy of our networks and analytic expressions
when varying the subgrid physics and method used to
solve the hydrodynamic equations.

. CAMELS-Nbody. Each hydrodynamic simulation belong-

ing to CAMELS-IllustrisTNG and CAMELS-SIMBA has
an associated gravity-only N-body simulation with the
same cosmological model and the same initial random
phase as its hydrodynamic counterpart. These simulations
thus follow the evolution of 256° dark matter particles in
a periodic comoving volume of (25 h~'Mpc)® down to
z=0. These simulations only account for the
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Table 1
The Simulations Used, the Number of Subhalos they Contain, and their Maximum and Minimum Subhalo Masses
Number of
Simulation Name Subhalos M (B! M) Description
Mlustrist TNG100 88,507 [8.30 x 10°-2.75 x 10" A hydrodynamic simulation run with the AREPO code. The simulation has a volume
of (75 h~'Mpc)3.
ustristTNG300 515,600 [6.89 x 107-1.28 x 10"°] A hydrodynamic simulation run with the AREPO code. The simulation has a volume
of (205 h~'Mpc)>.
CAMELS-IustrisTNG 720,548 [1.18 x 10°-3.89 x 10" A set of 1000 simulations run with the AREPO code employing the same subgrid
physics as the IllustrisTNG simulations. Each simulation has a different value of the
cosmological and astrophysical parameters. Each simulation has a volume
of (25 h~'Mpc)>.
CAMELS-SIMBA 1,182,265 [1.55 x 10%-5.36 x 10" A set of 1000 simulations run with the GIZMO code employing the same subgrid
physics as the SIMBA simulations. Each simulation has a different value of the
cosmological and astrophysical parameters. Each simulation has a volume
of (25 h~'Mpc)3.
CAMELS-Nbody 16,965,513 [5.44 x 10°-3.93 x 10"™] A set of 2000 N-body simulations run with the Gadget-III code. Each simulation has a

different value of the cosmological parameters, and they represent the gravity-only
counterpart of the CAMELS-IlustrisTNG and CAMELS-SIMBA simulations. Each
simulation has a volume of (25 A~ 'Mpc)3.

Note. For the hydrodynamic simulations, we only consider subhalos that contain more than 20 star particles. For the N-body simulations, we only consider subhalos

that contain more than 20 dark matter particles.

gravitational forces and therefore do not model galaxy
formation physics. We use these simulations to check if
the findings from the above hydrodynamic simulations
also apply to subhalos from N-body simulations.

Table 1 summarizes the main characteristics of the
different simulations used in this work. Each simulation has
a series of halo and subhalo catalogs associated to it that were
generated by running SUBFIND (Springel et al. 2001) on the
corresponding snapshots at different redshifts. SUBFIND
works primarily by identifying local peaks in the three-
dimensional density field and separating them by identifying
a saddle point between them. In the second step, the
overdensities and their surroundings are checked for gravita-
tional self-boundness: those that are self-bound are registered
as subhalos, and those that are not are attached to their
neighboring overdensities, namely those they share saddle
points with. SUBFIND operates on all particle types in the
simulations, dark matter and baryonic alike. In this work we
focus our attention on subhalos that contain galaxies, i.e.,
SUBFIND subhalos that contain more than 20 star particles.
For each subhalo we consider 12 different quantities
including both properties of the subhalo itself and of its
central galaxy:

1. Total mass, M,y. This quantity represents the total mass
of the subhalo, i.e., the sum of the mass in gas, dark

matter, stars, and black holes.

2. Black hole mass, Mgy. This quantity is the black hole
mass of the subhalo.

3. Stellar mass, M. This quantity is the stellar mass of the
subhalo.

4. Gas mass, M,. This quantity represents the gas mass of
the subhalo.

5. Spin, J. This quantity is the modulus of the subhalo three-

dimensional spin vector.

. Velocity, V. The quantity is the modulus of the peculiar
velocity vector of the subhalo.

. Gas metallicity, Z,. This quantity represents the average
metallicity of all gas particles within twice the radius
containing half of the subhalo stellar mass.

. Stars metallicity, Z,. This quantity is the average
metallicity of all star particles within twice the radius
containing half of the subhalo stellar mass.

. Radius, R. This quantity is the comoving radius contain-

ing half of the subhalo total mass.

Star formation rate, SFR. This quantity is the total star

formation rate of all gas particles in the subhalo.

Velocity dispersion, o. This quantity represents the one-

dimensional velocity dispersion of all particles in the

subhalo.

Maximum velocity curve, Vy.x. This quantity is the

10.

11.

12.

maximum of the spherically averaged rotation curve,
defined as | GMi (<r) /7.

We note that some of the above properties can be associated
with the galaxy inside the subhalo, like the black hole mass,
stellar mass, and star formation rate. Others, like the gas
mass, can be associated with the galaxy but also its
circumgalactic medium. We emphasize that although we
generically call all these objects subhalos, some of them are
may be very close to actual halos. For instance, the most
massive subhalo of a halo tends to represent the main body of
the dark matter halo without including other subhalos and
their galaxies. Thus, while we do not distinguish between
central and satellites in our nomenclature (but see
Appendix A), it is important to keep this in mind when
associating our subhalos to the physical systems behind them.
Moreover, most of these properties are not observable,
including the total mass and velocity dispersion of the
subhalos. The only property that can be approximately
estimated is the maximum circular velocity.
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2.3. Neural Networks

The main goal of this paper is to find a relation between the
total mass of a subhalo, M.y, and its other properties, i.e.,

Mo = £ (0), 2)

where 6 is the vector with the other subhalo properties; 6 can be
all other subhalo properties or a subset of it. Neural networks
can be used to approximate the function f. When training a
model on a given data set, we first split its data into training
(80%), validation (10%), and testing (10%). Some quantities
exhibit a very large dynamical range. This can be a problem
when training the networks. Thus, we first redefine these
variables such as

1. Miow — logo(1 + M),
2. My — log(1 + My),
3. MBH — loglo(l + MBH)a
4. M, — log; (1 + M,).

Before taking the logarithm we have added 1 to the variables to
avoid problems when the value of those variables is equal to 0.
Note that we are implicitly assuming that each mass term is
divided by h~' M. We then standardize all variables using

. X—pu

x . 3)
where p is the mean and ¢ is the standard deviation of each
variable, x.

The architecture of our model consists of a set of fully
connected layers whose input is the vector with the considered
normalized variables and the output is a single number with the
predicted value of the normalized subhalo total mass, M.
Between each fully connected layer we include a LeakyReLU
nonlinear activation function with a negative slope value of 0.2.

The loss function we optimize via gradient descent is the
standard mean squared error:

AR ~ pred
L= NZ(MJ;? — MEE2 4)
i=1

We use the AdamW optimizer (Loshchilov & Hutter 2017)
with beta values equal to 0.9 and 0.999. We train the network
using a batch size of 256 for 500 epochs. We use PYTORCH'?
to train, validate, and test the networks.

