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Abstract

In this manuscript, we review the performance of domain decomposition methods (DDMs), implemented as a black-box
module integrated with a finite element solver, for modeling materials with complex microstructures. In particular, we study
the accuracy and computational cost associated with using the non-overlapping and overlapping Schwarz methods, together
with required adjustments for each method to avoid convergence issues. Compared to conventional applications such as
fluid—solid interaction, the DDM simulation of the mechanical behavior of materials with complex heterostructures could be
a challenging task due to high stress concentrations along subdomain edges intersecting with multiple material interfaces. For
linear elastic problems, this could lead to high local errors along sub-domain boundaries and especially at subdomain vertices,
which requires meticulous updating of boundary conditions (nodal forces and displacements) along these edges to alleviate the
error. However, for nonlinear (elastoplastic) problems, we show that such microstructural features prohibit the convergence of
the non-overlapping Schwarz method. The remedy to such convergence difficulties is to implement the overlapping Schwarz

method, with a high overlap percentage between adjacent subdomains to achieve a reasonable computational cost.

Keywords Domain decomposition method - Finite element method - Schwarz method - Microstructure - Plasticity

1 Introduction

Many engineering problems are multiscale in nature, which
often prohibits the use of a direct numerical simulation (DNS)
approach for analyzing their physical behavior. There are
numerous examples of such problems, including modeling
biomaterials (e.g., bone) [1,2] and simulating the mechanical
behavior of composite structures (e.g., carbon fiber rein-
forced polymer plates) [3]. The main challenge towards using
the finite element method (FEM) for handling such massive
DNS problems is the excessive number of degrees of freedom
(DOFs) needed to discretize the domain. At best, this leads to
an unfeasibly high computational cost that necessitates using
significant parallel computing resources to perform the simu-
lation. However, an exceedingly large number of DOFs could
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cause the ill-conditioning of the system’s stiffness matrix due
to round-off errors [4] and therefore the inability to perform
the simulation regardless of available computing resources.
Further, in highly nonlinear problems (e.g., simulating a
material failure using damage and cohesive-contact models),
even a moderately large number of degrees of freedom could
lead to convergence difficulties. This often necessitates the
use of an explicit solver rather than an implicit approach
to address these convergence issues, which would be more
computationally demanding [5,6]. For massive problems,
convergence issues would eventually resurface even with the
use of an explicit solver due to the excessively small time
increment needed at each load step.

Due to the challenges outlined above, numerical tech-
niques such as homogenization-based upscaling [3,7,8] and
multiscale methods [9,10] are often employed as an alter-
native to DNS for simulating the mechanical behavior of
structures with an underlying complex microstructure. In
homogenization-based methods, a microscopic representa-
tive volume element (RVE) of the material is analyzed to
evaluate its effective properties. This RVE could be simu-
lated subject to different boundary conditions (BCs) such as
displacement, traction, or periodic BCs. While the latter is
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shown to be one of the best choices in terms of avoiding
stress concentrations along RVE boundaries [11,12], none of
these BCs are realistic and a source of error in predicting the
domain response. Moreover, deriving a constitutive model
to simulate the material behavior at the macroscale requires
evaluating a homogenized stress-strain envelope, i.e., the
material response subject to loadings in different directions.
Besides the significant computational cost associated with
this process, the resulting macroscopic constitutive model is
often not reliable for simulating the domain response under
multi-axial loading conditions.

One of the major limitations of homogenization-based
methods is to accurately simulate the response of heteroge-
nous domains with a significant variation of microstructure
(e.g., functionally-graded materials) or defects with a much
wider scattering compared to embedded heterogeneities. One
of the challenges in such problems is that the required
RVE size could violate a key requirement of perform-
ing homogenization-based simulation, i.e., the macroscopic
stress in the RVE can no longer be assumed constant and has
significant variations within the RVE. In such cases, multiple
statistical volume elements (SVEs) corresponding to differ-
ent macroscopic points of the structure must be analyzed
and use resulting effective properties to derive parameters
of a constitutive model corresponding to that specific points.
Besides being highly computationally demanding, as shown
in [13], the selected SVE size for evaluating homogenized
properties in this upscaling approach could have a huge
impact on the macroscopic response (e.g., simulated damage
pattern). In this approach, using a large SVE overlooks the
scattering in microscopic material properties while reducing
the SVE size could lead to unrealistic stress concentrations
along their boundaries that adversely affect resulting homog-
enized properties.

Multiscale methods, which are often categorized as semi-
concurrent and concurrent methods [14—-16], can be used
as an alternative to homogenization-based techniques to
improve the accuracy. In a semi-concurrent method, dif-
ferent scales are solved separately and linked together via
a data passing mechanism up and down the scales [12].
In concurrent methods (e.g., the FE? multiscale method
[17]), different scales co-exist in an integrated model and
continuously communicate with one another during the sim-
ulation [18]. However, some of the challenges encountered
during a homogenization-based analysis still exist when in
multiscale methods, as one must simulate the mechanical
response of several SVEs at the microscale. For example,
in the FE> method, an SVE is assigned to each quadrature
point of elements discretizing the macroscopic domain and
its mechanical behavior is simulated subject to a macro-
scopic strain to evaluate homogenized stresses [19]. While
concurrent multiscale methods yield better accuracy than
homogenization-based techniques, this comes at the cost of
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a significantly higher computational cost. Reduced order-
modeling techniques, such as Transformation Field Analy-
sis [20], Nonuniform Transformation Field Analysis [21],
Proper Orthogonal Decomposition [22], and Self-consistent
Clustering Analysis [23,24] can be implemented to reduce
this computational burden. However, note that not every mas-
sive problem (e.g., a car crash test) can be simulated using
a multiscale approach, which limits the application range
of such methods. Therefore, in problems such as crash test
simulations, a combination of over-simplifying the domain
geometry and using homogenization-based methods is often
employed to enable approximating the nonlinear response of
the problem.

An alternative to either DNS or multiscale analyses, espe-
cially when the nature of the problem does not allow using
the latter, is to implement mathematical decompositions clas-
sified into three classes: operator splitting, function-space
decomposition, and domain decomposition. Compared to the
first two techniques that are widely used in parallel comput-
ing [25], the domain decomposition method (DDM) ensures
that independent computations are presented in each pro-
cessor and data is only exchanged along with subdomain
interfaces or small overlaps between subdomains [26]. The
Schwarz alternating algorithm for the discretization of partial
differential equations was the first DDM introduced in 1869.
This method has shown a robust performance for solving both
linear or nonlinear systems of equations [27] and has become
one of the main techniques of choice for high-performance
computational applications [28].

The domain partitioning (sub-structuring) feature also
makes DDMs an attractive class of numerical techniques
for parallel computing [29], which is essential for simulat-
ing complex physical phenomena [26]. These methods can
be categorized into two main groups, namely the overlap-
ping and non-overlapping DDMs. With a simple algorithmic
structure and without special interface treatment between
neighboring subdomains [29], overlapping DDMs were first
introduced in the form of mathematical models [29-31] and
gradually implemented into computational mechanics due to
their easy implementation and high accuracy [32,33]. With
the increase of computational power in the past few decades,
non-overlapping DDMs have been fully developed and inte-
grated with numerical techniques such as FEM, boundary
element method (BEM), and the finite difference method
(FDM) [32,34-36].

The finite element tearing and interconnecting (FETI)
[37] and the balancing domain decomposition (BDD) [38]
are two classes of non-overlapping DDMs introduced in the
1990s, which have successfully been applied to a variety
of problems. In the FETI algorithm, the primary field is first
approximated on non-overlapping subdomains and then con-
tinuity conditions along their interfaces are enforced using
Lagrange multipliers [39]. The BDD method adds a coarse
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problem to the Neumann-Neumann method for the iterative
solution of the FE domain [40]. More recently, several modi-
fied techniques aiming at resolving implementation issues in
FETI and BDD methods have been introduced, among which
we can mention FETI-1, FETI-DP (Dual-Primal) [41-44],
BDDC (BDD by Constraint) [45,46], and the correspond-
ing nonlinear versions [47,48]. It is worth mentioning that
the growth of parallel computing capabilities also benefits
the application of DDMs by utilizing multi-core CPU and
GPU hardware resources [25,49]. For example, a new class of
methods named non-intrusive (or non-invasive) global-local
coupling [50,51] is proposed, which shares several similari-
ties with DDMs [52].

