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Abstract
The flex locus parameterizes plane cubics with three collinear cocritical points under
a projection, and the gothic locus arises from quadratic differentials with zeros at
a fiber of the projection and with poles at the cocritical points. The flex and gothic
loci provide the first example of a primitive, totally geodesic subvariety of moduli
space and new SL2(R)-invariant varieties in Teichmüller dynamics, as discovered
by McMullen–Mukamel–Wright. In this paper we determine the divisor class of the
flex locus as well as various tautological intersection numbers on the gothic locus.
For the case of the gothic locus our result confirms numerically a conjecture of Chen–
Möller–Sauvaget about computing sums of Lyapunov exponents for SL2(R)-invariant
varieties via intersection theory.

Keywords Plane cubics · Quadratic differentials · SL2(R)-invariant varieties ·
Lyapunov exponents

Mathematics Subject Classification 14H10 · 14H15 · 32G15

1 Introduction

LetF ⊂ M1,3 be the flex locus parameterizing elliptic curves with threemarked points
(E, p1, p2, p3) where E admits a plane cubic model with a projection π from a point
s ∈ P

2 (not in E) such that p1, p2, p3 are three collinear cocritical points of π . Here
pi being a cocritical point means the corresponding fiber of π is of type pi +2qi where
qi is a critical point, i.e. π is ramified at qi . Let QF ⊂ Q1,3 be the locus of quadratic
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differentials (E, q) over F such that div(q) = z1 + z2 + z3 − p1 − p2 − p3 where
z1+ z2+ z3 is a fiber of π . Lifting via the canonical double cover identifiesQF ⊂ Q1,3
with the gothic locus �G ⊂ �M4(23, 03) of abelian differentials on curves of genus
four where the preimage of each zi is a double zero and the preimage of each pi is an
ordinary point (i.e. a zero of order zero). Since QF and �G are isomorphic away from
the locus where some of the zi collide (see [9, Theorem 4.1]), we abuse notation and
also refer to QF as the gothic locus.

The flex and gothic loci were discovered byMcMullen–Mukamel–Wright [9]. They
are not only interesting objects in classical algebraic geometry, but they also possess
remarkable properties from the viewpoint of Teichmüller dynamics. The flex locus
gives the first example of a primitive, totally geodesic subvariety of moduli space, and
the gothic locus provides new SL2(R)-invariant varieties. In this paper we focus on
another fascinating interplay by using intersection theory to study dynamical invariants
on these loci.

Let F ⊂ M1,3 be the closure of F in the Deligne–Mumford compactification. Our
first result determines the divisor class of F in terms of the standard generators of
PicQ(M1,3).

Theorem 1.1 The divisor class of F inM1,3 is

F = 4

3
δirr + 4

(
δ0;{1,2} + δ0;{1,3} + δ0;{2,3}

) + 4δ0;{1,2,3}. (1)

Let Q1,3 be the (twisted) quadratic Hodge bundle on M1,3 whose fiber over
(E, p1, p2, p3) is H0(E, K⊗2(p1 + p2 + p3)), i.e. the space of quadratic differ-
entials q with at worst simple poles at the pi , where K is the dualizing line bundle of
the stable curve E . Denote by QF the closure of the gothic locus QF in Q1,3. We use
PQF ⊂ PQ1,3 to denote their projectivizations.

LetO(−1) be the tautological bundle onPQ1,3 whose fiber over (E, [q], p1, p2, p3)
is spanned by q, and let η be the first Chern class of O(−1). In [5, Conjecture 4.3]
there was a conjectural formula about the sum of Lyapunov exponents for an arbitrary
SL2(R)-invariant variety in terms of intersection numbers of divisor classes η, λ1, and
ψi , where λ1 is the first Chern class of the (ordinary) Hodge bundle and ψi is the
cotangent line bundle class associated to the i-th marked point. For the gothic locus
as an SL2(R)-invariant variety, all of its periods are absolute, hence no ψ-classes are
involved. In this case the conjecture reduces to

L+(QF) = 2

∫
PQF η2λ1∫
PQF η3

.