The hyperparameters of our model are (1) the number of
fully connected layers, (2) the number of neurons per layer, (3)
the value of the learning rate, and (4) the weight decay. We use
the OPTUNA code (Akiba et al. 2019) to perform Bayesian
optimization and find the best value of these hyperparameters
for each case we consider (e.g., when considering all subhalo
properties or when considering only a subset of them). For each
case we run 100 trials, where each trial consists of training the
model using selected values of the hyperparameters. We
perform optimization of the hyperparameters with the require-
ment to achieve the lowest validation loss possible. The model
we choose in the end is the one with the lowest validation loss
found by OPTUNA. The optimal model that OPTUNA found
contains five hidden layers and each layer consists of 171, 236,
884, 266, and 32 neurons, respectively. The ultimate value of
the weight decay is 1.1 x 107> and the learning rate is

12 https:/ /pytorch.org
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1.1 x 1074 Moreover, we did not tune batch size as a
hyperparameter and chose its value to be 256.

2.4. Symbolic Regression

While neural networks can approximate very complex
relations hidden in the data, their interpretation may be
challenging. In general, it is desirable to obtain an expression
that characterizes, or approximates, a given relation, because
the physics behind it is much easier to understand and interpret
in that form. For this purpose we made use of techniques
designed to approximate functions with analytic expressions.

We made use of two different methods:

1. Genetic programming. The idea behind this method is to
start with a series of operators (e.g., +,—,X,/, exp) and
create combinations with the operators and the variables
in a so-called generation. Those expressions are then
evaluated and the most accurate ones survive to the next
generation, where mutations and crossovers can take
place to explore different equations and find an optimal
one. We made use of the PYSR (Cranmer 2020) and
EUREQA"® packages for this.

2. Template fitting. Differently from genetic programming,
here we start with a functional form that has some free
parameters and perform a nonlinear least-squares fit to the
data to obtain the best value of the parameters. This is
done using the curve-fit function from SCIPY-OPTIMIZE."*
The idea is to use physically motivated expressions or to
improve the results obtained from genetic programming.

When searching for analytic expressions we typically combine
both methods. For instance, we use genetic programming to
obtain the main trend and then we improve on that using
template fitting.

3. Results

In this section, we present the results of our analysis with the
neural network and symbolic-regression models.

3.1. Neural Networks

We start by training a neural network to predict the total
subhalo mass from the other 11 properties using the subhalos of
the CAMELS-IustrisTNG simulations. In the top-left panel of
Figure 1 we show the predicted total subhalo mass versus its
true value from the subhalos of the CAMELS-IustrisTNG test
set (that the network has not seen before). As can be seen, the
network is able to predict the value of the subhalo total mass
very accurately: the rms error is 2.10 x 10~ and 99.99% of the
subhalos have a predicted total mass that is within 0.2 dex of its
true value.

One may wonder if the tight relation found by the network
arises from a strong correlation with a single variable. For
instance, the network may have found a trivial relation between
the mass and the radius of a subhalo. To check this, we make
scatter plots between M, and R, M, and o, and M, and V.,
as these three are the most important ones used by the network
(see below), and fit a generic function that goes through the
mean of the relation between the variables. Given that function,
one can predict the total subhalo mass given the value of the

3 hips: //www.creativemachineslab.com /eureqa.html
14 https: //docs.scipy.org/doc/scipy /reference /optimize.html
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Figure 1. We train a neural network to predict the total mass of a subhalo from other 11 properties of the subhalo and the galaxy that it hosts. The training is carried
out using subhalos from the CAMELS-IllustrisTNG simulations at redshift z = 0. The different panels show the predicted mass vs. the true value for subhalos from the
CAMELS-1ustrisTNG (top left), CAMELS-SIMBA (top right), IllustrisTNG100 (bottom left), and IustrisSTNG300 (bottom right) simulations. The plots are two-
dimensional histograms with the color bars indicating the number of galaxies in each bin of predicted and true mass. The rms error is quoted on the bottom right of
each plot and the percentage of the predictions that lie within 0.2 dex of the actual value is quoted on the top left corners. The trained model exhibits surprising

extrapolation properties, indicating that a universal relation may have been found.

considered variable. The rms that these functions return are
3.48 x 107! (for R), 3.79 x 10~! (for o), and 4.48 x 10~! (for
Vinax)- These rms are much higher than the one obtained by the
network, indicating that the relation cannot be attributed to a
strong correlation with a single variable.

We then test the model on the subhalos from the CAMELS-
SIMBA, IustrisTNG100, and IustrisTNG300 simulations
and show the results in the other panels of Figure 1. We find
that even if these subhalos come from simulations with
different subhalo mass ranges, resolutions, hydrodynamic
solvers, and subgrid models than the ones used for training,
the model can still accurately predict the total mass of those
subhalos. The rms for the IlustrisTNG300 subhalos is similar
to the one from the CAMELS-IllustrisTNG, while for
CAMELS-SIMBA and IllustrisTNG100 the rms is a factor of
~3 larger. We note that out of these three, it is expected that the
lowest rms will be obtained by the subhalos from the

TMustrisTNG300 simulation, as those subhalos are similar to
those from the IllustrisTNG-CAMELS simulations both in
terms of resolution and simulation code. The fraction of
subhalos whose predicted total mass is within 0.2 dex of the
truth is very high in all cases: 99.77% (CAMELS-SIMBA),
97.90% (IustrisTNG100), and 99.99% (IllustrisTNG300).
We note, however, a few interesting points. First, the scatter
in the predicted total mass is significantly larger for CAMELS-
SIMBA subhalos than for subhalos of the other simulations for
almost all masses. Second, the network is not able to accurately
predict the total mass of the most massive subhalos. Third, the
network predicts the total subhalo mass with large scatter for
very small subhalos, e.g., those with masses below 108 2~! M,
from the MlustrisTNG100 simulation. All these cases can be
seen as the network not extrapolating properly. In the case of
CAMELS-SIMBA, their subhalo’s galaxies are generated with
a code that solves the hydrodynamic equations in a different
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way and utilizes a distinct subgrid model. In the case of
MNlustrisTNG100 and IustrisTNG300, their higher resolution
and larger volume allow these simulations to contain subhalos
with lower and higher total mass than those in the CAMELS-
MustrisTNG simulations used for training (see Table 1). Thus,
it is important to acknowledge that while the percentages of the
predictions that fall within 0.2 dex of the truth are calculated to
be over 99% for both the CAMELS-SIMBA and Illu-
strisTNG300 simulations, these values do not appropriately
wei§h the most massive subhalos that are larger than
102" M,, which exhibit significantly greater errors.
Nevertheless, the model overall exhibits superb accuracy and
appears to utilize a robust relation between different internal
subhalo properties to predict the total mass.

We also examine how well the neural network is able to predict
the total mass for central versus satellite subhalos, as these two
types of systems exhibit different physical characteristics. We find
that for all four simulations, the neural network predictions for the
total mass of central subhalos demonstrate slightly higher
accuracy than those for the satellite subalos. The rms for the
centrals (satellites) are as follows: for CAMELS-IllustrisTNG,
1.94 x 1072 (2.26 x 10~2); for CAMELS-SIMBA, 6.69 x 102
(7.11 x 1072); for MustrisTNG100, 3.97 x 1072 (7.91 x 1072);
and for MustrisTNG300 1.90 x 1072 (2.25 x 10~ ?). In general,
the neural network effectively captures the trend for the total mass
for both types of subhalos. We provide more details in
Appendix A.