In this work, we study the performance of overlapping
and non-overlapping Schwarz DDM for simulating the linear
elastic and elastoplastic responses of materials with com-
plex microstructures. These methods are chosen versus more
advanced DDMs such as FETI/BDD, as the goal is to estab-
lish a black-box DDM solver capable of integrating with
any commercial FE software, allowing only the use of nodal
forces and displacements along each subdomain boundaries
as input/output parameters. For the non-overlapping DDM,
the main implementation challenges are associated with
the underlying complex material microstructure, causing
sub-domain boundaries intersecting with multiple material
interfaces (e.g., embedded heterogeneities). Unlike typi-
cal non-overlapping Schwarz method applications such as
fluid—solid interaction problems that often involve only
two sub-domains, this results in high stress concentrations
along multiple sub-domain boundaries used for partition-
ing the domain, which could significantly slow down or
even prohibit convergence. We study these challenges, as
well as required considerations in the implementation of the
non-overlapping Schwarz method to ensure convergence.
However, we show that despite addressing all implemen-
tation issues, this method may still not be able to achieve
convergence for simulating the elastoplastic response of
materials with heterogenous microstructures. In such cases,
it would be necessary to implement the overlapping Schwarz
method to resolve convergence issues, although this comes at
the price of a higher computational cost. We study the impact
of the overlap percentage of subdomains on the performance
and introduce techniques to reduce the computational cost
associated with the implementation of this method.

The remainder of this manuscript is structured as fol-
lows. In Sect. 2, we briefly present the governing equations
for linear elastic and elastoplastic problems studied in this
work. The implementation issues and required consider-
ations for enhancing the performance of non-overlapping
and overlapping Schwarz methods for simulating the linear
elastic response of multi-partitioned heterogenous domains
are discussed in Sect. 3. Section 4 is dedicated to dis-
cussing implementation aspects of these DDMs for simu-

lating the elastoplastic behavior of heterogenous domains.
Three numerical examples are then presented in Sect. 5 to
further analyze the performance, as well as demonstrating
the application of overlapping and non-overlapping DDMs
for simulating massive problems with intricate microstruc-
tures. Final concluding remarks are presented in Sect. 6.

2 Problem formulation
2.1 Linear elasticity

Consider an open domain  C R? with outward unit normal
vector n on its boundary 02 = I', which is subdivided into
two distinct regions I' = I'y, U Iy corresponding to Dirichlet
and Neumann boundary conditions, respectively. The gov-
erning equations for a linear elasticity problem defined in €2
can then be expressed as: Find the displacement field u such
that

V.-oa+b=0 in Q
o=C:e in Q
e=3(Vu+vu’) in Q ¢))
u=u on Iy
o-n=t on Iy,

where b : Q@ — R? is the body force, u : 'y — R2 is the
prescribed displacement, and t : [y — R? is the traction
vector. Furthermore, C is the fourth-order elasticity tensor
relating the stress tensor o and the strain tensor & as

o = Atr(e)l + 2ue, 2)

where A and p are the Lame’s constants, I is the identity
tensor, and tr(.) is the trace operator.

In order to write the weak form of (1), we first decompose
the displacement field as u = ug +uy, where uy|r, = v and
uy = ug; Yug U... Uug,. The weak form is then expressed
as:

Finduy; € V := {ug; : @i = R?, uglr, = 0} such that

m
Z/ L(u; +ud)~(CiLTVTdS2+/ vbdQ2
i=1 Y Q
—}—/ wtdl' =0 Vv e, 3)
It
where the differential operator L is given by

d
a. 0
L=|2
[0 9y

The Galerkin approximation of uy, in (3) is evaluated by
replacing V' and W with proper finite dimensional spaces

K
% } . @
dy
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Yt ¢ Vand W' c W. In the context of the standard FEM,
V" and W are the space of Lagrangian shape functions used
for approximating the field in each element.

2.2 Elastoplastic response

In order to write the governing equations for elastoplastic
problems, we first define the deviatoric stress tensor s and
strain tensor e as [53]
1
s =0 — ztr(o)l
_ P (5)
e=¢— ztr(e)L.

For small strains in the plastic phase, the strain and stress
tensors, as well as their rates, can be written as

=&%+ &P
é=¢°+eP
o0=C,;:(e —¢P)
6 =C;: (é —ep),

™

(6)

where superscript e and p denote elastic and plastic portions,
respectively [54]. The von Mises yield criterion is used to
determine the initiation of the nonlinear plastic behavior as
[55]

f(6)=,/%szs—oY—Hp§0, @)

where oy is the uniaxial strength, H is the isotropic hardening
modulus, and p is the cumulated equivalent plastic strain. For
a given elastic modulus E and the tangent elastic modulus
E,, H can be evaluated as

H= " ®)

In order to evaluate the path-dependent stress tensor dur-
ing the FE simulation, an incremental analysis is utilized
using an iterative predictor—corrector return mapping algo-
rithm embedded in the Newton—Raphson global loop. This
return mapping algorithm finds a new stress tensor ¢, and
a plastic strain increment tensor A p based on the stress ten-
sor evaluated in the previous step o, previous plastic strain
P,,, and an increment of total deformation Ae. Defining the
elastic trial stress o; as

o, =0, +C;Ae, )

the plasticity criterion corresponding to o is evaluated based
on (7) as

fio)=0,"—0oy—Hp,, (10)
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where the equivalent stress tensor is given by

eq 3
o, = Es(a,):s(a,). (11)

Itis worth mentioning that in the Newton—Raphson solver,
the tangent operator must be consistent with the time inte-
gration algorithm to achieve quadratic convergence [54,56].
The algorithmic consistent tangent matrix is given by

1 A 612 A
Ccan = ¢ —9;&( P)ns @n, — ==L Dev
o

SorH o ;

12)

where ny is the normal vector to the final yield surface given
—1 . .

bys (0;7)" ", ®is the standard tensor product, and Dev is the

fourth-order tensor associated with the deviatoric operator

[55].

3 DDM for linear elastic problems

The following five sub-sections focus on various implemen-
tation aspects of the non-overlapping Schwarz method for
approximating the linear elastic response of heterogenous
domains. Many of these implementation issues are shared
with the overlapping Schwarz method, which are discussed
in Sect. 3.6.

3.1 Domain partitioning and meshing

To facilitate describing the non-overlapping Schwarz method
for multi-partitioned domains, the discussions presented next
focus on a test problem with linear elastic behavior, a
porous microstructure, and the boundary conditions shown
in Fig. 1a. The displacement in the y direction is constrained
along the bottom edge of this domain, while the bottom left
corner is constrained in the x direction. Also, a uniform nor-
mal traction of 7, = 1 Nm~! is applied along the top edge
of the domain. The elastic modulus and Poisson’s ratio of
the material are £ = 50 Nm~2 and v = 0.3, respectively.
As shown in Fig. 1b, the domain is subdivided into 16 non-
overlapping partitions in a 4 x 4 structured pattern. As noted
previously, this manuscript aims at the implementation of
DDMs as a black-box solver for modeling massive problems
with complex microstructures, which requires subdividing
the domain into multiple subdomains with a manageable size
for a sequential solver. Because such domains could con-
sist of thousands of embedded heterogeneities, regardless of
the partitioning pattern, it would practically be impossible to
avoid their intersections with subdomain boundaries.

Before discussing the implementation of the non-overlapping

Schwartz method for modeling heterogenous domains, we
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(a) Domain geometry and BC

(b) Domain partitioning

(¢) Conforming mesh for partition (6)

Fig.1 Test problem used for describing the algorithm and implementation issues of the non-overlapping and overlapping Schwartz methods

must describe the FE mesh generation algorithm used for
discretizing each subdomain. While in DDM the response
of each subdomain is approximated independently subject
to a set of boundary conditions (BCs) iteratively updated
during the simulation, it may not be feasible to gener-
ate the FE model for each partition independently due to
the complexity of microstructure. This is due to inevitable
intersections between subdomain boundaries and embedded
heterogeneities, which could form exceedingly sharp angles
thatresultin elements with high aspectratios. The presence of
such elements in the mesh could be detrimental to predicting
field gradients, which undermines the accuracy while updat-
ing BCs during a DDM simulation and could even prohibit
convergence.

A more common strategy is to first generate a conform-
ing mesh for the entire domain and then partition the mesh
for a DDM simulation. While this approach can easily be
employed for partitioning small domains such as the exam-
ple problem shown in Fig. 1a, a parallel meshing algorithm
is required to handle larger domains. For massive heteroge-
nous domains, generating a conforming mesh in parallel for
the entire domain could still be a computationally demanding
task that might require massive parallel computing resources.
Note that these challenges merely emerge from the complex-
ity of the material microstructure, as there is no obligation to
use meshes that conform across subdomain boundaries in the
non-overlapping Schwartz method. Instead, techniques such
as the nearest neighbor interpolation and weighted residual
methods can be employed to update BCs at non-matching
nodes [57], although minimizing the number of these nodes
facilitates the implementation and enhances the convergence
of DDM.

