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Abstract- Event location in power systems is quite essential
information for system operators to enhance control-room
situational awareness capability. Therefore, it is of great
importance to develop an event location estimation algorithm for
transmission systems with high accuracy. With the development
of wide-area measurement system (WAMS) such as
FNET/GridEye, and the synchrophasor measurement devices
(SMDs) such as frequency disturbance recorders (FDRs), the
synchronous measurement data including frequency, voltage
amplitude and phase angle can be collected and used for event
location estimation. First, the phase angle and rate of change of
frequency (RoCoF) trajectories are respectively used for
determining two sets of wave arrival time associated with each
FDR. Then, a convolutional neural network (CNN) is utilized to
determine the wave arrival order to select the more suitable set of
wave arrival times for a given case and to perform corresponding
modifications. Next, the oscillation intensity associated with each
FDR is determined based on phase angle trajectories in the center
of inertia (COI) coordinate system. Finally, the multiple criteria
for event location estimation are represented. Case studies and
comparisons between the proposed and previous algorithms using
actual and confirmed cases in U.S. power systems are performed
to demonstrate the effectiveness and improvement of the
proposed algorithm in practical applications.
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I. INTRODUCTION

CCURATE event location estimation is of great

importance for enhancing the capability of power system
operators. As one of the most fundamental infrastructures for
society and modern industry, the electric power system has
witnessed continuous growth for its scale and complexity in
decades with the economic growth [1]-[3]. In the meantime,
the emergence of the wide-area measurement system (WAMS)
brings an unprecedented way for system operators to achieve
fast and accurate monitoring and control of power systems [4]-
[6]. Since 2003, the frequency monitoring network,
FNET/GridEye was been developed based on synchrophasor
technologies [7], [8], and is currently operated by the
University of Tennessee, Knoxville (UTK) and Oak Ridge
National Laboratory (ORNL). In the past almost 20 years, the
FNET/GridEye has provided many critical services, such as
situation awareness, system operations, post-event analysis
and compliance for the partners including utilities, balancing
authorities (BAs), regional coordinators (RCs), electric
reliability organizations (EROs), and the U.S. federal agencies.
The contribution of FNET/GridEye is widely acknowledged
by the power industry.

As one of the most important functions of the
FNET/GridEye, the event location estimation has been
developed and deployed to enhance the situational awareness
ability of system operators. The real-time information
measured from frequency disturbance recorders (FDRs) is
used by FNET/GridEye to achieve online detection and
location estimation of power system events so as to inform
operators the information of events in real time and take
corresponding responses. The basic principle of event location
estimation applied in FNET/GridEye is triangulation based on
the different wave arrival times among FDRs at different
locations [9], [10]. Once the wave arrival time of three or more
FDRs is obtained, the locations of the event can be estimated
by solving equations using the least square method [11], [12].
However, accurate determination of wave arrival time is very
difficult in actual applications, which would further influence
the accuracy of location estimation. With the recent progress
on the application of machine learning approaches in power
systems, data-based system estimation applications have also
been studied to improve the accuracy of event location
estimation [13]-[15]. In [13], recurrence quantification
analysis (RQA) is applied and the change rate of recurrence
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rate (RR) is utilized to show the buses near the event location.
In [14], the short-time local outlier probability (ST-LOP)-
based algorithm is utilized to detect and locate the events
associated with distributed energy resources. In [15], the
similarity search with the local outlier factor (SS-LOF)-based
algorithm is further developed and can achieve higher
accuracy for event location estimation with slightly longer
computation time.

However, the aforementioned algorithms are simply model-
based or data-based, while synthesizing them together could
bring potential opportunities to further improve the
performance. Given this background, this work proposes a
hybrid estimation algorithm for event location based on
traditional wave arrival time determination and its
modification using a convolutional neural network (CNN), and
oscillation intensity determination. Concretely, the term
“events” in this work refers to generation trip (GT), load
shedding (LS) and associated oscillations in power systems.
The contributions of this work can be summarized as follows.

i) The wave arrival time is determined independently by
utilizing the rate of change of frequency (RoCoF) and phase
angle first, and then the CNN is utilized for determining the
wave arrival order. Coincidence indexes are defined to select
the more consistent one, and CNN helps to modify the wave
arrival time of FDRs in sequence, which can greatly improve
the accuracy of the final event location estimation result.

ii) The oscillation intensities measured by FDRs located in
different places are also investigated and they are employed to
improve the estimation accuracy of event location especially
for the severe events in power systems with large disturbances.
Besides, it is the first time to combine multiple event location
estimation criteria associated with triangulation and deep
learning techniques for enhancing the performance of event
location estimation to our best knowledge.

iii) Demonstrations in actual U.S. power systems are
performed and the actual measured data from FNET/GridEye
are utilized for batch verification. Compared with the existing
algorithm deployed in FNET/GirdEye, the proposed algorithm
can reduce the average estimation error by 16.79%.
Furthermore, the parameter selection and corresponding
sensitivity analysis are performed in detail to increase the
applicability of the proposed event location estimation
algorithm.

