Artificial Intelligence 294 (2021) 103431

Contents lists available at ScienceDirect e —

Artificial Intelligence

www.elsevier.com/locate/artint

An integrated approach to solving influence diagrams and
finite-horizon partially observable decision processes

Eric A. Hansen

Check for
updates

Dept. of Computer Science and Eng., Mississippi State University, MS 39762, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 9 October 2019

Received in revised form 2 August 2020
Accepted 23 November 2020

Available online 2 December 2020

Keywords:

Influence diagram

Variable elimination

Partially observable Markov decision process
Dynamic programming

Decision-theoretic planning

We show how to integrate a variable elimination approach to solving influence diagrams
with a value iteration approach to solving finite-horizon partially observable Markov
decision processes (POMDPs). The integration of these approaches creates a variable
elimination algorithm for influence diagrams that has much more relaxed constraints on
elimination order, which allows improved scalability in many cases. The new algorithm
can also be viewed as a generalization of the value iteration algorithm for POMDPs
that solves non-Markovian as well as Markovian problems, in addition to leveraging a
factored representation for improved efficiency. The development of a single algorithm that
integrates and generalizes both of these classic algorithms, one for influence diagrams and
the other for POMDPs, unifies these two approaches to solving Bayesian decision problems
in a way that combines their complementary advantages.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

An influence diagram [1-5] is a graphical model of a Bayesian decision problem that leverages problem structure that
is represented in the form of a graph, including conditional independence relations among variables and separability of the
utility function, in order to represent a decision problem compactly and solve it more efficiently. Influence diagrams have a
wide range of successful applications [6].

Another widely-used, and even older model of a Bayesian decision problem is a partially observable Markov decision
process (POMDP) [7-11]. The two models are closely related, and many problems can be represented in both ways. Any
finite-horizon POMDP can be represented as an influence diagram, and many problems that can be represented as an
influence diagram can also be represented as a finite-horizon POMDP. But despite the overlap between these models, very
different algorithms have been developed for solving influence diagrams and POMDPs.

Algorithms for solving influence diagrams adopt a dynamic programming approach that enumerates relevant histories,
which may be all or part of the full history. By contrast, algorithms for solving POMDPs perform dynamic programming in a
space of belief states, where a belief state is a probability distribution over an unobserved state space. The POMDP approach
scales better for problems with many stages, including infinite-horizon problems. In their classic form, however, algorithms
for solving POMDPs do not leverage conditional independence relations among variables, except for the assumption that the
state variable at each stage satisfies the Markov property.

Over the past couple of decades, research on the topic of factored POMDPs has shown how to more fully leverage condi-
tional independence relations among variables (and the values of variables), as well as separability of the reward function,

E-mail address: hansen@cse.msstate.edu.

https://doi.org/10.1016/j.artint.2020.103431
0004-3702/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.artint.2020.103431
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2020.103431&domain=pdf
mailto:hansen@cse.msstate.edu
https://doi.org/10.1016/j.artint.2020.103431

E.A. Hansen Artificial Intelligence 294 (2021) 103431

in order to improve the scalability of algorithms for POMDPs [e.g., 12-15]. In this work, techniques developed for influence
diagrams and related graphical models have been adapted to represent POMDPs more compactly, and solve them more
efficiently. This integration of techniques has improved the scalability of algorithms for solving POMDPs. But it has not
led to any corresponding improvement of algorithms for solving influence diagrams. This observation provides the starting
point for this paper. Our contribution is to develop a complementary approach to integrating these two models that uses
techniques originally developed for solving POMDPs in order to improve the effectiveness and scalability of algorithms for
solving influence diagrams.

This complementary approach is motivated, in part, by the observation that state-of-the-art algorithms for POMDPs are
more effective and scalable than algorithms for influence diagrams in solving problems that can be modeled in both ways,
that is, in solving finite-horizon POMDPs. Influence diagrams have the advantage that they represent a broader range of
decision problems, including non-Markovian problems. But the best current algorithms for influence diagrams are limited
to solving problems with no more than a few decision variables. When the performance of algorithms for these two models
is compared in solving finite-horizon POMDPs, algorithms for POMDPs substantially outperform algorithms for influence
diagrams as the number of decision variables, which corresponds to the number of stages of the problem, increases.

This difference in performance is related to the fact that the two approaches solve different dynamic programming
recurrences. Algorithms for influence diagrams, as mentioned above, solve a dynamic programming recurrence that is based
on a discrete state variable that represents the history of the process. Algorithms for POMDPs, by contrast, solve a dynamic
programming recurrence that is based on a multi-dimensional continuous state variable that represents a belief state. In the
literature on POMDPs, the relative advantages and disadvantages of these two different dynamic programming recurrences
are well-understood, and the dynamic programming recurrence based on belief states has long been preferred because it
has been found to be more convenient and scalable [e.g., 16, pp. 218-222, 251-270].

In this paper, we develop an approach to solving influence diagrams that leverages the belief-state dynamic programming
recurrence associated with POMDP algorithms, allowing larger and more complex influence diagrams to be solved. This
approach works especially well in solving influence diagrams that have the same, or similar, structure as finite-horizon
POMDPs. But for other problems that can also be represented by influence diagrams, it may not be possible to formulate a
purely belief-state dynamic programming recurrence, or, if possible, it may not be the best approach to solving the problem.
Therefore, we develop an approach to solving influence diagrams that leverages both dynamic programming recurrences. It
can solve the history-based dynamic programming recurrence traditionally used to solve influence diagrams, or it can solve
the belief-state dynamic programming recurrence used by POMDP algorithms, or, significantly, it can solve a combination
of the two recurrences, that is, it can solve a dynamic programming recurrence that is defined over both histories and
belief states. The choice of recurrence is made based on how best to solve a given problem. In short, we integrate these
two approaches to solving Bayesian decision problems by developing a single framework that generalizes both, and allows
existing algorithms for influence diagrams and POMDPs to be viewed as special cases of the same, more general algorithm.
The integration of these two approaches does not simply mean that a problem is solved by one approach or the other. The
integrated algorithm can solve problems in new ways that are not possible by using either approach alone.

Viewed as a generalization of the traditional variable elimination algorithm for influence diagrams, the improved scalabil-
ity of the new algorithm results from relaxed constraints on elimination order. The traditional variable elimination algorithm
is constrained to eliminate all unobserved variables before it eliminates any observed variables, including decision variables.
By contrast, the new algorithm can leverage a dynamic programming recurrence that is defined over belief states in or-
der to eliminate decision variables, and other observed variables, before all unobserved variables are eliminated. Relaxing
traditional constraints on elimination order improves both the time and memory complexity of the variable elimination
approach, often dramatically.

In addition to generalizing the variable elimination approach to solving influence diagrams, the new algorithm can be
viewed as a generalization of the value iteration approach to solving POMDPs, in two related ways. First, it leverages a
factored representation for improved scalability. Previous work on factored POMDPs also leverages a factored representation,
but the new algorithm does so from a different perspective and in new ways. Second, it solves a larger class of finite-horizon
partially observable decision processes that includes any problem that can be represented by an influence diagram. This
larger class of problems includes problems with delayed action effects, delayed observations, and non-Markovian rewards,
that is, it includes a broad range of non-Markovian problems that are not easily modeled in the traditional framework of
POMDPs. We argue that the integrated algorithm introduced in this paper offers a promising new approach to solving this
large and important class of problems.

The paper is organized as follows. Section 2 reviews relevant background on influence diagrams and POMDPs. In Sec-
tion 3, the algebra of potentials used in the variable elimination approach to solving influence diagrams is generalized to
allow decision making under partial observability. This generalization provides the foundation for development of an im-
proved variable elimination algorithm for influence diagrams, described in Section 4, which we call generalized variable
elimination. Thus Sections 3 and 4 describe the new algorithm. Section 5 considers the new algorithm from the perspective
that it also generalizes and improves the value iteration approach to solving POMDPs. Section 6 concludes the paper with a
discussion of the significance of the integrated algorithm, including potential applications and extensions. Two appendices
provide additional details.

E.A. Hansen Artificial Intelligence 294 (2021) 103431

2. Background

In this section, we give an overview of relevant background on influence diagrams and POMDPs. In particular, we review
the variable elimination approach to solving influence diagrams and the value iteration approach to solving POMDPs.

2.1. Preliminaries

We begin by introducing notation and concepts related to the variable elimination approach to solving influence dia-
grams.

2.1.1. Variables, probabilities, and utilities

We use upper-case letters such as X and Y to denote variables and lower-case letters such as x and y to denote values,
or states, of variables. For a variable X, we let sp(X) denote its set of states, or state space, and we let |sp(X)| denote the
cardinality of the state space. We assume that variables have a finite state space.

We use bold upper-case letters such as X to represent sets of variables, that is, joint variables. Instantiations (also called
“configurations”) of X are denoted by bold lower-case letters, such as x. The state space of a joint variable X is defined as
the Cartesian product of the individual state spaces, denoted sp(X) = x xexsp(X), and we let |sp(X)| denote its cardinality.

When XNY =, we let (X,Y) denote a joint variable, and (x,y) a state of the joint variable. In the case of an empty set
of variables, it is convenient to adopt the convention that its state space consists of a single special state, denoted A. Thus
sp(¥) = {1} and |sp(¥)| = 1. We also adopt the convention that (A,y) =Y.

If X and Y are sets of variables, with X C Y, then y'X denotes the projection of the state y onto the state space for X,
V\ihich means that values of variables in Y that are not also in X are ignored. Note that y'X is a state of X. If X = ¢J, then
yX =

We let P(X) denote the probability distribution for a variable X, where P(X = x) denotes the probability that variable
X has the value x. When the variable is obvious from the context, we let P(x) denote this probability. We let P(X|Y)
denote the conditional probability distribution of X given Y. A conditional probability is denoted P(X =x|Y = y), or simply
P(x|y) when the variables are obvious from the context. For joint variables, we let P(X|Y) denote a conditional probability
distribution. A conditional probability is denoted P(X = x|Y =y), or simply P(x]y).

A utility (or reward) function over a set of variables X, denoted R(X), is a mapping R : sp(X) — N that expresses the
preferences of a decision maker.

2.1.2. Potentials

In variable elimination algorithms, it is common to perform computations using potentials in place of probability and
utility functions, where a potential over a set of variables X is a function that maps each instantiation x of X to a real
number.

A probability potential over the variables X, denoted ¢ (X), is a potential with the further restriction that it is a non-
negative function that is not identically zero. The concept of a probability potential generalizes the concept of a probability
distribution to contexts where it is not necessarily normalized. Thus a probability distribution P(X) is a special case of
a probability potential that sums to 1, and any probability potential can be transformed into an equivalent probability
distribution by normalization. A conditional probability potential for X given Y, denoted ¢ (X|Y), is a probability potential
over X conditional on disjoint Y. A conditional probability distribution for X given Y, denoted P (X|Y), is a special case of a
conditional probability potential that satisfies the condition that for each state y € sp(Y), Y ,P(X=x|]Y=y)=1.

A utility potential is a mapping, v : sp(X) — 9N, that generalizes the concept of expected utility to contexts involving
multiplication by a probability potential that is not necessarily normalized.

For convenience, we let the operator dom return the variables in the domain (or “scope”) of a potential; for example,
dom (¢ (X)) = X. Operations on potentials include combination and marginalization operations, which we review next.

2.1.3. Combination operations

A combination operation is a binary operation where the domain of the resulting potential is the union of the domains of
the two potentials that are combined. When two potentials, ¥ (X) and ¥’'(Y), are combined, for example, the domain of the
resulting potential, ¥”(Z), is Z= XU Y. The combination operations used in solving an influence diagram include addition
of utility potentials, multiplication and division of probability potentials, and multiplication of a probability potential by a
utility potential. The operations are performed element-wise, as follows.

o The sum of two utility potentials, ¥ (X) and v'(Y), is a utility potential, ¥ (Z) = ¥ (X) + v¥/(Y), defined so that " (z) =
¥ (@X) + ¢’ (zY), for each z € sp(2).

e The product of two probability potentials, ¢ (X) and ¢’(Y), is a probability potential, ¢”(Z) = ¢ (X) - ¢'(Y), defined so that
¢ (z) = ¢ (@¥X) - ¢’ ('), for each z € sp(Z). (The dot that represents multiplication is often suppressed.) The product of
a utility potential and a probability potential is defined similarly, except the result is a utility potential.
When two conditional probability potentials are multiplied, as in ¢”(A|B) = ¢ (X|Y) - ¢'(W|Z), the conditioned and con-
ditioning variables in the product are distinguished in the usual way, so that A=XUW and B= (YU Z)\(XUW).

3

E.A. Hansen Artificial Intelligence 294 (2021) 103431

e When a probability potential ¢ (X) is divided by another probability potential ¢’(Y), the quotient is a probability po-
tential, ¢”(Z) = ¢ (X)/¢’'(Y), defined as ¢”(z) = ¢ (zX)/¢'(@'Y), for each z e sp(Z). If the divisor is zero, we adopt the
convention that the result is 4+oo if the dividend is positive, —oo if the dividend is negative, and zero if the dividend is
zero.

Algebraic properties. The commutative and associative properties hold for addition of potentials, that is, V1 + ¥ = ¥ + ¥
and (Y1 + ¥2) + Y3 = Y1 + (Y2 + ¥3). The same properties hold for multiplication of potentials, that is, ¢1¢2 = ¢2¢1 and
(p102)93 = P1(¢2¢3). The distributive property holds for multiplication over addition, that is: ¢ - (V1 +¥2) =¢ -1 + ¢ - V2.
Division is neither commutative nor associative.

A potential is said to be vacuous if combining it with a second potential does not change the second potential. In the
context of addition, a potential is said to be vacuous if it is identically equal to zero. In the context of multiplication, a
potential is vacuous if it is identically equal to 1.

2.1.4. Marginalization operations

Marginalization operations eliminate a variable from the domain of a potential.

Let ¢ denote a potential that could be either a probability or utility potential. The elimination of a variable Y from the
domain of a potential ¢ by the operation of sum-marginalization results in a new potential ¢’ over the variables dom(¢)\{Y},
defined as ¢’ =)"y ¢. For example, given a potential ¢(Y,X), elimination of Y by sum-marginalization creates a new
potential ¢’ (X) ="y (Y, X), which is defined so that for each x € sp(X):

PO= Y 0y.x. (1)

yesp(Y)

The elimination of a variable Y from the domain of a potential ¢ by the operation of max-marginalization results in a
new potential ¢’ over the variables dom(¢)\{Y}, defined as ¢’ = maxy ¢. For example, given a potential ¢ (Y, X), elimination
of the variable Y by max-marginalization creates a new potential ¢’(X) = maxy ¢ (Y, X), which is defined so that for each
x € sp(X):

@' (X) = max ¢(y,X). (2)
yesp(Y)

For brevity, we often write maxy instead of maxyegp(y), and Zy instead of Zyesp(Y)'
The restriction operation instantiates one or more of the variables in the domain of a potential. For example, the restric-
tion @R(Y=Y) of a potential ¢(Y,X) is a potential over X such that

PRY=N (%) = p(y, x), 3)

for each x € sp(X). Since the resulting potential is defined over a smaller set of variables, restriction is a kind of marginal-
ization operation.

Algebraic properties. For sum-marginalization, the commutative property holds, thatis:) y >, @ =", >y ¢. The distribu-
tive property also holds, which means that if Z ¢ dom(¢1), then >, 0102 =01 ,¢2 and >, (@1 +@2) =1+ >, ¢2.
For max-marginalization, the commutative property holds, that is: maxy max; ¥ = maxz maxy . The distributive prop-
erty also holds, which means that if Z ¢ dom(y1), then maxz 112 = ¥1 maxz ¥, and maxz (¥ + ¥2) = ¥1 + maxz .
In general, the sum- and max-marginalization operators are not commutative, that is, it does not always hold that
Y ymaxzy =maxz) y ¥

For the restriction operation, the commutative property holds, which means that: (pRY=Y)R(Z=2) — (¢
R(Y=y,Z=2)

R(Z=2))R(Y=y) —
2

2.2. Influence diagram

We next review the influence diagram model and the variable elimination algorithm for solving influence diagrams.
2.2.1. Model

Influence diagrams were introduced by Howard and Matheson [1] to provide a more intuitive and compact representation

of Bayesian decision problems than is provided by decision trees. We consider a widely-used extension of their original
model that allows additive separability of the utility function [4,17].

Definition 1. An influence diagram is a tuple (G, C,D, P, R), where

1. G=(N, A) is a directed acyclic graph with node set N and arc set A. The node set is partitioned into chance nodes,
shown graphically as ovals; decision nodes, shown as rectangles; and reward (or value) nodes, shown as diamonds. (See

4

E.A. Hansen Artificial Intelligence 294 (2021) 103431

dry | wet | soak

PO="05T03 | 02

test notest
o dry wet soak | dry wet soak
P(5|0,T)= closed | 01 03 05 | 1/3 13 13
open 03 04 04 13 1/3 1/3

@ diffuse | 06 03 01 |13 13 1/3

| drill | nodrill

__test | notest _dry -70 0
MO=""T0T o0 R2(0.D)=" et | 50 0

soak | 200 0

Fig. 1. Influence diagram for oil wildcatter problem with probability and reward tables.

Fig. 1 for an example.) The reward nodes are the leaf nodes of the graph. (If any chance or decision node is a leaf node,
it is a “barren node” that can be removed from the influence diagram without affecting an optimal strategy [3].)

2. V=CUD is the set of variables of the decision problem, which includes a set of chance (random) variables, C =
{C1,...,Cpy}, with one variable for each chance node of the graph, and a set of decision variables, D = {Dq, ..., Dy},
with one variable for each decision node of the graph. Given that variables are identified with their associated nodes
in the graph, we let pa(V) denote the set of parent variables of a variable V, where the parent relationship is for the
corresponding nodes in the graph.

3. P={Pq,..., Pn} is a set of conditional probability distributions, one for each chance variable C; € C, defined by P; =
P(Ci|pa(Cy)). If C; has no parent variables, it is associated with a marginal probability distribution: P; = P(C;).
4. R ={R1,...,Rq} is a set of reward functions, one for each reward node of the graph, where a reward function is a

mapping R; : sp(pa(R;)) — N. (Since each reward function corresponds to a reward node in the graph, we let pa(R;)
denote the set of parent variables of the reward function R;.)

The directed acyclic graph associated with an influence diagram captures structure in the model, including dependence
relations and information precedence. Arcs into chance nodes, called conditional arcs, represent probabilistic dependence,
as in a Bayesian network. Arcs into reward nodes, called functional arcs, represent functional dependence by indicating the
domain of the associated reward function. Arcs into decision nodes, called informational arcs, imply information precedence.
That is, an arc from a chance node C to a decision node D indicates that the state of the variable C is known when the
decision D is made.

In general, we refer to the values of a chance variable as states. In the special case where all of the outgoing arcs from
a chance variable are informational arcs, however, we refer to the chance variable as an observation variable and we refer to
its values as observations. We refer to the values of a decision variable as actions.

Example: Oil wildcatter. Fig. 1 shows an influence diagram for Raiffa’s classic oil wildcatter problem [18,19]. An unobserved
chance variable O represents the uncertain presence of oil, with three possible states: dry for no oil, wet for some oil,
and soak for a lot of oil. The decision variable T represents the option to perform a seismic test or not (notest). The
observation variable S represents the outcome of the test, which provides imperfect information about the presence of oil:
a closed reflection pattern suggests a lot of oil, an open pattern suggests some oil, and a diffuse pattern suggests little oil.
The decision variable D represents an option to drill for oil or not (nodrill). The reward node R; represents the cost of
performing the seismic test. The reward node R, represents the profit from drilling, which depends on how much oil is
present. The probability and reward functions are shown by tables alongside the graph in Fig. 1. When no seismic test is
performed, the absence of information is modeled by a uniform probability distribution over the possible observations.

Single decision maker with perfect recall. 'We consider influence diagrams under the classic assumptions of (i) a total ordering
of decisions and (ii) no-forgetting.

The first assumption is equivalent to the assumption that there is a directed path in the graph that includes all of
the decision nodes, which means the decision variables are ordered in time: D1, ..., D,. Let Y C C denote the subset of
chance variables that are observed at some point in the decision problem, and let X = C\Y denote the subset of chance
variables that are never observed. Given a total ordering of decision variables, we have a partition of the chance variables,
{Y1,Y2, ..., Yn, X}, where Y=Y; UY, U...UY,. In this partition, Y; is the set of chance variables that are observed before the
first decision D1, Yjy1 is the set of chance variables that are observed after the decision D; and before the decision D;.1,
and X is the set of chance variables that are never observed. Given this partition, there is a partial temporal ordering of
variables: Y1 < D1 <Yy <Dy < ... <Y, < Dy < X. For the oil wildcatter problem, for example, the variables are partitioned
as follows: Y1 =@, D1 =T, Y ={S}, D, =D, X={0}.

E.A. Hansen Artificial Intelligence 294 (2021) 103431

The second assumption, the no-forgetting assumption, means that if the state of a variable V is known when a decision
D; is made, it is known when any posterior decision D; is made, where i < j, even if there is not an explicit arc from
V to Dj in the graph. Additional arcs, called no-forgetting arcs, are sometimes added to an influence diagram to make the
no-forgetting assumption explicit. But to reduce the complexity of the graphical representation of an influence diagram, we
follow the convention of not including no-forgetting arcs in the graph. Instead, they are implied. The set of variables whose
state is known to the decision maker when a decision D; is made is called the set of informational predecessors of D;, and is
defined as follows:

Pred(D;) =Y1 U{D1}UY2U...UY;_1U{D;_1}UY; (4)
= Pred(Di—1) U{Di—1}VY;. (5)

An instantiation of the set of informational predecessors for a decision variable D; is called an information state of the
decision variable.

This pair of assumptions, a total ordering of decisions and no-forgetting, reflects the perspective that the decision prob-
lem is solved by a single decision maker who makes a sequence of decisions based on perfect recall of all past decisions
and observations. This perspective is shared by the POMDP model reviewed in Section 2.3.

Strategy representation and optimization. To solve, or evaluate, an influence diagram means to compute an optimal strategy
and its corresponding expected utility.

A strategy prescribes an action for each information state of a decision variable, for every decision variable. It is well-
known that when a problem is solved by a single decision maker with perfect recall, an optimal deterministic strategy
exists. Therefore, a strategy can be represented by a sequence of policies, A = (ép,, ..., dp,), with one policy, ép,, for each
decision variable D; € D, where a policy is a mapping, p, : sp(Pred(D;)) — sp(D;). Sometimes, it is convenient to represent
a policy by an equivalent degenerate conditional probability distribution, as follows,

1ifd; = ép;(Pred(D;))
0 otherwise,

Psp, (Di =d;|Pred(D;)) = { (6)

in which case a strategy is represented by a sequence, Px = (Pop, -5 Pop,), with one conditional probability distribution,
P(;Dl_, for each decision variable D; € D.

When policies are represented in this form, the joint probability distribution over the variables CU D induced by a
strategy A can be defined as

PA(C,D) =[] P(Clpa(C)) [| Ps, (DIPred(D)). (7)
CeC DeD
Given the joint utility function of an influence diagram, defined as
U(C,D) =) R(pa(R)), (8)
ReR
the expected utility of a strategy A is a scalar that is defined as
EU(A):ZPA(C,D)U(C,D). (9)
C.D

In words, the expected utility of a strategy is the sum of the probability of each joint assignment to the variables in CUD
multiplied by the utility of the assignment. An optimal strategy A* is defined as a strategy that satisfies EU(A*) > EU(A),
for all strategies A, and the maximum expected utility (MEU) is equal to EU(A*).