In this work, we implement the Conforming to Interface
Structured Adaptive Mesh Refinement (CISAMR) algorithm
introduced by Soghrati et al. [58,59] to create an FE model
for each subdomain. CISAMR is a non-iterative meshing
algorithm that transforms an initial (background) structured
grid into a conforming mesh, ensuring that resulting ele-

ment aspect ratios do not exceed three for 2D problems.
This process involves applying adaptive i-refinement, relo-
cating mesh nodes (r-adaptivity), and subdividing elements.
A unique feature of CISAMR is that only the nodes of
background elements intersecting with material interfaces or
domain boundaries are relocated during this transformation.
Therefore, as far as background grids with the same element
size are used for meshing all subdomains, only a handful of
non-matching nodes might emerge along subdomain bound-
aries due to differences in local refinement levels in these
regions. Figure 1c illustrates the conforming mesh generated
using this algorithm for subdomain () of the test problem.

A key advantage of CISAMR for meshing a multi-
partitioned domain is the ability of this method to generate a
conforming mesh for each subdomain independently, ensur-
ing no degenerate element is formed along subdomain bound-
aries, while also minimizing the number of non-matching
nodes across their interfaces. As shown in Fig. 2, this is sim-
ply achieved by using a slightly larger structured background
grid for meshing each subdomain, extended by an additional
layer of elements (coined ghost elements) in each direction.
After creating the conforming mesh for each subdomain, we
simply delete the ghost layer and any sub-elements gener-
ated within that during the CISAMR mesh transformation
process. Therefore, this ghost layer serves as a buffer zone
that avoids a sharp transition from fine to coarse elements
across partition interfaces, which minimizes the number of
non-matching nodes along with subdomain interfaces. More
importantly, when an inclusion intersects a partition inter-
faces with an acute angle, this buffer zone automatically
allows nodes to move away from the interface, which tapers
this angle and avoids the formation of elements with high
aspect ratios.

The lower inset of Fig. 1¢ shows that using CISAMR with
abackground mesh involving ghost elements allows the node
on its bottom left corner to move away from the lower edge of
® to form an element with a proper aspect ratio (< 3). This
seemingly minuscule modification of the mesh structure is
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Ghost |

layer

Fig. 2 Using a background mesh with a ghost layer of elements for
meshing partition ©

crucial to the performance of the DDM solver, as otherwise
amplified gradient recovery errors at this point (which is a site
of stress concentrations) could prohibit convergence. Also,
note that using a ghost layer of elements in the background
mesh for discretizing the adjacent subdomain (2) leads to
an identical relocation of this node, resulting in matching
nodes without any communication between these subdo-
mains. Note that non-matching nodes can still emerge across
subdomain interfaces in CISAMR meshes due to differences
in adaptive refinement levels for nearby heterogeneities. It
is worth mentioning that the idea of using ghost elements
in CISAMR was originally introduced in [60] for the par-
allel implementation of this algorithm. However, given the
fact that non-matching nodes along partition interfaces can
easily be handled in the non-overlapping Schwarz method,
here it is implemented sequentially to ensure the construction
of high-quality meshes with no degenerate element in each
subdomain.

It is worth noting that while the focus of this work is
on modeling heterogenous materials, both CISAMR and the
DDM techniques relying on this method can be applied
to problems with arbitrary domain geometries and/or with
non-rectangular subdomains [52,59]. However, additional
considerations, such as an alternative domain partitioning
approach, might be required to ensure the efficient approxi-
mation of the domain response in such cases.

3.2 Boundary conditions

After meshing each subdomain, appropriate Dirichlet and
Neumann BCs must be assigned along their edges for a non-
overlapping Schwarz simulation. As will be discussed in
detail in Sect. 3.3, the fixed-point iteration (FPI) algorithm
is employed to update subdomain BCs during the simulation
by simultaneously enforcing the continuity of displacements
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and forces along each boundary. Figure 3 shows two different
patterns for assigning BCs along edges of the 16 subdo-
mains in our example problem, which consist of either nodal
displacement or nodal force BC. However, only the pattern
shown in Fig. 3a would be a valid choice to achieve conver-
gence using the FPI solver. In this valid pattern, the domain is
partitioned using 3 horizontal and 3 vertical cuts, with iden-
tical BCs assigned along subdomain edges on the same side
of each cut. For example, in Fig. 3a, nodal force BC (Neu-
mann BC, denoted by light blue arrows) is assigned along
the top edge of D, @, @), and @ (bottom of a horizontal
cut), while displacement BC (Dirichlet BC, denoted by dark
blue wavy lines) is applied on the bottom edge of ©), ®, @,
and (® (top of this cut). A similar pattern of BCs is applied
to all other subdomain interfaces shared with adjacent sub-
domains, where the displacement BC is assigned along the
left and bottom boundaries, while nodal force BC is assigned
along the right and top boundaries. As shown in Fig. 3a, in
this pattern, all but one of the subdomains have displace-
ment BC along at least one of their edges, which provides
the essential BC needed for an FE analysis. For subdomain
(D, which is the only subdomain without essential BCs along
its shared edges with neighboring subdomains, the Dirichlet
BC assigned along the bottom edge provides this condition
in this example. However, if that was not the case, one must
account for zero energy modes after performing the FE sim-
ulation and before updating BCs in the FPI algorithm.

In the second pattern shown in Fig. 3b, force and displace-
ment BCs are alternating at the corner of each subdomain,
which results in assigning displacement (essential) BC along
at least one edge of each subdomain. Although this pattern
ensures all subdomains have sufficient essential BC for FE
analysis, it is an inappropriate pattern for a DDM simulation
due to the inability to update BCs at partition corners during
the FPI process. For example, all subdomains have displace-
ment BC at the corner point shared between (D, @, &), and
®, meaning the initial BC assigned to this point cannot be
updated using the Dirichlet-to-Neumann approach described
in Sect. 3.3, which prohibits the DDM convergence.

3.3 Iterative FPI solver

In order to perform a DDM simulation, we must first initialize
BCs along with subdomain edges. The most straightforward
approach is to initially assign zero displacements/forces to all
subdomain boundary nodes, although a better initialization
scheme will be introduced in Sect. 3.4. For the test problem
shown in Fig. la, the sequential non-overlapping Schwarz
simulation begins with approximating the field in subdomain
(D subject to BCs shown in Fig. 3a, followed by using the FPI
algorithm (described in the following paragraphs) to update
BCs along adjacent subdomain edges, i.e., the left edge of @
and the bottom edge of ). We then proceed to subdomain
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o0
(a) Appropriate partitioning

!
A
B

L

oo
(b) Inappropriate partitioning

Fig. 3 Two different patterns for assigning BCs along subdomain edges in the non-overlapping Schwarz method, where wavy lines and arrows

indicate nodal displacement and nodal force BCs, respectively

Partition @) Nodal displacements/forces Adjacent partitions
/]\ Nodal forces/displacements \L
No
Finish Yes Check Convergence

Fig. 4 FPI algorithm for updating nodal displacement and force BCs
in a multi-partitioned domain

@ and implement the same approach to update its adjacent
subdomain BCs, which includes the right edge of (D). This
process is recursively continued until all subdomains are vis-
ited and their neighboring subdomains BCs are updated (end
of the first iteration). The iterations are then continued by
restarting the process from subdomain (I) until the continu-
ity of forces and displacements are satisfied along with all
subdomain interfaces within a given tolerance. Convergence
criteria at iteration n + 1 are given by

Eg— ||un+1__“n|| < tolg,
it "“f"f | (13)
Ep = L T ol ol
[1£ 1]

where u,, and f,, are vectors of displacement and force BCs at
all nodes along subdomain edges, while toli and tolg are tol-
erance values. The flowchart presented in Fig. 4 summarizes
the algorithm discussed above.

Updating BCs using the FPI algorithm is a rather straight-
forward process, although special considerations are required
for nodes at subdomain corners to ensure the DDM con-
vergence. To facilitate the discussion, consider the interface
between subdomains (D and ) in Fig. 3a. The nodal dis-
placements u,” recovered along the right edge of (D) from
the FE approximation of the field in this subdomain is used

to update the displacement BC, ﬁgrl, along the left edge of
@ as
a2, =ad. (14)

After approximating the field in 8) using this updated dis-
placement BC, the nodal forces £, along the right edge of
(D are updated using an under-relaxation approach as

(0, = - ptd - pr2, (15)

where f,gD is the nodal force vector before the update, f,@ is
the nodal force vector recovered along the left edge of @),
and B8 < 1 is the relaxation factor. Note that 8 determines
what portion of f,~ is used for updating nodal forces along
the adjacent subdomain edge, which must be smaller than
1 to achieve convergence. In Sect. 3.5, we review some of
the acceleration techniques used in DDM and examine their
applicability for modeling heterogenous domains.