The rest of this paper is organized as follows. The principle
of the event location estimation algorithm deployed in
FNET/GridEye based on wave arrival time determination and
triangulation is briefly introduced in Section II. Section III
introduces the hybrid algorithm for event location estimation
based on oscillation intensity determination and wave arrival
time modification using CNN. The verifications of the
proposed methods using the actual measured data in the U.S.
power system are conducted in Section IV, and the
conclusions of this work are given in Section V.

II. EVENT LOCATION ESTIMATION ALGORITHM BASED ON
WAVE ARRIVAL TIME DETERMINATION AND TRIANGULATION

The basic principle of event location estimation based on

triangulation is to utilize the different delays of the wave
arrival time of FDRs at different locations to represent the
corresponding distances between actual event location and
FDRs. Theoretically, three FDRs are enough for triangulation
while more FDRs are needed for the robustness of the
estimation algorithm in practice. First, coordinate system
transformation should be performed to avoid nonlinear
triangulation equations. Then, the event detection criterion is
represented, which is the prerequisite of event location
estimation. Next, a wave arrival time determination method
that serves for triangulation is introduced. Finally, the linear
form of triangulation for event location estimation is given.

A. Mutual Transformation between Geographic Coordinate
Reference System and Universal Transverse Mercator Grid
System

Generally, the geographic coordinate reference (GCR)
system is used for the global position system (GPS), so the
locations of deployed FDRs and the event location to be
estimated are denoted as latitude and longitude coordinates.
Therefore, the formula of the distance between the actual event
location and the #™ FDR will be in the nonlinear form as

E —Ire: .
D, =Rcos [sing; sing, +cosa, cosay, cos(S, — f:)] (1)
where R is the radius of the earth; o, and «, are the latitudes

of the actual event location and the n FDR, respectively; S&
and S, are their longitudes, respectively. To avoid solving
nonlinear equations in Section II-D, the latitude and longitude
coordinates in the GCR system are required to be transformed
into x-y coordinates in the universal transverse Mercator
(UTM) grid system as shown in Fig. 1. Denote x and y as the
horizontal and vertical coordinates in the UTM system, and a
and S as the latitude and longitude coordinates in the GCR
system. The transformation [16]-[17] from the GCR system to
the UTM system could be expressed as follows.

X=X+ kOS[pLY + i ?; COS(ZjéLI)Sinh(ijLY)]
o )
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where x is false northing and xo=0 for all zones in the northern
hemisphere. yy is false easting and yo=500 for every zone. fois
the longitude of the prime meridian and $y=0. R is the radius of
earth and R=6378.137. f is the flattening of earth and
f=3.35381x103. ko is the scale factor associated with the
distance from the central meridian of the projection and its
typical value is 0.9996.
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Fig. 1. Schematic diagram for coordinate system transformation.

The transformation between GCR system and UTM system
would cause up to 0.1% error [16], which is accurate enough
for this work. Once the latitude and longitude coordinates are
transformed into x-y coordinates, the distance between the
actual event location and the n" FDR be can obtained by

D} = (5, —x,)’ + (s —3,)’ @)
Thus, the strongly nonlinear operators sin(s), cos(s), and

cos'(+) in (1) are eliminated and (4) can be easily

reformulated into the linear form which will be further
discussed in Section II-D. After determining the final event
location, the x-y coordinates can be transformed back to
latitude and longitude coordinates by

3
a =x+).8,sin(2j7)
= (5)
B =Z,.x6 —183 +tan"'(sinh p, /cosé&,)
where

Su'=8 - Z ﬂ’j sin(2j&, ) cosh(2jm,, )
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where Z,one € [1, 60] is the current code of UTM zones, which
is related to the study area.