The maximum expected utility can also be defined in a more algorithmically useful way, which is given by the following
equation [17, pp. 350-2; 20, pp. 157-9]:

MEU = Zn})ax. . Zn})axz [[PClpacc)) (Z R(pa(R)))) (10)
Yy, ! Yy, "

X CeC ReR

Recall that C=Y; UY, U...UY, UX, and note that the summation operator inside the parentheses denotes a sum in the
usual sense, with a term for each reward function R in the set R, while the outer sums represent sum-marginals. This MEU
equation underlies the variable elimination algorithm we review next.

6

E.A. Hansen Artificial Intelligence 294 (2021) 103431

Algorithm 1: Variable elimination algorithm [17, pp. 353-5, 396].

Input: Influence diagram with variables V=CUD
Output: Optimal strategy, A, and MEU
1 ® « {P(C|pa(C))|C € C} /| initial set of probability potentials
2 ¥ <« {R(pa(R)|R € R} [/ initial set of utility potentials
3 A < [/ initial strategy
4 for i < 1to |V| do // i is index of elimination step
5 Select variable V to eliminate according to some criterion
6 || Process probability potentials
7
8

Dy « {¢p € ®|V edom(¢p)} || get relevant probability potentials
Py <~ Hd)ewv ¢ || multiply probability potentials

9 if V is a chance variable then

10 | ¢i < >y ¢v [/ eliminate V by sum-marginalization
11 else if V is a decision variable then

12 | ¢i < maxy ¢y /| eliminate V by max-marginalization

13 P «— (P\Py) U {¢;} [/ update set of probability potentials
14 || Process utility potentials

15 Wy < { € W|V edom(y)} || get relevant utility potentials
16 Yv < Yy, ¥ I add utility potentials

17 if V is a chance variable then

18 beond < ¢v /¢i || probability of V conditioned on relevant variables
19 ‘ Vi < Y.y ¢cond - Vv || expected value (sum-marginalization)

20 else if V is a decision variable then

21 Y < maxy Yy [/ maximum value (max-marginalization)

22 Sy < argmaxy Yy [/ optimal policy for decision variable

23 A < AU {8y} /] add policy to strategy

24 W« (W\Wy) U {y;} || update set of utility potentials

25 end
26 MEU <« Zwe\b Y || after variables eliminated, utility potentials are scalars

27 return (A, MEU) /| A is optimal strategy

2.2.2. Variable elimination algorithm

Several classes of algorithms have been developed for solving influence diagrams. In this paper, we consider the variable
elimination approach.

As a foundation for the algorithm developed in this paper, we adopt the simple variable elimination algorithm de-
scribed by Jensen and Nielsen [17, pp. 353-5, 396]. Variants of the pseudocode for this algorithm can be found in many
places [21-23], and we provide our own variant in Algorithm 1. Several closely-related algorithms are described in the
literature. Dechter [24] describes a similar algorithm that adopts the bucket elimination framework. Shenoy [19] describes
a similar fusion algorithm for solving valuation networks, which are closely related to influence diagrams. The junction tree
algorithm is an approach to variable elimination that uses an initial clustering step to improve efficiency [25,20]. There
are close similarities between the variable elimination approach and the classic approach to solving an influence diagram
by performing a sequence of value-preserving node removals and arc reversals [26,3,4], especially when use of potentials
makes it unnecessary to perform arc reversals [27]. The variable elimination approach has also been generalized to allow
more complex representations of uncertainty and utility [28-30].

MEU equation. A variable elimination algorithm solves an influence diagram by solving Equation (10), which is called the
MEU equation. To simplify the operations used to solve this equation, it is formulated using potentials, which were reviewed
in Section 2.1. Obviously, the conditional probability distributions and reward functions given in the initial specification of
an influence diagram are themselves potentials.

Algorithm 1 gives pseudocode for the variable elimination algorithm. The first line assigns the probability potentials of
the influence diagram to the set @, and the second line assigns the utility potentials to the set W. Equation (10) can then
be expressed as

MEU:ZnBaxZ...ng)axZ]_p(Zw), (11)
Y, 'Y, nox

where the expression [®(>_ W) is the product of all probability potentials multiplied by the sum of all utility potentials. In
this form, the influence diagram is solved by eliminating one variable from the equation in each iteration of the algorithm,
and replacing all potentials in & and W that mention the variable with equivalent potentials that do not, until all variables
are eliminated and the problem is solved.

We adopt the following terminology. A potential is said to be relevant in a given elimination step if the variable selected
for elimination is in its domain. The variables in the union of the domains of all relevant potentials are called the relevant
variables.

E.A. Hansen Artificial Intelligence 294 (2021) 103431

Elimination order. In the pseudocode, the set of all variables is denoted V= CU D. Recall that the informational constraints
of a problem induce a partition of the chance variables into information sets, C = {Y1,Y>, ..., Y, X}, and a corresponding
partial temporal ordering of the variables, Y; < D1 < Y2 <... < Dy < X, where each information set Y; contains the chance
variables that are informational predecessors of the decision variable D;, but not of any previous decision variable, and X
is the set of unobserved variables. Variables are eliminated in the reverse of this partial temporal order, which means the
algorithm first sum-marginalizes the variables in X, then max-marginalizes D, then sum-marginalizes the variables in Yy,
then max-marginalizes D,_1, and so on. Within any set Y; or X, the variables can be eliminated in any order, with the order
often determined by a heuristic that attempts to optimize efficiency.

Processing probability potentials. Let V denote the variable selected for elimination. After all probability potentials with V
in their domain are identified, they are combined by element-wise multiplication. Then the variable V is eliminated from
the resulting probability potential ¢y, which creates the probability potential ¢;. If V is a chance variable, it is eliminated
by sum-marginalization. If it is a decision variable, it can be eliminated by max-marginalization, as shown in Line 12 of
Algorithm 1, which follows Jensen and Nielsen’s description of the algorithm [17, pp. 353-5]. However, this step can be
simplified. When a decision variable is eliminated, it is d-separated from its predecessors, and any successors have already
been eliminated. As a result, the eliminated decision variable cannot have any effect on the value of a probability potential,
even if it is in its domain. (To say that it cannot have an effect means that for every state of the other variables in the
domain of the probability potential, the value of the potential is the same regardless of the value of the decision variable.)
It follows that a decision variable can be eliminated from a probability potential by simple projection of the potential onto
the remaining variables, as pointed out by others [23,21,30].

Processing utility potentials. After all utility potentials with V in their domain are identified, they are combined by element-
wise addition, where 1y denotes the resulting utility potential. If V is a chance variable, vy is multiplied by the probability
potential, ¢cong = ¢v /@i, and then V is eliminated by sum-marginalization. If V is a decision variable, it is eliminated by
max-marginalization, and a corresponding policy, v, is computed that records the maximizing action for each instantiation
of the variables in the domain of the resulting utility potential ;.

Solution. When the last variable is eliminated, the algorithm returns a utility potential with an empty domain, which is a
scalar equal to the MEU value of Equation (11). It also returns an optimal strategy, A = (8p,, ..., 8p,).

Example: Oil wildcatter. To illustrate how the algorithm works, we describe the steps it takes to solve the influence diagram
for the oil wildcatter problem.

1. The first step is to initialize the sets of probability and utility potentials with the conditional probability and reward
functions of the influence diagram:

® « {P(0),P(S]0,T)} (12)
W« {R(T), R(O, D)}. (13)

Given these potentials, the MEU equation for the influence diagram is:

MEU:mTaXXS:mezO:P(SW,T)P(O)(R(T)+R(O,D)). (14)

2. Eliminate chance variable O (for Oil):
For this problem, there is only one valid elimination order. The unobserved chance variable is eliminated first. The
probability potentials with the variable O in their domain are processed as follows:

$0(0,S|T) < P(0)-P(5|0,T) (15)
$1(SIT) < Y ¢0(0,SIT) (16)
0
@ —{p1(SIT)}. (17)
The only utility potential with the variable O in its domain is then processed:
$0(0, S|T)
cond(0|S, T _— 18
$cond(01S,T) < $16IT) (18)
¥1(S, T, D) <_Z¢cond(O|SsT)‘R(OaD) (19)
0
W <« {R(T), ¥1(S, T, D)}. (20)

E.A. Hansen Artificial Intelligence 294 (2021) 103431

After eliminating the variable O, the revised MEU equation is:

MEU=mTaxZS:m3x¢1(S|T) (R(T) + ¥1(S, T, D)). (21)

3. Eliminate decision variable D (for Drill):
There are no probability potentials with the variable D in their domain. The single utility potential with D in its domain
is processed as follows:

Y2(S, T) <—m§XEﬁ1(5,T,D) (22)
W <« {R(T), ¥2(S,)} (23)
The revised equation for the problem is

MEUZm%’iXXS:M(SIT)(R(T)+1/f2(5,T)), (24)

and the following policy is saved in A:
8p(S,T) < argmax 1 (S, T, D) (25)
D

4. Eliminate chance variable S (for Seismic test result):
The only probability potential with the variable S in its domain is ¢1(S|T), and so the variable S is eliminated by
sum-marginalization, as follows,

$3(T) < > p1(SIT). (26)
S

The resulting probability potential is vacuous, that is, it assigns the value of 1 to each state of T, and thus it does
not need to be added to W. (The fact that it is vacuous follows by the unit potential property [17, p. 13].) Because it
is vacuous, we have ¢¢ong(S|T) = ¢1(S|T). The only utility potential with the variable S in its domain, ¥»(S, T), is
processed as follows:

Y3(T) < Z¢cond(S|T) “¥2(S, T) (27)
S
¥« {R(T), y3(D)}. (28)
The revised equation for the problem is:
MEU = m%ax (R(T) + y3(T)). (29)

5. Eliminate decision variable T (for Test):
No probability potentials have the variable T in their domain, but two utility potentials do. Recall that A is the unique
state of the empty variable, which is the result of eliminating T from the domain of the potential ¥/1(T). So, we have

Y1(T) <= R(T) + 3(T) (30)
Ya(d) < maxyr (T) (31)
¥ {ya(V)}. (32)

The final equation for the problem is

MEU = y¥4(0), (33)

and the policy for this decision variable is
81 (A) < argmax ¢ (T). (34)
T

6. Return solution:
The optimal strategy, A = (67(1), 8p(S, T)), and MEU are returned.

9

E.A. Hansen Artificial Intelligence 294 (2021) 103431

%P)
i ®

Fig. 2. Influence diagrams for (a) a three-stage completely observable MDP and (b) a three-stage POMDP.

2.3. Finite-horizon partially observable Markov decision process

An alternative model of a single-agent decision-theoretic planning problem under imperfect information is a finite-
horizon partially observable Markov decision process (POMDP) [7-9,31]. In the rest of this background section, we review this
model.

2.3.1. Complete observability
We begin by reviewing an important special case of a POMDP where the state of the process is completely observed.

Definition 2. A finite-horizon completely observable Markov decision process (MDP) is a tuple (Y, D, R, P), where

the process unfolds over a finite sequence of n stages, indexed by t =1,2,...,n;

Y={Y¢t=1,2,...,n} is a set of random variables, one per stage, that represent the changing state of the process;
D={D¢|t=1,2,...,n} is a set of decision variables, with one per stage;

R ={R::sp(Yy) x sp(D;) — R|t=1,2,...,n} is a set of reward functions;

e P={P¢t=1,2,...,n} is a set of probability distributions, one for each random variable. For the first stage, there
is an unconditional state probability distribution P;(Y1). For each subsequent stage t = 2...n, there is a conditional
probability distribution P;(Y¢|Y¢—1, D¢—1).

At each stage, the state y; € sp(Y;) is observed, an action d; € sp(D;) is performed, and a reward R;(y;, d;) is received.
In every stage except the last, the process then makes a transition to a successor state y:+q € sp(Y¢4+1) with probability
P¢(Ye+1lye, de). Fig. 2a shows an influence diagram for a three-stage MDP.

MDPs are often assumed to be stage-invariant, which means the variable domains, conditional probability distributions,
and reward functions are the same in each stage. But this assumption is not made in general, and the relationship between
MDPs and influence diagrams is easier to see when we do not assume the MDP is stage-invariant. To say that a process is
Markovian means the distribution of future states and rewards is independent of the history of the process given knowledge
of the current state.

An MDP is solved by finding a strategy that maximizes expected utility. Because a completely observable MDP is a
special case of an influence diagram where the graph of the influence diagram has the form of Fig. 2a, it can be solved by
any algorithm that solves influence diagrams. However, an MDP is traditionally solved by a classic value iteration algorithm
that is well-described in the literature [16].

2.3.2. Partial observability
Fig. 2b shows an influence diagram that represents a three-stage POMDP. The model is defined as follows.

Definition 3. A finite-horizon partially observable Markov decision process (POMDP) is a tuple (X,Y,D, R, P), where

e the process unfolds over a finite sequence of n stages, indexed by t =1,2,...,n;

o X={X(|t=1,2,...n} is a set of random variables, which we call state variables, that represent the changing state of
the process;

e Y={Y|t=1,2,...n}is a set of random variables, which we call observation variables because all of their outgoing arcs
are informational arcs;

e D={D¢|t=1,2,...n} is a set of decision variables, with one per stage;

o R={R;:sp(X¢) x sp(D¢) —> R|t=1,2,...n} is a set of reward functions;

e P is a set of probability distributions, with one for each random variable in X U Y. For the first stage, the state variable
X1 is associated with an unconditional probability distribution P(X1), and the observation variable Y is associated
with a conditional probability distribution P(Y1]|Xy). For each subsequent stage t = 2...n, the state variable X; is
associated with a conditional probability distribution P(X;|X;—1, D¢—1), and the observation variable Y; is associated
with a conditional probability distribution P(Y;|X;, Di—1).

10

E.A. Hansen Artificial Intelligence 294 (2021) 103431

In keeping with an assumption already made for influence diagrams, we assume that every variable has a finite number
of values. At each stage t =1,...,n of the process, the decision maker receives an observation y; € sp(Y;) that provides
imperfect information about the current state x; € sp(X;). The decision maker then takes an action d; € sp(D;) that results
in a reward R:(x;,d;), and, in every stage except the last, a transition to a successor state X;+1 € sp(X¢+1) with probability
P (Xey11xe, dp).

Because a finite-horizon POMDP is a special case of an influence diagram where the graph of the influence diagram has
the form of Fig. 2b, it can be solved by any algorithm that solves influence diagrams. But it is traditionally solved by a value
iteration algorithm that leverages the special structure of this class of problems [32,33].

2.3.3. Belief state

Although the state of a partially observed process is not directly observed, state probabilities can be computed based
on the history of the process. Recall that y; € Y; denotes the observation and d; € D; denotes the action at stage t. Let h;
denote the history of the process at stage t before performing an action, which is defined recursively as,

hi={y1} (35)
he =hi_q1U{di—1, ye} ={y1,....de—1, e}, t=2,3,...,n, (36)

where n is the number of stages of the process. For the first stage, we have by Bayes’ rule the following conditional
probability that the unobserved state is x1 € sp(X1):

P(y11x1)P(x1)

P(x1lh1) = P(x1|y1) = . (37)
> x; P11x1) P (x1)
For the subsequent stages, t =2, 3, ..., n, the conditional probabilities are defined recursively as:
P(yelxe,de—1) D, P(elXe—1,de—1)P(Xe—1|he—1)
P(xe|hr) = o (38)

D ow PUelxe, de—1) 3oy | P(elxe—1,de—1) P (Xe—1lhe—1)

For convenience, we let b; : sp(X;) — [0, 1] denote a conditional probability distribution where b;(x;) = P(X; = x¢|h¢) is
the probability that the process is in state x;, conditioned on the observed history h;. In the literature on POMDPs, this
conditional probability distribution is called a belief state (or information state). Given the belief state b;_; at stage t — 1,
the action d;—1 at stage t — 1, and the observation y; at stage t, the successor belief state b; at stage t is given by the
deterministic function, by = t(bt—1, di—1, y¢), where each component of b; is defined as

be(x¢) = P(x¢|br—1,dt—1, yt) (39)
_ Pyt xelbr—1,dr—1)
~ P(yelbe—1.de—1)
P(yelxe,de—1) Dy | P(XelXe—1, de—1)br—1(x—1)

= . 41
> ox POrelxe,de—1) 2= | P(elxe—1, de—1)be—1 (X¢—1) 0

It is well-known that a belief state updated in this way is a sufficient statistic for the history of the process, which means
that P(x¢|b¢, hy) = P(x¢|bt). It follows that an optimal decision can be made based solely on the belief state, without needing
to consider the history of the process. This insight provides the key to solving POMDPs efficiently by dynamic programming.

(40)

2.3.4. Belief-state MDP and dynamic programming recurrence

The value iteration approach to solving POMDPs is based on the reduction of a POMDP to a completely observable MDP
over belief states, called a belief-state MDP. For each stage t =1, 2, ..., n of this MDP, the state space is bsp(X;), which is the
multi-dimensional continuous space of belief states over the possible states of the variable X;. The set of available actions,
sp(Dy), is the same as for the original POMDP. The reward function is defined as

Re(be,de) =) be(x0)Re(xe, dy). (42)
Xt

The (belief) state transition function, which gives the probability of making a transition to belief state b1 € bsp(X¢+1) after
taking action d; € sp(D;) in belief state b; € bsp(X;), is defined as

P(beyalbe, de) =) P(beyalbe, de, yer1)P(Yesalbe, do), (43)

Ye+1

where

11

E.A. Hansen Artificial Intelligence 294 (2021) 103431

1 ifbiyq =t (bs, dy,
P(bes|br. de. yesr) = b1 =Tbe dr, Yey1) (44)
0 otherwise,

and

P(yty1lbe,d) = Z P(yei1lxe41,dr) Z P(X¢ 411X, d)be (xt). (45)

Xt+1 Xt

Equation (43) can be interpreted as follows: the probability of making a transition from belief state b; to belief state by4q
after action d; is the sum of the probabilities of all observations y;,1 that lead to this belief state.

Once formulated as a belief-state MDP, a finite-horizon POMDP can be solved by solving the following dynamic program-
ming recurrence,

Ve(by) = n":iax R¢ (b, de) + Z P(yts1lbe, d)Vepr(T(be, de, yer1)) ¢ (46)
t

Ye+1

for stagest=1,2,...,n—1, and
Vi (bn) :HbaXRn(bny dn), (47)

for the last stage of the process. For each stage t of the process, the value function V; : bsp(X;) — R gives the expected total
reward for following an optimal strategy beginning from any belief state b; € bsp(X;).

2.3.5. Value iteration for POMDPs

Solving a finite-horizon POMDP by solving the dynamic programming recurrence of an equivalent belief-state MDP has
the advantage that each stage of the POMDP can be solved without considering the previous history of the process. But it
presents the challenge that for each stage t, the recurrence needs to be solved for all belief states in bsp(X;), which is a
multi-dimensional continuous space. Fortunately, there is an elegant algorithm that gives an exact solution of this dynamic
programming recurrence.

Piecewise-linear and concave value function. The key result on which the classic value iteration algorithm for belief-state
MDPs depends is due to Smallwood and Sondik [32], who showed that an optimal value function for a finite-horizon belief-
state MDP is piecewise linear and concave. (Because Smallwood and Sondik considered cost minimization, they showed,
equivalently, that it is piecewise-linear and convex.)

To say that a value function V;: bsp(X;) — N is piecewise linear and concave means there is a finite set of linear
functions, denoted I'¢, such that

Ve(be) = max Z be(x)y (%), (48)

where b; € bsp(X;) is a belief state, and each y €I’y is said to be a linear function because the value th be(x)y (%) is a
linear function of the belief state b;. The classic approach is to represent each linear function (as well as the belief state) by
an |sp(X;)|-dimensional vector, where the entries in the vector are mapped to the states of X; by indexing the states of X;
from 1 through |sp(X;)|. More compact representations of this linear function, including trees [12] and algebraic decision
diagrams [13], can be used to leverage problem structure.

Pruning dominated linear functions. For any piecewise linear and concave value function, there is a unique and minimal-
size set of linear functions that represents it. The value iteration algorithm for POMDPs performs best if the set of linear
functions that represents each piecewise-linear and concave value function is a minimal-size set.

Given a set of linear functions, I, that represents a value function V; : bsp(X;) — %, a particular linear function y’ € '
is said to be dominated by the other linear functions in the set, I';\{y’}, if for all belief states b € bsp(X;):

;b(xt)y ()< max ;bm)y(xo. (49)

That is, a linear function y’ € T’y is dominated if there is no belief state b € bsp(X;) for which it provides a better value than
the other linear functions in the set I';. This condition can be tested by solving the following linear program:

12

E.A. Hansen Artificial Intelligence 294 (2021) 103431

Variables: €, b(x;), Vx¢ € sp(X¢)
Maximize: €

Subject to constraints: Y _ [b(x) - (¥'(x) — y(x))] = €, Yy e T \{y'} (50)

Xt

Zb(xt) =1landb(x;) >0, Vx; € sp(X¢).

Xt

If the scalar value € returned by this linear program is non-positive, then ' is dominated, and can be safely removed from
the set I';, that is, it can be “pruned.”

In the rest of the paper, we let Prune(I") denote an operator that takes a set of linear functions I' and prunes all of its
dominated linear functions. A naive way to implement this operator is to test each linear function using the above linear
program. A much more efficient algorithm, due to Lark and White [9], is well-described in the literature [33,34], including
recent improvements [35,36].

Incremental pruning. Among several approaches to value iteration for POMDPs, the most widely-used is the incremental
pruning algorithm [33]. It is based, first of all, on the observation that the definition of the value function V; in Equation (46)
can be decomposed into simpler combinations of other value functions, as follows,

nggzzrqfxvf%bg (51)
t
Vi =Y v by (52)
Yet+1
Re(be, de)
VIV (b = =0T L p(yegalb, de) Ve (T (b, de, Yesn), (53)
Isp(Yer1)]

where there is a value function Vf‘ for each action d; € sp(D;), and a value function Vf“yr“ for each pair of action
d: € sp(D;) and observation y;y1 € sp(Yey1).

Assuming the value function V;,q is piecewise-linear and concave, and is represented by a set ' of linear functions,
then each of these three value functions is also piecewise-linear and concave, and can be represented by a set of linear
functions, denoted by T, Ff[, and Fff’y "1 For each stage t of a POMDDP, the sets of linear functions that represent each of
these value functions can be generated by performing the following three steps.

The first step, called backprojection, takes as input the set 'ty of linear functions that represents the stage-(t + 1) value
function V1. For each pair of action d; and observation y;1, it generates a set of linear functions,

chd’tﬂ — Prune ({Vti“ =1,...,|Tt+1 |}) , .

where, before pruning, there is one linear function ; € I'%Y**' for each linear function ¥i,1 € Tey1. For each state x; €
sp(Xt), the value of the linear function yti is
R(xt,de)

7 P , .d i) s
|sp(Yt+1)|+Z X1, Yes11Xe, o) Ve K1) (55)

Xt+1

Y (xe) =
The second step of the algorithm is called the cross sum step. Given two sets of linear functions, A and B, their cross

sum is defined as the set of all pairwise additions of linear functions from these two sets, which is

A®B={a+blacA,beB), (56)

where this operation extends to more than two sets of linear functions in the obvious way. For each action d; € D¢, the
following set of linear functions is computed:

) de.,
It = Prune (eahﬂesp(Ym)Fft ym) : w

The key insight of the incremental pruning algorithm (for which the algorithm is named) is that this set can be computed
more efficiently by interleaving the cross-sum operation with the pruning of intermediate sets of linear functions, as follows:

de,y} de.y? de.y? de,y?
% = Prune(... Prune(Prune (T’ Ve g r, Yoty g r, Yoy r, Yertyy (58)
The third step of the algorithm, called maximization, computes the set of linear functions,

I't = Prune (Udtesp(D[)Ff‘> , (59)

13

E.A. Hansen Artificial Intelligence 294 (2021) 103431

Fig. 3. (a) Maze for ten-stage POMDP and (b) corresponding influence diagram.

which represents the piecewise-linear and concave value function V.