Our model not only works for subhalos from simulations
with different volumes, resolutions, and subgrid models to the
ones used for training, but also at redshifts other than the ones
used for training. We illustrate this in Appendix B, where we
display in Figure 8 the results of testing the network on
redshifts other than z = 0 (the one used for training). Our model
is able to extrapolate very well, and the rms and fraction of
subhalos within 0.2 dex is similar to those at z =0 and higher
redshifts for subhalos from all simulation types. The largest
differences we find are for subhalos of the CAMELS-SIMBA
simulations.

One key aspect needed for the network to work at higher
redshifts was to use the proper radius, R,, instead of the
comoving radius, R=R,/a, where a =1/(1 4 z) is the scale
factor. Without this change of variable, the network was unable
to predict the correct total mass of the subhalos. This indicates
that the relation learned by the network depends on the physical
radius rather than the comoving radius. We provide further
details on this issue in Appendix C.

Next, we examine which subhalo properties are the most
important for the neural network’s predictions by computing
the saliency value of each input variable as described in
Section 2.1. This is shown in Figure 2; we find that the top five
most important properties, in descending order, are as follows:
R, 0, Vinax, M, and SFR. We note that this exercise is done for
subhalos with different masses, and the saliency values
represent the average importance over all different subhalo
masses; subhalos with different masses may exhibit different
saliency values for the different variables.

To explore the effect of these variables on the accuracy of
the neural network, we train four separate models to predict the
total subhalo mass using different combinations of the five
most important properties and compare the results with that of
the original model that was trained on all 11 properties. We list
the rms of the predictions from each of the models when tested
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Figure 2. The saliency values of the input subhalo properties. Larger saliency
values indicate that the network output is more affected by changes in the value
of that variable and it can be seen as a proxy for feature importance. As shown,
the five most important properties are R, 0, Vinax, Mg, and SFR.

on subhalos from the four different simulations in Table 2. We
find that for subhalos of the CAMELS-IlustrisTNG, training
on more variables helps in achieving higher accuracy. This is
expected since adding more variables should only increase the
information content, not decrease it. We observe the same
behavior when the network is tested on subhalos from the
[lustrisTNG300 simulation.

On the other hand, the model trained on the five subhalo
properties achieves a higher accuracy than the model trained on
all properties when tested using subhalos of the CAMELS-
SIMBA and IlustrisTNG100 simulations. This may be due to
the fact that the network, when trained on all properties, may be
extracting information from properties that are unique to one
particular simulation. In other words, the network may be
learning artificial correlations that are only present in simula-
tions with a given physics implementation or resolution. The
model trained on five properties seems to learn more robust
relationships that are able to better extrapolate when applied to
subhalos from other simulations.

We also investigate if the relation found by the network is
unique to subhalos of hydrodynamic simulations or whether it
may be a more generic property that applies to subhalos of
gravity-only N-body simulations. We carry out this task by
testing the network trained on the R, o, and Vp,x properties of
the subhalos of the CAMELS-IllustrisTNG simulations on
subhalos from N-body simulations of CAMELS. We show the
results in Appendix D (Figure 11). We find that our model is
also able to accurately predict the total mass of these subhalos
that originate from simulations with different cosmological
models. We provide further details of this test in Appendix D.

Finally, we study if our conclusions change if we train on
subhalos from simulations other than those of the CAMELS-
MlustrisTNG simulations. For this, we train a network using all
11 properties from subhalos of the CAMELS-SIMBA simula-
tions, and test the model on CAMELS-IllustrisTNG, Illu-
strisSTNG100, and IustrisSTNG300. We find that that model is
able to capture a similar trend for all simulations but
predictions are less accurate than those from the model trained
on CAMELS-IllustrisTNG subhalos. Similarly, we also train a
neural network using all 11 properties of subhalos from the
MustrisTNG300 simulation and test the model on subhalos
from other simulations. In this case we also find that the
predictions have an order of magnitude higher rms than the
predictions from the neural network trained on CAMELS-
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Table 2
Neural Networks Trained to Predict the Total Subhalo Mass from Different Combinations of Input Properties using the Subhalos from the CAMELS-IllustrisTNG
Simulations
All Properties 0, Vinax» R, My, SFR 0, Vinax» R, M, 0, Vinax, R o, R
CAMELS-IllustrisTNG 2.1 %1072 23 %1072 2.6 x 1072 3.0x 1072 53 %1072
CAMELS-SIMBA 6.9 x 1072 52 %1072 5.6 %1072 6.6 x 1072 1.0x 107"
ustrisTNG100 6.2 x 1072 53 %1072 6.8 x 1072 9.0 x 1072 13x107"
lustrisTNG300 2.1 %1072 22 %1072 25% 1072 3.0 x 1072 5.6 x 1072

Note. Each column indicates which properties were used for training, and each row shows the rms errors of the predicted total mass when the model was tested on the
respective simulation sets. As seen, using more variables yields more accurate results for subhalos of the CAMELS-IllustrisTNG simulations, but in some cases it

makes the extrapolation worse for subhalos of other simulations.

MustrisTNG. We provide further details on these tests in
Appendix E.

One reason that can explain these results is that the subhalos
from the CAMELS-IllustrisTNG simulations exhibit a very
large variety (given that they come from simulations with
different cosmological and astrophysical parameters) that helps
the network to find more robust relations. When the network is
trained on subhalos from a single simulation with fixed
cosmology and astrophysics (e.g., [llustrisTNG300), the model
may be learning artificial relations (such as numerical artifacts)
that may not extrapolate very well. On the other hand, the
subhalos from the IllustrisTNG100, IlustrisTNG300, and
CAMELS-INlustrisTNG may share many similarities, since
they are generated with the same code. Thus, the network
trained on CAMELS-SIMBA subhalos may not extrapolate as
well to these three simulations, in the same way that the model
trained on CAMELS-IllustrisTNG does not extrapolate to
subhalos from the CAMELS-SIMBA simulations as well as for
the other IlustrisTNG-based simulations. Overall, although the
model trained on CAMELS-IllustrisTNG seems to perform
the best when testing on subhalos from other simulations, the
models trained on CAMELS-SIMBA and ustrisTNG300 are
also very accurate and possess powerful extrapolation proper-
ties. We hence conclude that our results are not largely affected
by the type of simulations used for training.

3.2. Analytic Expressions

The above results indicate that the function M = f (5)
found by the neural network may be a universal one, as it holds
accurately when tested on subhalos from simulations with
different cosmologies, astrophysical models, subgrid models
and hydrodynamic solvers, different volumes, different resolu-
tions, and at different redshifts than those used when training
the model. If that is the case, it would be very interesting to
obtain an analytic expression that reproduces, or approximates,
fin order to improve our knowledge on the physics behind such
an relation.