B. Event Detection Trigger in FNET/GridEye Based on the
RoCoF

FNET/GridEye is a pilot wide-area phasor measurement
system that can cover the national level power grid at a low
cost. FDRs in the FNET/GridEye transmit the collected phasor
measurements to the data center located at the UTK and
ORNL. The FNET/GridEye data center employs a multi-layer
architecture as shown in Fig. 2, and it is designed to receive,
process, and archive real-time synchrophasor measurements
[18]. In this work, the frequency data, phase angle data, and
voltage amplitude data are taken from the FNET/GridEye for
event location and they are all real-time synchrophasor
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measurements with a 10Hz reporting rate.

Real-time
% {_Analysis Layer )

| Non Real-time Applications |

*(" Non real-time |’
Analysis Layer

Fig. 2. Structure of the FNET/GridEye data center.

For a detected event in power systems, the aforementioned
data of N FDRs would be archived with the 7' time window
with 10Hz resolution. They can be denoted as

L = {L};\TZT’L[?\/“ET’L?/?} (7

Since noises exist in measurement data, it would be better
to narrow the window for wave arrival time determination as
short as possible. Therefore, a rough event time should be
obtained first for further analysis, which is also the
prerequisite for wave arrival time determination. The steps of
real-time event detection can be briefly summarized as follows.

Step 1: Denoise the recorded frequency data by the median
filter and save them in a buffer for further analysis.

Step 2: Determine the RoCoF of the n™ FDR (n=1, 2, ...,

Nrpr) at time ¢ as
Fre Fre
LRcCoF _ L”’t+Nw|n B L"J
n,t

N,

win

(n=12,..,N,.;) (8)

where Nrpr is the number of FDR available online and Nyin 1S
the window length (i.e., number of sample points) for the

RoCoF. L™ h

n,t+Nyin

and L) are the frequency data of the n'
FDR (n=1, 2, ..., Nrpr) at time #+Nyin and time ¢, respectively.
In actual applications, Nwin is selected as 6 according to
experience for avoiding noise and obtaining more robust
results. To illustrate the influence of this parameter,
corresponding sensitivity analysis is performed in Section V.
Step 3: If more than N, FDRs satisfy the inequation (9),

the event is detected and the event time is determined as #g
|L‘:3§°F| >7T (n=12,...,Nez) 9

where N, and 7 are the thresholds used for event detection

and can be tuned by past events. To illustrate the influence of

these thresholds, the corresponding sensitivity analysis is also
performed in Section V.

C. Wave Arrival Time Determination for FDRs Located in
Different Places Based on Phase Angle Trajectories

After an event is detected by FNET/GridEye, the wave
arrival time for each FDR (i.e., #,, n=1, 2, ..., Nrpr) can be
determined based on phase angle trajectories. As shown in Fig.
3, there usually exists a monotonic increasing or decreasing
trend before the disturbance, and such a trend needs to be
removed. It is noted that the initial phase angle values of all
FDRs are shifted to 0 in Fig. 3 for better illustrations. In this
work, the system median angle curve within 4 seconds [19]
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before the disturbance is used to construct the trend. As a
straight line, the trend crosses the middle point of the median
angle curve and has the same slope. The detrended angle
trajectories are shown in Fig. 4 and the trend is deducted from
each phase angle curve.

Median Angle Trend
20 \ T

0

20 F

-40 -

Phase Angle (rad)

-60 -

-80 :
-4 -2 0 2 4 6 8

Time (s)
Fig. 3. Monotonic increasing or decreasing trend before the disturbance.

For each FDR, its wave arrival time based on phase angle
trajectories can be determined as the point when its detrended
angle trajectory exceeds a certain threshold. As shown in Fig.
4, the threshold is set as the sum of a confidence parameter &

and the average value @, of detrended angle trajectories

before disturbances. Three seconds before the disturbance is
used to determine the pre-disturbance average angle 6,

while the confidence parameter ¢ £ is fixed within the range
from 0.8 to 3.2, which is empirically justified by historical
cases in FNET/GridEye [19]. Then the final threshold is
defined as

O,..=0.+¢

thres pre (10)
Thus, the wave arrival time of each FDR (i.e., t,, n=1, 2, ...,
Nrpr) is determined as the first time that its detrended phase

angle trajectory exceeds the threshold.

80 [

40 -

Detrended Phase
Angle Trajectories (rad)

Time (s)
Fig. 4. Wave arrival time determination based on detrended phase angle
trajectories

D. Event Location Estimation Based on Triangulation

Once the wave arrival time of each FDR is determined, the
following equations can be obtained based on the relationship
between distance and the time delay of wave travel.