To use incremental pruning to solve a finite-horizon POMDP by value iteration, a set I';, of linear functions that represents
the piecewise-linear and concave value function V, for the last stage of the problem must first be created, as the base step
of the value iteration recursion. It contains one linear function for each action d, € sp(Dy). Let i =1...|D;,| denote the index
of the linear function. The value of each component of the linear function v/ is defined as

Va () = Ra(n, dy), (60)
where i is also the index of the corresponding action.

Strategy representation. A strategy for a finite-horizon POMDP is a sequence of policies, A = {§1,...,38,}, one for each
decision variable, where a policy, d; : bsp(X;) — sp(D;), maps each belief state b(X;) € bsp(X;) to an action d; that optimizes
the corresponding value function V; in the sequence of value functions, V = {V1, Va,..., V,,}, which is defined by the
dynamic programming recurrence of Equations (46) and (47).

The representation of a policy defined in this way is complicated by the fact that its domain is a multi-dimensional
continuous space. Although difficult to represent explicitly, such a policy can be represented implicitly with the help of the
set I'; of linear functions that represents the piecewise-linear and concave value function V; for the corresponding stage t
of the POMDP. Let d(y) € sp(D;) denote the action associated with generation of a linear function y € I't. We represent the
policy for stage t as follows,

8i(b) =d (arg max) bt(xt)y(xt)) : (61)

vele 7y

where b; € bsp(X;) is a belief state over the states of the unobserved variable X;.

Example: Maze navigation. To motivate the integrated approach to problem solving developed in the rest of this paper, we
compare the performance of the variable elimination and incremental pruning algorithms in solving an influence diagram
that represents a simple ten-stage POMDP.

The POMDP is a robot navigation problem introduced in previous work on limited-memory influence diagrams [37].
Fig. 3a shows a maze with 23 states. Each white cell represents a state, with an absorbing goal state marked by the letter G.
Shaded cells and outside borders represent walls through which the robot cannot pass. The robot can take one of four
possible actions in each stage; it can move a single step in any of the four compass directions. It successfully moves in
its intended direction with probability 0.89. It moves sideways with respect to its intended direction with probability 0.02
(0.01 for each side), it moves backward with probability 0.001, and it fails to move with probability 0.089. If movement in
some direction would take it into a wall, the robot remains in its current location. The robot can accurately sense whether
the neighboring cell in each direction of the compass is a wall. For this maze, there are 13 possible observations, including
perfect observation of the goal state. Because the same observation can be received in different states, the problem is
partially observable.

The problem begins with the robot placed in a (uniformly) random non-goal state, so that it does not know its initial
location. It then performs an action in each of a sequence of ten stages. If it reaches the absorbing goal state by the final
stage, it receives a reward of 1; otherwise, it receives a reward of 0. Thus the objective is to maximize the probability of
reaching the goal state within ten stages.

Because there are 13 possible observations and four possible actions in each stage, there are 5210 possible histories
over ten stages! The traditional variable elimination algorithm must eliminate all unobserved chance variables before it can
eliminate a decision variable. But doing so for this POMDP creates a single probability potential that includes all of the
decision and observed chance variables of the influence diagram in its domain, and gives the probability of each of the
5210 possible histories over ten stages. It also creates a utility potential with the same domain that gives the utility for all
5210 possible histories. When the last decision variable is eliminated, these two potentials are used to compute a utility
potential that maps each of the 1352 possible histories before the last action to the expected utility of the optimal action.
The corresponding policy has the same dimensions. Given the immense size of these potentials, the traditional variable
elimination algorithm cannot solve this problem, or even the last stage of this problem, after many hours of CPU time.

By contrast, the incremental pruning algorithm finds an optimal solution for this problem in less than one second of
CPU time! In fact, computing an optimal policy and value function for the last decision variable is the easiest part of the

14

E.A. Hansen Artificial Intelligence 294 (2021) 103431

problem to solve. For the last stage of the problem, the incremental pruning algorithm computes a piecewise-linear and
concave value function that has just four linear functions, one for each possible action. In this form, it gives the optimal
value for any belief state, and an optimal policy is represented in a similarly compact form. The total number of linear
functions needed to represent all ten piecewise-linear and concave value functions, one for each stage of the problem, is
just 123, where each linear function is a vector of dimension 23. Moreover, only 45 of these linear functions are needed
to represent an optimal strategy for the initial belief state, since the other linear functions are unreachable from the initial
belief state under an optimal strategy. (See Fig. 9.)

Certainly, not every ten-stage POMDP can be solved so easily by value iteration. In the worst case, the number of linear
functions needed to represent a value function grows at a doubly-exponential rate in the number of stages! But in practice,
it often grows more slowly, or hardly at all, as in this case. The importance of this example is that it shows that the value
iteration algorithm for POMDPs leverages problem structure that is not considered by the traditional variable elimination
algorithm. The dramatic difference between the performance of variable elimination and value iteration in solving the same
problem motivates the approach developed in the rest of this paper: we show how to improve the performance of the
variable elimination approach to solving influence diagrams by integrating it with techniques for solving POMDPs.

3. Piecewise-linear and concave potentials and associated operations

In this section, we show that traditional constraints on elimination order when solving an influence diagram by variable
elimination can be relaxed by allowing utility potentials to be represented by piecewise-linear and concave functions, and
by using POMDP techniques to generalize the operations on utility potentials. This generalization provides the foundation
for development of a more scalable variable elimination algorithm for influence diagrams, which is described in Section 4.

3.1. Constraints on elimination order based on the representation of potentials

The standard model of potentials reviewed in Section 2.1.2, and used by the traditional variable elimination algorithm,
unnecessarily constrains the order in which variables can be eliminated when solving an influence diagram.

Recall that the informational constraints of a decision problem induce a partial temporal ordering of the variables of
an influence diagram, Y; < D1 < Y2 < ... < Dy < X, where each information set Y; contains the chance variables that
are informational predecessors of the decision variable D;, but not of any previous decision variable, and X is the set
of unobserved variables. The traditional variable elimination algorithm eliminates variables in the reverse of this partial
temporal order because the standard max-marginalization operator it relies on to eliminate a decision variable from a utility
potential assumes that the state of every variable in the domain of the utility potential is known before the corresponding
action is taken, that is, it assumes that all variables in the domain of the utility potential are informational predecessors
of the eliminated decision variable. If this condition is not met, the utility potential generated by eliminating the decision
variable by max-marginalization, and the policy generated at the same time, are not guaranteed to be optimal. In fact, a
policy that is represented as a mapping from the states of the variables in its domain to actions cannot even be executed if
the states are not known before the action is taken.

It follows that to relax constraints on elimination order, we must generalize the definition of a utility potential, and the
max-marginalization operator used to eliminate a decision variable from a utility potential, so that they model decision
making under partial observability. We must also similarly generalize the definition of a policy.

3.2. Generalized representation of potentials

When a decision variable D is eliminated by the traditional variable elimination algorithm, the utility potential generated
is a mapping,

Visp(H) > N, (62)

where H C Pred(D) denotes the variables in the domain of the utility potential. We use the letter “H” because all unob-
served variables are eliminated by traditional variable elimination before any decision variable D is eliminated, and so H
represents the relevant history of the process for this decision.

It is interesting to compare this representation of a utility potential to the representation of a value function for a POMDP,
which is a mapping,

V :bsp(U) —> %, (63)

where U is an unobserved state variable, and bsp(U) denotes the set of all belief states, or probability distributions, over
the possible states of U. An important property of this value function is that it is piecewise-linear and concave, as discussed
in Section 2.3.5, which means it is represented by a finite set of linear functions, denoted I', such that

V(b) zygﬁ;b(u)y(u), (64)

15

E.A. Hansen Artificial Intelligence 294 (2021) 103431

where b € bsp(U) is a belief state, and b(u) is the probability that U is in the state u € sp(U).
The generalized variable elimination algorithm developed in the rest of this paper combines these two different repre-
sentations by adopting the following more general representation of a utility potential,

¥ :sp(H) x bsp(U) — R, (65)

where H denotes a (possibly empty) set of observed variables, U denotes a (possibly empty) set of unobserved variables,
and x denotes the Cartesian product. This utility potential is piecewise-linear and concave, where we define this property
in a way that also takes into account the relevant history of the process.

Definition 4. A piecewise-linear and concave potential, ¥ : sp(H) x bsp(U) — 9, is a potential that is represented by an
indexed family of sets of ordinary potentials, {I'n}nespny, Where each ordinary potential y € I', is a mapping y : sp(U) — 9%,
and, for a given history h € sp(H) and belief state b(U) € bsp(U), its value is

¥ (h, b(U)) = max ;b(uwm). (66)

From now on, we refer to the ordinary potentials in each set I', as linear potentials, both to indicate their role in
representing a piecewise-linear and concave potential, and to distinguish them from the ordinary probability and utility
potentials used in the rest of the algorithm. But it is important to note that linear potentials are still ordinary potentials,
although they are used in a different role. They are represented in the same way as ordinary potentials, and the same
operations apply to them.

3.2.1. Belief variables

It is a convention in the literature on influence diagrams that ¥ (X) denotes a potential defined as v : sp(X) — N. In
keeping with our generalization of the concept of a potential, we extend this notation by adopting the convention that
¥ (B(X)) denotes a piecewise-linear and concave potential defined as v : bsp(X) — N, and, similarly, ¥ (H, B(U)) denotes a
piecewise-linear and concave potential defined as v : sp(H) x bsp(U) — R. In this context, we say that B(X) is a joint belief
variable. An instantiation of a joint belief variable B(X) is a belief state b(X) € bsp(X), just as an instantiation of a joint
variable X is a state x € sp(X). Obviously, for a single variable X, we simply call B(X) a belief variable.

3.2.2. Ordinary potentials as a special case of piecewise-linear and concave potentials

In the rest of this section, we generalize the operations on ordinary potentials so that they apply to piecewise-linear and
concave potentials. The following result ensures that operations on piecewise-linear and concave potentials are also valid
for ordinary potentials.

Lemma 1. An ordinary potential, y : sp(H,U) — R, is a special case of a piecewise-linear and concave potential, ¥ : sp(H) x
bsp(U) — N.

Proof. The domain of an ordinary potential, ¥ (H, U), can be extended so that it is defined for any belief state b(U) over
the possible states of U, as follows:

¥ (h,b(U)) = by (h, u) (67)
=Y by FH= (). (68)

The extended potential, ¥ (H, B(U)), is piecewise-linear and concave because it can be represented by an indexed family of
sets of linear potentials, {I'n}nesp(m), Where each set ' contains just the one potential yRH=0_ 5

Although the generalized operations on piecewise-linear and concave potentials that we define in the rest of this section
work correctly for ordinary potentials, we prefer to perform ordinary operations on ordinary potentials, whenever possible,
because it allows potentials to be represented more simply.

3.3. Subproblem decomposition by optimizing over belief states
To illustrate the key idea of our approach, we begin by describing the operation that generates the first piecewise-
linear and concave utility potential that is generated when our new variable elimination algorithm eliminates variables in a

non-traditional order.

16

E.A. Hansen Artificial Intelligence 294 (2021) 103431

3.3.1. Initial piecewise-linear and concave utility potential

The new algorithm generates a piecewise-linear and concave utility potential if and only if it eliminates the last decision
variable before all unobserved chance variables have been eliminated. The following theorem describes a generalization
of the max-marginalization operation that eliminates a decision variable from an ordinary utility potential that includes
unobserved chance variables in its domain.

Theorem 1. Elimination by max-marginalization of a decision variable D from the domain of an ordinary potential, 1 (H, D, U), where
H denotes a set of observed variables and U denotes a non-empty set of unobserved variables, creates a piecewise-linear and concave
potential, ' (H, B(U)), which is represented by an indexed family of sets of linear potentials, {T'y, }nesp(n), where each set Ty, is defined
as follows,

I}, = Prune ({¢R<H=hvf’=d>|d c sp(D)]) , (69)

and the domain of each linear potential in T} is U.

Proof. For any inputs h and b(U), we have the equivalences:

_ R(H=h,D=d)
mdaxr//(h, d,b(U)) = m(;‘iqu:b(u)t// (u) (70)
= max Zb(u)y/(u) (71)
y'ely "
=¢/'(h,b(U)). (72)

Equation (70) follows from Lemma 1. Equation (71) follows from the definition of I'; given by Equation (69). Equation (72)
follows from the representation of ' by the indexed family of sets of linear potentials, {I'f }nespa). as defined in the
theorem. O

The Prune operator in Equation (69), and in similar equations in the rest of the paper, removes dominated linear po-
tentials from a set, as described in Section 2.3.5. It is the same operator used by exact dynamic programming algorithms
for POMDPs. It improves efficiency because the complexity of operations on sets of potentials increases with the size of
the sets. Of course. pruning dominated potentials from a set of linear potentials does not change the piecewise-linear and
concave potential that it represents.

3.3.2. Example: Maze navigation revisited

Recall the maze POMDP described in Section 2.3.5. When solved by traditional variable elimination, the unobserved
chance variables for all ten stages of the problem must be eliminated before any other variable is eliminated, including
the last decision variable. As discussed earlier, the initial elimination of all unobserved variables creates both a probability
potential and a utility potential with all of the decision and observed chance variables in their domain, giving both the
probability and the utility of each of the 520 possible histories over ten stages. The immense size of these potentials
explains why the traditional variable elimination algorithm cannot solve this problem, or even eliminate the last decision
variable, even after hours of CPU time.

By contrast, the generalized max-marginalization operator described by Theorem 1 can eliminate the last decision vari-
able before any other variable is eliminated, and generates an optimal utility potential and policy for the last decision
variable almost instantly. The utility potential and policy are also represented much more compactly. When the last decision
variable D1 of the influence diagram in Fig. 3b is eliminated first, there are no relevant probability potentials, and the
only relevant utility potential is the reward function R(X19, D1¢), which includes the unobserved chance variable Xiq in its
domain. By Theorem 1, eliminating D19 from R(Xjo, D19) by max-marginalization creates a piecewise-linear and concave
utility potential, ¥ (B(X10)), represented by a set I'; of linear potentials, with one linear potential, RR(P10=t10) (X,0), for
each action dig € sp(D1p). For any belief state b(X10) € bsp(X10), we have

Y1(b(X10)) =)r/ﬂearfzb(xlo)y(xlo) (73)
X10
=n;jlaxZb(xlO)RR(Dw:dIO)(XH}), (74)
10 X10

where b(x19) is the belief, or probability, that the unobserved state of Xig is x1o.

This example illustrates the key idea of the POMDP approach we adopt. The utility potential y/; is generated by optimiz-
ing for all belief states over the possible states of Xi9. By optimizing for all belief states, the optimization problem for the
last decision variable is decoupled from the rest of the optimization problem. That is, it is decoupled from the history of the
process, allowing this subproblem to be solved independently, and easily. By contrast, the traditional variable elimination

17

E.A. Hansen Artificial Intelligence 294 (2021) 103431

algorithm conditions the last decision on the entire history of the process, which makes the optimization problem for the
last decision variable almost prohibitively difficult to solve.

3.4. Generalized operations on potentials

Once an initial piecewise-linear and concave utility potential is generated, the other operations of the variable elimi-
nation algorithm need to be able to process it. We next show how to extend the definitions of all of the operations on
potentials given in Section 2.1 so that they apply to piecewise-linear and concave potentials. First we consider the combina-
tion operations of addition and multiplication. (The new algorithm does not divide piecewise-linear and concave potentials.)
Then we consider the max-marginalization and sum-marginalization operations.

3.4.1. Generalized combination operations: Addition and multiplication

When two potentials are combined by addition or multiplication, the domain of the new potential is the union of the
domains of the combined potentials. For piecewise-linear and concave potentials, we also need to distinguish between
the observed and unobserved variables in the domain of a potential, since this distinction affects the representation of
the potential. Let o denote a combination operator for potentials. The following theorem applies to both addition and
multiplication.

Theorem 2. Consider the combination (by addition or multiplication) of a piecewise-linear and concave potential, 1 (H, B(U)), rep-
resented by an indexed family of sets of linear potentials, {T'n}nespwy, and a piecewise-linear and concave potential, ' (H', B(U")),
represented by an indexed family of sets of linear potentials, (T, }wespay- The result is a piecewise-linear and concave potential,
¥ (H", B(U")), represented by an indexed family of sets of linear potentials, {Ty, }n"espur), where H” = HUH'; for each instantia-
tion h” of H”, the set 'y, is defined as

Ty =Prune ({y oy'ly €Th, ¥y €Ty }); (75)

and the linear potentials in each set 'Y, have the domain U” =UUU'.

Proof. The result follows from the equivalences given below by Equations (76) through (79), which hold for any combina-
tion: ¥”(h”,b”"(U")) = ¥ (h, b(U)) o ¥/’ (h’, b’ (U’)). In these equivalences, b(U) = ZU” b”(U”) and b'(U') = ZU,, w b’ U").
That is, b is the same belief state as b”, but with the variables U”\U marginalized out. The belief state b’ is deﬁned similarly.
The equivalences are:

v (0", b"(U")) =y (h, b)) oy’ (W, b'(U")) (76)
— b o b W)y (o 77
(}r/rgrfiu: (U)V(U)) (f?;;)y (u)) (77)
= ma b’y (y) oy’ () 78
,.m yxerhg) (y) oy'()) (78)
= max b""yy"). (79)
V'ery o

Equation (76) simply states the operation to be performed. Equation (77) follows from the representation of the piecewise-
linear and concave potentials ¥ and v’ by corresponding indexed families of sets of linear potentials. Equation (78)
expresses the insight that when the indices for two maximization operators are different, the combination of all maximums
is equal to the maximum of all combinations. Equation (79) follows since y”(U”) = y (U) o y’(U’), and the piecewise-linear
and concave potential v” is represented by the indexed family of sets of linear potentials defined in the theorem. O

Although Theorem 2 applies to both addition and multiplication, the algorithm we develop only uses it to add two
piecewise-linear and concave utility potentials. We state the theorem in this more general form, however, because it implies
the following corollary, which is used to multiply an ordinary probability potential by a piecewise-linear and concave utility
potential, as well as to add an ordinary utility potential to a piecewise-linear and concave utility potential.

Corollary 1. Consider the combination (by addition or multiplication) of an ordinary potential, ¥ (H, U), and a piecewise-linear and
concave potential, ' (H', B(U")), represented by an indexed family of sets of linear potentials, {T'y, }wespaw)- The result is a piecewise-
linear and concave potential, y" (H”, B(U")), represented by an indexed family of sets of linear potentials, {T'y, }nespm), Where
H’" =HUH'; for each instantiation h” of H”, the set Ty, is defined as

M = Prune ([y* B oyl ey, 1) (80)

18

E.A. Hansen Artificial Intelligence 294 (2021) 103431

and the linear potentials in each set Ty, have domain U” = U U U'. (Note that the expression wR(":th) in Equation (80) simply
means that the potential v (H, U) is restricted to a potential with domain U by instantiating H to h”+H.)

Proof. The result follows from Theorem 2 and Lemma 1, which justifies treating an ordinary potential as a special case of
a piecewise-linear and concave potential. O

Example. Let C denote an unobserved chance variable with three possible states. Let the vector, (0.2,0.3,0.5), rep-
resent the probability potential, ¢(C), and let the set of vectors, T = {(4,6,7), (5,2,3),(3,7,1)}, represent the set
of linear potentials that represents a piecewise-linear and concave utility potential, ¥ (B(C)). The product of ¢(C)
and ¥ (B(C)) is a piecewise-linear and concave utility potential, ¥'(B(C)), represented by the set of vectors: IV =
{(0.8,1.8,3.5),(1.0,0.6,1.5), (0.6, 2.1,0.5)}.

Criteria for selecting combination operator. We could use Theorem 2 to combine a utility potential with another potential in
every case, if we represented every utility potential as piecewise-linear and concave. However, we prefer to use ordinary
potentials whenever possible, and so we adopt the following criteria to determine which operator to use to combine a
utility potential with another potential: (i) to add two ordinary utility potentials, or multiply an ordinary utility potential
by a probability potential, we use the traditional addition and multiplication operators; (ii) to add two piecewise-linear
and concave utility potentials, we use the operator described by Theorem 2; and (iii) to add a piecewise-linear and concave
utility potential and an ordinary utility potential, or multiply a piecewise-linear and concave utility potential by a probability
potential, we use the operator described by Corollary 1.

3.4.2. Generalized max-marginalization

We next show how to generalize the max-marginalization operator to eliminate a decision variable from a piecewise-
linear and concave potential. The following result complements and generalizes Theorem 1, which considers how to
eliminate a decision variable from an ordinary potential that has unobserved chance variables in its domain.

Theorem 3. Elimination of a decision variable D by max-marginalization from a piecewise-linear and concave potential v (H, D,
B(U)), represented by an indexed family of sets of linear potentials, {I" a)} (h,d)esp(H, D), CTeates a piecewise-linear and concave po-
tential, y'(H, B(U)), represented by an indexed family of sets of linear potentials, {T'} }nesp), Where for each instantiation h of H, we
have

r‘il = Prune (Udegp(D)r(h,d)) > !

and the domain of the linear potentials in F; is U.

Proof. For any inputs h and b(U), the result follows from the equivalences:

m;lxx//(h, d,b(U)) = mc?xyrgglfdzu:b(u)y(u) (82)
= b ! 83

max Z Wy’ (W (83)

='(h,b(U)). (84)

Equation (82) follows from representation of ¥ (H,D, B(U)) by the indexed family of sets of linear potentials,
{Th,a)}(h.despcn, 0y~ Equation (83) follows from the observation that each set T’y contains all undominated linear poten-
tials in the union of sets, Ugesp(pyI'(n,¢), based on Equation (81), and so, for any belief state b(U), the maximizing linear
potential in T, must be the same as the maximizing linear potential in the union of sets, Ugesp(p)T(n,d)- Equation (84) fol-
lows from representation of the piecewise-linear and concave potential ¥'(H, B(U)) by the indexed family of sets of linear
potentials, {T'} }hespwy. defined by the theorem. O

By Lemma 1, an ordinary potential is a special case of a piecewise-linear and concave potential. Therefore, this theorem
also applies to the elimination of a decision variable from an ordinary utility potential, ¥ (H, D), in which case it gives the
same result as Theorem 1.

Generalized policy representation. When variable elimination eliminates a decision variable from a utility potential, it not
only computes a new utility potential. It also computes a policy with the same domain as the new utility potential that
records the maximizing decision for each instantiation of the variables in the domain.

We generalize the representation of a policy in a similar way to how we generalize the representation of a utility
potential. Instead of representing a policy as a mapping, §p : sp(H) — sp(D), where H C Pred(D) is a subset of decision and
observed chance variables that represents the relevant history for this decision, we represent a policy in a more general
way, as follows,

19

E.A. Hansen Artificial Intelligence 294 (2021) 103431

8p : sp(H) x bsp(U) — sp(D), (85)

where U is a subset of unobserved state variables that represents the relevant unobserved state for the decision.

When U is empty, the two representations of a policy coincide. When U is not empty, the domain of a policy includes
a continuous, multi-dimensional space of belief states, and a policy for a decision variable D is represented implicitly by
associating an action d € sp(D) with each linear potential used to represent the corresponding piecewise-linear and concave
utility potential, so that

sp(h, b(U)) =d (argmabe(u)y(u)), (86)

y€ln u

where d(y) denotes the action associated with the linear potential y. The association of an action with each linear potential
generalizes the similar representation of a policy for a POMDP, given by Equation (61).