In order to search for such an equation we first train a genetic
programming model on a subset of inputs (¢) and outputs (M)
from subhalos from the CAMELS-IllustrisTNG simulations
that cover the whole mass range. We did this using the PYSR
package with the binary operators “ADD”, “SUB”, “MULT”,
“DIV”, and the unary operator “NEG”. The model was trained for
1000 trials using a batch size of 2048. The output contains a list
of equations found by the model, and associated with each
equation were its complexity, mean square error (MSE), and
score. The complexity is a metric that accounts for the number

of operators, constants, and input variables used; the score of
an equation is higher if it is more simple and accurate. To select
the best equation, we take into consideration all three values.
Among the different equations found, the one that stands out
for its simplicity and accuracy is

My = AUaRﬂ, (5)

where A = 10%%, « = 1.9, and 6 =0.9. We note that A has units
of ! M, while o and R are assumed to have units of km s
and h~'kpe, respectively. This equation is able to capture the
main trend of the function f but it also exhibits significant
biases and large scatter on the high- and low-mass ends,
respectively (see Figure 3). The rms values of this equation are
as follows: 7.60 x 1072 (CAMELS-IllustrisTNG), 9.28 x 1072
(CAMELS-SIMBA), 124 x 107" (IllustrisTNG100), and
9.32x 1072 (IllustrisTNG300). Evidently, this model does
not exhibit an accuracy comparable to that of the neural
network discussed in Section 3.1.

In order to improve the accuracy of the above expression, we
perform template fitting on the CAMELS-IllustrisTNG simula-
tions, considering a relation of the form

Mot = AT°RPV ]y s (6)

where A, «, 3, and +y are the free parameters we fit to the data.
We find several interesting things. First, the above equation is
more accurate than Equation (5), but its overall performance is
still not satisfactory; the rms errors for this model tested on all
simulations are listed in Table 3. This is mainly because we
find that the free coefficients exhibit some dependence with the
total mass of the subhalo. We fix this by using a slightly more
complicated equation where the exponents have some implicit
dependence on the parameters. Second, the dependence on V¢
is crucial to accurately predict M,, for small subhalos
Mo < 1010471 M). We note that we find this dependence
to be negligible for subhalos above ~10'*2~" M. We believe
that this is expected since massive galaxies tend to have their
maximum circular velocity at small radii deep within the stellar
body of the galaxy (e.g., in the bulge), and hence it is expected
to be related more to the detailed dynamics at small radii than
to the total mass of the subhalo.

Thus, we choose to improve Equation (6) by using a
template of the form

MO{ = Ao'(a0+al log U)R(ﬂo"’ﬂl logR) Vé?g;ﬁ log Vmax)’ (7)
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Figure 3. The accuracy of the equation Mo, = Ac°R”, where A = 10%°, o = 1.9, and (8 = 0.9, when used to predict the total mass of subhalos from the different
simulations. Although this simple equation is able to capture the main trend of the relation, it can be seen that the predictions exhibit a large scatter in the low-mass end
and a significant bias in the high-mass end for all simulations. The rms error is quoted in the bottom right and the percentage of predictions that lie within 0.2 dex of

the actual value is quoted on the top left.

where log(x) = log,(x). Instead of fitting the above equation over
the whole mass range, we fit it over three different mass ranges: (1)
M < 10°h7 " M., 2) 107" M, < Mo, < 101" M, and
(3) My > 102 17" M..,. The equations we derive are as follows:

Iutol
5.47 0.96—-0.061 R/R 0.19-0.101 1.94
1 O R( Og( /Ro)) o-( Og(U/Uo)) ‘/ s

My <101~ M., Ry=30.84 h™" kpc, 0p=63.25 km s~ ',
and Vpa o= 12333 km s '. For M >102hn"" M.,
oo =148.96 km s~'. We also note that units of R, o, and
Vinax are h! kpc, km sfl, and km sfl, respectively.

if Mo < 1010 1~'M,

— 105.32R(0.87+0.06log(R/Ro))O.O.72+0.4010g(0‘/a'0)V$1528*0-5410g(vmax/Vmax0)), if 1010 h—lM@ < My < 1012 h—lMG (8)

107.37R0.960.(1.46+0.24 log(a/ao)),

In the above equations, for M, < 1019471 M., Ry=241
h' kpc and 0o=256 km s '. For 104" M.<

if My > 1012 1M,

In Figure 4 we compare the accuracy of these equations
versus the one from two networks: one trained only using R, o,
and Vi« (the variables present in the analytic formula), and the
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Table 3
The rms Errors of the Various Models when Tested on the Four Simulations: CAMELS-IllustrisSTNG, CAMELS-SIMBA, TllustrisTNG100, and TustrisTNG300
Model CAMELS-IllustrisTNG CAMELS-SIMBA lustrisTNG100 lustrisTNG300
Equation (5) 7.60 x 1072 3.05 x 107! 1.24 x 107! 9.32 x 1072
Equation (6) 558 x 1072 2.02 x 107! 5.48 x 1072 494 x 1072
Equation (8) 3.96 x 1072 135 x 107! 3.08 x 1072 327 x 1072
Equation (G1) 332 x 1072 1.07 x 107! 3.08 x 1072 274 x 1072

Note. Each row indicates the models defined in Equations (5), (6), (8), and (G1).

other trained using all properties. In all cases, the training has
been carried out using subhalos of the CAMELS-IllustrisTNG
simulations at z=0. We find that these equations are able to
accurately predict the total mass of a subhalo from its radius,
maximum circular velocity, and velocity dispersion, indepen-
dent of whether the subhalo is from one simulation or another.

There are several interesting features to comment on. First,
in general, the accuracy of the equation is worse than the
network trained on the same three variables. This indicates that
our formula is not capturing the full functional form learned by
the network. Second, the model trained using all variables is, in
general, more accurate than both the model trained with three
variables and the analytic equation. This means that our
formula does not account for the additional information on M,
carried out by variables other than R, Vj,.x, and o. Third, our
equation is able to predict the total mass of subhalos with very
low or very high total mass (beyond the range the model was
trained on) more accurately than the neural networks. This may
be happening because in that regime the network is in
extrapolation mode and may be subject to a number of factors
limiting its accuracy, such as learning uninformative priors
(Villaescusa-Navarro et al. 2020).

We then test the accuracy of Equation (8) on subhalos from
the different simulations at higher redshifts, finding the
accuracy of the equation at those redshifts to be very similar
as at z=0. We note that when using Equation (8) at redshifts
other than 0, we need to use the proper radius instead of the
comoving radius (see Appendix C)

Finally, we also test Equation (8) on dark matter subhalos
from CAMELS-Nbody simulations at redshifts z=0 and
z=0.5. We find that the accuracy of the analytic model is
similar to the accuracy of the neural network that was trained
using the same three variables (see Figure 11).

Overall, our relatively simple equations are able to capture
the main trend of the relation between the total mass of a
subhalo and its other internal properties. We note that all above
equations have been derived from the PYSR software. In
Appendix G we present a set of equations found using the
symbolic-regression package EUREQA, which performs with
slightly higher accuracy than the above equations but has a
more complex form. The rms errors for these equations are also
included in the last row of Table 3 for comparison. In Figure 5
we show the rms values for the different simulations when
using the neural networks or the different equations.