(xl_xE)2+(y1_yE)2:vz(tl_tE)z
(o, =x;) +(y2_:yE) =vi(t, - 1y) 11
(XNT _xE)z +(yNT _yE)2 :Vz(tNT _tE)z

where v is average wave travel speed and is assumed as a
uniform value for different directions; Nr is the number of

ublication/redistribution requires IE

FDRs employed for triangulation (3<N1<Nrpr). Subtract the
adjacent equations in (11), several linear equations can be
obtained as

(xn+l _‘xn )xE +(yn+l _yn)yE _vz (trHl _tn )tE = Cn

(o, = xy, )X H =Yy, ) e V(1 —ly Mg =Cy, (12)
n=12,.,N, -1
where ¢, and ¢, are constants and their values are
1
nzz[vz(tm-l _tn)+xj+1 +y3+l _xn _yn]
(13)

1., 2 2
E[V (¢ _tNT)+xNT+] T VN T X, _yNT]

c Ny

It can be seen from equations (12) and (13) that xg, yg and #£
are the variables to be solved and all other variables are known.
Concretely, the locations of each FDRs (i.e., x, and y,, n=1,
2, ..., Nt) can be obtained in advance, the wave arrival time
(i-e., t,, n=1, 2, ..., Nt) can be determined by equation (10).
Therefore, these equations can be solved by the least square
method by

y=(A"A)'A’c (14)
where ¥ =[ %, Pp.1. 1%, c=l¢,¢y,mcy 1" and
X, =X V.= —vz(t2 —-t,)
as| BTR BT VG (15)
X=Xy M—yy, V(1)

It should be mentioned that the Nr should be equal to or
larger than 3, which can be either explained from a physical or
mathematical perspective. From the physical perspective, at
least three measurement points and corresponding distance can
uniquely locate the source point in 2D plane. From the
mathematical perspective, the rank of the product of two
matrices is smaller than either of them according to the theory
of linear algebra. A is a Ntx3 dimensional matrix and ATA is a
3x3 dimensional matrix. Therefore, Nr is required to be 3 or
larger so that ATA can be a full rank matrix and (ATA)! in
equation (14) can be solved.

In practical applications, Nt will be iterated from 3 to 10
and the final result is determined with the least fitting residuals.
The fitting residuals can be denoted as

NT
e = (x, =% )+, —P) + (1, — 1) (16)
n=1

It is also worth mentioning that the principle of selecting
FDRs is to select the FDRs with the earliest Nt wave arrival
times. After the final X, and ). are determined, the latitude

and longitude of the event ¢, and ﬁE can be determined as

well by coordinate system transformation mentioned in
Section I1-A.

III. HYBRID ALGORITHM FOR EVENT LOCATION ESTIMATION

During the applications of the algorithm mentioned in
Section II, it is found that the estimation errors are still very
large for several cases (e.g., >800miles). The most critical
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reason could be that the system frequency wave is the
electromechanical wave whose speed is different for different
directions. Therefore, assuming v as a uniform value would
cause errors. However, if the v is set as an anisotropic variable,
then (11) would be the underdetermined system of equations
and the solution of event location cannot be obtained.
Therefore, the variable v is still assumed as a constant in this
work and a new hybrid event location estimation algorithm is
presented in this section for further mitigating the location
estimation errors as small as possible. Compared with existing
ones, the new algorithm: i) considers the oscillation intensity
as an auxiliary criterion for the severe events; ii) takes both the
phase angle data and the RoCoF data for wave arrival time
determination, and a CNN structure is proposed for further
time modification.

A. Oscillation Intensity Determination of Events

In fact, considerable phase angle variations would be caused
when major events happen in power systems. Therefore, these
characteristics can be utilized to boost the performance of
event location estimation.