Example. Consider a piecewise-linear and concave utility potential (D, B(C)), where D is a Boolean decision variable and
C is an unobserved Boolean chance variable. This utility potential is represented by two sets of linear potentials with domain
C. Let 'p—o ={(0, 6), (3,2)} be one set, and let I'p_1 ={(4, 2), (5,1), (2, 3)} be the other. Eliminating the decision variable
D from this utility potential by max-marginalization creates a piecewise-linear and concave utility potential, ¥’ (B(C)), that
is represented by a single set of linear potentials with domain C, as follows: I = Prune(I'p—o U 'p—1) = {(0, 6), (5, 1)}.
Note that the union of these two sets originally has five linear potentials, but three are pruned because they are dominated
by the other two. The corresponding policy is represented by associating the action D = 0 with the linear potentials from
the set 'p—g, the action D = 1 with the linear potentials from the set I'p—q, and using Equation (86) to map any belief state
to an action. In this case, of course, the vector (0, 6) is associated with the action D = 0, and the vector (5, 1) is associated
with the action D =1.

Criteria for selecting max-marginalization operator. It is possible to represent all utility potentials as piecewise-linear and
concave, and use Theorem 3 to eliminate a decision variable from a utility potential in every case. However, we prefer to
represent utility potentials as ordinary potentials whenever possible. Therefore, we use the following criteria to determine
how to eliminate a decision variable from a utility potential: (i) for an ordinary utility potential with no unobserved variables
in its domain, we use the traditional max-marginalization operator; (ii) for an ordinary utility potential with one or more
unobserved variables in its domain, we use the max-marginalization operator of Theorem 1; and (iii) for a piecewise-linear
and concave utility potential, we use the max-marginalization operator of Theorem 3. In summary, we use the least-general
version of the operation that applies.

3.4.3. Generalized sum-marginalization

It remains to consider how to eliminate a chance variable from a piecewise-linear and concave utility potential. The
sum-marginalization operator works very differently depending on whether the variable being eliminated is observed or
not, and so we consider the two cases separately.

Elimination of an observed variable from a piecewise-linear and concave potential. First we consider the case where sum-
marginalization is used to eliminate an observed chance variable.

Theorem 4. Elimination by sum-marginalization of an observed chance variable C from a piecewise-linear and concave potential,
¥ (H, C, B(U)), represented by an indexed family of sets of linear potentials, {Tn,c)}n,c)esp,c), With domain U, creates a piecewise-
linear and concave potential, y'(H, B(U)), which is represented by an indexed family of sets of linear potentials, {T'y }nesp), With
domain U, defined as follows: for each instantiation h of H,

Ty, = Prune ({@cesp)Tnoy }) - v

where @ denotes the cross sum operator defined by Equation (56).

Proof. The result follows from the following equivalences, which hold for any inputs h and b(U) for the potentials:

g ¥ (h,c,bU)) = Z Jmax gbm)y(u) (88)
= b / 89

;“ar’;z Wy’ (u) (89)

=y/'(h, b(U)). (90)

Equation (88) follows by the definition of ¢ given in the theorem. Equation (89) expresses the insight that each linear
potential ¥’ € I'y, is the sum of |sp(C)| linear potentials, one from each set I'pc, for ¢ € sp(C), and the maximum of all sums

20

E.A. Hansen Artificial Intelligence 294 (2021) 103431

in Equation (89) is equal to the sum of all maximums in Equation (88). Equation (90) follows by the definition of ¥’ in the
theorem. O

Of course, the most efficient way of performing the computation indicated by Equation (87) is by interleaving the cross-
sum and pruning operations, as in Equation (58).

Example. Let C denote an observed chance variable with three possible values, and let U denote an unobserved Boolean
chance variable. Consider a piecewise-linear and concave utility potential, y(C, B(U)), represented by three sets of lin-
ear potentials: I'c—o = {(1,3), (2,0)}, 'c=1 ={(3,2), (1,4)}, and I'c—2 = {(5,1), (4, 2), (3, 3)}. Elimination of the observed
chance variable C by sum-marginalization creates a new piecewise-linear and concave utility potential, ¥'(B(U)), which is
represented by a single set of linear potentials, constructed as follows:

I = Prune(Prune(I'c=o ® I'c=1) ® I'c=2) = {(10, 3), (5, 10), (9, 6)}. (91)

Without pruning, the resulting set would have included twelve linear potentials, instead of three. However, nine of the
twelve linear potentials were dominated.

Elimination of an unobserved variable from a piecewise-linear and concave potential. Finally, we describe how to eliminate an
unobserved chance variable from a piecewise-linear and concave utility potential.

We begin by making two observations about this operation. First, when a variable C is unobserved, the expression
> ¢ ¥(H, B(C,U)) is not meaningful because the summation operator for an unobserved variable must occur on the right-
hand side of any maximization operator in the MEU equation, and there is a maximization operator in the definition of a
piecewise-linear and concave utility potential. Recall that for any input (h, b(C, U)):

h,b(C,U)) = b(c, ,u). 92
¥ (h,b(C,U)) ;“ag;Z (c.wy(c,u) (92)

Moreover, this equation already includes a summation operator for C on the right-hand side of the maximization operator.

A second observation is that before a variable is eliminated from a utility potential by the variable elimination algorithm,
it must be eliminated from all probability potentials in the MEU equation. Therefore, when an unobserved chance variable C
is eliminated from a piecewise-linear and concave utility potential, v (H, B(C, U)), by sum-marginalization, we can assume
that the variable is no longer in the domain of any probability potential in the MEU equation. It follows that there is no
reason for the utility potential to be defined for belief states over the possible states of C.

Based on these two observations, we introduce the following symbol to denote elimination of an unobserved chance vari-
able from a piecewise-linear and concave potential by sum-marginalization. We use this symbol as a notational convenience
only, since the ordinary summation operator is not meaningful in this case.

Definition 5. Let the symbol, Zurwbserved(c), when it appears to the immediate left of a piecewise-linear and concave po-
tential, denote the elimination of an unobserved variable C from the potential, which is defined so that

h, b(C.U)) = b(c, u). 93
Y. ¥ (hb(C,U) ﬁﬁ;(; (CU)>V(CU) (93)

unobserved(C)

By this definition, a variable C is eliminated from a piecewise-linear and concave utility potential in two steps. First,
it is eliminated from the belief state, b(C, U), by sum-marginalization. Then it is straightforward to eliminate C by sum-
marginalization from each of the linear potentials in the representation of the piecewise-linear and concave utility potential,
as shown in the proof of the following theorem.

Theorem 5. Consider the elimination of an unobserved chance variable C by sum-marginalization from a piecewise-linear and concave
potential, ¥ (H, B(C, U)), which is represented by an indexed family of sets of linear potentials, {I'n}nespn), Where the domain of the
linear potentials is (C, U), and U may or may not be empty.

If U is non-empty, the result is a piecewise-linear and concave potential, denoted v’ (H, B(U)), which is represented by an indexed
family of sets of linear potentials, {T'} }nespcu), with domain U, where for each instantiation h of H, we have

Iy, = Prune <{Zy|yth]). (94)

C

If U is empty, that is, if C is the only unobserved variable in the domain of v, the result is an ordinary utility potential v'(H), where
for each instantiation h of H:

‘(h) = . 95
Yl =max > y(© (95)

cesp(C)

21

E.A. Hansen Artificial Intelligence 294 (2021) 103431

Proof. First we consider the case where C is not the only unobserved variable in the domain of . For any belief state
b(C,U), we can define a related belief state: b’(U) = }_~b(C, U). The following equivalences hold for any input (h, b(C, U))
for ¢:

h,b(C,U)) = b(c, , 96
Y. V(hb(CU) ;naFXZ(Z (cu))y(cu) (96)

unobserved(C)
= b/ , 97
;narXZ Wy (c,u (97)
= max Zb’(u)y’(u) (98)
y’e[‘;1 m
=y’ (h, b’ (U)). (99)

Equation (96) simply restates Definition 5. Equation (97) follows by definition of the belief state b’. Equation (98) follows
from the definition of I'y given by Equation (94). Equation (99) follows by the definition given in the theorem of the
piecewise-linear and concave utility potential v’ (H, B(U)).

Next we consider the case where C is the only unobserved variable in the domain of . For any belief state b(C), we
have) - b(C) =1, of course, and so the following equivalences hold for any input (h, b(C)) for v:

2. vhb©O)=max) (Z b(c)) y(© (100)

unobserved(C)

=max2y(c). a (101)

velry c

Example. Consider a piecewise-linear and concave utility potential, ¥ (D, B(C)), where D is a Boolean decision variable and
C is an unobserved Boolean chance variable. Let the two sets of linear potentials that represent this utility potential be:
I'p—o =1{(6,7),(8,2)} and I'p_1 ={(3,5), (1, 6)}. The result of eliminating C by sum-marginalization is an ordinary utility
potential, ¥'(D), represented by the vector: (13, 8). That is, the ordinary potential v'(D) has the value 13 when D =0, and
8 when D =1.

Criteria for selecting sum-marginalization operator. In summary, we use the following criteria to determine how to eliminate
a chance variable from a utility potential: (i) for an ordinary utility potential, we use the traditional sum-marginalization
operator; (ii) for a piecewise-linear and concave utility potential where the chance variable to be eliminated is observed, we
use the sum-marginalization operator of Theorem 4; and (iii) for a piecewise-linear and concave utility potential where the
chance variable to be eliminated is unobserved, we use the sum-marginalization operator of Theorem 5.

4. Generalized variable elimination

In this section, we introduce a generalization of the variable elimination algorithm for influence diagrams that uses
piecewise-linear and concave utility potentials, and the generalized operations on potentials defined in Section 3, to relax
traditional constraints on elimination order. Because the algorithm adopts this more general representation of potentials, we
call it generalized variable elimination.

It is important to note that the new algorithm performs exactly the same steps as the traditional variable elimination
algorithm, and represents potentials in exactly the same way, when it eliminates variables in an order that is allowed by the
traditional algorithm. All of the differences between generalized and traditional variable elimination relate to how utility
potentials are represented and processed when variables are eliminated in an order that is not allowed by the traditional
algorithm.

We describe the relaxed constraints on elimination order in Section 4.1. They are not shown in the high-level pseudocode
of Algorithm 2, just as the traditional constraints on elimination order are not shown in the pseudocode of Algorithm 1. Al-
though the pseudocode of Algorithm 2 is almost the same as the pseudocode of Algorithm 1, there are significant differences
in the implementation of the algorithm that are not shown in the pseudocode. In particular, the pseudocode of Algorithm 2
uses the same notation for utility potentials, and operations on utility potentials, regardless of whether they are ordinary or
piecewise-linear and concave. It relies on the implementation of the algorithm to distinguish between these two cases, and
handle them appropriately. Recall from Section 3.4.2 that a policy can also be represented in two ways, in keeping with the
two different ways that a utility potential can be represented. The pseudocode uses the same notation for a policy 8y for an
eliminated decision variable V, regardless of how the policy is represented, and it relies on the algorithm’s implementation
to choose the appropriate policy representation.

The only differences shown in the revised pseudocode are in lines 15 through 18, where the differences are highlighted.
These added lines identify the piecewise-linear and concave utility potentials that need to be replaced when a variable is

22

E.A. Hansen Artificial Intelligence 294 (2021) 103431

Algorithm 2: Generalized variable elimination algorithm.

Input: Influence diagram with variables V=CUD
Output: Optimal strategy, A, and MEU
1 ® « {P(C|pa(C))|C € C} /| initial set of probability potentials
2 ¥ <« {R(pa(R)|R € R} [/ initial set of utility potentials
3 A < [/ initial strategy
4 for i < 1to |V| do // i is index of elimination step

5 Select variable V to eliminate according to some criterion
6 || Process probability potentials
7 Dy « {¢p € ®|V edom(¢p)} || get relevant probability potentials
8 Py <~ Hd)ewv ¢ || multiply probability potentials
9 if V is a chance variable then
10 | ¢i < >y ¢v [/ eliminate V by sum-marginalization
11 else if V is a decision variable then
12 | ¢i < maxy ¢y /| eliminate V by max-marginalization

13 P «— (P\Py) U {¢;} [/ update set of probability potentials
14 || Process utility potentials
15 Wy <« { € ¥|(V edom(y) or [/ get relevant utility potentials

16 ((y is piecewise-linear and concave) and

17 ((V is an observed chance variable) and

18 (V is d-connected to an unobserved chance variable in dom(y)))}
19 Yy <« Zwewv ¥ || add utility potentials

20 if V is a chance variable then

21 beond < ¢v /@i || conditional probability of V

22 ‘ Vi <= Yy dcond - Yv [multiply, then sum-marginalize
23 else if V is a decision variable then

24 Yi < maxy Yy [/ eliminate V by max-marginalization
25 8y < argmaxy Yy [/ optimal policy for decision variable
26 A < AU{8y} [add policy to strategy

27 W« (W\Wy) U {y;} /| update set of utility potentials
28 end
29 MEU <3, .y ¥ /| MEU is sum of final utility potentials

30 return (A, MEU) /| A is optimal strategy

eliminated. We explain this addition to the algorithm in Section 4.2. In Appendix B, we describe an optimization of the
algorithm, called interleaving operations on piecewise-linear and concave potentials. There, to help explain this optimization,
we give more detailed, low-level pseudocode.

4.1. Relaxed constraints on elimination order
We first describe how the new algorithm relaxes constraints on elimination order.

Ordering constraints based on information precedence. As explained in Section 2.2.2, the traditional variable elimination algo-
rithm eliminates variables in an order that is constrained by the partial order < of information precedence,

Yi<D1<Yy<...<Dp_1<Yn<Dp <X, (102)

where each decision variable D;, or set of chance variables Yj, is instantiated before all subsequent variables in the partial
order, and X is the set of unobserved chance variables. The traditional algorithm eliminates each set of chance variables
Y;, and each decision variable D;, before it eliminates their predecessors in the partial order, that is, it eliminates vari-
ables in backwards order of instantiation. It also eliminates the unobserved variables in X before it eliminates any other
variable.

Similarly, the generalized algorithm must eliminate variables in an order that is constrained by the partial order of in-
formation precedence, but with a key difference. It is not required to eliminate all unobserved variables before it eliminates
any other variable. That is, the new algorithm eliminates variables in an order that respects the following partial order of
information precedence,

Yi<D1<Yy<...<Dyp_1 <Yy <Dy, (103)

where this partial order no longer includes the set X of unobserved variables.

Dropping the constraint that all unobserved variables must be eliminated before any other variables are eliminated does
not contradict the requirement that an elimination order must reflect the partial order of information precedence because
the variables in X are not observed, and thus they provide no information. It follows that the order in which they are
eliminated is not subject to informational constraints in the same way as the other variables.

23

E.A. Hansen Artificial Intelligence 294 (2021) 103431

Ordering constraints based on causal precedence. Although we do not require that all unobserved chance variables be elim-
inated first, there are still constraints on how long their elimination can be postponed. To describe these constraints, we
introduce the following definition, which is analogous to the definition of the set of informational predecessors of a decision
variable given by Equations (4) and (5).

Definition 6. The set of causal successors of a decision variable D, denoted Succ(D), is the set of variables that are descen-
dants of the decision variable D via some directed path of conditional arcs in the graph of the influence diagram.

Only conditional arcs are used to define causal precedence, just as only informational arcs are used to define information
precedence. Elimination-ordering constraints based on causal precedence take the form: any variable that is a causal successor
of a decision variable must be eliminated before the decision variable is eliminated. Without this constraint, a decision variable
could be eliminated from a utility potential before it is eliminated from all probability potentials. In that case, there could
be effects of the decision that are not taken into consideration when computing a policy for the eliminated decision variable,
and the policy and corresponding utility potential would no longer be guaranteed to be optimal. For exactly this reason,
both the traditional and generalized variable elimination algorithms are constrained to eliminate a decision variable from
all probability potentials before eliminating it from a utility potential.

Elimination-ordering constraints based on causal precedence complement the revised ordering constraints based on in-
formation precedence given by Equation (103). We combine these constraints by requiring that variables be eliminated in
an order that is consistent with an influence diagram, which we define as follows.

Definition 7. A variable elimination order is consistent with an influence diagram if each decision variable is eliminated (i)
after all of its causal successors are eliminated and (ii) before any of its informational predecessors are eliminated.

Example. Consider the influence diagram for a three-stage POMDP shown in Fig. 2b. The traditional variable elimination
algorithm eliminates the unobserved chance variables, X1, X2, and X3, before it eliminates any other variables. By contrast,
the new algorithm can postpone the elimination of the unobserved variables while one or more decision and observed
chance variables are eliminated. However, the unobserved state variable X3 must be eliminated before the decision variable
D, since is a causal successor of D, and the unobserved state variable X, must be eliminated before the decision variable
D, since it is a causal successor of D1.

4.2. Relevant piecewise-linear and concave utility potentials

When a variable is eliminated from an MEU equation by variable elimination, all potentials with a value that depends
on, or may depend on, the eliminated variable, are replaced by equivalent potentials that do not depend on the variable.

We call the potentials that need to be replaced when a variable is selected for elimination the relevant potentials. For
the traditional variable elimination algorithm, a potential is relevant if and only if the variable selected for elimination is
in the domain of the potential. For the generalized algorithm, ordinary potentials are relevant under the same condition.
But for piecewise-linear and concave potentials created by eliminating variables in a non-traditional order, the condition for
relevance is more complex.

Before describing this more complex condition for relevance, we review the concept of d-connection in an influence
diagram, which is a well-known graphical criterion for conditional dependence between variables.

Definition 8 (d-connection in an influence diagram [38,39,17]). The variables X and Y in an influence diagram are d-connected
given a disjoint set of instantiated variables, Z, if there is an undirected path between X and Y such that

e there are no informational arcs or reward nodes on the path;

e in every triple on the path of the form A — B — C or A < B < C, which represent “serial connections” (the arrows
indicate the directions of the conditional arcs), the variable B is not in Z;

e in every triple on the path of the form A <— B — C, which represents a “diverging connection,” the variable B is not in
Z

e in every triple on the path of the form A — B < C, which represents a “converging connection,” the variable B is either
in Z or it is an ancestor of a variable in Z.

The significance of this criterion is that if two variables, X and Y, are d-connected given a disjoint set of instantiated
variables, Z, they are conditionally dependent given Z. In that case, observation of the state of one of the variables provides
information about the state of the other variable, if it is unobserved. If the two variables are not d-connected given Z,
they are said to be d-separated by Z, which means they are conditionally independent. There is a well-known linear-time
algorithm for testing whether two variables are d-connected or d-separated [39].

The following theorem states the revised conditions for the relevance of a utility potential when a variable V is selected
for elimination by generalized variable elimination.

24

E.A. Hansen Artificial Intelligence 294 (2021) 103431

(x)
e
& L] &

(a) (b)

Fig. 4. Simple influence diagrams used to illustrate the conditions under which a utility potential is relevant when a variable is eliminated.

Theorem 6. A utility potential s is relevant when a variable V is selected for elimination by generalized variable elimination if and
only if:

e V isin the domain of V, or
e 1 is piecewise-linear and concave, and V is an observed chance variable that is d-connected to an unobserved chance variable C
that is in the domain of .

Proof. A potential v is obviously relevant if a variable V in its domain is selected for elimination, and so we consider the
case where V is not in the domain of .

If ¢ is piecewise-linear and concave, its value depends on a belief state over the unobserved chance variables in its
domain, and so information that influences the belief state influences the value of . If V is an observed chance variable
that is d-connected to an unobserved chance variable C in the domain of yr, then observation of the state of V provides
information that influences the belief state upon which the value of iy depends, and ¥ is relevant when V is selected for
elimination.

The value of a piecewise-linear and concave potential s cannot be affected by an unobserved chance variable that is not
in its domain because an unobserved variable provides no information, and thus cannot affect a belief state.The value of
cannot be affected by a decision variable that is not in its domain by the following reasoning: when a decision variable is
selected for elimination, its descendants have already been eliminated, and it is d-separated from its predecessors. Therefore,
it cannot be d-connected to an unobserved chance variable in the domain of ¥. O

In summary, an observed chance variable can influence the value of a piecewise-linear and concave potential even if it is
not in its domain, if it influences a belief about the state of an unobserved chance variable that is in its domain. To illustrate
this condition for the relevance of a utility potential, we consider two examples.

Examples. Consider the influence diagram shown in Fig. 4a. If the first variable eliminated is the decision variable D, the
reward potential R(X,, D) is replaced by a piecewise-linear and concave utility potential ¥ (B(X>2)). If the next variable
eliminated is the observed chance variable Y, then the piecewise-linear and concave utility potential 1 (B(X>2)) is relevant
even though Y is not in its domain, because Y is d-connected to the unobserved chance variable X, which is in its
domain.

Next consider the influence diagram shown in Fig. 4b. If the decision variable D is eliminated first, the utility potential
R1(X1, D) is replaced by a piecewise-linear and concave utility potential v1(B(X1)). Let the next variable eliminated be
the observed chance variable Y, and note that Y is not in the domain of either the piecewise-linear and concave utility
potential 11 (B(X1)) or the ordinary utility potential R(X3). Yet it is d-connected to the unobserved chance variable X; in
the domain of 1 (B(X7)), and it is d-connected to the unobserved chance variable X, in the domain of R(X>). In this case,
¥1(B(X7)) is relevant because it is piecewise-linear and concave, while R(X3) is not relevant because it is an ordinary utility
potential.

4.3. Oil wildcatter example revisited

To illustrate how generalized variable elimination uses piecewise-linear and concave utility potentials in solving an influ-
ence diagram, we consider the steps it takes to solve the same oil wildcatter problem used as an example in Section 2.2.2.
Instead of eliminating the unobserved chance variable first, however, we show how the new algorithm solves this problem
when the unobserved chance variable is eliminated last.

The initialization step is the same as described in Section 2.2.2 for the traditional algorithm, and so it is enough to show
the initial MEU equation:

MEU = mTax;mDax; P(S|0,T)P(0) (R(T) 4+ R(0, D)). (104)

Eliminate decision variable D (for Drill). We eliminate the decision variable D first. There are no probability potentials with D
in their domain. But the utility potential R(O, D) has D in its domain. Since it is an ordinary utility potential that also has

25

E.A. Hansen Artificial Intelligence 294 (2021) 103431

an unobserved chance variable in its domain, we use Theorem 1 to eliminate D. The result is creation of a piecewise-linear
and concave utility potential, v1(B(0)), which is represented by a set I'y of linear potentials, with one linear potential in
the set for the drill decision, and one for the decision not to drill (nodrill).

When the problem is solved for the parameters specified in Fig. 1, we have I'1 = {(0, 0, 0), (—70, 50, 200)}, where the
vector (0, 0, 0) represents the linear potential associated with the decision not to drill, and the vector (—70, 50, 200) repre-
sents the linear potential associated with the decision to drill. Note that the three elements of these vectors correspond to
the three possible states of the unobserved chance variable O for oil, in the order: dry, wet, and soak. For any belief state
b(0) € bsp(0), the value of the piecewise-linear and concave utility potential is given as follows:

Y1(b(0)) =max 3 b()y (o). (105)

1oesp(O)

After this elimination step, we have the potentials,

¢ < {P(0), P(5]0,T)} (106)
W {R(T), ¥1(B(0))}, (107)

and the revised MEU equation is
MEU =max}_ max) P(S|O,T)P(O)(R(T)+ y(O)), (108)
T S yel'1 o

where the part of the equation that represents a piecewise-linear and concave utility potential is highlighted.

A policy 8p(B(0)) for the decision variable D is represented implicitly by associating the corresponding action d € sp(D)
with each linear potential in the set I'y, which represents the piecewise-linear and concave utility function 1 (B(0)). This
representation of a policy is defined by Equation (86).

Eliminate observed chance variable S (for Seismic test result). The next variable eliminated is the observed chance variable S.
The only probability potential with S in its domain is P(S|0, T). Eliminating S from P(S|0, T) by sum-marginalization
gives

$2(0,T)=) P(S|0,T), (109)
S

which is not added to the set ® because it is vacuous, that is, it assigns the value of 1 to every instantiation of (O, T). Thus
we also have ¢¢onq(S|0, T) = P(S|0, T).