4. Summary and Discussion

The formation and evolution of galaxies is driven by
numerous complex physical mechanisms whose details we do
not yet fully understand. One possibility to improve our
understanding of these processes is to find relationships

between subhalo and galaxy properties that may reflect the
underlying physics governing their formation and evolution. In
this work we follow a generic methodology to search for one
such relation connecting the total mass of a subhalo (M) with
other internal properties (5): Mo = f (5). We have used
machine-learning methods to approximate the function f using
state-of-the-art hydrodynamic simulations and learned about its
properties.
The most important findings of this work are as follows:

1. Neural networks are able to find a relation between the
total mass of a subhalo and its other properties,
independently of the subhalo type (i.e., a central or a
satellite). The model is able to accurately predict the total
mass of subhalos from simulations with different
cosmologies, different astrophysical models, different
subgrid models and hydrodynamic solvers, different
volumes, different resolutions, and different redshifts
than the ones it has been trained on. The surprising
accuracy achieved by the network in these different
extrapolations indicates that the network may have found
a universal relationship within the subhalo properties.

2. Our networks only work at redshifts z > 0 if the proper
radius is used instead of the comoving radius. This
indicates that the learned relation depends on physical
variables and not comoving ones.

3. We find that the models trained on fewer subhalo
variables (R, Vinax, 0, M,, and SFR) are able to extrapolate
slightly better than models trained using all subhalo
properties. This could be due to the fact that the network
may be leveraging information that is only present in
some simulations, and therefore it extrapolates worse
when those conditions are no longer met.

4. When the network is trained using R, Vj.x, and o from
subhalos, it is also able to predict the total mass of
subhalos from N-body simulations, although with higher
scatter for subhalos with low mass.

5. Our results are robust to the type of simulation used for
training the networks, including very different subgrid
galaxy formation models.

6. A simple relation of the form M, =AR“c" is able to
roughly capture the main relation between the total mass
of a subhalo and its other properties. However, it exhibits
significant biases in the low- and high-mass ends. We
find that including V. is crucial to properly capturing
the underlying relation in the low-mass end.

7. Equation (8) is a much more accurate expression that
works for subhalos from simulations with different
cosmologies, astrophysics, subgrid physics, volumes,
resolutions, and at different redshifts. Furthermore, this
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Figure 4. We fit analytic models to the CAMELS-IllustrisTNG simulations for three different mass ranges and test them on each simulation. This figure compares
them to the results of the neural networks. From top to bottom, the rows illustrate the predictions for CAMELS-IllustrisTNG, CAMELS-SIMBA, IllustrisTNG100,
and IlustrisTNG300 simulations. The first column shows the predictions from the analytic model shown in Equation (8); the next column shows the predictions from
the neural network trained using only three properties (o, Vinax, and R); and the last column shows the predictions from the neural network trained using all 11 subhalo
properties. Moreover, the dotted lines at 1010571 M., and 1012571 M, divide each plot into three sections to indicate the mass ranges that the symbolic models were
tested and trained on. The values quoted at the top of each plot for each mass range are the rms errors and the percentage of predictions within 0.2 dex of the truth,
respectively. These values are also quoted at the bottom left of each plot for all the mass ranges of that simulation. As shown, in the high- and low-mass ends, the
neural networks perform worse than the analytic models when tested on simulations other than CAMELS-IlustrisTNG.
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Figure 5. This bar graph compares the rms errors of the various models when
tested on the four simulations: CAMELS-IllustrisTNG, CAMELS-SIMBA,
MlustrisTNG100, and TllustrisTNG300. The legend indicates the model
associated with each color: Equations (5), (6), (8), and (G1). It can be seen
that while the neural network model exhibits very high accuracy in the
CAMELS-IlustrisTNG and IlustrisTNG300 simulations, it is unable to
extrapolate well to CAMELS-SIMBA and IlustrisTNG100. Moreover,
Equation (5), which is similar in form to the virial theorem, performs poorly
on all simulations. In general, Equations (8) and (G1) are the best analytic
models in terms of accuracy and extrapolation ability, and exhibit similar rms.

equation is able to extrapolate in the low- and high-mass
ends more precisely than the neural networks.

8. The neural networks achieve a higher accuracy than
Equation (8), indicating that (1) our expression may only
be an approximation to the relation found by the network,
and (2) that relation should also contain a dependence on
other variables, such as gas mass and star formation rate,
that our equation lacks.

The rather surprising extrapolation properties of both our
neural networks and the analytic equation may indicate that the
relation between the total mass of a subhalo and its other
properties is set by a relatively simple, universal law.

To our knowledge, the equations derived in this work are
new, and, while complex, they are able to capture the main
trend of the relation between the mass and other subhalo
properties. These equations may help us in understanding the
underlying physics behind subhalo/galaxy formation and
evolution that, ultimately, is responsible for shaping the
distribution of dark matter, gas, and stars in the universe.

We believe, however, that simpler and more accurate
equations that capture the apparent universal relationship
between the total mass of a subhalo and its other internal
properties can be found. As symbolic-regression algorithms
improve, the found equations may be more accurate and
simple, as well. There are also other adjustments to the pipeline
that can be implemented to improve the equations, such as
changing the normalization of the data and decreasing the noise
from the data by smoothing the data using Gaussian processes.
One could also try to use symbolic regression to find a single
equation that maps a property, such as radius, to the piecewise
equations. This can be performed for all the variables used in
the equations to obtain one relation that fits all mass ranges. We
leave this for future work.

We also think that although these results are generic, their
details may depend on the particular algorithm used to identify
subhalos and halos in the simulations. For instance, a different
criteria in the definition of radius or velocity dispersion may
lead to subhalos for which our network and analytic expression
do not work. Moreover, we conjecture that the functional form
of the found relations may remain robust for different subhalo-
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finding algorithms but the coefficients in the power law may
differ. This will need further investigation to ascertain.
However, in this case we believe retraining the network and
refitting the best values of Equation (8) may fix the issue.

Lastly, we attempt to provide a physical interpretation of our
results. From the variables used in Equation 5, as well as its
power-law form, we may guess that the network is learning a
relation that contains similarities to the virial theorem, which
states that in a self-gravitating body the total kinetic (7) energy
relates to the gravitational potential energy (U) via 2T+ U =0,
or M=V’R/G. The fact that the relation learned by the
network depends on the proper (physical) size of subhalos,
instead of their comoving scale, reinforces this point.

However, it cannot be that same relation because the
variables used do not correspond with the ones appearing in the
virial theorem, e.g., our radius, R, is defined as the radius
containing half of the subhalo total mass, while in the virial
theorem R is the radius of the virial system. Besides, our
network and analytic expression make use of Vy,,x, which does
not appear in the virial theorem. On top of this, we know that
variables such as the gas mass and the star formation rate are
being used by the network to improve its accuracy. However,
the network may be using all these variables as a proxy for the
ones appearing in the virial theorem.

The universality of our results could also be explained if the
underlying relation arises from the virial theorem, which is
derived from very generic arguments related to gravity, and
therefore is not affected by cosmology, astrophysics, simulation
volume, simulation resolution, subgrid physics, and redshift.