Note that [5, Conjecture 4.3] was originally stated for intersection numbers in the strata
of abelian differentials. In our context it converts to the above formulation by lifting
PQF into the corresponding stratum of abelian differentials via the canonical double
cover. In particular, the positive sign here is because wework withO(−1) instead of its
dual bundle in [5]. Moreover, the extra factor 2 is due to that the quadratic tautological
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bundle O(−1) lifts to the abelian tautological bundle O(−2) (see [5, Conjecture 1.9]
for a similar conversion).

Our next result determines the above intersection numbers.

Theorem 1.2 We have
∫
PQF η2λ1 = −1/2,

∫
PQF η3 = −13/6, and

2

∫
PQF η2λ1∫
PQF η3

= 6

13
. (2)

We remark that the value 6/13 matches with computer experiments by using
square-tiled surfaces of large degree d in the gothic locus (shared with the author
by Möller). For instance for d = 188, one approximation gives 0.46155 . . . while
6/13 ≈ 0.46153 . . . Therefore, our result provides a numerical confirmation of [5,
Conjecture 4.3] for the gothic locus. Moreover, theMasur–Veech volume of the gothic
locus was computed by Torres-Teigell [10] via counting square-tiled surfaces. Note
that the denominator 13 in (2) also appears in [10, Theorem 1.1]. This can be explained
by the fact that the top intersection number of η on an SL2(R)-invariant variety with
no REL deformation corresponds to the Masur–Veech volume (up to a volume nor-
malization factor, see [5, Section 2] and [8, Section 3]).

For recent developments about computing invariants in Teichmüller dynamics via
intersection theory, such asMasur–Veech volumes and (area) Siegel–Veech constants,
see [5,6] as well as the references therein. Several other special SL2(R)-invariant
varieties analogous to the gothic locus were discovered by Eskin–McMullen–
Mukamel–Wright [7] which we plan to study in future work.

2 Divisor class of the flex locus

We first study the intersection of the flex locus F with the boundary divisors ofM1,3.
In order to do that, we interpret the construction of the flex locus via two (admissible)
covers as follows. For (E, p1, p2, p3) ∈ F, there exist two (admissible) covers π and
φ of degree three to rational curves, whose domain curves (with marked points pi and
q j ) have stable model (E, p1, p2, p3) after forgetting the q j , such that each pi + 2qi
is a fiber of π and such that p1 + p2 + p3 and q1 + q2 + q3 are fibers of φ, where
the two g13 giving π and φ are linearly equivalent, i.e. they provide a g23 that realizes
E as a plane cubic with the desired configuration. We remark that the map π follows
from the original definition of the flex locus, while the other map φ together with its
properties was revealed in [9, Sections 2 and 3].

Intersection ofF with10;{1,2,3}

Let 	0;{1,2,3} be the boundary divisor of M1,3 whose general element parameterizes
an elliptic curve E union a rational component R at a node r where the three marked
points are contained in R. Using the admissible cover description, one can easily check
that a general element in F ∩ 	0;{1,2,3} has two types.
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(I) One case is that E is determined as a double cover of R branched at p1, p2, p3 and
the node r . In this case, the (implicitlymarked points)q1, q2, q3 are the ramification
points, i.e. 2qi ∼ 2r in E . We have 3r ∼ p1+ p2+ p3 ∼ q1+q2+q3 ∼ pi +2qi ,
where pi = r if we blow down R. In other words, this case occurs when the three
cocritical points collide at a flex point in the plane cubic model of E .

(II) Alternatively, q1, q2, q3 can be contained in R. Then R admits a triple cover of P1

such that p1 + 2q1, p2 + 2q2, p3 + 2q3 and 2r + t (for some t in R) belong to the
fibers of a g13 on R, where E admits a double cover induced by 2r togetherwith aP1

attached to R at t to form the other part of the admissible cover. The other g13 will
also have 2r contained in a fiber. In this case the plane cubic model contracts E and
maps R to a singular plane cubic with a cusp at r . To see this explicitly, consider a
cuspidal model of [9, (2.10)] by taking b(x) = 3 and c(x) = −4x3 therein. Then
one can check that the cocritical line away from the cusp (the one denoted by L ′

2 in
[9, (2.11)]) cuts out three points p1, p2, p3 that together with the cusp r have two
distinct cross-ratios in R ∼= P

1. In other words, fixing (p1, p2, p3) = (0, 1,∞)

in R, let c be the number of such special positions of r in R where the above
configuration holds, and then c = 2. Later we will also provide a sanity check for
c = 2 by using test curves.