While FP1is a straightforward approach for enforcing con-
tinuity conditions along subdomain edges, there are a number
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Fig. 5 Different case scenarios for updating nodal forces BCs (blue) along shared edges/corners of neighboring subdomain using nodal forces
recovered from neighboring subdomain edges/corners (purple), where displacement BCs are applied. (Color figure online)

of important implementation aspects that are crucial to the
convergence of this method for modeling multi-partitioned
domains. Note that, unlike standard FEM, the inability to
correctly update BCs even at a single node in this approach
could prohibit convergence of the non-overlapping Schwarz
method. In other words, the error does not remain local and
pollutes the entire solution through FPI iterations. As shown
in Fig. 5 and described in detail next, there are four different
case scenarios that must be taken into account while updating
nodal forces in a multi-partitioned domain that is discretized
using the CISAMR algorithm. During the following discus-
sion, the reader can also refer to Fig. 6, which shows nodal
force values corresponding to each case in the test problem
after the DDM approximation of its linear elastic response.
e Case I: The most common case scenario is updating the
nodal force at a matching node on the interface (but not at a
corner) shared between two adjacent subdomains. For exam-
ple, consider the node highlighted at the interface between
@ and (@ in Fig. 5a, at which the continuity of nodal forces
requires

O+ @ (16)

Using (15), the nodal force BC along the right edge of @ in
the FPI process is updated as

O =a-pr®-pr8. (17)

where f ,@ is the nodal force recovered at the left edge of @
that has a displacement BC.

e Case II: Updating the force BC at the corner node of a
subdomain (cf. Fig. 5a) requires simultaneously taking into
account the contribution from all three neighboring subdo-
mains. Based on the proposed pattern of assigning BCs along
subdomain edges in Fig. 3a, only one of the four subdomains
sharing each corner node has force BC along both its edges
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Fig.6 Nodal force values at the nodes corresponding tor cases I-1V in
Fig. 5 after the convergence of the non-overlapping Schwarz method

connected to this node, while the other three partitions have
atleast one edge with Dirichlet BC. For Case Il in Fig. 5a, the
top right corner node of (7) has nodal force BC, while ®), @,
and @ have displacement BC. Therefore, the displacement
recovered at this node from (7) directly updates the displace-
ment BC at corner nodes of the other three subdomains. To
update the force BC at the top right corner of (7), we must
simultaneously use nodal forces recovered at corner nodes
of ®, @, and ([, as the continuity condition at this node is
given by

@, 70,0, (18)
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Considering the relaxation effect, the nodal force BC at the
corner node of (7) can then be updated as

@+ 2+ a9

@ =a-prd
The inevitable presence of corner nodes in multi-partitioned
domains could slow down the convergence of the non-
overlapping Schwarz method. This is due to the accumulation
of error from multiple subdomains at such nodes while
updating nodal force BCs. In some cases, resolving the con-
vergence issue might necessitate using an exceedingly small
B (e.g., B = 0.05), which could significantly increase the
number of iterations and the overall computational cost. In
extreme cases and especially in nonlinear problems, this
could even prohibit convergence causing the fluctuation of
error at corner nodes as the number of iterations increases.
A similar issue is observed in other DDM techniques such
as FETI, where special treatment of corner nodes (e.g., in
FETI-DP) can significantly improve convergence. However,
note that this manuscript aims to establish a black-box DDM
framework that only utilizes nodal forces/displacements out-
putted by a commercial FE software, which does not allow
access to the stiffness matrix of each subdomain to utilize
more sophisticated techniques such as FETI-DP. Also, note
that using an N x 1 pattern for partitioning the domain to
eliminate corner nodes would only be effective for a small
number of subdomains. Our numerical studies show that for a
large number of subdomains (N > 10), the high aspect ratio
of subdomains and the corresponding errors associated with
updating BCs at a large number of nodes along their inter-
faces in this pattern lead to severe convergence difficulties
for the non-overlapping Schwarz method.
e Case III: This case scenario corresponds to corner nodes of
two neighboring subdomains located on a domain boundar g
with Neumann (traction) BC, as shown in Fig. 5b. Here, f
and f ¢ are external nodal forces at partition corners eval-
uated based on the traction t applied along the upper edge
of @ and (3. During the FPI solution, we must update f~,
i.e., the nodal force on the top right corner of @@ based on
the force recovered from the top left corner of @3. Satisfying
the equilibrium condition at this node requires taking into
account the presence of j_”c and fc , which can be written
as
@+ =52 478 20)
The updated nodal force BC at the top right corner of @ in
the FPI solver can then be evaluated as

@ =a-pr@-psP-52-70. e

Note that effects of j_”é® and }? have already been incor-
porated in evaluating the internal nodal force at this node

while approximating the FE response of each subdomain
independently. However, it is essential to consider the sum
of these external forces while updating the nodal force at the
corner node located on this Neumann boundary, as internal
forces f (@ and f 9 are not equal at this point. This statement
is verified in Fig. 6 (Case III), which shows values of nodal
forces after the convergence of DDM simulation.

e Case IV: As shown in Fig. 5c, the ghost elements used
in the background mesh of CISAMR for creating the con-
forming mesh for each subdomain could lead to the presence
of non-matching nodes along subdomain interfaces. Com-
monly used techniques in DDM simulations for the inter-
polation/projection of BCs between non-matching nodes
include the nearest neighbor interpolation, interpolation by
splines, and the Gauss interpolation technique [57]. How-
ever, when CISAMR meshes are generated using background
meshes with the same element size for each subdomain, non-
matching nodes rarely emerge along partition interfaces and
if so they are always located between two matching nodes.
For example, see the middle node on the bottom edge of )
(to be referred to as M©) in Fig. 5¢, which does not match
any node on the top edge of @. The equilibrium of forces
within the box shown in this figure requires that
R+ @+ 1P+ @+ 5P =0 22)
Assume M@ has distances a and b from the matching nodes
on its left and right on the bottom edge of (6, i.e., nodes L®
and R©®, respectively. Based on the equation above, nodal
forces at L® and R@ (left and right nodes on the top edge
of () are updated using the FPI algorithm as

O =a-pr@-p(r0+ 1Y),

Lyt —

(23)

o = 0= B (1 + a5 I%)
After approximating the field in (2), the updated displacement
BC at M© is given by

® bug2> —i—aul{@

= 24
M a+b @4

The BCs applied along subdomain edges in Fig. 5S¢ could
be reverse, meaning the displacement BC is assigned along
the top edge of @ and the force BC is applied along the
bottom edge of (6. In this case, one must update nodal forces
at L©, M©, and R® based on the forces recovered at L®
and R@. Note that the recovered force at L@ corresponds
to the effect of a (hypothetical) traction vector integrated
along the length ar, to its left and and the length a + b to
its right. Node L©®, at which we aim to update the force
BC, also has the distance ap, from the node to its left. Given
the continuity of tractions across the subdomains interface,
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L® must receive the same portion of nodal force as L®
from the traction applied to its right. However, node MO s
at distance a from L@, which is shorter than the distance
a + b between L® and RO. Thus, node L® must receive
ﬁ times less force compared to L® from the traction on its
right. Assuming a constant change of nodal forces between
these two nodes (realistic assumption for a fine mesh), the
relationship between nodal forces at L® and L® can then
be written as

@ __ apta @ (25)

L = a+a+b/ L *

Accordingly, the nodal forces at L® and R® following a
similar reasoning are updated as

1O, =a-pr® - praze 2,
® ® brtb @ (26)
fRn+1 = _'B)fRn _ﬂhR'}T‘a'f‘ben ’

where by is the distance between R and the node to its ri ght
(cf. Fig. 5c¢).

Based on portions of nodal forces at L@ and RO received
by nodes L® and RO, the equilibrium of forces given in (22)
can be used to evaluate the updated nodal force at M® a5

©) D
f=0=PIS —ﬁ(afi—m + %) @

However, using (27) to update the nodal force at M® without
paying attention to the requirement to satisfy the continuity
of displacements across the interface between L® and R®
leads to a high error in this region and prohibits the FPI con-
vergence. Because M® acts as a hanging node for the upper
edge of (&), instead of applying a nodal force BC evaluated
using (27), one must assign the following displacement BC
at this node

® buE@ —l—aul@

= = 28
Uy atb (28)

It must be noted that mishandling a single hanging node
in an FE approximation of the linear elastic response of a
domain could only lead to local error in the vicinity of that
node. However, the error associated with inaccurate updating
of BC ata single hanging node on the subdomain edges could
pollute the entire solution in a DDM simulation and even pro-
hibit convergence. It is also worth mentioning that expand-
ing (23)—(27) to cases with multiple non-matching nodes
between L® and R is rather straightforward, although
detecting/handling such cases could considerably increase
the implementation complexity. It is also worth mention-
ing while meshing each subdomain independently using
CISAMR, the presence of non-matching nodes can easily
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be avoided by applying a constant level of refinement along
all subdomain edges similar to that applied along embedded
heterogeneities.