The observed chance variable S is not in the domain of any utility potential. But it is d-connected to the unobserved
chance variable O, which is in the domain of the piecewise-linear and concave utility potential vr1(B(0)). Therefore,
¥1(B(0)) is relevant in this elimination step, and it is replaced by the piecewise-linear and concave utility potential,

¥2(T, B(0) = peond(S|0, T) - ¥11(B(0)), (110)
s

which is represented by an indexed family of sets of linear potentials, {I';¢}tesp(r), created by the cross-sum operator
described in Theorem 4. For any relevant history t € sp(T) and belief state b(0) € bsp(0), we have

V2(t.(0) = max > b(©)y©). (111)

’toesp(O)

When the problem is solved for the parameters specified in Fig. 1, we have the set I"z norest = {(0, 0, 0), (=70, 50, 200)}
for the case where no seismic test is performed. In this set, the vector (0,0, 0) represents the linear potential associated
with the decision not to drill after not testing, and the vector (—70, 50, 200) represents the linear potential associated with
the decision to drill after not testing. We also have the set I'; et = {(0, 0, 0), (—70, 50, 200), (—28, 35, 180), (—7, 15, 100)}
for the case where a seismic test is performed. In this set, the vector (0, 0, 0) represents the linear potential associated with
the decision not to drill regardless of the test result, the vector (—70,50,200) represents the linear potential associated
with the decision to drill regardless of the test result, the vector (—28,35,180) represents the linear potential associated
with the decision to drill if the test result is closed or open, but not diffuse, and the vector (—7, 15, 100) represents the
linear potential associated with the decision to drill if and only if the test result is closed. Note that before pruning, the set
"2 test has eight vectors. The four pruned vectors correspond to conditional plans that are not optimal for any belief state.
For example, the vector that represents the linear potential corresponding to the decision to drill if the result of the seismic
test is diffuse, but not otherwise, is pruned because it is never the best thing to do.

26

E.A. Hansen Artificial Intelligence 294 (2021) 103431

After this elimination step, we have the potentials,

® <« {P(0)} (112)
W <« {R(T), y2(T, B(O))}, (113)
and the revised MEU equation is
MEU = max max Y. P(0) (R(T) n y(O)). (114)
T)/Grz_T 0

Eliminate decision variable T (for Test). No probability potentials have the variable T in their domain, but two utility poten-
tials do: the ordinary utility potential R(T) and the piecewise-linear and concave utility potential v, (T, B(0)). Therefore, a
new piecewise-linear and concave utility potential is created, as follows,

¥3(B(0)) = max (R(T) + ¥2(T, B(0))), (115)

which is represented by the set of linear potentials, I's, created by the maximization operator described in Theorem 3.

When the problem is solved for the parameters specified in Fig. 1, we have I's = {(0,0,0), (—70, 50, 200),
(—38,25,170), (—17,5,90)}, where the vector (0,0, 0) represents the linear potential associated with the decision not
to test or drill, the vector (—70, 50, 200) represents the linear potential associated with the decision to drill without testing
first, the vector (—38, 25, 170) represents the linear potential associated with the decision to test and then drill if the result
of the test is open or closed, and the vector (—17,5,90) represents the linear potential associated with the decision to test
and then drill if the result of the test is closed. (Before pruning, the set has six vectors, since it is the union of the sets
"2 notest and T’z resr.) As before, for any belief state b(0) € bsp(0), the value of the piecewise-linear and concave utility
potential is:

¥3(b(0)) = max >~ by (). (116)
o0esp(0)

After this elimination step, we have the potentials,
o <~ {P(0)} (117)
U« {y3(B(0))}, (118)
and the revised MEU equation is:
MEU = maxyer; Yo P(0)y(0). (119)

A policy 87(B(0)) for the decision variable T is represented implicitly by associating an action t € sp(T) with each
linear potential in the set I's that represents the piecewise-linear and concave utility potential 13(B(0)), as defined by
Equation (86).

Eliminate unobserved chance variable O (for Oil). The unobserved chance variable O is eliminated last, as follows,
Ya() =Y _ P(0)y3(B(0)), (120)
o

where A is the unique state of the empty set of variables in the domain of 4. For this problem, the prior probability
distribution for the unobserved chance variable O for oil is (0.5,0.3, 0.2), where the probabilities for the possible states of
the variable are in the order: dry, wet, and soak. The linear potential in I's that optimizes this belief state is represented by
the vector (—38, 25, 170), which corresponds to the strategy of testing, and then drilling if the result of the test is open or
closed. The scalar value of this strategy is 22.5, which is the maximum expected utility (MEU) for the problem.

Return solution. In the optimal strategy, A = (§7(B(0), dp(B(0)), the optimal policies for the decision variables T and D
are represented implicitly by way of the piecewise-linear and concave utility potentials generated when they are eliminated.

4.4. Generalized influence diagram

Our generalization of the variable elimination algorithm also suggests a potentially useful generalization of the definition
of an influence diagram.

In Definition 2 of a completely observable MDP, and in Definition 3 of a POMDP, every chance variable is associated

with a probability distribution. It is associated with a conditional probability distribution if it has one or more parent

27

E.A. Hansen Artificial Intelligence 294 (2021) 103431

variables, and with an unconditional probability distribution otherwise. Associating every chance variable with a probability
distribution ensures that the definitions of an MDP and a POMDP are consistent with the definition of an influence diagram
given by Definition 1.

In the literature on Markov decision processes, however, it is often the case that a chance variable that belongs to the
first stage of the process, and does not have a parent variable, is not associated with an unconditional (that is, prior) prob-
ability distribution. Instead, the value iteration algorithm solves the problem for all possible initial states. In the completely
observable case, value iteration solves the problem for all possible states of the observed chance variable that represents the
state of the process, for each stage of the problem, including the first stage. In the partially observable case, value iteration
solves the problem for all possible probability distributions (or belief states) over the possible states of the unobserved
chance variable that represents the state of the process, for each stage of the process, including the first.

Because generalized variable elimination generalizes the value iteration approach, it can similarly solve an influence
diagram when no probability distribution is associated with one or more chance variables, as long as the chance variables
do not have a parent variable. In a sense, any chance variable that does not have a parent variable belongs to the “first
stage” of the problem represented by an influence diagram. Thus we can define an influence diagram in a slightly more
general way.

Definition 9. A generalized influence diagram is an influence diagram that is defined the same as in Definition 1, except that
the association of an unconditional probability distribution with a chance variable that has no parent variable is optional.

A chance variable that is not associated with a probability distribution cannot be eliminated by variable elimination. But
in that case, once all the variables have been eliminated that can be eliminated, the value (or MEU) of the influence diagram
is given by a utility potential that has the remaining chance variables in its domain, which are the chance variables that are
not associated with a probability distribution. If all of these chance variables are observed, the final utility potential is an
ordinary potential. Otherwise, it is piecewise-linear and concave. In either case, the final utility potential gives the MEU for
every possible initial state and initial belief state of the problem.

For example, consider a modified influence diagram for the oil wildcatter problem, where the only difference is that
no prior probability distribution is associated with the unobserved chance variable O for the presence of oil. In this case,
the variable for oil is never eliminated by generalized variable elimination, and the final utility potential includes it in
its domain, and maps every possible prior probability distribution over the possible states of this variable, that is, every
possible belief state, to a value.

In Section 4.3, we considered the steps taken by generalized variable elimination in solving the oil wildcatter problem
when the unobserved chance variable O for oil is eliminated last. The same steps are taken by generalized variable elimina-
tion when no prior probability distribution is associated with O, except that the variable O is never eliminated. In this case,
we can interpret the steps of the algorithm a little differently, as follows. When the symbol MEU appears on the left-hand
side of equations in Section 4.3, it always denotes a scalar value. But if the unobserved chance variable O for oil has no
unconditional probability distribution associated with it, the left-hand side of the same equations becomes MEU (B(0)),
and we are solving for a utility potential that gives the maximum expected utility for any initial belief state b(O) over
the possible states of the unobserved chance variable for oil, and not just for a particular prior probability distribution
P(0). When the problem is solved in this more general form, the same sequence of elimination steps transforms the MEU
equation as follows,

MEU(B(0)) = mTame[e)le P(S]0, T)b(0) (R(T) + R(O, D)) (121)
S 0

=m7gx252;n€ar>]<20:13(5|o,T)b(O)(R(T)+y(0)) (122)

=m$xyT§fTXO:b(0)(R(T)+y(0)) (123)

= 124

)r/near);zojb(O)y(O), (124)

where the variable O is never eliminated.

For some influence diagrams, this generalization of the optimization problem may be more difficult to solve. But it can
also be useful to have a more general solution, and the revised definition of an influence diagram, and the generalized
variable elimination algorithm, allow the problem to be solved in this more general way.

4.5. Correctness

From the results and analysis presented so far, the correctness of the generalized variable elimination algorithm follows
in a straightforward way.

28

E.A. Hansen Artificial Intelligence 294 (2021) 103431
Theorem 7. Generalized variable elimination finds an optimal strategy and value for an influence diagram.

Proof. When variables are eliminated in a traditional order, the generalized algorithm performs exactly the same steps as
the traditional algorithm. Therefore, we only need to establish correctness for the case where variables are eliminated in a
non-traditional, but consistent order, using piecewise-linear and concave utility potentials.

Theorem 6 ensures that any piecewise-linear and concave utility potential that is affected by the value of an eliminated
variable, and needs to be replaced during the elimination step, is identified. Theorems 2 through 5 establish that the oper-
ations on piecewise-linear and concave utility potentials are value-preserving. It follows that any elimination step involving
piecewise-linear and concave utility potentials is a value-preserving transformation, which means the value of the equation
for MEU is the same before and after the variable is eliminated.

The algorithm terminates after a number of steps that is less than or equal to the number of variables. By the value-
preserving property of the operations on potentials, the value of the MEU equation after the last variable is eliminated is the
value of an optimal strategy for the influence diagram, and the policy associated with each decision variable is optimal. O

5. Generalized value iteration

The generalized variable elimination algorithm introduced in Section 4 generalizes the traditional variable elimination
algorithm for influence diagrams. But it can also be viewed as a generalization of the value iteration algorithm for finite-
horizon POMDPs. In this section, we consider the new algorithm from this alternative perspective.

Of course, there is a straightforward way in which the new algorithm can be viewed as a generalization of the value
iteration algorithm for POMDPs: it solves any influence diagram, and not just influence diagrams that represent finite-
horizon POMDPs. In this section, we show in a more precise way how the new algorithm generalizes the value iteration
approach. In Section 5.1, we show that generalized variable elimination solves any influence diagram by reducing it to
an equivalent finite-horizon POMDP that it solves by value iteration. In Section 5.2, we show that generalized variable
elimination enhances the value iteration approach by leveraging problem structure that can be represented in an influence
diagram, but not in the traditional model of a POMDP.

5.1. Variable elimination as generalized value iteration

We first show that generalized variable elimination reduces the decision problem represented by an influence diagram to
an equivalent finite-horizon POMDP with special structure, called a mixed-observable MDP, that it solves by value iteration.

5.1.1. Mixed-observable Markov decision process

A mixed-observable Markov decision process [40,41] is a special type of factored POMDP where the state of the process
at each stage is factored into two state variables, one observed and the other unobserved, and imperfect information about
the state of the unobserved variable is provided by an additional observation variable. (Recall that an observation variable is
a chance variable that is distinguished from a state variable by the fact that all of its outgoing arcs are informational.)

Definition 10. A finite-horizon mixed-observable Markov decision process (MOMDP) is a tuple (Y, X, YX,D, R, P), where

e the process unfolds over a finite sequence of n stages, indexed by t =1,2,...,n;

e Y={Y(|t=1,2,...,n} is a set of observed chance variables that represent the observed component of the state of the
process at each stage;

e X={X(|t=1,2,...,n} is a set of unobserved chance variables that represent the unobserved component of the state
of the process at each stage;

o YX = {th|t =1,2,...,n} is a set of observation variables that provide imperfect information about the state of the
unobserved variables X;

e D={D{|t=1,2,...,n} is a set of decision variables, with one for each stage;

o R={R;:sp(Ys) x sp(X¢) x sp(D¢) = R|t=1,2,...,n} is a set of reward functions, with one for each stage; and

e P is a set of probability distributions, with one for each chance variable. For the first stage, there is an unconditional
probability distribution P (Y1), an unconditional probability distribution P(X7), and a conditional probability distribution
P(Y1X|X1). For each subsequent stage t =2, ..., n, there is a conditional probability distribution P(Y¢|Y;—1, X;—1, D¢—1),
a conditional probability distribution P(X¢|Y:—1, X¢—1, Dt—1), and a conditional probability distribution P(YtX|Xt, D¢—1).

At each stage t =1, ..., n, the state of the process, (y¢, x¢), is the state of a joint variable, (Y¢, X;), where y; € sp(Y;) is the
observed state and x; € sp(X;) is the unobserved state. After an action d; € sp(D;) is taken, a reward R;(y;, X, d) is received.
In every stage except the last, the process then makes a transition to an observed state y;y1 € sp(Y¢+1) with probability
P(Yt+1|Y¢, X, dr), and it makes a transition to an unobserved state x;y1 € sp(X¢+1) with probability P (x;+1|y:, X, dt). Fig. 5a
shows an influence diagram for a three-stage mixed-observable MDP.

29

E.A. Hansen Artificial Intelligence 294 (2021) 103431

Fig. 5. Influence diagrams for (a) a three-stage mixed-observable MDP and (b) an equivalent POMDP.

5.1.2. Mixed-observable MDP as a POMDP

Like any factored POMDP, a mixed-observable MDP can be represented by an equivalent “flat” POMDP that is defined in
accordance with Definition 3. Fig. 5b shows the influence diagram for a three-stage POMDP that is equivalent to the three-
stage mixed-observable MDP shown in Fig. 5a. The state at stage t is an instantiation (y;, x;) of a joint variable (Y¢, X;);
the decision at stage t is d; € sp(D;); and the observation at stage-(t + 1) is an instantiation (y¢+1, y?ﬂr]) of a joint variable
(Yet1, YtXH). The same chance variable Y; is part of both the state and the observation at stage t because it represents a
component of the state that is perfectly observed.

The conditional probabilities and rewards for the equivalent POMDP are easy to calculate from those for the mixed-
observable model given by Definition 10. The transition probabilities for the state variable (Y;y1, Xr+1) are defined as

P((¥et1, Xe+ DIVt X, de) = P(Yeq11Yes X, de) - PRe1|Yes X, de), (125)
the observation probabilities for the observation variable (Y;41, YtXH) are defined as

P((Ves1, YEDIYes1s Xes1), de) = Py 1Xes1, do), (126)
and the stage-t reward function is defined as

R((ye, %), de) = R(yt, Xt, dy). (127)

From this perspective, a mixed-observable MDP is just a POMDP with a special kind of structure. We next show that this
special structure can be leveraged to improve the efficiency of both the belief state update and the value iteration algorithm.

Hybrid state and belief update. We first explain the more efficient belief update. Since the state of a mixed-observable MDP
at stage t is a joint state (y¢, x;), where y; is observed and x; is not, a Bayesian belief update only needs to maintain a belief
state over the possible states of the unobserved state variable X;. We define the hybrid state of a mixed-observable process
at stage t as a tuple (y¢, b(X;)), where b(X;) is a belief state over the possible states of the unobserved state variable X;. For
a hybrid state (y¢_1,b(X¢_1)) and action d;_1, the stochastic outcome is a hybrid state (y;, b(X;)). The successor belief state,
b = b(X;), of this hybrid state is given by a deterministic function, by = 7 (b¢_1, yr—1,d¢t—1, yg‘), where each component of
b; is defined as:

be(x) = P(xX¢|be—1, ye—1.de—1, ¥7) (128)
P xelbe1, yeo1.di1)
— PYFIbet, Vo1, de)
Py Ixe, de—1) Yo, PelXe—1, Ye1. de—1)be—1 (Xe—1)

= > . (130)
ny P(yilxe, de—1) Yy, PXe|xe—1, Ye—1, de—1)be—1(xe—1)

(129)

Dynamic programming recurrence. The value iteration algorithm for mixed-observable MDPs is based on the reduction of
a mixed-observable MDP to a completely observable MDP over hybrid states, and follows a similar logic as the reduction
of a POMDP to a completely observable MDP over belief states. For stages t =1,2,...,n — 1 of the process, the dynamic
programming recurrence takes the form,

Vi(ye, be) = max) Re((ye. be). de) + > Perlye.be).d)Veps (Vepa.bepa) ¢ (131)
t

X
Yt+1,Yt4q

30

E.A. Hansen Artificial Intelligence 294 (2021) 103431

where b;q = r((yt,bt),dt,yfﬂ). For the last stage of the process, which is the base case of the dynamic programming
recurrence, we have

Vn(¥n, bn) =rr(11aan((yn,bn),dn). (132)

Appendix A.1 describes a value iteration algorithm for mixed-observable MDPs that improves the efficiency of the incremen-
tal pruning algorithm for POMDPs by taking advantage of the special structure of this dynamic programming recurrence.

5.1.3. Reduction of an influence diagram to an equivalent mixed-observable MDP

There is an important and obvious similarity between the dynamic programming recurrence for a mixed-observable MDP
and the dynamic programming recurrence solved by generalized variable elimination: each of these recurrences is defined
for both the state of an observed variable and a belief state over the possible states of an unobserved variable. The following
theorem, proved in Appendix A.2, leverages this similarity to establish a fundamental relationship between the influence
diagram solved by generalized variable elimination and the mixed-observable model.

Theorem 8. The generalized variable elimination algorithm reduces any influence diagram to an equivalent mixed-observable MDP
that it solves by value iteration.

Also proved in Appendix A.2 is the following special case of this result.

Corollary 2. The traditional variable elimination algorithm reduces any influence diagram to an equivalent completely observable MDP
that it solves by value iteration.

Although both results reduce variable elimination to a form of value iteration, the difference between the two reductions
explains why generalized variable elimination can be much more effective than traditional variable elimination in solving
partially observable decision problems. It can leverage a dynamic programming recurrence that is defined for belief states,
or for both belief states and history, whereas the recurrence solved by traditional variable elimination is defined only for
observed states, that is, for history. By optimizing utility for all belief states over the possible states of an unobserved
variable, generalized variable elimination can decouple later stages of a sequential decision problem from earlier stages,
allowing the problem to be solved by the same kind of stagewise problem decomposition that is leveraged by the dynamic
programming approach to solving POMDPs and mixed-observable MDPs. As a result, generalized variable elimination can be
more scalable than traditional variable elimination in solving partially observable decision problems.

5.2. Variable elimination as enhanced value iteration

Theorem 8 and Corollary 2 show that both traditional and generalized variable elimination reduce an influence diagram
to an equivalent MDP that is solved by value iteration. From this perspective, the variable elimination approach to solving
influence diagrams can be viewed as a value iteration algorithm that is enhanced by leveraging problem structure that can
be represented in an influence diagram, but is not represented in the traditional model of an MDP. In particular, variable
elimination enhances the value iteration approach in the following ways.

e Variable elimination can compute probabilities and expected utilities more efficiently than traditional value iteration
by leveraging conditional independence relations among variables, and additive separability of the utility function, as
represented in the graph of an influence diagram.

e Variable elimination can solve non-Markovian decision problems by using state augmentation to convert an influence
diagram that represents a non-Markovian problem to an equivalent MDP that it solves by value iteration. As already
shown, generalized variable elimination converts an influence diagram to an equivalent mixed-observable MDP, and
traditional variable elimination converts an influence diagram to an equivalent completely observable MDP.

e Variable elimination can decompose a problem into independent subproblems that can be solved separately before
combining their solutions, where subproblem independence is represented in the graph of an influence diagram.

The first of these enhancements is well-understood, and has already been extensively explored in related work on factored
MDPs [e.g., 42-44] and factored POMDPs [e.g., 12,13]. The second and third enhancements leverage more complex forms of
problem structure, including non-Markovian dependencies, and these enhancements have received much less study. There-
fore we focus on these enhancements in the rest of our discussion.

5.2.1. Automatic state augmentation for non-Markovian problems

We begin by considering non-Markovian decision problems that can be represented by an influence diagram. It is well-
known that any finite-horizon non-Markovian decision process can be converted to an equivalent finite-horizon MDP by
state augmentation, which means the state at a given stage of the process is made Markovian by augmenting it with part

31

E.A. Hansen Artificial Intelligence 294 (2021) 103431

(1)~ 00,017
& &

Fig. 6. Influence diagrams for (a) a four-stage completely observable decision process with a one-stage time lag and (b) an equivalent four-stage completely
observable MDP. Variable elimination solves the influence diagram on the left by converting it to the MDP on the right, which it solves by value iteration.

(b)

Fig. 7. Influence diagrams for (a) a four-stage partially observable decision process with a one-stage time lag, and (b) an equivalent four-stage mixed-
observable MDP that is created when variables are eliminated in the order: D4, X4, Y4, D3, X3, Y3, etc. Generalized variable elimination solves the influence
diagram on the left by converting it to the mixed-observable MDP on the right, which it solves by value iteration.

or all of the history of the process. However, this conversion often requires human involvement and insight to reformulate
the problem appropriately. Modeling a non-Markovian decision problem as an influence diagram has the advantage that the
variable elimination algorithm itself automatically converts the problem to an equivalent MDP, as established by Theorem 8
and its corollary.

For example, consider the influence diagram shown in Fig. 6a, which is adapted from an example given by Tatman and
Shachter to make a similar point about the advantages of modeling non-Markovian decision problems as influence diagrams
in the completely observable case [4, p. 377]. The influence diagram shown in Fig. 6a represents a completely observed
decision process where the state transition probabilities depend not only on the current state and action, but also on the
previous state and action. Tatman and Shachter call it a decision process with a one-stage time lag. For this non-Markovian
problem, note that there is only one valid elimination order. The variable elimination algorithm (like Shachter and Tatman’s
node reduction algorithm) solves this problem by automatically using state augmentation to create an equivalent completely
observable MDP, where the state of the equivalent MDP at stage t is a tuple of the current state Y;, previous state Y;_1,
and previous decision D;_1. The influence diagram shown in Fig. 6b represents the equivalent completely observable MDP.
For stages 2, 3, and 4 of this new influence diagram, the state variables are labeled by a subset of state variables from the
original influence diagram shown in Fig. 6a. (Of course, when variable elimination converts the influence diagram shown
in Fig. 6a to the equivalent finite-horizon MDP shown in Fig. 6b, it also computes the transition probabilities and reward
functions of the equivalent MDP. For details, see the proof of Theorem 8 in Appendix A.2.)

Fig. 7a shows an influence diagram for a four-stage partially observable process with a one-stage time lag. It is the
same as Tatman and Shachter’s example in Fig. 6a except the state of the process is partially observed. For this problem,
the traditional variable elimination algorithm would use state augmentation to create an equivalent completely observed
MDP. But the augmented state for each stage would consist of the entire history of the process! Unlike traditional variable
elimination, generalized variable elimination can eliminate the variables of this problem in the order: D4, X4, Y4, D3, X3,
Y3, D2, X2, Y2, D1, X1, Y1. When it does so, it uses state augmentation to create an equivalent mixed-observed MDP where
the augmented state for each stage t consists of the unobserved variables, X; and X;_q, and the previous decision, D;_1.
The part of the state that corresponds to the previous decision D;_1 is observed directly, and the observed variable Y;
provides imperfect information about the state of the unobserved state variables X; and X;_1. Thus the value function for
each stage t of this mixed-observable MDP is piecewise-linear and concave, and it is represented by an indexed family of
sets of linear potentials, {Fé}desp(pt_]), where the domain of the linear potentials in each set Ffj consists of the unobserved
variables X; and X;_1. In many cases, and especially as the number of stages of the process increases, this mixed-observable
MDP can be solved more efficiently by generalized variable elimination than traditional variable elimination can solve the
equivalent completely observable MDP over the entire history of the process.