To rule out the other possibilities, consider e.g. the case that E contains q1, q2 and
R contains q3. Since q1 + q2 + q3 is in one fiber of φ, E and R map to the same target
P
1-component with restricted φ-degree two and one, respectively. It follows that the

fiber of φ containing p3 cannot contain p1, p2. The remaining distributions of the qi
can be analyzed similarly.

Intersection ofF with10;{i,j}

Let 	0;{i, j} be the boundary divisor ofM1,3 whose general element parameterizes an
elliptic curve E union a rational component R at a node r such that the marked points
pi and p j are contained in R and the remaining one is contained in E . One checks that
a general element inF∩	0;{i, j} parameterizes a one-marked irreducible nodal rational
curve N (as a degeneration of E) union R at a node r . More precisely, suppose N
contains p1 and R contains p2, p3 for {i, j} = {2, 3}. The plane cubic model contracts
R so that p2 = p3 = r . In this case the tangent line to N at r goes through p1, the
projection of N from p1 has another tangent line at q1, and q2, q3 coincide with the
non-separating node n of N . The projection center s is the intersection of the lines
p1q1 and nr .

To rule out the other possibilities, consider e.g. the case that E is smooth and
contains p1, q1, q2, q3, and R contains p2, p3. Since p1 + 2q1 gives a fiber of π , the
degree of π restricted to E is three. Then the fiber of π containing 2qi must contain
another point in E which cannot be pi in R for i = 2, 3. The remaining configurations
can be analyzed similarly.
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Test curves

Let 	irr be the boundary divisor of M1,3 whose general element parameterizes an
irreducible rational nodal curve. We use δ• to denote the divisor class of each 	•. The
rational Picard group of M1,3 is generated by δirr , δ0;{i, j}, and δ0;{1,2,3}. Suppose the
divisor class of F inM1,3 is

F = d1δirr + d2
(
δ0;{1,2} + δ0;{1,3} + δ0;{2,3}

) + d3δ0;{1,2,3}.

Based on the above descriptions, we will use a number of test curves to determine the
coefficients di and provide sanity checks.

(i) Take the family B1 of a rational curve R union a pencil of plane cubics at a node
r where R contains p1, p2, p3 in general position. Then we have

B1 ·δirr = 12,

B1 ·δ0;{i, j} = 0,

B1 ·δ0;{1,2,3} = − 1,

B1 ·F = 12,

12d1 − d3 = 12.

The intersection number with F is due to that the moduli of E is determined
by the double cover ramified over the pi and r (described as type (I) in the
intersection of F with 	0;{1,2,3}) and a pencil of plane cubics mapping to M1,1
has degree 12.

(ii) Take the family B2 by attaching a pencil of plane cubics to a rational curve R at
a node r where R contains p2, p3 and we choose a base point of the pencil to be
p1. Then we have

B2 ·δirr = 12,

B2 ·δ0;{2,3} = − 1,

B2 ·δ0;{1,2,3} = B3 ·δ0;{1,2} = B3 ·δ0;{1,3} = 0,

B2 ·F = 12,

12d1 − d2 = 12.

The intersection number with F comes from the 12 rational nodal curves param-
eterized in the pencil.

(iii) Take the family B3 arising from a general plane cubic E with a general marked
point p1 and a varying line L through p1 that cuts out p2, p3 in E . In order to
label p2 and p3, we need to pass to a double cover, i.e. B3 ∼= E is a double cover
of P1 (parameterizing the varying lines through p1). Then we have

B3 ·δirr = 0,
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B3 ·δ0;{2,3} = 4,

B3 ·δ0;{1,2} = B4 ·δ0;{1,3} = 1,

B3 ·δ0;{1,2,3} = 0,

B3 ·F = 24,

6d2 = 24.

To see the intersection number with F, note that there are four cocritical lines
through p1 that can cut out p1+2q1 and the Hessian H(E) of E has degree three
(see [9, Sect. 2]). Hence each of the four cocritical lines meets H(E) at three
points, providing in total 12 choices for the projection center s. The additional
factor 2 is due to the labeling of p2 and p3.
Note that by now we can already determine the divisor class of F as claimed
in Theorem 1.1. Nevertheless, we will work out a few more test curves to do a
sanity check as well as to determine the special value c appearing in the analysis
for the intersection of F with 	0;{1,2,3} of type (II).