3.4 Initialization of boundary conditions

As noted in Sect. 3.3, using the FPI algorithm to enforce
continuity conditions along subdomain interfaces requires
assigning initial force/displacement values to all boundary
nodes to begin this iterative process. As noted previously,
the most straightforward choice is to initialize nodal BCs as
zero. For the test problem shown in Fig. 3a, this initialization
approach leads to a zero field in subdomains (D—@ in the
first iteration. Therefore, they do not contribute to updating
BCs along shared edges with their neighboring subdomains
at this iteration and a non-zero field is only approximated in
subdomains @3—(@9 due to the traction BC applied along the
top edge of the domain. However, even the resulting fields
in these 4 subdomains are far from the exact solution due to
unrealistic zero displacement BC or traction free BC applied
along their other edges. Note that even after updating nodal
force BCs along top edges of (9)—(@ based on the (inaccurate)
fields approximated in @@—@9, the fields approximated in the
lower 8 subdomains still remains zero in the second iteration.
In fact, the lowest 4 partitions only realize a small percentage
of the traction BC applied on the top edge of the domain (due
to the relaxation factor B used in the FPI algorithm) after
4 iterations. Figure 7a better shows the huge discrepancy
between the initial and final fields that significantly increases
the number of FPI iterations needed to achieve convergences.

To enhance the convergence of DDM for modeling multi-
partitioned heterogenous domains, subdomain BCs can be
initialized based on the FE approximation of the field using a
coarse mesh with effective material properties. The effective
elastic modulus, E.f, for the porous domain of the test prob-
lem can be evaluated using the Mori-Tanaka homogenization
approach as [61]

1-V,
E, (29)
1+,

Eeff =

where V;, = 7.06% is the volume fraction of pores. A coarse
mesh (e.g., 10 x 10) can then be used to approximate the
field in the homogenized domain. To initialize BCs of each
subdomain for the DDM simulation, we first interpolate the
nodal values for all nodes of each mesh from the initial field
approximated using this coarse mesh. The resulting values on
subdomain edges with displacement BC are then employed
to initialize the BC along these edges. On edges with force
BC, instead of initializing the nodal forces from the coarse
mesh results, we directly evaluate nodal force values using
the high-fidelity (fine) mesh created for that subdomain. In
this approach, nodal values mapped from the coarse mesh
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(a) No initialization

Fig. 7 Deformed shape of the test problems domain obtained from a
DNS simulation versus a the undeformed domain corresponding to ini-
tializing subdomain BCs to zero; b deformed shape predicted using
a coarse FE mesh with uniform effective properties; and ¢ deformed

at nodes of elements adjacent to subdomain boundaries are
used to recover the stress tensor in these elements. Using a
nodal averaging scheme, these stresses are then employed
to initialize nodal force BCs along these edges. Figure 7b
compares the initial field approximated using this approach
and the exact solution for the test problem, indicating a much
better starting point for the FPI solver compared to using zero
BCs to initialize the solution.

The accuracy of the initial field (and corresponding BCs)
approximated on the coarse mesh can further be improved by
calculating the effective property assigned to each element
of this mesh separately. This will results in a pixelated mesh,
that is particularly suited for modeling materials with a non-
uniform spatial distribution of embedded heterogeneities.
Figure 8 illustrates the variation of E¢g in a 36 x 36 pixe-
lated mesh generated using this approach for approximating
the initial field for the test problem. A comparison between
resulting initial and exact fields is depicted in Fig. 7c, which
shows a small improvement compared to the case of using
effective properties for the entire domain to approximate the
initial field.

It is worth mentioning that due to difficulties associated
with implementing the Mori-Tanaka approach for multi-
material composites, we use the rule of mixtures to evaluate
the effective properties needed for initializing BCs. For a
bi-material composite, the effective elastic modulus can be
evaluated as

Eer=V'El + (1 - VHE!, (30)

A O O O O O 0 O 0 O O OO0
(b) Homogenized

(¢) 36 x 36 pixelated

shape using a 36 x 36 pixelated mesh with effective properties calcu-
lated separately for each element. Deformed shapes are warped by a
factor of 600

Fig.8 36x36 pixelated mesh with varying homogenized elastic moduli
in each element for the initialization of the DDM simulation

where E! and E'/ are the elastic moduli of each phase, while
V! and V! are their volume fractions. Note that volume
fractions of the composite constituents can easily be calcu-
lated using the high-fidelity meshes generated for the DDM
simulation as

T Al
C Al 4+ zAll

! 31

where AI.I and Al are areas of conforming elements dis-
cretizing phase I and II, respectively.
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3.5 Acceleration techniques and parallelization

In order to accelerate the convergence of the non-overla-
pping Schwarz method, we studied a number of acceleration
techniques to reduce the number of iterations compared to
the FPI algorithm with a constant 8. One of the well-known
acceleration techniques is the Aitken’s dynamic relaxation
approach [62], where B is dynamically updated at each iter-
ation as

f,;l—,l & —f.-1)
(fn - fn—l)—r (fn - fn—l) ,

Bn+1 = Bn (32)

with T denoting the transpose operator. In an FPI approx-
imation with two subdomains (e.g., fluid—solid interaction
problems), the Aitken’s method can significantly enhance the
convergence without imposing a notable computational over-
head. However, as expected, our numerical studies showed
that this acceleration technique fails to converge for mod-
eling heterogenous domains partitioned into more than two
subdomains.

The inability of the Aitken’s method to achieve con-
vergence for multi-partitioned domains is attributed to the
inter-coupling between BCs of all subdomains, as this
method only uses the force BC from the last iterations of
two neighboring subdomains for evaluating 8. For exam-
ple, updating nodal forces on the right edge of (D using the
Aitken’s method relies on nodal forces recovered along the
left edge of @ (cf. Fig. 3a). However, BCs on other edges
of @ are also simultaneously updated due to interaction
with the other two neighboring subdomains, i.e., @ and ©.
This inter-coupling of BCs between subdomains makes it
impossible to update BCs along each edge only based on the
field approximated in one of its neighboring subdomains, as
the resulting approximate field has already been affected by
updated BCs along other edges of that subdomain. This inter-
coupling effect could be better by studying how force BCs
are updated at subdomain corners using (19), where nodal
forces recovered from three neighboring subdomains con-
tribute to updating the nodal force BC of one subdomain. It
is noteworthy that even a strip partitioning pattern does not
lead to the convergence of the Aitken’s method when more
than three subdomains are involved.

Besides the Aitken’s method, we studied the feasibility
of using other acceleration techniques such as the vec-
tor extrapolation and quasi Newton schemes. Unlike the
Aitken’s method that only uses the results of the last iter-
ation for approximating 8, vector extrapolation methods try
to find an approximate solution based on a converging vector
series [63]. Several techniques can be employed to mini-
mize the residuals of nodal forces or displacements, such as
reduced rank extrapolation (RRE) [64] and minimal poly-
nomial extrapolation (MPE) [65,66]. We tested both these
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techniques for the test problem, which led to an enhanced
convergence when up to four subdomains were involved.
However, regardless of the partitioning pattern, the approxi-
mate field for the test problem blows up after a few iterations
when five or more subdomains are involved.

We also studied the feasibility of using the quasi-Newton
method to accelerate the DDM simulation for multi-partition
domains, which have proven to be robust and efficient
for solving coupled fluid—solid interaction problems [67].
The interface quasi-Newton (IQN) solver was implemented,
where an inverse Jacobian is extracted from force residuals
and minimized using either the IQN least squares (IQNLS)
or the IQN multiple vector Jacobian (IQNMVJ). The IQNLS
algorithm is a matrix-free approach that yields an approxima-
tion of the inverse Jacobian of residuals, while the IQNMV]
algorithm stores the Jacobian matrix and implicitly estimates
the inverse Jacobian using information from previous itera-
tions [68]. Although both IQNLS and IQNMV1J have proven
to significantly accelerate the DDM simulation for various
coupled problems [69-71], as well as parallel implementa-
tion [72,73], our numerical results showed these methods
fail to converge for multi-partitioned heterogenous domains.
When only two partitions were used, [QN methods yielded a
relatively similar convergence rate as the Aitken’s and vec-
tor extrapolation methods. However, neither the IQNLS nor
the IQNMVIJ was capable of achieving convergence when
more than four subdomains were used in the non-overlapping
Schwarz method.

It is worth noting that techniques such as the Lagrange
multipliers used in FETT or coarse problem for pre-conditioner
in BDD can be regarded as acceleration methods that can
successfully handle multi-partition domains. However, these
methods are not considered in the current manuscript, as the
goal is to establish a black-box DDM solver that only uses
displacements and/or nodal forces along subdomain bound-
aries as input/output parameters.