It should be mentioned that i) the initial phase angles of
different buses are already different which is hard to measure
the oscillation intensity differences among different places
intuitively; and ii) a reference phase angle trajectory is needed
for determining the oscillation intensity in different places
while how to automatically select a suitable reference
trajectory should be taken into consideration. For the first issue,
it can be solved by subtracting the value of the first point (i.e.,

Lff}g ) from the subsequent values, which can be represented as
L =L — [ (17
where L and L)¥ are the phase angle data of the n' FDR at

time ¢ and the beginning point of the event (i.e., & in (9)),
respectively. For the second issue, the concept of center of
inertia (COI) can be utilized, and all phase angle trajectories
can be transformed into COI coordinate system, i.e.,

AngCOl _ yAng' _ yAng
Ln t - Ln,t LCOI

(18)
where L% is the COI for the phase angle and can be
calculated as

19)

where H, is the inertia near the n™ FDR and can be estimated
by the method introduced in our previous work [20] using
synchrophasor measurement data at multiple locations.
Sometimes, it is hard to estimate the value of H,. In these
situations, the values of all H, (n=1,2, ..., N) can be regarded
as the same value, and then (18) would be degraded into
B (e ,
L/::gCOI — L’:ﬁg _N; L/:’r:g
An illustration of the phase angle trajectories in the original
coordinate system and COI coordinate system is shown in Fig.
5. It can be seen that it difficult to measure the relative angle
differences among different trajectories intuitively in Fig. Sa,
while it will be more vivid if using Fig. 5b. Therefore, the
oscillation intensity of the event near the n™ FDR can be
defined as

=S S,
n=l

n=l1

(20)

21)

The oscillation intensity describes the extent of phase angle
variation and can be used for characterizing the distance
between the actual event location and the given FDR.
Generally, the higher the 7, is, the shorter the distance between
the actual event location and the »n™ FDR is. However, in
actual applications, it is found that using wave arrival time to
determine the distance is more accurate than using oscillation
for most cases. Indeed, the idea of incorporating the intensity
into the event location estimation is empirical and it is based
on the evidence that severe events would lead the large
oscillations of phase angle near the event location. Generally,
the larger the oscillations, the nearer the event location to the
measurement devices. To avoid the misapplications of the
oscillation intensity-based method, the oscillation intensity is
only used as an auxiliary criterion and is designed for the
severe events that happen in power systems that cause large
oscillation. For these situations with severe events, a parameter
n is also defined for deciding whether trigger this criterion and
the effectiveness of the oscillation intensity-based criterion
will be shown in Section IV-B and Section V-C, which
achieves quite good results.

AngCOI : AngCOI
I, :max{Lnf }—mln{Lnf }
1<t<T ’ 1<t<T ?

Phase Anige
A
Phase Angle (rad)

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s)

(@ (b)
Fig. 5. lllustration of phase angle trajectories. (a) Original coordinate system;
(b) COI coordinate system.

B. Wave Arrival Time Modification Based on CNN

Since the wave arrival time determination method based on
phase angle as given in (10) is not quite accurate in some cases
in practice, another wave arrival time determination method
based on RoCoF is also represented as a supplement. In
addition, a CNN structure is utilized to decide which one
should be used and to give corresponding modifications for a
certain case. The rationale and necessity of using CNN for
determining wave arrival order are as follows.

i) Both the wave arrival time determination method based
on phase angle trajectories and RoCoF require the subjective
engineering experience and different wave arriving times may
be obtained by them, which need additional modification.

ii) CNN structure only needs the objective measurement
data as the inputs to determine the wave arrival order by
comparing each data pair, and the measurement data in the
whole time interval are utilized, which can give more
comprehensive results.

iii) CNN structure can only determine the wave arrival
order since the ground truth of event time cannot be known
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and cannot be utilized for training. Therefore, the wave arrival
time is determined based on phase angle trajectories and
RoCoF first and is modified based on the CNN model after
that.

In fact, the rate of change of frequency (RoCoF) is the time
derivative of the power system frequency and has been utilized
for power system relay [21], event detection [22] or event
classification [23] recently. The effectiveness of using RoCoF
has been demonstrated in the literature. As the derivative of
the frequency signal, RoCoF is more sensitive to the frequency
change in power systems when compared with frequency data
itself and can detect the power system event or perform
frequency relay much faster. The wave arrival time based on
RoCoF can be determined as the first time ¢ that satisfies (22)
for generation trip events and (23) for load shedding events.

Le®f <max{  min  {L}°F), ¢ (22)
Ig e SISTp o §

L >min{  max {LI:"[C"F } - (23)
’ 1p ~lre SUSIE Hpog >

where fp. and fpos are the times before and after the event
occurs, respectively; £, and ¢, are parameters and has been
tuned as -0.015 and 0.015 by past events, respectively. To
illustrate the influence of these thresholds, the corresponding
sensitivity analysis is performed in Section V.