(iv) Take the family B4 arising from a rational curve R attached to a general elliptic
curve E at a node r where R contains (p1, p2, p3) = (0, 1,∞) and r varies in
R. Then we have

B4 ·δirr = 0,

B4 ·δ0;{i, j} = 1,

B4 ·δ0;{1,2,3} = − 1,

B4 ·F = 6 + c,

3d2 − d3 = 6 + c.

To see the intersection number with F, first note that the four branched points
of the double cover from E to P

1 induced by 2r has six distinct cross-ratios,
which contributes 6 by the description of type (I) for the intersection of F with
	0;{1,2,3}. Moreover, when the varying node r meets the c special positions in the
description of type (I) for the intersection of F with	0;{1,2,3}, we obtain another
contribution equal to c. Therefore, we conclude that c = 2 (using d2 = d3 = 4).

(v) Take the family B5 arising from a general plane cubic E with a flex point p1 and
a varying line L through p1 that cuts out p2, p3 in E . Then we have

B5 ·δirr = 0,

B5 ·δ0;{2,3} = 3,

B5 ·δ0;{1,2} = B5 ·δ0;{1,3} = 0,

B5 ·δ0,{1,2,3} = 1,

B5 ·F = 16,

3d2 + d3 = 16.
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Note that when p2 and p3 both coincide with p1, we obtain a rational component
R union E at a node r such that 2r ∼ 2p1 ∼ p2 + p3 gives the same g12 on
R, whose elliptic partner (described as type (I) in the intersection of F with
	0;{1,2,3}) can be avoided by choosing a general E . To see the intersection
number with F, note that the Hessian H(E) meets E at the nine flexes including
p1. Hence each of the three (non-flex) cocritical lines through p1 meets H(E)

at two other points besides p1, providing six choices for the projection center s,
and we also need to choose a labeling of p2 and p3. The additional 4 is from
the case when q1 = p1, i.e. the flex line through p1 becomes a special cocritical
line.

(vi) Take the family B6 by varying a line through a general point away from a general
plane cubic E to cut out p1, p2, p3 in E (after making a base change of degree
six in order to label the pi ). Then we have

B6 ·δirr = 0,

B6 ·δ0;{i, j} = 18,

B6 ·δ0;{1,2,3} = 0,

B6 ·F = 72,

18d2 = 72.

The intersection number with F is due to the base change and the fact that the
satellite Cayleyan parameterizing cocritical lines of E in the dual plane has
degree 12 (see [9, Section 2]).

(vii) Take the family B7 by varying p1 along a general elliptic curve E attached to a
rational curve R containing p2 and p3. Then we have

B7 ·δirr = 0,

B7 ·δ0;{2,3} = − 1,

B7 ·δ0;{1,2} = B7 ·δ0;{1,3} = 0,

B7 ·δ0;{1,2,3} = 1,

B7 ·F = 0,

d3 − d2 = 0.

We can also verify intersection transversality for the test curves with F without
much difficulty. For instance, B6 is a freely moving curve in M1,3 by varying the
moduli of E and the base point of the lines that cut out the marked points. Hence a
general choice of B6 meets F transversally at its generic points. Similarly one can
check this way for test curves contained in the boundary. For instance, B1 is a freely
moving curve in 	0;{1,2,3} by varying the moduli of E and the marked points in R.
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In summary, the above test curves determine and cross check the divisor class of F
as claimed in (1).

3 Intersection theory on the gothic locus

Recall that PQF ⊂ PQ1,3 is the closure of the locus (E, [q], p1, p2, p3) where
(E, p1, p2, p3) ∈ F and div(q) = z1 + z2 + z3 − p1 − p2 − p3 with z1 + z2 + z3 as
a fiber of the g13 given by the projection of E from s. Note that here the pi are labeled
but we do not label the zi .

Let T ⊂ PQF be the closure of the locus where div(q) = 2q1 − p2 − p3, i.e. the
original zero divisor z1 + z2 + z3 of q is chosen to be the special fiber p1 + 2q1. Note
that T can be realized as a (rational) section of f : PQF → F via (E, p1, p2, p3) �→
(E, [q], p1, p2, p3) where div(q) = 2q1 − p2 − p3, which implies that f∗T = F.