3.6 Overlapping Schwarz method

In Sect. 5, we show that the non-overlapping Schwarz method
could face severe convergence difficulties for modeling het-
erogenous domains with an elastoplastic material behavior.
The overlapping Schwarz method can resolve this challenge
and achieve convergence regardless of the complexity of the
material microstructure. Figure 9 illustrates partitioning the
test problem domain into 9 overlapping subdomains for such
simulation. Note that in the overlapping Schwarz method, the
percentage of overlap between adjacent subdomains is one
of the key modeling parameters, with a higher percentage
accelerating the convergence but simultaneously increasing
the cost associated with the FE approximation of the field in
each subdomain [74]. In Sect. 5.1.1, we study the impact of
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Fig.9 Test problem domain subdivided into 9 overlapping subdomains,
highlighting different portions of subdomain ) edges based on how
Dirichlet BCs are updated during an overlapping Schwarz simulation

this tradeoff on the overall computational cost for approxi-
mating the linear elastic response of the test problem.

In the overlapping Schwarz method, Dirichlet BCs are
assigned along each subdomain edge and are iteratively
updated based on the field approximated in their adjacent
overlapping subdomains. Given that no nodal force recov-
ery/updating is required in this approach, the implementation
is more straightforward than the non-overlapping Schwarz
method and intersections between subdomain edges and
embedded heterogeneities no longer affect the performance.
To describe the process of updating Dirichlet BCs in the
overlapping Schwarz method, consider different partitions
of subdomain @) edges highlighted in Fig. 9. The Dirichlet
BC in each segment is evaluated as the average of the FE
approximation of the displacement in that location in adja-
cent overlapping subdomains, which can be written as

ﬁ}j‘;@ =05 (ﬁ,@ Lt a? BL), ﬁff? —a?| |
& _ s (82| +a] ).

‘E_Ef@ —05 (ﬁ,@ . a® RB) : ﬁ,‘}f? —a®| |
19 _ o5 (a?] +a?] ) -
at® _ o (a? LA TL), a'© — 48| |
_351@ =05 (ﬁ". TR + ﬁ’@ TR) ’

a8 ® =05(ﬁ,§D LB+ﬁ,S@ LB), i@ _ 59|
_ﬂ?) =03 (ﬁ'@ LT + ﬁ'@ LT) ’

Other implementation aspects of the overlapping Schwarz
method for modeling heterogenous domains are similar to

those discussed previously for its non-overlapping counter-
part. Using a structured pattern for partitioning the domain
(cf. Fig. 9), the CISAMR algorithm is implemented to mesh
each subdomain independently. Note that ghost elements are
still employed in the background mesh to avoid the formation
of high aspect ratio elements along subdomain edges during
the meshing process. Also, Dirichlet BCs along subdomain
edges are initiated based on an initial field approximated on
a coarse pixelated mesh with effective properties for each
element, as described in Sect. 3.4.

4 DDM for elastoplastic problems

Using either the overlapping or non-overlapping Schwarz
method for simulating the nonlinear mechanical behavior of
heterogenous domains requires addressing a number of addi-
tional implementation issues. As an example of nonlinear
problems, in this work we focus on modeling the elastoplastic
response of heterogenous materials, although the discussion
provided next is general and can be used for simulating other
nonlinear phenomena. Note that one of the main advantages
of using DDM instead of DNS, even when the problem size
might allow the latter, is enabling the use of an implicit solver
for simulating the FE response of smaller subdomains. More
than often, this is not the case for massive nonlinear FE prob-
lems, where the implicit solver may fail to converge and one
must implement an explicit time integration scheme, result-
ing in a higher computational cost and in some cases a lower
accuracy.

To begin an elastoplastic DDM simulation, we first break
down the applied load into Njg,q steps (a similar approach
can be used for displacement-controlled problems). Njpq and
the load increment can be selected adaptively based on the
number of Newton—Raphson (NR) iterations needed for con-
vergence at each step. Note that, at load step n, approximating
the nonlinear response of each subdomain requires multiple
load increments by the NR solver during the DDM simula-
tion. In the following discussion, it is important to distinguish
between the load increments and iterations needed for the
DDM convergence for the entire domain and those of the
nonlinear solver for each subdomain. To avoid confusion,
we refer to the latter as local load step or iteration, while the
term global will be used to refer to load steps and iterations
for the DDM solver.

At the first global load step, the simulation is initialized
similarly to a linear elastic problem, i.e., a pixelated mesh
with homogenized elastic properties is employed to approxi-
mate the field uilnit in the entire domain. Nodal displacement
BCs, ﬁilni‘, are then initialized using this field along subdo-
main interfaces with Dirichlet BC. In the non-overlapping
Schwarz method, we also map uilnit to the FE mesh gener-
ated for each subdomain to evaluate nodal forces f {“it along
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edges with force BC as
"= — f o (u")dr. (34)
It

After the initialization of BCs, the iterative DDM sim-
ulation begins by using the Newton—Raphson solver to
approximate the field in each subdomain, followed by updat-
ing force/displacement BCs along subdomain interfaces until
continuity conditions are satisfied. Note that different num-
bers of local (Newton—Raphson) iterations might be required
in each subdomain to approximate the field in each global
(DDM) iteration.

Assume that the DDM simulation has reached the global
load step n, where the displacement field and nodal force
increments are given by Au, and Af,, respectively. To
approximate Au,, 41, we estimate the field in each subdomain
for global load step n 4 1 to re-initialize nodal displace-
ment increments at this step. Similar to the first load step,
this initialization has a crucial impact on the number of
global iterations (computational cost), where inappropriate
initialization of BCs could even prohibit convergence. The
most straightforward approach is to use the last converged
displacement increment, Au,, to re-initialize the field (and
subsequently nodal BCs) as

Aty 1]

A"t = Ag, ——22
|At, |l

n+l = (35)
where At, is the global load increment at load step 7. The
nodal forces f,i,‘fl corresponding to this initial displacement
is calculated similarly to that of the first load step given in
(34).

The initialization scheme above yields a reasonable esti-
mate for u;“j:l and f,il‘]irtl, which can significantly reduce the
number of global iterations compared to the case of zero BC
initialization. However, we can further improve the initial-
ization of nodal BCs by considering their rate of change due
to nonlinear deformations. Note that initializing ug’fl using
(35) relies on the assumption of linear deformation between
global load steps n and n + 1, which overlooks the nonlinear
response of the material. Therefore, a better estimate for the
initialization of u}{i‘l along edges with displacement BC can
be written as

. _ - A7 O
AR =V, Al | + = | At 12 (36)
At,
where
Aa, — Aa,
§, = oon — 2t (37)
Allty |

Note that the second term in (36) is the rate of change of
displacement increment in previous load steps that takes into
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account nonlinear deformations. Therefore, nodes experienc-
ing alarger rate of deformation due to plasticity are initialized
with a larger displacement increment in global load step
n+ 1. Also, instead of initializing Af;‘i‘l as the external force
evaluated based on Auf{i‘l, we can use a much less compu-
tationally expensive approach similar to that used in (36),
i.e., based on the velocity and acceleration of nodal forces

obtained from previous load steps.

5 Results and discussion
5.1 Test problem

Before modeling massive problems, it is worthwhile to study
the impact of DDM parameters such as the number of
subdomains and initialization scheme on the convergence
and computational cost of overlapping and non-overlapping
Schwarz simulations for the test problem (cf. Fig. 1a).

5.1.1 Linear elastic response

The material properties and BCs used for simulating the lin-
ear elastic response of the test problem were presented in
Sect. 3.1. Figure 10a illustrates the non-overlapping Schwarz
approximation of the stress field 02> in this problem after 80
iterations using B = 0.15 and the 4 x 4 partitioning pattern
shown in Fig. 3a (total number of elements: 93,063). Note
that no discontinuity is observed in the stress field across sub-
domain interfaces in this simulation. We have also compared
this result with DNS of the field using a similar CISAMR
mesh by /; norms of the errors associated with nodal displace-
ments | |uPDM — ufEM| | and nodal stresses | |01/?DM — GI;EM [].
Figure 10b, c illustrate the variation of these measures of the
error in the test problem, indicating an excellent accuracy
with no concentration of displacement error along subdomain
interfaces. Although a small concentration of stress error is
observed along subdomain edges, this is mainly due to a lack
of nodal averaging during stress recovery in DDM results.
Figure 11 shows the variation of maximum nodal displace-
ment and stress errors versus the number of DDM iterations
for models with different subdomain numbers and initializa-
tion schemes (8 = 0.15). For the 4 x 4 partitioning pattern
studied previously, three simulations were conducted with (i)
no initialization, (ii) initialized using the displacement field
obtained from a homogeneous domain; and (iii) initialized
using the field approximated on the 36 x 36 pixelated mesh
shown in Fig. 8. Comparing these results clearly shows a slow
convergence of the model with zero initialization of BCs. We
also simulated non-overlapping Schwarz responses of two
more models subdivided into 2 x 2 and 6 x 6 subdomains
using B = 0.2 and 0.15, respectively (initialized using an FE
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Fig. 10 First example problem: non-overlapping Schwarz approximation of a normal stress field in the test problem, together with corresponding
distribution of b displacement error and ¢ stress error using 16 subdomains for partitioning the domain
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Fig.11 Firstexample problem: evolution of a maximum displacement error and b maximum stress error in the non-overlapping Schwarz simulation

for different model parameters and initialization schemes

model with homogenized properties). As expected, increas-
ing the number of subdomains slows down the convergence,
although the 6 x 6 model with proper initialization of BCs
still yields faster convergence than the 4 x 4 model with no
initialization.