32

E.A. Hansen Artificial Intelligence 294 (2021) 103431

When the augmented state of an equivalent mixed-observable MDP contains variables from just the k most recent stages
of the process, as it does in this case (where k = 2), it is called a k-order mixed-observable MDP. The class of k-order mixed-
observable MDPs includes many problems of practical importance, including problems with delayed observations, delayed
action effects, and delayed rewards, where the delay is bounded by k. There has been considerable work on how to use state
augmentation to reformulate k-order decision processes as equivalent MDPs in the completely observable case [e.g., 45,46].
There has been some, though much less, exploration of this topic in the partially observable case [47]. Our integrated
approach to solving influence diagrams and POMDPs offers a promising direction for further exploration of how best to
represent and solve k-order partially observable decision problems.

Example: Maze navigation with one-stage time lag. As an example of how generalized variable elimination can use state
augmentation to convert an influence diagram that represents a non-Markovian problem to an equivalent mixed-observable
MDP that can be solved by value iteration, we consider a modified version of the ten-stage maze POMDP introduced in
Section 2.3.5 The modified problem differs from the original problem in just one way: if the robot bumps into a wall, it
cannot move in the next stage of the problem. With this simple change, the transition probabilities for the problem depend
not only on the current state and action. They also depend on the previous state and action, since they depend on whether
the robot bumped into a wall in the previous stage. Therefore, the problem can be represented by a ten-stage version of the
influence diagram shown in Fig. 7a, which has a one-stage time lag.

The traditional variable elimination algorithm solves this problem in the same way that it solves a POMDP. Before it
eliminates the last decision variable, it eliminates all unobserved chance variables. The effect is to convert the problem to
an equivalent completely observable MDP over the full history of the process. By contrast, generalized variable elimination
can eliminate the last decision variable before eliminating any other variables. Because the problem has a one-stage time lag,
the piecewise-linear and concave utility potential created when the last decision variable D1q is eliminated has the decision
variable Dg, and the unobserved chance variables Xg and Xjg, in its domain. Therefore, it is represented by |sp(Dg)| = 4 sets
of |sp(D10)| = 4 linear potentials, where each linear potential is a function of |sp(Xg)| - |sp(Xg)| = 23 unobserved states. If
we define the size of a potential as the number of scalars used to represent it, the size of the utility potential created when
the last decision variable is eliminated by generalized variable elimination before eliminating any other variable is 4% - 232,
By contrast, the size of the utility potential created when the last decision variable is eliminated by traditional variable
elimination, after eliminating all unobserved chance variables, is 521°, which is several orders of magnitude larger!

Of course, the maze problem with a one-stage time lag is more difficult to solve by generalized variable elimination
than the original maze problem, which is Markovian. When the original problem is solved, the utility potential created
when the last decision variable is eliminated only has size |[sp(D190)| - |sp(X10) = 4 - 23, which is much smaller than the
Isp(Dg)| - Isp(D10)]| - Isp(X9)| - sp(X10)| = (4 - 23)? size of the utility potential created when the problem with a one-stage
time lag is solved. Nevertheless, for the time-lagged problem, the optimal utility potential and policy for the last decision
variable are computed much more efficiently (and represented more compactly) by generalized variable elimination than by
traditional variable elimination.

As additional decision variables and observed chance variables are eliminated by generalized variable elimination in solv-
ing this problem, the size of the piecewise-wise linear and concave potentials may grow larger, and potentially much larger.
But note that generalized variable elimination can always reduce their size by eliminating unobserved chance variables.
Once it eliminates all remaining unobserved chance variables, it performs identically to traditional variable elimination from
that point forward.

Because generalized variable elimination can perform much better than traditional variable elimination in eliminating
the last decision variable (and possibly the last several decision and observed chance variables), and can then eliminate
the remaining variables in the same order as traditional variable elimination, it can always perform at least as well as
traditional variable elimination, and potentially better. How much better depends on both the elimination order and the
effect of pruning on the size of the piecewise-linear and concave utility potentials.

5.2.2. Subproblem independence and factored representation of value function

We next consider another form of problem structure that is leveraged by generalized variable elimination, but is not
leveraged by the traditional value iteration approach.

Consider the two influence diagrams shown in Figs. 8a and 8b. One represents a completely observable decision process
and the other a partially observable process. At first glance, the influence diagrams appear to have the same non-Markovian
structure considered in Section 5.2.1. The stage-1 nodes have outgoing arcs to both the stage-2 nodes and the stage-3
nodes, as in the case of a one-stage time lag. However, there is a key difference: there is no arc from any node in stage
2 to any node in stage 3, except for an arc from decision node D, to decision node D3, which is included only to ensure
a total ordering of decision nodes, and otherwise has no effect. In fact, the subproblem corresponding to stage 2 and the
subproblem corresponding to stage 3 are independent subproblems of the problem corresponding to stage 1.

Variable elimination can leverage subproblem independence to further simplify the dynamic programming recurrence it
solves. To help show this, we consider a slightly-modified version of the variable elimination algorithm that more closely
resembles the value iteration approach. The pseudocode for the revised algorithm is shown in Algorithm 3, with the dif-
ferences from the pseudocode of Algorithms 1 and 2 highlighted. All of the differences relate to a single modification: the
utility potential v;_1 generated in elimination step i — 1 is always included in the set of relevant utility potentials in elim-

33

E.A. Hansen Artificial Intelligence 294 (2021) 103431

/]
Dif | (Da—{~[Ds

(a)

Fig. 8. Influence diagrams for (a) a three-stage completely observable decision process with independent subproblems and (b) a three-stage partially
observable decision process with independent subproblems.

Algorithm 3: Variable elimination modified to resemble value iteration.

Input: Influence diagram with variables V=CUD
Output: Optimal strategy, A, and MEU
1 ® « {P(C|pa(C))|C € C} [/ initial set of probability potentials
2 W <« {R(pa(R)|R € R} [/ initial set of utility potentials
3 A < ¢ /] initial set of policies
4 o < 0 // initial utility potential
5 /| Each iteration of for-loop eliminates a variable
6 for i < 1to|V| do // i is index of elimination step

7 Select variable V to eliminate according to some criterion
8 || Process probability potentials
9 dy <« {¢p € ®|V edom(¢p)} || get relevant probability potentials
10 Py «— H¢e¢v ¢ || multiply probability potentials
1 if V is a chance variable then
12 | ¢i < >_y ¢v [/ eliminate V by sum-marginalization
13 else if V is a decision variable then
14 | ¢i < maxy ¢, [/ eliminate V by max-marginalization

15 @ « (®\Dy) U ({¢;} [/ update set of probability potentials
16 || Process utility potentials
17 Wy < {y € W|V edom(y)} /| get newly-relevant utility potentials

18 | v < (ZWEW I/I) 4 i1 |/ add utility potentials

19 if V is a chance variable then /| eliminate V by sum-marginalization

20 beond < v /@i || conditional probability of V

21 ‘ Vi <= Yy dcond - Yv [multiply, then sum-marginalize

22 else if V is a decision variable then/| eliminate V by max-marginalization
23 Yi < maxy Yy [/ eliminate V by max-marginalization

24 8y < argmaxy Yy [/ optimal policy for decision variable

25 A < AU{d8y} [add policy to strategy

26 W <« (W\Wy) [/ update set of utility potentials

27 end

28 return (A, Yy) /| A is optimal strategy, final utility potential is MEU

ination step i. (As a result, there is no need to add the utility potential ; created in elimination step i to the set W in
line 26.) To distinguish this algorithm from the generalized variable elimination algorithm of Algorithm 2, we call it gener-
alized value iteration. (Of course, generalized variable elimination is itself a generalization of the value iteration algorithm for
POMDPs. However, Algorithm 3 more closely adopts the traditional value iteration approach.)

In the generalized value iteration algorithm of Algorithm 3, the utility potential ; that is created in each elimination
step more clearly plays the role of the cumulative value function that is updated in each iteration of value iteration. Always
including the utility potential v;_; generated in elimination step i — 1 in the set of relevant utility potentials in step i
may lead to inefficiency in cases where the utility potential v;_q is irrelevant for elimination of the variable selected for
elimination in that step. However, processing an irrelevant utility potential together with relevant utility potentials does not
affect the correctness of the algorithm.

The generalized value iteration algorithm of Algorithm 3 is an interesting algorithm in its own right. It also has the
advantage that it is easier to implement than Algorithm 2 because it does not need to check if an observed chance variable
is d-connected to an unobserved chance variable in the domain of a piecewise-linear and concave utility potential when
the observed chance variable is eliminated. Nevertheless, the generalized variable elimination algorithm of Algorithm 2
leverages problem structure that is not considered by the value iteration approach of Algorithm 3. In particular, the variable
elimination approach leverages subproblem independence. For example, consider the steps involved in solving the influence
diagram of Fig. 8a. The last stage of the problem is solved by eliminating variables D3 and Y3, which creates the utility
potential (Y1, D1). The next variable eliminated is D,. If D, is eliminated by Algorithm 3, the resulting utility potential

34

E.A. Hansen Artificial Intelligence 294 (2021) 103431

takes the form 3(Y1, D1, Y2), which represents the cumulative utility. If D, is eliminated by Algorithm 2, however, the
resulting utility potential takes the simpler form ¥3(Y>), and the previously-generated utility potential, ¥, (Y1, D1), remains
in the set W, since it is not relevant in this elimination step. After Y, is eliminated by Algorithm 2, the set W contains two
utility potentials, one each for the second and third stages of the problem, which represent the solutions of independent
subproblems. Fig. 8b shows an influence diagram with the same structure, but with partial observability. In this case also,
generalized variable elimination can solve the two subproblems independently, while generalized value iteration cannot.
Like any value iteration algorithm, both Algorithms 2 and 3 leverage stagewise decomposition of a problem into sub-
problems. But the generalized variable elimination approach of Algorithm 2 has the advantage that it also leverages a form
of hierarchical problem decomposition by representing the cumulative value function as a set of utility potentials instead of
a single utility potential. That is, it represents the value function in factored form. By allowing independent subproblems to
be solved independently, the variable elimination approach of Algorithm 2 is potentially more efficient than Algorithm 3.

6. Discussion

The algorithm introduced in this paper generalizes both the traditional variable elimination algorithm for influence di-
agrams and the value iteration algorithm for finite-horizon POMDPs, and includes both as special cases. Interestingly, it
provides a perspective from which these two seemingly different algorithms can be viewed as the same algorithm, with
just a different elimination order.

The integration of these algorithms leads to an improved understanding of the relationship, and synergy, between influ-
ence diagrams and POMDPs. In many cases, it also allows improved scalability in solving influence diagrams, as the result
of relaxed constraints on elimination order and more effective use of dynamic programming.

6.1. Dynamic programming and influence diagrams

Our generalization of the variable elimination algorithm for influence diagrams can be helpfully viewed as an extension
of the classic work of Tatman and Shachter [4,48] on how to adapt dynamic programming techniques for Markov decision
processes in order to solve influence diagrams more efficiently.

Tatman wrote in his dissertation that the work he did under Shachter’s supervision “began with the attempt to perform
dynamic programming on a Markov decision process (MDP) in an influence diagram framework” [48, p. 26]. The original
definition of an influence diagram allowed a single reward node [1,3]. However, Tatman and Shachter noticed that when a
completely observable MDP with stage-dependent rewards is represented by an equivalent influence diagram with a single
reward node, Shachter’s node reduction algorithm [3] solves the problem much less efficiently than it is solved by the value
iteration algorithm for completely observable MDPs, which leverages an additive decomposition of the utility function into
multiple reward functions, one for each stage of the problem. This observation led Tatman and Shachter to generalize the
definition of an influence diagram to allow multiple reward nodes, which is now the standard model. They also revised
the node reduction algorithm so that it can solve influence diagrams that take this more general form. When an influence
diagram that is defined in this more general way is used to represent a finite-horizon completely observable MDP, they
showed that their revised node reduction algorithm performs the same computational steps as the value iteration algorithm
for completely observable MDPs, and is just as efficient [4].

Tatman and Shachter also considered the relationship between influence diagrams and POMDPs. But they did not see
how to integrate the belief-state dynamic programming recurrence solved by the value iteration algorithm for POMDPs
in an algorithm for solving influence diagrams. In the alternative, history-based approach to solving influence diagrams,
however, the entire history of the process is relevant for each decision variable of an influence diagram that represents a
POMDP, and the POMDP cannot be decomposed into smaller subproblems, one for each stage, in a way that allows it to
be solved more efficiently by dynamic programming. Recognizing this limitation, Tatman [48, p. 120] concluded that “it is
impractical to solve almost any reasonable POMDP with this technique,” where he used the word “technique” to refer to
the node reduction algorithm for influence diagrams. As we have seen, the traditional variable elimination algorithm for
influence diagrams is limited in the same way, as illustrated by its dismal performance in solving the simple maze POMDP
of Section 2.3.5, compared to the more efficient performance of value iteration in solving the same problem.

In this paper, we have shown how to overcome this limitation. That is, we have shown how to solve an influence
diagram for a partially observable decision problem more efficiently by solving a dynamic programming recurrence that is
defined over belief states as well as histories. Thus we have the following parallel. Tatman and Shachter generalized the
node reduction algorithm for influence diagrams so that it includes the value iteration algorithm for completely observable
MDPs as a special case. We have generalized the variable elimination algorithm for influence diagrams so that it includes
the value iteration algorithm for POMDPs as a special case. (In an earlier paper, we explored a similar generalization of the
node reduction algorithm [49].)

It is important to note that our new algorithm does not simply perform either value iteration or traditional variable
elimination. It solves problems in new ways that are not possible for either traditional algorithm. To see that, it helps to
recognize that the order in which variables are eliminated by generalized variable elimination defines the dynamic pro-
gramming recurrence that it solves. When the generalized algorithm eliminates variables in an order that is allowed by
traditional variable elimination, it solves a dynamic programing recurrence that is defined over histories only, and it solves

35

E.A. Hansen Artificial Intelligence 294 (2021) 103431

the recurrence in the same way that it is solved by the traditional variable elimination algorithm. When the generalized
algorithm eliminates variables in the order in which they are eliminated by the value iteration algorithm for POMDPs (for an
influence diagram that represents a POMDP), it solves a dynamic programming recurrence that is defined over belief states,
and it solves this recurrence in the way it is solved by the value iteration algorithm for POMDPs. However, generalized
variable elimination can also eliminate variables in an order that is not allowed by the traditional variable elimination algo-
rithm, and does not correspond to the order in which variables are eliminated by the value iteration algorithm for POMDPs.
In that case, it solves a dynamic programming recurrence that is defined over both histories and belief states. Because it can
solve dynamic programming recurrences that take this more complex form, which neither traditional algorithm can solve,
generalized variable elimination has the potential to outperform both of the two algorithms it combines.

6.2. Promising applications

We believe that generalized variable elimination is most likely to outperform both traditional variable elimination
and value iteration in solving partially observable decision processes with k-order Markovian structure, as discussed in
Section 5.2.1. This class of problems, which traditional value iteration cannot solve (without reformulation and state aug-
mentation), includes problems with delayed observations, delayed action effects, and non-Markovian rewards. Tatman and
Shachter also emphasized the potential advantage of using influence diagrams to solve k-order Markovian problems. In
their words: “dynamic programs with nonstandard problem structures can be naturally solved within the influence diagram
framework, without reformulation and state augmentation” [4, p. 366]. However, they could only show that representing a
k-order Markovian problem as an influence diagram offers a computational advantage in the completely observable case.
Our development of the generalized variable elimination algorithm shows that representing a k-order Markovian problem
as an influence diagram offers a computational advantage in the partially observable case as well. For this class of problems,
generalized variable elimination can find an optimal solution by solving a dynamic programming recurrence that is defined
over both belief states and history, where the belief state allows the length of the relevant history to be bounded by k [47].
The potential effectiveness of generalized variable elimination in solving partially observable k-order decision processes is
especially significant given that there is currently a lack of good algorithms for solving this important class of problems.

Although we believe generalized variable elimination is most likely to be useful in solving k-order Markovian partially
observable problems, the new algorithm may also help in solving other problems, including standard Markovian problems.
For example, it may allow some POMDPs to be solved more efficiently by eliminating variables in a different order than they
are eliminated by the traditional value iteration algorithm. (The work of Zhang and Zhang [50] may be interpreted in this
way.) The more fine-grained control of elimination order that is possible in the variable elimination approach may also allow
performance to be improved in solving factored POMDPs. In addition, being able to solve a dynamic programming recurrence
that is defined over both histories and belief states makes it possible for generalized variable elimination to switch, in the
course of problem solving, from solving a recurrence over belief states to solving a recurrence over histories. Solving a belief-
state dynamic programming recurrence is much easier when eliminating variables near the end of a problem, while solving
a history-based dynamic programming recurrence is easier when eliminating variables near the beginning of a problem,
where histories are short. A good elimination-ordering heuristic can take advantage of this flexibility, as discussed further
in Section 6.3.1.

Interestingly, the marginal maximum a posteriori probability (MAP) problem for Bayesian networks is closely related to
the problem of solving an influence diagram [51]. It is also equivalent to an unobservable POMDP, which is a POMDP with a
single observation that provides no information. The variable elimination algorithm for the marginal MAP problem is limited
in the same way as the traditional variable elimination algorithm for influence diagrams: it must eliminate all unobserved
variables before maximizing any controllable variables [52, pp. 554-561]. It follows that the approach developed in this
paper may be used to similarly generalize and improve the variable elimination algorithm for the marginal MAP problem.

We leave it for future work to explore these possibilities further, and to potentially identify other classes of problems
where an integrated approach to problem solving may offer an advantage.

6.3. Extensions

We conclude by discussing two important extensions of the generalized variable elimination algorithm that we also leave
for future work. The first is development of an elimination-ordering heuristic that ensures good performance. The second is
representation of a strategy as a graph. Of course, other extensions are possible.

6.3.1. Elimination-ordering heuristic

It is well-known that the performance of a variable elimination algorithm depends to a great extent on the order in
which variables are eliminated. In the variable elimination approach to solving Bayesian networks, the problem of finding
an elimination order that optimizes performance is NP-hard, and heuristics are used to quickly find good elimination orders
that are not necessarily optimal [53]. Elimination-ordering heuristics that are used in solving Bayesian networks have been
adapted for use by the traditional variable elimination algorithm for influence diagrams, with adjustment for the additional
constraints on elimination order [54]. However, these heuristics cannot be used by generalized variable elimination, in part
because the new algorithm has different constraints on elimination order, but also because the effect of elimination order
on the size of piecewise-linear and concave utility potentials is difficult to predict.

36

E.A. Hansen Artificial Intelligence 294 (2021) 103431
V

{, \\\\\ N \\,// \\// h
i # Eas , Sou
k W N SST NN
R SUEA [South] oKX A'A AvN20aY A"A -MA

; "

:'4 \ \ u. ¢‘¢ V‘v’v‘v V‘v v‘v
R

2R st | 4)“\\\ A)“\\

i 4
//\ﬁ//\ﬁ/

Sout

\\»:’ “‘
"l» ‘ \“‘ ,l/"
R H

%“‘\

Fig. 9. Optimal policy graph for the maze of Fig. 3a. For space reasons, only some of the edge labels are shown. The numbers refer to the observations
shown in the lower right. The start node represents the starting belief state, which is a uniform random probability distribution over the non-goal states.

i —Zrrdoer -3

1 2 3 4 5 6 7 8 9 10 11 12

Dynamic heuristic. Elimination-ordering heuristics for variable elimination algorithms typically try to limit the size of the
potentials that are generated, which in turn limits both the time and memory complexity of the algorithm. For ordinary po-
tentials, the size of a potential under a given elimination order is relatively easy to predict before the start of the algorithm
because it depends only on the variables in the domain of the potential. Thus elimination-ordering heuristics for traditional
variable elimination can find a good elimination order before the start of the algorithm.

For generalized variable elimination, the size of a piecewise-linear and concave utility potential depends not only on the
variables in its domain; it also depends on the number of linear potentials used to represent it. However, the uncertain effect
of pruning makes it difficult to predict the number of linear potentials in the representation of a piecewise-linear and con-
cave utility potential. Therefore, an effective elimination-ordering heuristic for generalized variable elimination likely needs
to be a dynamic heuristic that monitors the size of piecewise-linear and concave utility potentials as they are generated
during problem solving, and chooses the next variable to eliminate based on the size of the potentials created so far.

Simple heuristic. 'We sketch a simple dynamic heuristic. As discussed in Section 3.3.2, postponing the elimination of unob-
served chance variables in order to eliminate a decision or observed chance variable works best for variables near the end
of a problem, especially when the last decision variable (and its corresponding policy) would otherwise be conditioned on a
long history. This observation suggests a heuristic that delays the elimination of a given unobserved variable until either (i)
it must be eliminated because of causal precedence constraints, or (ii) it should be eliminated because it is in the domain
of a piecewise-linear and concave utility potential that has become too large. Recall that the size of a piecewise-linear and
concave utility potential can always be reduced by eliminating one or more unobserved chance variables in its domain. We
leave it for future work to develop the details of such an elimination-ordering heuristic.

6.3.2. Strategy representation
As described at the end of Section 3.4.2, generalized variable elimination can represent a strategy as a sequence of
policies, one for each decision variable D € D. Each policy is a mapping,

8p : sp(H) x bsp(U) — sp(D), (133)

where H and U denote the relevant observed and unobserved variables, respectively, for the decision D.

When the set of relevant unobserved variables, U, is not empty, a policy is not explicitly represented in this ap-
proach. Instead, it is represented implicitly by an indexed family of sets of linear potentials, {I'h}nespny, that represents
the piecewise-linear and concave utility potential that is computed when the decision variable D is eliminated. The corre-
sponding policy 8p is represented as follows,

(SD(h,b(U)):d(argmabe(u) y), (134)

veln 4

where d(y) € sp(D) denotes the action associated with generation of the linear potential y. A drawback of this approach to
policy representation is that it requires updating a belief state during strategy execution, since a decision is made based not
only on the relevant observed history, h, but on a belief, b(U), about the relevant unobserved state.

There is an alternative approach to policy representation for POMDPs that is also widely-used, but does not require
a belief state to be updated during strategy execution. In this approach, a strategy is represented explicitly by an acyclic
graph, called a policy graph [31]. For the ten-stage maze POMDP described in Section 2.3.5, Fig. 9 shows an optimal policy
graph constructed by value iteration when a strategy is represented in this way. Each node of the graph (except for the
start node) is associated with an action, and each outgoing edge corresponds to an observation. Besides allowing a strategy
to be executed without belief updates, this representation of a strategy is much more compact than the representation of a
strategy that is traditionally used for influence diagrams, and it can also be easier to interpret.

37

E.A. Hansen Artificial Intelligence 294 (2021) 103431

Representing a strategy for an influence diagram in a similar way will require a generalization of the policy graph repre-
sentation for POMDPs so that it applies to influence diagrams. For example, a strategy for an influence diagram will need to
be represented by a graph with two kinds of nodes, one for decisions and one for observations, and some additional pro-
cessing may be needed to compress the graph so that it is as compact as possible, especially for non-Markovian problems.
We leave the details of this generalization for future work. Here it is enough to point out that the possibility of represent-
ing a strategy for an influence diagram in the compact form of a graph, similar to a policy graph, is one of a number of
promising extensions of an integrated approach to problem solving.