Lemma 3.1 The following relation of divisor classes holds on PQF:

η = ψp1− T . (3)

Proof Let π : E → PQF be the universal curve. Then we have the relation

π∗η = 2c1(ωπ) + P1 + P2 + P3 − Z − V (4)

whereωπ is the relative dualizing line bundle, each Pi ⊂ E is the section corresponding
to the marked point pi , Z ⊂ E is the closure of the locus of the zeros zi , and V ⊂ E

is the vertical vanishing divisor arising from components of reducible curves E on
which q is identically zero (see [4, Section 3]). Intersecting both sides of (4) with P1
and applying π∗, we conclude that

η = ψp1 − π∗(Z · P1) − π∗(V · P1). (5)

We first analyze the intersection of Z and P1. In this case z1 + z2 + z3 = p1 + 2q1,
i.e. div(q) = 2q1 − p2 − p3. It follows that π∗(Z · P1) = T .

Next we show that π∗(V · P1) is the zero divisor class. For this we argue using the
level graph terminology as described in [1,2] for the incidence variety compactification
(IVC) over PQF. Suppose � is a level graph where p1 is contained in the lower
level (i.e. a vanishing component of q contains p1). Observe that if z1, z2, z3 are all
contained in the lower level of �, then their variation is not recorded in the stable
quadratic differential q, as q is identically zero on the lower level. Hence in this case
the corresponding locus has codimension higher than one in PQF, which contributes
zero as a divisor class (i.e. it gets contracted from the IVC to PQF).

Consider curves in F∩ 	0;{1,2,3} where the rational component R contains p1, p2,
p3. Then q1, q2, q3 are either all contained in E or all contained in R according to the
two types of the intersection of F with 	0;{1,2,3}. Suppose q1, q2, q3 are all contained
in E . Then the admissible g13 has a semistable rational component B connecting E
and R. If z1, z2, z3 are all contained in B, since B is in lower level, this locus drops
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dimension from the IVC to PQF. If z1, z2 are in E and z3 is in R, then the nodes are
all poles of order two (i.e. horizontal in the level graph), hence this locus is irrelevant
as it does not admit a vanishing component. Suppose q1, q2, q3 are all contained in
R. Then the admissible g13 has a rational component C joining R such that the union
of C and E gives the other part of the triple cover. If z1, z2, z3 are all contained in
R, then R is in lower level compared to E , hence this locus drops dimension from
the IVC to PQF. If z1, z2 are in E and z3 is in C , then after contracting the unstable
componentC , z3 goes to R, and the node joining R to E is horizontal, hence this locus
is irrelevant as it does not admit a vanishing component.

Finally consider curves in F ∩ 	0;{i, j} where the rational component R contains
pi , p j and the irreducible rational nodal component N contains the remaining marked
pole. In this case N and R are on the same side of the g13. Note that z1 + z2 + z3
is given by the projection of N from s. If z1 + z2 + z3 
= p1 + p2 + p3, then the
node r joining R and N is horizontal, hence the locus is irrelevant as it does not admit
a vanishing component. If z1 + z2 + z3 = p1 + p2 + p3, then the stable quadratic
differential q has no pole in N , hence N is on top level. Suppose z1 = pi in N and
z2+ z3 = p j + pk are in lower level for {i, j, k} = {1, 2, 3}. Then z1 is not varying on
top level but z2, z3 vary in lower level in the g12 determined by 2r ∼ p j + pk , hence
the locus drops dimension from the IVC to PQF.

In summary, we have shown that π∗(Z · P1) = T and π∗(V · P1) = 0. Hence the
desired equation (3) follows from (5). ��

Next we study the intersection ηT . Let S be the IVC compactification of the locus
(E, [q], p1, p2, p3, q1)where (E, [q], p1, p2, p3) ∈ F with div(q) = 2q1− p2− p3.
In other words, the signature of the ambient stratum of the locus is (2,−1,−1, 0)
where p1 is regarded as an ordinary marked point. Let g : S → T be the map that
forgets q1, and g is a birational morphism.