To elucidate the importance of proper updating of nodal
forces during the FPI process, we have set up two 4 x 4 parti-
tioned models (homogenized initialization, 8 = 0.15) where
nodal forces are deliberately updated incorrectly for (i) Case
IIT in Fig. 5b, where external forces are equally distributed
between subdomain corner nodes on the top edge of the
domain; and (ii) Case I'V in Fig. Sc, where required consider-
ation needed for updating BCs at non-matching nodes along
subdomain interfaces is overlooked. As shown in Fig. 11,
both cases fail to converge due to improperly updating sub-

domain BCs at only a handful of nodes (one node for Case II1
and three nodes for Case IV). Figure 12 shows the distribution
of displacement and stress errors in the model with incorrect
updating of nodal forces for Case III, showing a high error
at subdomain corners along the upper edge of the domain.
However, note this error does not remain local (along with
the upper edge of the domain) and has affected other regions
of the domain and in particular nearby subdomain corners
(cf. Fig. 12b).

In addition to the non-overlapping DDM simulations pre-
sented above, we employed the overlapping Schwarz method
to approximate the linear elastic response of the test problem.
Figure 13 illustrates the resulting distributions of displace-
ment and normal stress errors in this domain after 126
iterations using a 3 x 3 partitioning pattern with 50% overlap
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Displacement error (%)

(a) (b)

Fig. 12 First example problem: a displacement error and b stress
error in the non-overlapping DDM approximation of the linear elastic
response in a model partitioned into 16 subdomains with an inappropri-
ate setup for case III while updating nodal forces at subdomain corners
along the top edge of the domain

Displacement error (%)
L

Stress error (%)
2.23¢-9 IE— S— 3 .30c-4

(a) (b)

6.27¢-3

Fig. 13 First example problem: a displacement error and b stress error
in the overlapping DDM approximation of the linear elastic response
of the test problem using 9 subdomains with 50% overlap

between adjacent subdomains. Similar to non-overlapping
simulation results shown in Fig. 10, this simulation yields an
excellent accuracy with no concentration of the displacement
errors and negligible stress errors along subdomain bound-
aries. However, the computational cost associated with this
overlapping DDM simulation is substantially higher than its
non-overlapping counterpart due to both the higher number
of iterations and the size of subdomains (50% overlap ratio)
associated with the former.

At first glance, it might seem that using a 50% overlap
between adjacent subdomains in the DDM simulation above
is excessive, as overlapping Schwarz simulations presented
in the literature are often conducted with a much less overlap
percentage (< 10%). While it is well known that increasing
overlapping area between subdomains expedites the DDM
convergence, it is worthwhile to study the impact of this
parameter on the overall computational cost for modeling
the test problem. Figure 14 shows the results of a study on
the total number of iterations and computational cost for
DDM simulations using 3 x 3 and 6 x 6 partitioning patterns
with different subdomain overlap percentages. The compu-
tational cost values reported in this figure are normalized

@ Springer

by the maximum simulation time, which corresponds to the
6 x 6 partitioned domain with 6% overlap between adjacent
subdomains. The convergence criterion for all simulations
is that the maximum displacement error becomes less than
0.1% in all subdomains. The fact that increasing the number
of subdomains increases the number of iterations and there-
fore the simulation time is a rather trivial outcome. However,
note that for the same number of subdomains, using a higher
overlap percentage exponentially reduces the computational
cost, suggesting that although the larger size of each subdo-
main increases the cost of simulating its response, the lower
number of iterations significantly reduces the total simulation
time.

5.1.2 Elastoplastic response

In this section, we implement both the non-overlapping and
overlapping Schwarz methods to simulate the elastoplastic
response of the test problem. The material properties consid-
ered for the porous domain include elastic modulus E = 200
Nm™2, Poisson’s ratio v = 0.1, yield stress oy = 2 Nm2,
and tangent modulus E; = 20 Nm~2. Also, it is assumed
that the tensile traction applied along the upper edge of the
domain linearly ramps up from 0 to 7 = 2.5 Nm~! in 20
load steps.

Using the non-overlapping Schwarz approximation for
this simulation with 16 partitions (4 x 4 pattern) and 8 = 0.1,
it was observed that the FPI solver cannot converge at load
step 6. As shown in Fig. 15a, this behavior is due to a high
concentration of error at the intersection of one of the voids
with the interface between subdomains 3) and (7). Note that
although the magnitude of the error at this node is small
(but higher than the convergence threshold), accepting this
result as a converged solution and moving to the next load
step leads to the blowup of the field after a few iterations.
The emergence of high errors at this point is attributed to
the initiation of plastic deformations in nearby elements of
one of the subdomains, while nearby elements of the other
subdomain maintain a linear elastic behavior during an FPI
iteration. This results in a ping-pong effect while updating
nodal force BCs in the vicinity of this point, with the error
fluctuating and regions with linear elastic and elastoplastic
behavior alternating between the two subdomains without a
path towards convergence.

To resolve the convergence issue outlined above, we
studied various techniques such as changing the domain par-
titioning pattern, refining the FE mesh generated for each
subdomain, and changing the DDM model parameters. For
the current partitioning pattern, further refining the mesh near
the problematic void intersecting with 3) and (?) interface or
increasing the number of (global) load step was ineffective
in resolving the convergence problem. Similarly, using other
partitioning patterns (2 x 2, 3 x 3, etc.) led to a similar conver-
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Fig. 14 First example problem: comparison between variations of a number of iterations and b overall computational cost of overlapping Schwarz
simulation versus the overlapping percentage of subdomains for 3 x 3 and 6 x 6 partitioning patterns

Fig. 15 First example problem:
convergence issues in the
non-overlapping Schwarz
approximation of the
elastoplastic response of the test
problem reflected in the
displacement error at two
different load steps and with
different B values (4 x 4
partitioning pattern)

Partition
interface

Displacement error (%)

(a) Load step 6; 8 = 0.1

gence difficulty at the intersection point of one of the voids
with a subdomain interface during the simulation. For the
original 4 x 4 partitioning pattern, the only adjustment that
was able to resolve the problem at load step 6 was reducing
B to 0.05. However, even this optimistic outcome was short-
lived, as a similar issue prohibited the DDM convergence at
load step 10 at a different location. As shown in 15b, a simi-
lar pattern of high errors emerges near the void intersecting
@ and (9 interface in this simulation. Further reduction of
B was not able to resolve this convergence issue, although
even if it was feasible the computational cost associated with
that would have been exceedingly high. It is worth empha-
sizing that given the complexity of heterogenous material
microstructures, it would practically be impossible to parti-
tion the domain such that there is no intersection between
embedded heterogeneities and subdomain interfaces.
Unlike the non-overlapping DDM solver, the overlapping
Schwarz method could accurately approximate the elasto-
plastic response of the test problem, regardless of the number

Displacement error (%)
4.35e-3

(b) Load step 10; 8 = 0.05

3.22e-2

of subdomains or their overlap percentage. Figure 16a illus-
trates the plastic strain field in this porous domain at load
step 20, which is simulated using 9 overlapping subdomains
(3 x 3 pattern) with 50% overlap. The number of DDM iter-
ations associated with the first load step was 147, which was
exponentially reduced to less than 30 iterations in the last
few load steps. This significant reduction in the number of
iterations and consequently the overall computational cost is
attributed to the appropriate initialization of Dirichlet BCs
along subdomain edges at each load step using (36), which
incorporate the information from solutions approximated in
previous load steps. Figure 16b, ¢ show distributions of the
error in predicting the displacement and plastic strain fields
compared to the DNS result, indicating an excellent accu-
racy and no accumulation of error along with subdomain
interfaces.
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Fig. 16 First example problem: overlapping Schwarz approximation of the elastoplastic response of the test problem. a plastic strain field; b

displacement error; ¢ plastic strain error
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(a) Particular composite RVE

Fig. 17 Second example problem: a domain geometry and boundary
conditions; b small portions of CISAMR meshes at the junction of four
subdomains, corresponding to the inset in figure a; ¢ non-overlapping

5.2 Particulate composite

In this example, we show the application of DDM techniques
for simulating the linear elastic response of the 800 um x
800 wm particulate composite RVE depicted in Fig. 17a.
Elastic properties of the matrix are E, = 200 MPa and
vn = 0.1, while those of more compliant embedded inclu-
sions are £, = 50 MPa and v, = 0.3. Applied BCs along
RVE edges are shown in Fig. 17a, which consist of a fixed
displacement BC along the bottom edge and a linear traction
along the top edge with minimum and maximum values of
fmin = 1 Nm~! and iy = 2 Nm™!, respectively.