Overall, this paper presents a generic formalism to search for
relationships in high-dimensional spaces and approximate them
with analytic expressions. In future work we will use this
formalism to search for relations in galaxy properties from
actual observations and derive analytic equations from them.
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D.A.A. was supported in part by NSF grant Nos. AST-2009687
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Appendix A
Central versus Satellite Galaxies

In this section, we compare the neural network’s predictions
when subhalos are split into central and satellites for all
different simulation types. The results for the central subhalos
are depicted in Figure 6 while the results for the satellites are
shown in Figure 7. As can be seen, while the latter exhibits
slightly higher error, the model is still able to accurately predict
the total mass for both types of subhalos. This is a surprising
result given that the neural network was not given information
that directly differentiates the satellites from the centrals, which
may indicate that such information is implicitly encoded in
relations between the input subhalo properties. Moreover, there
are several interesting points to note. First, it is known that
satellites with eccentric orbits are being tidally stripped in a
time-dependent manner, as well as tidally shocked, as they
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Figure 6. We test the neural network trained to predict the total subhalo mass from 11 other subhalo properties on the central subhalos from the CAMELS-
IustrisTNG, CAMELS-SIMBA, IlustrisTNG100, and ustrisTNG300 simulations. In this figure, we plot the model predictions against the truth for each simulation
on one set of axes to conserve space. For the CAMELS-IlustisTNG subhalos, we plot the predicted mass against the truth. For the CAMELS-SIMBA subhalos, we
plot the predicted mass against the truth plus 3 dex. For the IlustrisSTNG100 subhalos, we plot the predicted mass against the truth plus 7 dex. Finally, for the
IustrisTNG300 subhalos, we plot the predicted mass against the truth plus 10 dex. As can be seen, the model is able to perform with very high accuracy for the
central subhalos, as more than 99% of its predictions lie within 0.2 dex of the truth for all simulations. However, to clarify, although this percentage is stated as
100.00% for both the CAMELS-TNG and IllustrisTNG300 subhalos, the actual values are 99.999% but have been truncated to two decimal places. This should also
be taken into consideration with the fact that the metric does not place more weight on the most massive subhalos, which contain significantly larger prediction errors.
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Figure 7. Same as Figure 6 but for the subhalo satellites from the four different simulations.

reach pericenter. Hence, it is not obvious why the relation
found by the neural network, one we believe to be rooted in the
virial theorem, holds in this case where the system may not be
virialized. A possible explanation is that subhalos that are
undergoing mass stripping may still be in a semi-equilibrium
state, which allows the conditions of the virial theorem to
apply. However, further investigation on such satellites is
needed to determine their effect on the neural network’s
predictions. Second, while the neural network does not
explicitly account for the tidal radius of the satellites or their
location relative to their hosts, which are essential pieces of
information for the orbiting bodies, it is still able to accurately
predict the total subhalo mass. Here, we believe that the radius
used to train the neural network implicitly encodes the
information about the tidal radius of the satellites. Given that
the radius we use is defined to contain half the total subhalo
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mass, the effect of tidal stripping would reduce both mass and
radius. Third, it is possible that the larger scatter seen for
satellites is a result of both such physical effects and numerical
effects related to the specific substructure-finding algorithm,
which may sometimes have difficulty identifying the full extent
of subhalos when they pass close to the host’s center. A more
detailed analysis of the relative dynamics between the satellites
and their hosts in the context of the found relations is needed,
and a more elaborate treatment of this can possibly reduce the
scatter in the fittings. We leave this for future investigation.

Appendix B
Higher Redshifts

Here we quantify how well our neural network, trained on
CAMELS-IustrisTNG subhalos at z =0, can predict the total
mass of subhalos from the different simulations at higher



THE ASTROPHYSICAL JOURNAL, 927:85 (19pp), 2022 March 1

Shao et al.

z=0 z=05 z=1 z=15 z=2
14 14 14 14 14
_ 99.9% _ — - -
<13 13 108 £13 100 £13 0* S13 103
5 5 ) ) )
ES P EEP ESP ESP EEP)
i=J > i=J > j=3 2
21 211 107 8y 102 8, 107 84y 10
5 - 5 ° 5
3 g 3 9 3
g 10 g 10 $ 10 810 LS X
K K 10t g 10t K 10 g 10
&9 (" rms = 2.10e-02) =9 [ rms = 2.80e-02) =0 [rms = 2.82e-02) =9 [ rms = 2.69e-02) e 9 "[rms = 2.94e-02)
8 8 10° 8 10° 8 10° 8 10°
8 10 12 14 8 10 12 14 8 10 12 14 8 10 12 14 8 10 12 14
Truth [log10(M o /h)] Truth [log10(Mo /h)] Truth [log10(M o /h)] Truth [log10(M o /h)] Truth [log10(M e /h)]
CAMELS-IllustrisTNG
z=0 z=05 z=1 z=15 z=2
15 ) 15 N 15 15 15
o i o Py 9 o 9
—14] 99-8% 5 —14] 98.1% 14 955% — 95.9% 100 =14] 95:5% 10%
< 7 102 £ 10° g 4 £ £
o o o 2 ° )
£13 d s sB3 e s £13
] ] ] ] ] 2
8 12 102 8 12 107§ 12 7 0 g 12 g 102 B 12 A 10
511 511 511 i 511 > 11 &
2 g il g 2
3 10 10! 3 10 10t £10 100 £10 10! 3 10 ; 10!
o o o o o .
& 91 [ rms= 6.86e-02) =9 [ rms=09.97e-02) s rms = 1.06e-01) &9 [ rms = 9.75¢-02) =9 [ rms=09.78e:02)
8 10° 8 10° 8 10° 8 10° 8 10°
8 10 12 14 8 10 14 8 10 12 14 8 10 12 14 8 10 12 14
Truth [og10(M o /h)] Truth [logao(M o /h)] Truth [og1o(M o /h)] Truth [log0(Mo /h)] Truth [log1o(M o /h)]
CAMELS-SIMBA
z=05 z=1 z=15 z=2
14 14 108 14 108 14 103 14 10°
— 97.9% - 98.3% — 98.6% - 98.6% - 98.6%
g g g g g
5 ) 5 5 5
12 12 12 12 12
g g 102 10 3 1003 102
& ) & & &
8 S S S S
© 10 o 10 - 10 o 10 © 10
g 9 g 9 g
S S 10 8 10t 8 10t 2 10!
5 o S 5 P 5
o — o A — o —_— o 4 — o P
T g{. [ rms = 2.06e-02] a g [ rms = 5.50e-02] a g. q rms = 5.07e-02| T g [ rms =5.10e-02 T g [ rms = 5.05e-02]
100 100 z 100 100
8 10 12 14 8 10 12 14 8 10 12 14 8 10 12 14 8 10 12 14
Truth [log10(M o /h)] Truth [log10(M o /h)] Truth [log10(M o /h)] Truth [log10(M o /h)] Truth [log10(M o /h)]
IlustrisTNG100
z=0 z=05 z=1 z=15 z=2
99.9% / 99.9% 99.9% 99.9% 99.9%
s14 ° =14 v s14 ° =14 ° LS4 ° 5
3 10° § 10° § 10° § 10° § 10
£ g £ g B
212 g12 212 212 212
g 102 8 102 8 102 8 102 8 102
5 o o o -
g 9 g 9 g
S10 1_‘n‘_)lO 1§10 1_‘910 1f\“_)lO N
E I 10 }3 S 10 @ o 10 g S 10 @ S 10
o« [ rms =2.06e-02] = : rms = 2.10e-02] o [ rms = 2.04e-02) = rms = 2.14e-02| o [ rms =2.25¢-02
8 ) 8 i i 8 ) 8 i 8 i
10° 10° 10° 10° 10°
8 10 12 14 8 10 12 14 8 10 12 14 8 10 12 14 8 10 12 14
Truth [log1o(M o /h)] Truth [fog1o(Me /h)] Truth [log1o(Mo /h)] Truth [log1o(M o /h)] Truth [log1o(Mo /h)]
IustrisTNG300