Acknowledgements

Support for this research was provided by The National Science Foundation, in the form of Award IIS:RI #1718384. The
author is especially grateful to Jinchuan Shi, his former PhD student, for many helpful discussions and insights about how
to combine influence diagrams and POMDPs. The author is also grateful to the anonymous reviewers for several helpful
suggestions that have improved this paper.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Appendix A. Additional results related to mixed-observable MDPs

In this first appendix, we fill in some of the theoretical details left out of Section 5.1. We summarize the value iteration
algorithm for mixed-observable MDPs, and then prove Theorem 8 and Corollary 2 from Section 5.1.3.

A.1. Value iteration for mixed-observable MDPs

The value iteration algorithm for mixed-observable MDPs solves the dynamic programming recurrence of Equations (131)
and (132). It is an extension of the value iteration algorithm for POMDPs that achieves improved efficiency by leveraging
the special structure of mixed-observable problems. Since the relevant literature on this algorithm is very limited [40], we
briefly summarize the algorithm here.

Piecewise-linear and concave value function. For each stage t =1, 2,...,n of a mixed-observable MDP, the value function, V; :
sp(Ye) x bsp(X;) — N, is piecewise-linear and concave, and is represented by an indexed family of sets of linear functions,
{Fg/t}yrespm)v where

Ve(ye, br) = max E be(xe)y (xe). (A1)
Vel yés
t€sp(Xr)

This value function is partitioned into |sp(Y;)| sets of linear functions with domain X;, and it is indexed by both the state
y¢ of an observed variable Y, and a belief state b; over the possible states of an unobserved variable X;.

Incremental pruning. The incremental pruning algorithm for POMDPs, reviewed in Section 2.3.5, is modified to solve mixed-
observable MDPs, as follows.

For the last stage of the process, the value function V,, is represented by |Y;| sets of linear functions with domain Xj,
where each set l“%'” contains a linear function for each action. Let i = 1...|sp(Dy)| denote the index of both the action
d,’; € sp(Dy) and the corresponding linear function y,f € T)". The value of the linear function for a given state x, € X, is

Vrf(xn)=Rn(Yn»Xn,d:‘q)- (A.2)

Next we consider the recursive step of the algorithm. Given a stage-(t + 1) piecewise-linear and concave value function
that is represented by an indexed family of sets of linear functions over X;1, {F?’jfll }yer1esp(Yeyq)s @ Stage-t piecewise-linear
and concave value function is constructed that is represented by an indexed family of sets of linear functions over X;,
{l‘;‘"}y[esp(yr), by performing the following three steps.

First, for each quadruple of observed state y;, decision d;, subsequent observation yg(ﬂ, and subsequent observed state
Ye+1, the backprojection step generates a set of linear functions:

yt,dt,y§1,y:+1 s Yi+1
Iy =Prune ({y;li=1,...,IT71})- (A.3)
Before pruning, there is one linear function y; in l"g’t YtV for each linear function yt'_H in l"g’jj], where the value of

yti for a given state x; € X; is defined as

38

E.A. Hansen Artificial Intelligence 294 (2021) 103431

R(ye, xt, dr)

% + Z P(Xes1, Yiq 1%, Ve, dt)J/tiH(XrH, Yet1)- (A4)
Isp(YZ DI

Xt+1

Yixe, yo) =

Second, for each pair of observed state y; and decision d;, the cross sum step generates a set of linear functions,

X
ye.de _ Ve de, Yii 1 Ve
e = Prune (@wi;],yzmrt : (A.5)

where the cross-sum step should be performed incrementally, as in Equation (58).
Finally, for each observed state y;, the maximization step generates a set of linear functions, as follows:

)" = Prune (Udt Fg'“d‘> : (A6)

The resulting indexed family of sets of linear functions, {I'"}y,esp(v,), represents the piecewise-linear and concave value
function V; of Equation (A.1).

A.2. Reduction of an influence diagram to a mixed-observable MDP

To prove Theorem 8 and Corollary 2, we first prove the following lemma, which provides the foundation for both results.
To simplify the proof, the lemma considers the modified version of generalized variable elimination summarized by the
pseudocode of Algorithm 3, which more closely resembles the value iteration algorithm.

Lemma 2. Algorithm 3 reduces any influence diagram to an equivalent mixed-observable MDP that it solves by value iteration.

Proof. The proof strategy is to show that each elimination step corresponds to a stage of an equivalent mixed-observable
MDP that is solved by value iteration.

To distinguish between observed and unobserved variables in the domain of a piecewise-linear and concave potential,
we let domH () denote the set of observed variables in the domain of a potential ¥/, and we let domU () denote the set
of unobserved variables, so that dom(y) = domH (y) UdomU (/).

State. For each elimination step i of Algorithm 3, let V denote the variable selected for elimination. Once the relevant
probability and utility potentials are identified, let H; denote the set of relevant observed variables, let U; denote the set of
relevant unobserved variables, and note that V is not included in H; or U;. The state of the mixed-observable MDP at stage
i is a joint state, (h;, u;) € sp(H;, U;).

Action. If the variable V selected for elimination is a decision variable, it is the decision variable for the corresponding
stage of the mixed-observable MDP. If V is a chance variable, the decision variable for this stage of the mixed-observable
MDP has a single value, A, which means there is a single available action, and thus no choice.

State transition probabilities. If the eliminated variable V is a decision variable, then for each instantiation of the relevant
variables, Hj, U;, and V, the state transition is deterministic, with probability,

P (((hi, y)tdomH i), u}d"’"”(‘”"-”) ‘(h,-, w), v) —1, (A7)

where (h;, u;) is the state at stage i, the action at stage i is v, and the successor state at stage (i — 1) is ((h;, v)YdomAWi—1)
ufdomu(‘”"’])). Use of the projection operation ensures the successor state is in the state set of the successor stage of the
MDP.

If the eliminated variable V is an observed chance variable, the single available action A has a stochastic outcome, which
is the observation v € sp(V). For each instantiation of the relevant variables, the state transition probability is

P (s, wy oV MDY |y), 1) = deona (v, w0, (A8)
where ¢cong is defined by line 20 of Algorithm 3, so that

dcona (VIhi, ;) = ¢y (v, hy, u;) /¢ (hy, u;). (A.9)

If the eliminated variable V is an unobserved chance variable, the single available action A has a stochastic effect on the
unobserved state. For each instantiation of the relevant variables, the state transition probability is:

d Hi— -
P((hf oMAWID -y, vy domU (i ”)](hi,ui),k) = Peona(vhi, wy). (A10)

39

E.A. Hansen Artificial Intelligence 294 (2021) 103431

Observation probabilities. If the variable V selected for elimination is a decision variable, then for each instantiation of the
relevant variables, we have the observation probability

P (((hi, y)ybdomHWi-1) A) ‘ ((hi, vyldomH i) ldomy “”H)) , v) =1, (A11)
ldomU('/ff-ﬁ) the

which means that when the action v € sp(V) is followed by a transition to the state ((h;, v)+omHWVi-1) y;
observation is a pair of the observed state (h;, v)¥4°mH(¥i-1) and A, where A provides no information about the unobserved
state.

If the eliminated variable V is an observed chance variable, then for each instantiation of the relevant variables, we have
the observation probability

P (((hi, v)aomH iz, V) ‘((hi, vyldomH i)y domUti-n, k) = deona (vIhy, uy), (A12)

fdomH(w"‘l), V), ufdomu(‘//"‘l)) follows the action A, the resulting observation

v and v e sp(V), where v provides (possibly imperfect) information about the

which means that when a transition to state ((h
is a pair of observed state (h;, v)domHWi-
unobserved state u;.

If the eliminated variable V is an unobserved chance variable, then for each instantiation of the relevant variables, we
have the observation probability

p ((hiidomH('/fifl), k) ‘ (hiidUmH(wifl)’ (u;, V)idomU(wH)> , A) =1, (A13)

VdomH (% 1)
hi

which means that when a transition to state (, (u;, v)YdomUi-1)) follows the action A, the resulting observation

ldomH (1)
hi

is a pair of observed state and A, where A provides no information about the unobserved state u;.

Reward. If the variable V selected for elimination is a decision variable, the reward for this stage of the mixed-observable
MDP is

R ((hi,u), v) =y i, i, v), (A14)

where 1/;"} = Zwe\ysuch that Vedom(y) ¥+ that is, 1//"} is the sum of all newly-relevant reward potentials for this elimination
step. Note that !05 does not include ¥;_1, which represents the “next-stage value function.”

If the eliminated variable V is a chance variable, observed or unobserved, then 1//“} is defined the same way, and the
reward for this stage of the mixed-observable MDP is

R((hi,u), M) = > deona(vIhi, u) ¥ (hi, wi, v), (A15)
vesp(V)

which is the expected reward averaged over all possible outcomes.

Markov property. Since all variables in the domains of the conditional probability and reward functions are part of the
current state set, current action set, or successor state set, the mixed-observable model satisfies the Markov property, and
is an MDP.

Value iteration. Each stage of the mixed-observable MDP is solved by value iteration, as follows. If the eliminated variable
V is a decision variable, then v = maxy ¥y is the value function for this stage of the MDP, where ¢y = wVR + ¥i_1, and
8y is the policy that maximizes ;. If V is a chance variable, then v; =)", ¥v is the value function for this stage of the
MDP, and the policy is irrelevant, since there is a single available action, and thus no choice. 0O

The only difference between Algorithms 2 and 3 is that Algorithm 3 represents the cumulative value function computed
by value iteration as a single utility potential ¥;, whereas Algorithm 2 represents the same cumulative value function as a
set of utility potentials, with the advantage that only the potentials in this set that are relevant in a given elimination step
need to be updated. Therefore, the analysis of Algorithm 3 also applies to the generalized variable elimination algorithm of
Algorithm 2, and we have the following proof of Theorem 8.

Theorem 8. The generalized variable elimination algorithm reduces any influence diagram to an equivalent mixed-observable MDP
that it solves by value iteration.

40

E.A. Hansen Artificial Intelligence 294 (2021) 103431

Proof. At every step in the execution of Algorithm 2, let WR denote the subset of utility potentials in W that are part of the
original influence diagrams, and let W denote the subset of utility potentials in W generated in some previous elimination
step, where W = WR U WY, When a variable V is selected for elimination, let 1//",2 denote the sum of the relevant utility
potentials in WX and note that it is equal to the utility potential w"} computed in Algorithm 3. Note also that the quantity
Z]/,Eq,v ¥ in Algorithm 2 is equal to the utility potential v;_; in Algorithm 3. In every other respect, the two algorithms are
identical. Since they compute the same quantities, it follows from the reduction in the proof of Lemma 2 that Algorithm 2
also reduces an influence diagram to an equivalent mixed-observable MDP that it solves by value iteration. O

Finally, we prove the following special case of this result.

Corollary 2. The traditional variable elimination algorithm reduces any influence diagram to an equivalent completely observable MDP
that it solves by value iteration.

Proof. Traditional variable elimination eliminates variables in an order that ensures that all of the variables in the domain of
a utility potential that is created when a decision variable is eliminated are observable. If follows that the mixed-observable
MDP to which the traditional variable elimination algorithm reduces an influence diagram is a completely observable
MDP. O

Appendix B. Interleaving operations on piecewise-linear and concave potentials

In this appendix, we further consider the relationship between generalized variable elimination and the incremental
pruning algorithm for POMDPs, which it generalizes. In particular, we show how to improve the efficiency of generalized
variable elimination by making it even more similar to incremental pruning.

Recall that the operations on piecewise-linear and concave utility potentials defined in Section 3 are performed by
iterating over one or more sets of linear potentials. When a sequence of these operations is performed, one at a time, on
an initial piecewise-linear and concave utility potential, a sequence of intermediate piecewise-linear and concave utility
potentials is created before the final result. In this appendix, we show that it is not necessary to create these intermediate
piecewise-linear and concave utility potentials. Instead, the sequence of operations can be performed all at once inside a
single iteration over the sets of linear potentials that represent the initial piecewise-linear and concave utility potential. We
call this optimization interleaving operations on piecewise-linear and concave utility potentials.

B.1. Generalized variable elimination algorithm with interleaved operations

Algorithm 4 gives pseudocode for a version of generalized variable elimination that includes this optimization. To show
the optimization more clearly, the pseudocode includes low-level detail that is not included in the pseudocode of Algo-
rithms 2. Algorithm 4 invokes three subroutines that correspond to the tasks of eliminating an unobserved chance variable,
eliminating an observed chance variable, and eliminating a decision variable. These subroutines are named after the three
steps of the incremental pruning algorithm, which they generalize: BackProject, CrossSum, and Maximize.

To support this optimization, the pseudocode of Algorithm 4 distinguishes between the sum of relevant ordinary utility
potentials when V is eliminated, denoted vy, and the sum of relevant piecewise-linear and concave utility potentials,
denoted . The subroutines take both ¥y and ¥, as arguments so that they can interleave computation of the sum,
Yv + ¥y, with subsequent operations performed on these utility potentials.

B.2. Generalized backprojection

Algorithm 5 gives pseudocode for the Backproject subroutine, which processes utility potentials when an unobserved
chance variable C is eliminated. It generates the utility potential ¥; =Y dcond - (¥ +1¢), which requires three operations.
First, the two utility potentials, ¢y and ¥y, are added. Then their sum is multiplied by the probability potential ¢cong-
Finally, the unobserved chance variable C is eliminated from the product by sum-marginalization.

If there is no piecewise-linear and concave utility potential ¥, that is, if its domain is empty, then the three operations
can be performed on ordinary potentials in the traditional way. Otherwise, the operations on piecewise-linear and concave
potentials are interleaved. Note that in the pseudocode, domH () denotes the set of observed variables in the domain of a
potential . For each instantiation h; of H;, where H; is the set of observed variables in the domain of the new piecewise-
linear and concave utility potential v, a set of linear potentials, I'; y,;, is created that contains (before pruning) one linear
potential y’ for each linear potential y in the set T e, where Hc¢ is the set of observed variables in the domain of the

el

piecewise-linear and concave utility potential ¥ . The new linear potential is defined as
R(H;=h; R(H;=h;
v =3 (o™ (WM +y)) (B1)
c

41

E.A. Hansen

Artificial Intelligence 294 (2021) 103431

Algorithm 4: Generalized variable elimination with interleaved operations on piecewise-linear and concave (PWLC)

utility potentials.

Input: Influence diagram with variables V=CUD
Output: Optimal strategy, A, and MEU
1 ® « {P(C|pa(C))|C € C} /| set of probability potentials
2 W < {R(pa(R)|R € R} |/ set of ordinary utility potentials
3 W< [/ set of PWLC utility potentials
4 A < (|| strategy
5 for i < 1to |V| do // i is index of elimination step

6 Select variable V to eliminate according to some criterion
7 || Process probability potentials
8 Py <« {¢p € |V edom(¢h)}
9 Py l_[d?Ed’v ¢ || product of relevant probability potentials
10 if V is a chance variable then
11 ¢i < Yy ¢v /| eliminate V by sum-marginalization
12 beond < ¢v /@i || used to process utility potentials
13 else if V is a decision variable then
14 | ¢; < maxy ¢y /| eliminate V by max-marginalization

15 ® «— (P\Dy) U {¢;} [/ update set of probability potentials

16 || Process utility potentials

17 Wy <« { € ¥|V edom(y)} /| relevant ordinary utility potentials
18 U W\Wy

19 Yy <0+ Z\ue\bv ¥ [/ sum of relevant ordinary utility potentials

20 Wy « {¢ € U|(V edom(y)) or

21 ((V is an observed chance variable) and
22 (V is d-connected to an unobserved variable in dom(y)))}
23 /| relevant PWLC utility potentials

24 U« W\Uy
25 Yy <0+ ngyv ¥ [/ sum of relevant PWLC utility potentials

26 if V is an unobserved chance variable then

27 | i < BackProject (V, ¢cond, Vv, ¥y)

28 else if V is an observed chance variable then

29 | i < CrossSum (V, dcond. Yv. ¥y)

30 else if V is a decision variable then

31 (i, 8y) < Maximize (V, yv, ¥y)

32 A < AU {3y} || generalized representation of policy

33 if y; is an ordinary utility potential then W <« WU {;}
34 else U« WU {y;}

35 end

36 MEU <3, cy ¥ /| MEU is sum of final utility potentials

37 return (A, MEU)

Algorithm 5: Generalized backprojection subroutine.

1 Function BackProject(C, ¢cond, ¥ic» V)

2 |/ Efficiently compute ¥ <= "¢ cond - (W + ¥¢), where:

3 /| C is an unobserved chance variable to be eliminated

4 |l ¢cond is @ probability potential

5 /| ¥c is an ordinary utility potential

6 /| ¢ is a PWLC utility potential represented by {The tncespo)

7 /! where Hc is the set of observed variables in the domain of V¢
8 if dom(¥) = ¢ then |/ new utility potential y; is ordinary potential
9 | Wi <= Y ¢ cond - Vc | process just like traditional algorithm

10 else // new utility potential v; is PWLC

11 H; < (domH(v/c) UdomH(¥¢)) \{C}

12 Hc < domH (¥ ¢)

13 foreach h; € sp(H;) do

14 Tjn; <9 [/ initialize set of linear potentials for history h;
15 foreach y € Fc,hf"f do // for each old linear potential ...
16 Y <Y, (¢§,(n}':1i:hi) . (wg(ui:hi) + y))

17 Tin; < Tin Y{y'} /| add new linear potential to set
18 end

19 [jn; < Prune(T;y,) /| prune dominated linear potentials
20 end

21 end

22 return (;) // return new utility potential

42

E.A. Hansen Artificial Intelligence 294 (2021) 103431

Algorithm 6: Generalized cross-sum subroutine.

1 Function CrossSum(C, eond, V¢, ¥¢)
2 || Efficiently compute v <= Y- ¢eond - (¥ + ¥¢), where:
/| C is an observed chance variable to be eliminated
/I bcond is @ probability potential
|| ¢ is an ordinary utility potential
/| ¥ is a PWLC utility potential represented by {The theespHc)
/! where Hc is the set of observed variables in the domain of ¥
if dom(¥) = ¢ then |/ new utility potential v; is ordinary potential
| Wi < Y. ¢cond - ¥ | Process just like traditional algorithm
10 else // new utility potential v; is PWLC

O NV AW

1 H; < (domH (¥¢) UdomH (¥¢)) \{C}

12 Hc < domH (¥ ¢)

13 foreach h; € sp(H;) do

14 Tin, < {¢§)&'}f:“1).¢§(“f:““] // initialize linear potentials
15 foreach c € sp(C) do /| observation ¢

16 || compute cross-sum, [sym, of sets T p; and L' ny.c)Hc
17 Cxsum <9

18 foreach y €T, do

19 foreach y’ € FC'(hi“{C o do

20 | Txsum <= Txsum U {y + ¢fn(:ldx:h1) v

21 end

22 end

23 I'in; < Prune(ysum) /| eliminate dominated linear potentials
24 end

25 end

26 end

27 return (v;) // return new utility potential

All three operations are performed to create each linear potential ¥’ in I'; p,. As a result, the new piecewise-linear and
concave utility potential v; is created all at once, without creating any intermediate piecewise-linear and concave utility
potentials.

B.3. Generalized cross-sum

Algorithm 6 shows pseudocode for the CrossSum subroutine, which is invoked to process utility potentials when an
observed chance variable is eliminated. Like the BackProject subroutine, it generates the utility potential ¥; =Y ¢cona -
(¥c + V), which requires the operations of addition, multiplication, and sum-marginalization. If there is no piecewise-
linear and concave utility potential ¥, that is, if dom(y/¢) = @, these operations are performed on ordinary potentials.
Otherwise, they are performed on a piecewise-linear and concave utility potential. The CrossSum subroutine differs from
the BackProject subroutine because the sum-marginalization operation is performed differently when an observed chance
variable is eliminated from a piecewise-linear and concave utility potential than when an unobserved variable is eliminated.

In the CrossSum subroutine, the operations on piecewise-linear and concave potentials are interleaved, as follows. The
sum, ¢ + ¥, is interleaved with the cross-sum operation that eliminates C by sum marginalization, as follows,

{Vc} @ (GBCESP(C)FC,(thC,c)) s (B.2)

and the multiplication operation is interleaved with the other operations by multiplying each linear potential added to the
cross sum by the probability potential ¢.ong, as shown in line 20 of the pseudocode. For improved efficiency, dominated
potentials are pruned from each set created by the cross-sum operation.

B.4. Generalized maximization

Algorithm 7 shows pseudocode for the Maximize subroutine, which processes utility potentials when a decision variable
is eliminated. It generates the utility potential v; = maxp (¥/p 4+ ¥ p), by two operations: addition and max-marginalization.

If the domain of either ¥p or ¥ includes an unobserved chance variable, which is tested for in line 7, the utility
potential v; generated by this subroutine is piecewise-linear and concave. Otherwise, it is an ordinary utility potential and
the decision variable is eliminated in the same way as in traditional variable elimination.

If the domain of v, is empty, and v¥p has an unobserved variable in its domain, the subroutine creates a new piecewise-
linear and concave utility potential ; that is represented by an indexed family of sets of linear potentials, {I'; n; }n;espH;)
where H; is the set of relevant observed variables. For each instantiation h; of H;, the set I'; y,, contains (before pruning)
one linear potential for each action d € sp(D).

43

E.A. Hansen Artificial Intelligence 294 (2021) 103431

Algorithm 7: Generalized maximize subroutine.

1 Function Maximize(D, ¥p, ¥'p)

2 /| Efficiently compute v; < maxp(¥p + ¥ p), where:

/| D is the decision variable to be eliminated

/| ¥p is an ordinary utility potential

/| ¥p is a PWLC utility potential represented by {Thp thpespHp)»

/! where Hp is the set of observed variables in the domain of ¥ p

if (domU(¥')) =) and (domU (yp) =) then v; is ordinary potential
Yi < maxp ¥p
8p < argmaxp ¥p

10 else // new utility potential v; is PWLC

©oN U AW

1 H; < (domH (yp) UdomH (¥ 1)) \{D}

12 Hp < domH (¥ p)

13 foreach h; € sp(H;) do

14 [jp; < @ /[initialize set of linear potentials for history h;
15 if (dom(¥p) = ¢) then /| one linear potential per decision
16 foreach d € sp(D) do

17 Yy« llfg(ﬂi:hf‘D:d) /| new linear potential

18 d(y’) < d || save best decision with utility potential
19 Tin; < Tin U{y'}

20 end

21 else // union of sets

22 foreach d € sp(D) do

23 foreach y €T’ M0 g do

24 y <« x/fg(H‘:h"’D:d) + ¥ /| new linear potential
25 d(y’) < d || save best decision with linear potential
26 Tin; < Cin U{y'}

27 end

28 end

29 end

30 [jp; < Prune(T;p,)

31 end

32 8p < {T'i,n; In;esph;) [/ implicit policy representation

33 end

34 return (¥, 8p) // return new utility potential and corresponding policy

If the domain of ¥ is not empty, the subroutine interleaves the addition of ¥p and ¥, with the set union,

Udesp(p)T PRLPI by adding wg(H‘:h"D:d) to each linear potential in the set union, as shown in the pseudocode.
M

B.5. Comparison to incremental pruning

As suggested by the names of the three subroutines in the pseudocode given above, generalized variable elimination
generalizes the incremental pruning algorithm [33] so that it solves any influence diagram, and not just finite-horizon
POMDPs.

From this perspective, it is interesting to compare the steps taken by generalized variable elimination and incremental
pruning in solving the same problem. Recall the ten-stage maze POMDP described in Section 2.3.5. In Section 3.3.1, we
described how to eliminate the last decision variable before eliminating any other variables, which creates a piecewise-linear
and concave utility potential, vr1(B(X10)), represented by a set of linear potentials, I'y, with domain Xjo. In this section,
we describe how to subsequently eliminate the variables X109, Y10, and Dg, and we compare these three elimination steps
to a single iteration of the incremental pruning algorithm, which performs the corresponding three steps of backprojection,
cross-sum, and maximization.