The non-overlapping Schwarz approximation of the field
in this RVE is conducted using a 4 x 4 structured pattern.
The CISAMR conforming mesh for each partition is gener-

@ Springer

(b) CISAMR mesh

(¢) Deformed shape

Schwarz simulation of deformed shape of the domain, also showing the
16 subdomains used for partitioning the domain

ated using a 400 x 400 background mesh with two levels of
h-adaptive refinement along with particle-matrix interfaces,
resulting in a total number of 7.48 million elements for the
entire domain. A small portion of the resulting FE mesh at
the junction of four subdomains is depicted in Fig. 17b. To
initialize subdomain BCs in the DDM simulation, a 40 x 40
pixelated mesh with effective elastic moduli ranging from
Ectr = 90.73 MPa to 200 MPa evaluated using (30) for each
element was employed to obtain an initial estimate of the
field. The DDM simulation was performed using 8 = 0.15
and the resulting deformed shape of the domain after 100
iterations is illustrated in Fig. 17c. Also, Fig. 18a shows
the resulting stress field, where the inset clearly shows the
continuity of stresses across subdomain interfaces/corners.
Figure 18b illustrates the distribution of nodal displacement
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Fig. 18 Second example
problem: non-overlapping
Schwarz approximation of a
stress field and b resulting
displacement/stress errors
compared to DNS results using
16 subdomains for partitioning
the domain (8 = 0.15)

22 (MPa
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(a)

errors evaluated by comparing the DDM simulation with
parallel DNS results, showing an excellent accurate and no
accumulation of error along with subdomain interfaces. The
inset of Fig. 18b shows a small portion of the domain with
the highest stress error, which also has a negligible value.

We also used the overlapping Schwarz method to approxi-
mate the linear elastic response of the composite RVE shown
in Fig. 17a. 49 partitions (7 x 7 partitioning pattern) with 50%
overlap were used to build the DDM model for this simu-
lation, meaning the subdomain size is similar to that used
in the overlapping Schwarz model with only 16 partitions.
After 939 iterations, the resulting distributions of displace-
ment and stress errors are depicted in Fig. 19, showing an
excellent accuracy in approximating both fields compared to
DNS results. However, note that with nearly 3 times more
number of subdomains and a much higher number of iter-
ations, this overlapping Schwarz simulation is significantly
more computationally demanding than its non-overlapping
counterpart. Also, as shown in the previous example, while
we could use an overlap ratio of 20% or even 10% to reduce
the mesh size for each subdomain, this will disproportionally
increase the number of iterations needed for convergence that
results in a higher overall computational cost.

(b)

Given that the non-overlapping Schwarz method can
easily converge without using an excessively small g for
predicting the linear elastic response of this RVE and other
heterogenous domains we studied, there is no advantage
in using the overlapping Schwarz method for modeling
such problems. As shown previously, this is not the case
for elastoplastic problems, where regardless of the problem
size/microstructure and the 8 value, we observed that the
non-overlapping Schwarz method often fails to converge at
some load steps. On the contrary, as shown in the next exam-
ple, the overlapping Schwarz method can easily handle such
problems due to avoiding the need to recover/update nodal
forces along subdomain edges that intersect with embedded
heterogeneities.

5.3 Functionally-graded ceramic material

In this example, we implement the overlapping Schwarz
method to simulate the elastoplastic response of the 1600 um
x 1600 pm domain of the functionally graded TizSiC;-SiC
ceramic matrix composite shown in Fig. 20. The composite
microstructure is virtually reconstructed using the packing
algorithm presented in [75], with the volume fraction of par-
ticles varying from V¢ = 10% to 30%. Elastic properties of
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Fig. 19 Second example
problem: a displacement error
and b stress error associated
with the overlapping Schwarz
approximation using 49
subdomains with 50% overlap

Displacement error (%)

(a)

Fig.20 Third example

Stress error (%)
4.3e-4 7.8¢-9 IE— T 4 .8c-3

problem: virtually reconstructed
domain of a functionally-graded
composite. The insets show the
arrangement of inclusions in
subdomain 89 and a small
portion of the conforming mesh
generated for this subdomain
using CISAMR

the matrix (Ti3SiC,) are E,, = 326 GPa and v,, = 0.19,
while those of embedded inclusions (SiC) are E, = 2915
GPaand v, = 0.15. Further, we have assumed the matrix has
an elastoplastic behavior with the yield stress oy = 260 MPa
and tangent modulus E; = 8 GPa. Applied BCs along RVE
edges are shown in Fig. 20, which consist of a fixed left-
bottom corner, zero displacement in the y-direction along
the bottom edge, and a displacement BC applied in the y-
direction along the top edge linearly ramping up from O to
0.24 Nm~! in 80 load steps.

The overlapping DDM approximation of the field in this
RVE is conducted using 36 subdomains (6 x 6 structured
pattern) with 50% overlap. The CISAMR mesh for each sub-
domain is generated using an 805 x 805 background mesh
with two levels of #-adaptive refinement along with particle-
matrix interfaces. The total number of elements in the meshes
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generated for all 36 subdomains is 6.73 million. The insets of
Fig. 20 show the microstructure of subdomain ¢9, as well as a
small portion of the conforming mesh generated for this sub-
domain. Dirichlet BCs of subdomains in this simulation were
initiated using an FE approximation of the fieldina 100 x 100
pixelated mesh with effective properties calculated for each
element. Figure 21 shows the resulting plastic strain field
at load step 80 after only 3 DDM iterations, while the first
load step requires 271 iterations. Note that, as the simulation
proceeds, the number of iterations needed for the DDM con-
vergence exponentially reduces at each load step due to the
initialization of subdomain BCs from previous steps results.
Therefore, despite the high computational cost associated
with the first load step, this feature significantly reduces the
overall cost and enables performing such a massive nonlin-
ear simulation sequentially using an implicit solver. It is also
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Fig.21 Third example
problem: overlapping Schwarz
approximation of the plastic
strain field in the
functionally-graded composite
domain after 80 load steps (36
subdomains, 50% overlap)

worth mentioning that due to negligible nonlinear behavior
in the first load step, one can implement the non-overlapping
Schwarz method at this step and then switch to the overlap-
ping algorithm to further reduce the computational burden.

6 Conclusion

The performance of multi-subdomain DDM techniques
was explored for simulating the linear elastic and elasto-
plastic responses of materials with complex heterogenous
microstructures. Both the overlapping and non-overlapping
Schwarz methods were reviewed, as the goal is to estab-
lish a black-box solver capable of integrating with any
commercial FE software that only uses nodal forces and
displacements along subdomain boundaries as input/output
parameters. Implementations of both methods presented in
this manuscript are tightly integrated with the CISAMR
meshing algorithm for generating the FE model for each
subdomain independently. Several implementation issues
of the non-overlapping Schwarz method for modeling het-
erogenous domains were discussed, including updating BCs,
initialization schemes, and FPI acceleration techniques. It
was shown that this method can accurately approximate
the linear elastic response of composites with complex
microstructures at a significantly lower computational cost
than the overlapping Schwarz method.

Due to multiple sites of stress concentrations at inter-
section points of embedded heterogeneities and subdomain
interface, the non-overlapping Schwarz method may not
achieve convergence when approximating the elastoplas-
tic response of heterogenous materials. On the other hand,

regardless of the complexity of the microstructure, the
overlapping Schwarz method was able to simulate the elasto-
plastic response of heterogenous materials at a reasonable
computational cost. It was shown that increasing the over-
lapping percentage between adjacent subdomains for such
simulations could exponentially decrease the overall compu-
tational cost, which justifies using a high overlap percentage
of 50% to achieve a good performance. However, the cost of
an overlapping Schwarz method is still higher than its non-
overlapping counterpart, meaning a hybrid approach could
potentially yield the best performance for modeling nonlin-
ear problems. In this approach, the latter method can be used
in each time step to move toward the final solution and if con-
vergence issues were encountered in some cases, we switch
to the former to overcome these issues. Another key advan-
tage of using DDM for simulating the nonlinear response of
massive heterogenous domains is the ability to implement an
implicit solver for approximating the elastoplastic response
of subdomains, while DNS of such problems often requires
using an explicit solver to achieve convergence.
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