Figure 8. We test the neural network that was trained on CAMELS-IllustrisTNG subhalos using all 11 properties at z = 0 on subhalos from different simulations at
different redshifts. The percentage of predictions that fall within 0.2 dex of the true value is quoted at the top left of each plot, along with the rms error at the bottom
right. As demonstrated, the model is able to extrapolate in redshift very accurately in all cases. This may indicate that the network has indeed found a universal

relationship among subhalo properties.

redshifts. We show in Figure 8 the results of testing the
network on subhalos at redshifts z=0, z=0.5,z=1, z=1.5,
and z=2. We find that our model can accurately predict the
total mass of the subhalos at all considered redshifts,
independently of the simulations they come from. We
emphasize that CAMELS-SIMBA simulations do not use the
same hydrodynamic code as the [lustrisTNG-like simulations,
and utilize a very distinct subgrid physics model. Therefore, the
high accuracy of the model’s predictions at higher redshifts for
the SIMBA subhalos is not a trivial result. This reinforces our
belief that the neural network may have found a universal
relation since it has never seen subhalos at redshifts other
than z =0.

It is important to emphasize that in this exercise we have fed
the network with the proper radius of a subhalo instead of its
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comoving radius. In Appendix C we show what happens when
the comoving radius is used at higher redshifts. This indicates
that the relation learned by the network depends on the physical
radius and not on the comoving radius.

Appendix C
Comoving versus Proper Radius

While exploring the neural network’s performance at higher
redshifts, we found that using different definitions of the
subhalo radius led to drastically different results. Namely,
using the comoving radius, defined as the proper (physical)
radius divided by the scale factor a = 1/(1 + z), for subhalos at
redshifts higher than z=0 caused the neural network
predictions to have a vertical shift, resulting in very low
accuracy. This can be seen in the left panel of Figure 9. We
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Figure 9. These plots show the large difference in accuracy of the neural network’s predictions when using the comoving radius (left) vs. the proper radius (right) of
the subhalos at redshift z = 2. Here, the neural network was trained on subhalos of the CAMELS-IllustrisTNG simulations at z = 0 and tested on subhalos from the
IustrisTNG300 simulations at z = 2. The rms error is quoted in the bottom right and the percentage of predictions that lie within 0.2 dex of the actual value is quoted
on the top left. This shows that the relation learned by the network depends on proper lengths and not comoving ones.
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Figure 10. We trained a neural network to learn the total subhalo mass from the 11 subhalo properties of the CAMELS-IllustrisTNG simulations at redshift z =2
using the comoving radius as a variable, and tested the model on the subhalos from CAMELS-IllustrisTNG at redshift z = 0. At this redshift, the comoving and proper
radius definitions are equal. As shown, the model performs poorly when predicting the total mass for the subhalos at a different redshift from the subhalos used during
training. This illustrates the importance of using the proper variables when training the network if extrapolation properties are desired. The rms error is quoted in the
bottom right and the percentage of predictions that lie within 0.2 dex of the actual value is quoted on the top left.

note that since the network was trained at z =0, where the
comoving radius equals the proper radius, it is not obvious
which radius definition should be used. Thus, we tested the
network using the proper radius of the subhalos and show the
results in the right panel of Figure 9. As can be seen, in this
case the network accuracy reaches similar values as the model
at z=0. We thus conclude that the relation learned by the
network, and the one that the network employs to extrapolate to
other redshifts and simulations, uses the proper radius of the
subhalos and not their comoving one.

This is actually a very important point that shows the
importance of training neural networks using the proper
variables if extrapolation properties are desired. To illustrate
this point, we train a neural network using subhalos of the
CAMELS-ustrisTNG simulations at z =2 using the comov-
ing radius as one of the input variables. The results of testing
the network at z = 2 are shown on the left panel of Figure 10. It
can be seen that the network achieves a very high accuracy
when predicting the total mass of subhalos at z=2. The right
panel of Figure 10 shows instead what happens when the
network is tested on subhalos at z=0. We note that at this
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redshift, the proper and comoving definitions are equal.
Evidently, the network is not able to predict the correct total
mass of the subhalos. This case shows how training the neural
network on variables that are not the ones behind a relation
may significantly affect the extrapolation properties of the
network itself. It is, however, important to emphasize that the
proper variables behind a given case may not be known
a priori.

Appendix D
N-body Simulations

Here we study if the model that is trained on subhalos from
hydrodynamic simulations can predict the total mass of
subhalos from gravity-only N-body simulations. Since the
subhalos of the N-body simulations do not have some
properties that are only present in the subhalos of the
hydrodynamic simulations, such as SFR, gas mass, and others,
we use the model that was trained on the three variables which
the subhalos from both simulations share: R, V,,.x, and o. The
left panel of Figure 11 shows the results when the model is
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Figure 11. We trained a neural network model to predict the subhalo total mass from R, o, and V,,,,, using the subhalos from the CAMELS-IllustrisTNG suite (at
z=0). The leftmost plot shows the model predictions for a test set of the CAMELS-IllustrisTNG simulations (at z = 0). The following two plots depict the model
predictions when tested on the N-body subhalos from the CAMELS-IlustrisTNG Dark Matter simulations at redshifts z =0 and 0.5. The rms error is quoted in the
bottom right and the percentage of predictions that lie within 0.2 dex of the actual value is quoted on the top left.

tested on subhalos from the CAMELS-IllustrisTNG simula-
tions at z=0. As can be seen, the model is able to accurately
predict the total mass of these subhalos over the whole mass
spectrum. The middle and right panels of that figure show the
results when that model is tested on subhalos from N-body
simulations with different cosmologies at redshifts z=0 and
z=20.5. Here, we also find that the model is able to predict the
total mass of the N-body subhalos with high accuracy, although
the rms is slightly higher than that for subhalos of
hydrodynamic simulations and the fraction of N-body subhalos
with its total mass within 0.2 dex of their true value is slightly
lower than that for the hydrodynamic simulations.

These results show that the relation found by the network is
not unique to subhalos from hydrodynamic simulations, but
points toward something more fundamental that may just
depend on gravity itself, such as a relation similar to the virial
theorem.

Appendix E
Training on Other Simulations

In order to quantify the dependence of our neural network
results on their training set, we train two networks using subhalos
from the CAMELS-SIMBA and IlustrisTNG300 simulations
using all 11 properties. We then test each model on the subhalos
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of the other simulations. We show the results in Figure 12 for the
network trained on subhalos from the CAMELS-SIMBA
simulations. It can be seen that even though the model is using
a robust relation to predict the total mass, it is not as accurate as
the model that was trained on subhalos from the CAMELS-
MustrisTNG simulations. The rms values for the neural network
trained on CAMELS-SIMBA are: 7.67 x 10> (CAMELS-
MustrisTNG), 9.27 x 10~* (CAMELS-SIMBA), 1.41 x 1072
(MustrisTNG100), and 4.70 x 10~ (IlustrisTNG300).