Eliminate unobserved chance variable X19p. When Xjq is selected for elimination, there are two relevant probability poten-
tials, P(X10|Xg, Dg) and P(Y10|X10, D9). Eliminating X1¢ from their product by sum-marginalization creates the probability
potential:

¢2(Y10|Xo. Dg) = _ P(X10| X9, Do) P(Y10|X10. Dg). (B3)
X10
The following conditional probability potential is also computed for use in processing utility potentials:
P(X10lX9, D9) P(Y10|X10, D9)

¢cond(X10lX9, Dg, Y10) = . (B.4)
o ¢2(Y10|X9, Dg)

44

E.A. Hansen Artificial Intelligence 294 (2021) 103431

The only relevant utility potential is ¥ (B(X10)), which is piecewise-linear and concave. Eliminating the variable Xig
from 1 (B(X10)) by sum-marginalization creates a piecewise-linear and concave utility potential, V2 (pg,v,0) (B(X9)), repre-
sented by an indexed family of sets of linear potentials, {I"2 (g, y10)}(do, y10)esp(Ds, Y10)» Where each set is defined as

"2, (dg,y10) = Prune (yili =1,...,Ih |) , (B.5)

and each linear potential 3 € I'y (4y.y,,) is created by backprojection from a corresponding linear potential yJ € I'y, as
follows. For each state xg € sp(Xg), the value of the linear potential y; is defined as

Vadoyiy®) = > Pxiolxe,do, y10)¥{ (x10), (B.6)

x10€5p(X10)

where P(x19|x9, dg, ¥10) = ¢cond (X10|X9, dg, ¥10) is a normalized probability.

Eliminate observed chance variable Y1o. The only relevant probability potential is ¢,(Y19|Xg, Dg), and eliminating Yo from
this potential by sum-marginalization creates a vacuous probability potential. The only relevant utility potential is the
piecewise-linear and concave utility potential, ¥ (Dg, Y10, B(X9)), which is represented by the indexed family of sets of lin-
ear potentials, {I"2,(dq,y10)}(dg, y10)esp(Do,Y10)- Multiplying this piecewise-linear and concave utility potential by ¢2(Y10|X9, Dg)
creates a new piecewise-linear and concave utility potential v} (Dg, Y10, B(X9)), represented by the indexed family of sets
of linear potentials, {F’z,(dgyym)}(dg,ym)esp(pg_ym). Eliminating Y19 from 1 (Dg, Y10, B(Xg)) by sum-marginalization creates
a new piecewise-linear and concave utility potential, ¥3(Dg, B(X9)), represented by an indexed family of sets of linear
potentials, {I'3 g }dgesp(Dg), Where each set is defined as

I'3,4y = Prune ({@ywem(\’w)r/z,(dg,yw)]) . (B.7)

This step can be performed more efficiently by interleaving the operations on piecewise-linear and concave utility potentials,
which makes it unnecessary to create the intermediate piecewise-linear and concave utility potential, v, (Dg, Y10, B(Xg)).

Eliminate decision variable Dg. When Dg is selected for elimination, there is no relevant probability potential and only
one relevant utility potential: the piecewise-linear and concave utility potential 3(Dg, B(Xg)). Eliminating Dg by max-
marginalization creates the piecewise-linear and concave utility potential, ¥4(B(Xg)), represented by a single set of linear
potentials over the unobserved variable Xg, defined as

T4 = Prune (Uggesp(pg)'3,do) - (B.8)

Comparison. The steps performed by generalized variable elimination in eliminating these three variables are equivalent to
the steps performed by incremental pruning, but not identical. Equation (B.6) differs from Equation (55) in two minor ways.

First, the probability P(x19|X9,dg, ¥10) in Equation (B.6) is different from the probability P(xi0, ¥10lX9,dg) in Equa-
tion (55) for incremental pruning. However, when the observed chance variable Yqg is eliminated in the next step, the
result is multiplied by the probability P(y1g|Xg,dg), and so, since

P(x10, Y10l%9, dg) = P(x10lX9,dg, ¥10) - P(¥10lX9, do), (B.9)

the two computations are equivalent.

Second, the reward term R(x;,d;)/|sp(Y¢+1)| in Equation (55) is missing from Equation (B.6). For the maze problem,
there is no reward function associated with the decision variable Dg. But if there were, the reward would be added to the
piecewise-linear and concave utility potential 1r4(B(Xg)) when eliminating the decision variable Dg by max-marginalization,
which reflects the following alternative equations for the value functions computed by incremental pruning:

Vitb) = max (Retbe,do) + Vit b)) (B.10)
dresp(De)
V;it (bt) — Z V?’ta}’ﬂrl (bt) (B] .l)
Zt+1
VIV (be) = P(yes|be. d)Vesr (T(be, dr. Yesr)). (B.12)

Obviously, these equations are equivalent to Equations (51), (52) and (53) for incremental pruning, with the difference that
the reward is included in Equation (B.10) instead of Equation (B.12).

45

E.A. Hansen Artificial Intelligence 294 (2021) 103431

References

[1] R. Howard, J. Matheson, Influence diagrams, in: R. Howard,]. Matheson (Eds.), Readings on the Principles and Applications of Decision Analysis, vol. II,
Strategic Decisions Group, Menlo Park, CA, 1981, pp. 719-762.
[2] A. Miller, M. Merkhofer, R. Howard,]J. Matheson, T. Rice, Development of automated aids for decision analysis, Tech. Report 3309, SRI International,
Menlo Park, CA, 1976.
[3] R. Shachter, Evaluating influence diagrams, Oper. Res. 34 (6) (1986) 871-882.
[4] J. Tatman, R. Shachter, Dynamic programming and influence diagrams, IEEE Trans. Syst. Man Cybern. 20 (2) (1990) 365-379.
[5] F. Jensen, T. Nielsen, Probabilistic decision graphs for optimization under uncertainty, Ann. Oper. Res. 204 (1) (2013) 223-248.
[6] M. Gémez, Real-world applications of influence diagrams, in: J. Gimez, S. Moral, A. Salmerén (Eds.), Advances in Bayesian Networks: Studies in
Fuzziness and Soft Computing, vol. 146, Springer-Verlag, 2004, pp. 161-180.
[7] G. Monahan, A survey of partially observable Markov decision processes: theory, models, and algorithms, Manag. Sci. 28 (1982) 1-16.
[8] W. Lovejoy, A survey of algorithmic methods for partially observed Markov decision processes, Ann. Oper. Res. 28 (1991) 47-66.
[9] C. White III, A survey of solution techniques for the partially observed Markov decision process, Ann. Oper. Res. 32 (1991) 215-230.
[10] M. Spaan, Partially observable Markov decision processes, in: M. Wiering, M. van Otterlo (Eds.), Reinforcement Learning: State of the Art, Springer-
Verlag, 2012, pp. 387-414.
[11] A. Dutech, B. Scherrer, Partially observable Markov decision processes, in: Markov Decision Processes in Artificial Intelligence, John Wiley & Sons, Inc.,
2010, pp. 185-228, Ch. 7.
[12] C. Boutilier, D. Poole, Computing optimal policies for partially observable Markov decision processes using compact representations, in: Proc. of 13th
National Conf. on Artificial Intelligence, 1996, pp. 1168-1175.
[13] E. Hansen, Z. Feng, Dynamic programming for POMDPs using a factored state representation, in: Proc. of 5th International Conf. on Al Planning Systems,
2000, pp. 130-139.
[14] T. Veiga, M. Spaan, P. Lima, Point-based POMDP solving with factored value function approximation, in: Proc. of the 28th AAAI Conf. on Artificial
Intelligence, 2014, pp. 2512-2518.
[15] G. Shani, Task-based decomposition of factored POMDPs, IEEE Trans. Cybern. 44 (2) (2014) 208-216.
[16] D. Bertsekas, Dynamic Programming and Optimal Control, vol. 1, 3rd edition, Athena Scientific, Belmont, MA, 2005.
[17] E Jensen, T. Nielsen, Bayesian Networks and Decision Graphs, 2nd edition, Springer-Verlag, New York, 2007.
[18] H. Raiffa, Decision Analysis, Addison-Wesley, Reading, MA, 1968.
[19] P. Shenoy, Valuation based systems for Bayesian decision analysis, Oper. Res. 40 (1992) 463-484.
[20] R. Cowell, A. Dawid, S. Lauritzen, D. Spiegelhalter, Probabilistic Networks and Expert Systems, Springer-Verlag, New York, 1999.
[21] M. Arias, F. Diez, Cost-effectiveness analysis with influence diagrams, Methods Inf. Med. 54 (2015) 353-358.
[22] R. Cabaiias, A. Cano, M. Gémez-Olmedo, A. Madsen, Improvements to variable elimination and symbolic probabilistic inference for evaluating influence
diagrams, Int. J. Approx. Reason. 70 (2016) 13-35.
[23] M. Luque, M. Arias, E. Diez, Synthesis of strategies in influence diagrams, in: Proc. of 33rd Conf. on Uncertainty in Artificial Intelligence, 2017.
[24] R. Dechter, A new perspective on algorithms for optimizing policies under uncertainty, in: Proc. of 5th International Conf. on Artificial Intelligence
Planning Systems, 2000, pp. 72-81.
[25] F. Jensen, E. Jensen, S. Dittmer, From influence diagrams to junction trees, in: Proc. of 10th Conf. on Uncertainty in Artificial Intelligence, 1994,
pp. 367-373.
[26] S. Olmsted, On representing and solving decision problems, Ph.D. thesis, Stanford University, 1983.
[27] P. Ndilikilikesha, Potential influence diagrams, Int. J. Approx. Reason. 10 (3) (1994) 251-285.
[28] M. Luque, F. Diez, Variable elimination for influence diagrams with super-value nodes, Int. J. Approx. Reason. 51 (6) (2010) 615-631.
[29] R. Marinescu, A. Razak, N. Wilson, Multi-objective influence diagrams, in: Proc. of 28th Conf. on Uncertainty in Artificial Intelligence, 2012, pp. 574-583.
[30] R. Cabaiias, A. Antonucci, A. Cano, M. Gomez-Olmedo, Evaluating interval-valued influence diagrams, Int. J. Approx. Reason. 80 (2017) 393-411.
[31] L. Kaelbling, M. Littman, A. Cassandra, Planning and acting in partially observable stochastic domains, Artif. Intell. 101 (1998) 99-134.
[32] R. Smallwood, E. Sondik, The optimal control of partially observable Markov processes over a finite horizon, Oper. Res. 21 (1973) 1071-1088.
[33] A. Cassandra, M. Littman, N. Zhang, Incremental pruning: a simple, fast, exact method for partially observable Markov decision processes, in: Proc. of
13th Conf. on Uncertainty in Artificial Intelligence, 1997, pp. 54-61.
[34] M. Littman, The Witness Algorithm: Solving partially observable Markov decision processes, Tech. Rep. CS-94-40, Dept. of Computer Science, Brown
University, 1994.
[35] E. Walraven, M. Spaan, Accelerated vector pruning for optimal POMDP solvers, in: Proc. of 31st AAAI Conf. on Artificial Intelligence, 2017,
pp. 3672-3678.
[36] E. Hansen, T. Bowman, Improved vector pruning in exact algorithms for solving POMDPs, in: Proc. of 36th Conf. on Uncertainty in Artificial Intelligence,
vol. 124, PMLR, 2020.
[37] D. Nilsson, M. Hohle, Computing bounds on expected utilities for optimal policies based on limited information, Tech. Rep. 94, Danish Informatics
Network in the Agricultural Sciences, 2001.
[38] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1988.
[39] R.D. Shachter, Bayes-ball: the rational pastime (for determining irrelevance and requisite information in belief networks and influence diagrams), in:
Proc. of 14th Conf. in Uncertainty in Artificial Intelligence, 1998, pp. 480-487.
[40] M. Araya-Lopez, V. Thomas, O. Buffet, F. Charpillet, A closer look at MOMDPs, in: Proc. of 22nd International Conf. on Tools with Artificial Intelligence,
2010, pp. 197-204.
[41] S. Ong, S. Png, D. Hsu, W.S. Lee, Planning under uncertainty for robotic tasks with mixed observability, Int.]. Robot. Res. 29 (8) (2010) 1053-1068.
[42] C. Boutilier, R. Dearden, M. Goldszmidt, Stochastic dynamic programming with factored representations, Artif. Intell. 121 (1) (2000) 49-107.
[43] J. Hoey, R. St-Aubin, A. Hu, C. Boutilier, SPUDD: stochastic planning using decision diagrams, in: Proc. of 15th Conf. on Uncertainty in Artificial Intelli-
gence, Morgan Kaufmann Publishers, 1999, pp. 279-288.
[44] T. Degris, O. Sigaud, Factored Markov decision processes, in: O. Sigaud, O. Buffet (Eds.), Markov Decision Processes in Artificial Intelligence, John Wiley
& Sons, Inc., 2010, pp. 113-139, Ch. 4.
[45] K. Katsikopoulos, S. Engelbrecht, Markov decision processes with delays and asynchronous cost collection, IEEE Trans. Autom. Control 48 (4) (2003)
568-574.
[46] S. Thiébaux, C. Gretton,]J. Slaney, D. Price, F. Kabanza, Decision-theoretic planning with non-Markovian rewards,]. Artif. Intell. Res. 25 (2006) 17-74.
[47]]. Bander, C. White, Markov decision processes with noise-corrupted and delayed state observations, J. Oper. Res. Soc. 50 (6) (1999) 660-668.
[48] J. Tatman, Decision processes in influence diagrams: Formulation and analysis, Ph.D. thesis, Stanford University, 1986.
[49] E. Hansen,]. Shi, A. Khaled, A POMDP approach to influence diagram evaluation, in: Proc. of 25th International Joint Conf. on Artificial Intelligence,
AAAI Press, 2016, pp. 3124-3132.
[50] W. Zhang, N. Zhang, Restricted value iteration: theory and algorithms, J. Artif. Intell. Res. 23 (1) (2005) 123-165.

46

http://refhub.elsevier.com/S0004-3702(20)30180-6/bibDE629EA9937EF82F07F392DF5F992F44s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibDE629EA9937EF82F07F392DF5F992F44s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibFBD22C04A6D4135F03AD2318D7FC6720s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibFBD22C04A6D4135F03AD2318D7FC6720s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibAF21871221681AE2246FE693BFDD4095s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibB7241C6DC934A6F65E25CB2F965751C6s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib9B5ABAEA9819FFEBD7749174C011634Es1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibC936D1878FA95620B1E9FDEC6AF7F762s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibC936D1878FA95620B1E9FDEC6AF7F762s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib95D31DB49A95831B15CD258380832EDFs1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibFB5BFFAD67F949375E99EA59CFFE7774s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib664A09C96DCAF040027FBEEDE108F6F0s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib94E64489F5CE1C81535DF54931FB1555s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib94E64489F5CE1C81535DF54931FB1555s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib4EE5608AA4555D8C1A7D00F07C0F3814s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib4EE5608AA4555D8C1A7D00F07C0F3814s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibFF1D8ADA7C617FC1342F8862BA76055Bs1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibFF1D8ADA7C617FC1342F8862BA76055Bs1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib0326CE2B2F08B1C67A86F1E2B7771923s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib0326CE2B2F08B1C67A86F1E2B7771923s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibC5B2697792A2252AE28A5F8C52F7C6A9s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibC5B2697792A2252AE28A5F8C52F7C6A9s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibC5EDD90AB7AF985612D4D0DF2F750657s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib932F85BECAA0630ECE2A5A650A60AEF1s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib17FEED2587925607B413DF1A25BC9787s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibEA37AE25D081075180274A6D1DA158C9s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibEC30DC1033E45206725C51DC5E97566Fs1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib36633DD06EECF110A1BCDF6B94227B6As1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib398838FDBC1728CDB03527F82046B153s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib36BF1B95C95D6EF20C648594D1110E01s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib36BF1B95C95D6EF20C648594D1110E01s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibBD08DD4554D0DCC4A23DD786AEF45B2As1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib6BD6CEA0C6EE7D931EFD12429C8F0589s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib6BD6CEA0C6EE7D931EFD12429C8F0589s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib771AE53D9FE893BCBAC7C569BBA79A45s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib771AE53D9FE893BCBAC7C569BBA79A45s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib4A84DD4F7F421061E9DCBC5A281E8185s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib073FA896C7FAC75342D8BC22C9E6667Ds1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib80DF6D4F4D208C56BFA35AD47127685Es1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib6BD7C6083CBC7A889DEE14B8802DF556s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib2149D0AA8730A86E8831A82D99A25DBAs1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibD16E7C087F930916A80A0B5AF1CA3CDBs1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib6C687B369713128A1548A2E86DBA588Fs1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibF298E6804FED9D92C73155661F5B7BD5s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibF298E6804FED9D92C73155661F5B7BD5s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib42DC5EA51DAB26AA473FDF84388DFB69s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib42DC5EA51DAB26AA473FDF84388DFB69s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibF5416CF8C67008BE44C6807DD3239ACDs1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibF5416CF8C67008BE44C6807DD3239ACDs1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib149289D45322AE2E564B3A10180E98A2s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib149289D45322AE2E564B3A10180E98A2s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib86F2B733DE90BB6036F7F3CE4C14A0B4s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib86F2B733DE90BB6036F7F3CE4C14A0B4s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib9655433CDF545C337466015E108B79D5s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib3D13ED6C5EF70490D34734D9BA7672F1s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib3D13ED6C5EF70490D34734D9BA7672F1s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib784A859175485414985AF98D5553CD80s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib784A859175485414985AF98D5553CD80s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib921AC061EF60ED2D2D2C68900466DD13s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib148F4135794B45DCAD7152B9DC495685s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib6F351DBBFDDBEF564C699A8E718AA10Cs1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib6F351DBBFDDBEF564C699A8E718AA10Cs1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibF2AC21D2C18479DC1DBA1E68422B108Cs1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibF2AC21D2C18479DC1DBA1E68422B108Cs1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib421DFCF6344F25B186E81F875C5BD787s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib421DFCF6344F25B186E81F875C5BD787s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib6F814800B71D2CF78A6F544B34D8B25Bs1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib7AD578CA898F7957DB77B6D1F14D1AE2s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib275DDED45FB898D1C53F65E361694445s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib1E77D2D1AD6AEEF8587718C36C084DCBs1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib1E77D2D1AD6AEEF8587718C36C084DCBs1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib1D663EA74D06A83CE60B2BC7C9F3C93Es1

E.A. Hansen Artificial Intelligence 294 (2021) 103431

[51] D. Maua, Equivalences between maximum a posteriori inference in Bayesian networks and maximum expected utility computation in influence dia-
grams, Int. J. Approx. Reason. 68 (2016) 211-229.

[52] D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and Techniques, MIT Press, 2009.

[53] U. Kjeerulff, Triangulation of graphs-algorithms giving small total state space, Tech. Rep. R-90-09, Univ. of Aalborg, Dept. of Math. and Comp. Sci,
Denmark, 1990.

[54] R. Cabafias, A. Cano, M. Gémez-Olmedo, A. Madsen, Heuristics for determining the elimination ordering in the influence diagram evaluation with
binary trees, in: Proc. of the 12th Scandinavian Conf. on Artificial Intelligence, in: Frontiers in Artificial Intelligence and Applications, vol. 257, 10S
Press, 2013, pp. 65-74.

47

http://refhub.elsevier.com/S0004-3702(20)30180-6/bibF6140B23931D5276382DB99CFBEA0B69s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibF6140B23931D5276382DB99CFBEA0B69s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bib9327B9A2E43C3268E801C68B37FE6E1Bs1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibE5A9594509F0E9A349E17A5E45C0A8B8s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibE5A9594509F0E9A349E17A5E45C0A8B8s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibE216110F5A479F9D378E473D182E6829s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibE216110F5A479F9D378E473D182E6829s1
http://refhub.elsevier.com/S0004-3702(20)30180-6/bibE216110F5A479F9D378E473D182E6829s1

	An integrated approach to solving influence diagrams and finite-horizon partially observable decision processes
	1 Introduction
	2 Background
	2.1 Preliminaries
	2.1.1 Variables, probabilities, and utilities
	2.1.2 Potentials
	2.1.3 Combination operations
	Algebraic properties.

	2.1.4 Marginalization operations
	Algebraic properties.

	2.2 Influence diagram
	2.2.1 Model
	Example: Oil wildcatter.
	Single decision maker with perfect recall.
	Strategy representation and optimization.

	2.2.2 Variable elimination algorithm
	MEU equation.
	Elimination order.
	Processing probability potentials.
	Processing utility potentials.
	Solution.
	Example: Oil wildcatter.

	2.3 Finite-horizon partially observable Markov decision process
	2.3.1 Complete observability
	2.3.2 Partial observability
	2.3.3 Belief state
	2.3.4 Belief-state MDP and dynamic programming recurrence
	2.3.5 Value iteration for POMDPs
	Piecewise-linear and concave value function.
	Pruning dominated linear functions.
	Incremental pruning.
	Strategy representation.
	Example: Maze navigation.

	3 Piecewise-linear and concave potentials and associated operations
	3.1 Constraints on elimination order based on the representation of potentials
	3.2 Generalized representation of potentials
	3.2.1 Belief variables
	3.2.2 Ordinary potentials as a special case of piecewise-linear and concave potentials

	3.3 Subproblem decomposition by optimizing over belief states
	3.3.1 Initial piecewise-linear and concave utility potential
	3.3.2 Example: Maze navigation revisited

	3.4 Generalized operations on potentials
	3.4.1 Generalized combination operations: Addition and multiplication
	Example.
	Criteria for selecting combination operator.

	3.4.2 Generalized max-marginalization
	Generalized policy representation.
	Example.
	Criteria for selecting max-marginalization operator.

	3.4.3 Generalized sum-marginalization
	Elimination of an observed variable from a piecewise-linear and concave potential.
	Example.
	Elimination of an unobserved variable from a piecewise-linear and concave potential.
	Example.
	Criteria for selecting sum-marginalization operator.

	4 Generalized variable elimination
	4.1 Relaxed constraints on elimination order
	4.2 Relevant piecewise-linear and concave utility potentials
	4.3 Oil wildcatter example revisited
	4.4 Generalized influence diagram
	4.5 Correctness

	5 Generalized value iteration
	5.1 Variable elimination as generalized value iteration
	5.1.1 Mixed-observable Markov decision process
	5.1.2 Mixed-observable MDP as a POMDP
	Hybrid state and belief update.
	Dynamic programming recurrence.

	5.1.3 Reduction of an influence diagram to an equivalent mixed-observable MDP

	5.2 Variable elimination as enhanced value iteration
	5.2.1 Automatic state augmentation for non-Markovian problems
	Example: Maze navigation with one-stage time lag.

	5.2.2 Subproblem independence and factored representation of value function

	6 Discussion
	6.1 Dynamic programming and influence diagrams
	6.2 Promising applications
	6.3 Extensions
	6.3.1 Elimination-ordering heuristic
	Dynamic heuristic.
	Simple heuristic.

	6.3.2 Strategy representation

	Acknowledgements
	Declaration of competing interest
	Appendix A Additional results related to mixed-observable MDPs
	A.1 Value iteration for mixed-observable MDPs
	A.2 Reduction of an influence diagram to a mixed-observable MDP

	Appendix B Interleaving operations on piecewise-linear and concave potentials
	B.1 Generalized variable elimination algorithm with interleaved operations
	B.2 Generalized backprojection
	B.3 Generalized cross-sum
	B.4 Generalized maximization
	B.5 Comparison to incremental pruning

	References