Let �1 be the level graph parameterizing an irreducible rational nodal curve
(N , p3, q3, q1 = q2 = n) union a rational curve (R, p1, p2) at a node r such that
q|R = 0 and (q|N ′) = −p3 − r − n1 − n2, where N ′ ∼= P

1 is the normalization
of N after blowing up the node n to n1, n2, and the resulting exceptional rational com-
ponent carries 2q1−3n1−3n2 for the corresponding twisted quadratic differential. Let
�2 and �3 be the (isomorphic) level graphs parameterizing an elliptic curve E union
each one of the two special rational components (R, p1, p2, p3, q1, q2, q3) in the type
(II) intersection of F with 	0;{1,2,3} where q|E = (dz)2 and q|R = 0. Denote by α�i

the divisor class of the corresponding locus of �i in S, and by β�i the corresponding
image class in T .

Lemma 3.2 The following relation of cycle classes holds:

ηT = ψp2T − β�1− 2β�2 − 2β�3 . (6)

Proof Using a similar analysis as in the proof of equation (3), we can obtain the
following relation of divisor classes on S:

g∗η = g∗ψp2 − α�1− 2α�2− 2α�3 (7)
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where the coefficient of α�i for i = 2, 3 has a factor 2 from the twisting order of
the edge in the level graph in terms of the smooth strata compactification [3] and the
isomorphism in codimension-one around the divisors �i when comparing it with the
IVC. Alternatively, over �i for i = 2, 3 the part of the vertical vanishing divisor V
as in (4) has multiplicity two, because at the separating node r the zero order of q|E
is zero (i.e. an ordinary point) which differs by two from the double pole order of the
square of the dualizing bundle at the node r . Then equation (6) follows from applying
g∗ to (7). ��
Finally we can work out the desired intersection numbers in (2).

Proof of Theorem 1.2 Recall the map f : PQF → F. We have f∗T = F, f ∗λ1 = λ1,
and f ∗ψpi = ψpi . Moreover, it is easy to see that ηβ�1 = 1/2 and ηβ�2 = ηβ�3 =
1/12. Also, ψpi β� j = 0 for any i ∈ {1, 2} and j ∈ {1, 2, 3} as p1 and p2 are
marked points in a rational component with fixed moduli in all �i , λ1β�1 = 0 as both
components in �1 are rational, and λ1β�2 = λ1β�3 = 1/24. Then using equations (3)
and (6) we conclude that

f∗(η3) = f∗
(
η2ψp1− η2T

)

= f∗
( − ηψp2T + ηβ�1+ 2ηβ�2+ 2ηβ�3− ηψp1T + ηψ2

p1

)

= 5

6
+ f∗

( − ψ2
p2T + ψp2β�1+ 2ψp2β�2 + 2ψp2β�3

− ψp1ψp2T + ψp1β�1+ 2ψp1β�2 + 2ψp1β�3+ ηψ2
p1

)

= 5

6
− ψ2

p2F − ψp1ψp2F − ψ2
p1F

and

f∗(η2λ1) = f∗
( − ηλ1T + ηλ1ψp1

)

= f∗
( − λ1ψp2T + λ1β�1+ 2λ1β�2 + 2λ1β�3+ ηλ1ψp1

)

= − λ1ψp2F + 1

6
− λ1ψp1F.

OnM1,3 we have the following intersection numbers:

λ1ψp1δirr = 0, λ1ψp1δ0;{1,2} = λ1ψp1δ0;{1,3} = 0,

λ1ψp1δ0;{2,3} = 1

24
, λ1ψp1δ0;{1,2,3} = 1

24
,

ψ2
p1δirr = 1

2
, ψ2

p1δ0;{1,2} = ψ2
p1δ0;{1,3} = 0,

ψ2
p1δ0;{2,3} = 1

24
, ψ2

p1δ0;{1,2,3} = 0,

ψp1ψp2δirr = 1, ψp1ψp2δ0;{1,2,3} = 0,

ψp1ψp2δ0;{1,2} = ψp1ψp2δ0;{1,3} = ψp1ψp2δ0;{2,3} = 0.
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Combining the above with the divisor class of F in (1), it follows that

ψ2
p1F = ψ2

p2F = 5

6
, ψp1ψp2F = 4

3
,

λ1ψp1F = λ1ψp2F = 1

3
.

Finally we obtain that

∫

PQF
η3 = − 13

6
and

∫

PQF
η2λ1 = − 1

2
,

thus verifying (2). ��
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