In Figure 13 we show instead the results of the network trained
on subhalos of the MMustrisTNG300 simulation. The accuracies of
these predictions are similar to those of the model trained on
CAMELS-SIMBA. The rms values for the neural network
trained on MlusrisTNG300 are: 3.56 x 102 (CAMELS-1llu-
strisTNG), 9.84 x 10~* (CAMELS-SIMBA), 1.14 x 10" (Illu-
strisTNG100), and 2.06 x 102 (IllustrisTNG300).

These results show that although the data used in the training
set can have a relatively minor effect on the accuracy of the
network, for which we provide further interpretation in
Section 3.1, the main conclusions are unchanged, i.e., the
network can accurately predict the total mass of subhalos from
simulations with different cosmologies, astrophysics, subgrid
physics, resolutions, and volumes than the ones used to train
the network.
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Figure 12. We train a neural network to learn the total subhalo mass frrom 11 other subhalo properties on the CAMELS-SIMBA simulations at redshift z = 0. We
then test the model on a test set of subhalos from the CAMELS-SIMBA simulations, as well as on the subhalos of the CAMELS-IllustrisTNG, IllustrisTNG100, and
IustrisTNG300 simulations. In this figure, we plot the model predictions against the truth for each simulation on one set of axes to conserve space. For the CAMELS-
IustisTNG subhalos, we plot the predicted mass against the truth. For the CAMELS-SIMBA subhalos, we plot the predicted mass against the truth plus 2 dex. For the
TlustrisTNG100 subhalos, we plot the predicted mass against the truth plus 4 dex. Finally, for the IllustrisTNG300 subhalos, we plot the predicted mass against the
truth plus 6 dex. It is apparent that the model is able to predict with relatively high accuracy as more than 92% of the predictions lie within 0.2 dex of the truth for all
simulations. However, compared to the neural network that was trained on the CAMELS-IllustrisTNG subhalos (see Figure 1), this model is performing worse for all
simulations except CAMELS-SIMBA. The rms error and the percentage of the predictions within 0.2 dex of the true value are quoted next to each scatter plot in the
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Figure 13. Same as Figure 12 but training on subhalos from the IllustrisTNG300 simulation.

Appendix F
Input Properties

Here we investigate the effects of reducing the number of
input subhalo properties on the neural network’s ability to
predict the total subhalo mass. For that, we train a neural
network to learn the total mass using only five subhalo
properties, R, o, Vinax, SFR, and M,, on subhalos from the
CAMELS-IllustrisTNG  simulations. As illustrated in
Figure 14, the neural network is still able to predict the total
mass with high accuracy (see also Table 2). Notably, the
model predictions for subhalos of the CAMELS-SIMBA and
MustrisTNG100 simulations exhibit lower rms errors com-
pared to the predictions from the model trained on all 11
properties.
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A potential explanation for this behavior is that when the
training is carried out using all variables, the neural network
may be exploiting relations that are unique to a particular
simulation. These relations may be numerical artifacts or
peculiarities of the particular simulations considered. In that
case, training with more variables will improve the network
precision when the network is tested on simulations of the same
kind as the ones used for training, but may actually perform
worse when tested on other simulations. By training on a
smaller number of variables, the network may learn more
robust correlations that can extrapolate better.

We note, however, that the differences between the results
obtained by using all variables and five variables is not very
large, indicating that the original network is already margin-
alizing over uninformative variables.
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Figure 14. We train a neural network using the CAMELS-IllustrisTNG simulations to learn the total subhalo mass from five selected properties: R, o, Vinax, SFR, M, at
z = 0. In this figure, we plot the model predictions against the truth for each simulation on one set of axes to conserve space. For the CAMELS-IllustisTNG subhalos,
we plot the predicted against the truth. For the CAMELS-SIMBA subhalos, we plot the predicted against the truth plus 3 dex. For the IllustrisTNG100 subhalos, we
plot the predicted against the truth plus 7 dex. Finally, for the IllustrisTNG300 subhalos, we plot the predicted against the truth plus 10 dex. The rms error and the
percentage of the predictions within 0.2 dex of the true value are quoted above each scatter plot in the figure. We can see that, even from only five properties, the
neural network is able to predict the total mass with very low error. Even though it is performing worse than the original model for the CAMELS-IustristTNG
simulation, it is doing better for the IlustrisTNG100 and CAMELS-SIMBA subhalos.

Appendix G 0o=148.96 km s~' and Ry=113.24 h~'k pc. We note that
Eureqa Equations the units of R, o, and V.« are B! kpc, km s ! and km s,
respectively.

We train symbolic-regression models using the EUREQA
package on the CAMELS-IlustrisTNG simulations to search
for analytic expressions that can predict the total subhalo mass

These equations, while more complex, are able to predict the
total mass with higher accuracy than the analytic expressions
from the 11 other subhalo properties. First, we train a model on we found using linear regrc;ssion fitting (Equation (8)), with a
a subset of subhalos that span the entire mass range from the rms value of 3.32x 107" for the CAMELS-IllustrisTNG
CAMELS-IllustrisTNG simulations. While the equation that subhalos. When we test this on the CAMELS-SIMBA,

the model discovered is able to capture the main trend of the IustrisTNG100, and IustrisTNG300 simulations we find that
total subhalo mass, it performs with lower accuracy than the the equations are able to effectively extrapolate to the different
analytic equations discussed in Section 3.2. To improve the simulations and to mass ranges different than those used to
results and aid the model’s search, we train symbolic- train the model. The results for this are presented in the panels
regression models on subhalos spanning the three different of the first column of Figure 15. As shown, the rms values for
mass ranges used in Section 3.2: (1) My, <10'h~" M., these predictions are lower than those of Equation (8) for all
(2)] s 10:0 ' Mo <Mg<10%h™" M., and (3) M > four simulations. Similar to Equation (8), we see that the
10"~ M. The equations that were found are as follows: symbolic-regression models are able to accurately predict the

total mass in the high- and low-mass regimes without

5— Ry/1.65—0.68log 7log R : -
105:60R2.72+2.00log & 0.2610gRVm§f 0.68log 5log , if M < 1019 i lM@
My = 105.77R15.48+3.8210g%]axlog&vg{g)?bgVmaxIOgR*3-93075.1771.9310g[710gR’ if 1010 hilM@ < My, < 1012 hilM@ (G1)
25 i 25 .
109.74R1.94+0.4110g (70.1.96+10gR70.0210g G if ]Wtol > 1012 h71M<:>.

generating biases as the neural networks do. However,

In the above equations, we define R =R/Ry,5 = /0y, and Equation (G1) still does not attain the overall low rms of the
Viax = Vinax/ Vinax 0. For Mo, < 1010571 M., Ry=241 neural networks trained using the same three variables. From
h' kpc and 0o=256 km s ' For 10°4n' M.< this, we conclude that the neural networks are employing a
Mo < 1012471 Mg, Ry=30.84 h! kpc, 09 =63.25 km s, relation that is more complex than the models found by
and Vo = 123.33 km s . For M, > 102571 M, symbolic regression.
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Figure 15. Same as Figure 3 but using Equation (G1) derived from EUREQA.
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