In brief, the CNN-based time modification is developed by
determining the wave arrival order. Because the number of
available FDRs in each event is uncertain, the order is
determined in a pairwise manner for better flexibility and
robustness. The inputs of the proposed CNN-based model are
the frequency data from two FDRs to be compared, and the
outputs of the proposed CNN-based model are the results (i.e.,
0 or 1) that denote which FDR wins. Therefore, each time the
CNN model compares two FDRs to determine their relative
wave arrival order as shown in Fig. 6. For an event with Nrpr
available FDRs, Nrpr(Nepr-1) comparisons would be
performed and the Borda count method [24] is applied to
aggregate pairwise orders into the order of all FDRs.

Let T'¥ represents the outcome of the k™ comparison for the
i™ FDR, then it can be denoted as

L if the i" FDR wins in the k™ comparison

rt = (24)

i

0, otherwise

Therefore, the quantity N :ZFI'.‘ corresponds to the
T

number of comparisons that the /" FDR wins. The wave arrival
order of all FDRs then is derived from the descending order of
their numbers of pairwise wins. In other words, the first FDR
in wave arrival order has the largest number of wins, the
second FDR has the second largest number of wins, and the
rest are similar. Thus, although the wave arrival time cannot be
obtained by the proposed CNN model, the wave arrival order
can be determined and can be denoted as W, " (n=1, 2, ...,
Nrpr). However, the judgment on the coincidence of RoCoF
and phase angle results with the CNN ordering is inconvenient
based on observation. Therefore, a proper coincidence index
should be defined. Assume that the wave arrival time

determined by phase angle and RoCoF are denoted as £ and ¢
~" . and the corresponding order are denoted as ," and W
2F (n=1, 2, ..., Nrpr), then the coincidence indexes can be

defined as

Nepr

DL
Cppe =1—22 N (25)
Cyoe =122 N (26)

where Caxc and Crac respectively denote the consistency
between W." and W™ and the consistency between W,*"
and W™ If Cazc>Crac, then W™ is more consistent with W
Y. otherwise, " is more consistent with W, . Next, the
more consistent one’s wave arrival time would be utilized and
is denoted as £™. (i.e., £™ or £2°"). It should be noted that
although the order of £ is more consistent with W."", there
still are some differences. Hence, the ™ should be further
modified as

mid mid

tn =min {t,, 5 tchN} n= 1’ 2iV"’ZVFDR (27)

so as to avoid the situation that the FDRs with the front order
are with the late wave arrival time. For example, if Nrpr=5 and
the £,", £,°°" and W, determined are shown in Fig. 7.
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Fig. 6. CNN structure for wave arrival time modification.
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From £ are £, W." and W, can be determined and
compared with Wy™ . Since Caxc<Crac, £, is taken as £ It
can be seen that #>#" and #“>£, which are conflict with
the W™, Therefore, £, is further modified and £,=£"'=4.300; ¢

"¢ is further modified and z5=¢""'=5.312.

Leoowy W

3.948 2

4.019 3w ,

4031 4 we t,

3.223 1 o1 402 4.012

4.119 5 L2 4 4300
3 4300
4 5312
5 5312

{RoCoF » J RoCoF
Fig. 7. An example for the wave arrival time modification based on the CNN
model.

C. Comprehensive Event Location Estimation Algorithm with
Multiple Criteria Considered for Practical Applications

In fact, a single criterion cannot achieve good performance
in practical applications due to the measurement data quality,
communication delay and unexpected errors. Therefore, it is of
great necessity to pre-process the measured data first and then
combine multiple estimation criteria together so as to reduce
the errors of final event location estimation. The flowchart of
the proposed hybrid event location estimation algorithm is
shown in Fig. 8, and there are three stages as follows.

i) Data pre-processing;
ii) Wave arrival time and oscillation intensity determinations;
iii) Event location estimation.

‘ Load frequency, voltage angle and amplitude data ‘

Data Pre-processing

‘ Denoise the data using the median filter ‘

v

‘ Obtain RoCoF by (8) ‘

Wave Arriv
Oscillation Intensity
Determinations

Determine the event time with the
criterion (i.e. RoCoF>0.005Hz/s)

|
L v ¥
Determine the wave Determine the wave Determine the wave arriving
arriving time of each arriving time of each FDR || order of each FDR by CNN
FDR by RoCoF by phase angle trajectory based on measured data
[ | T

v v

Use the wave arriving order by CNN Determine the oscillation intensity
and modify the wave arriving time based on voltage angle data

Event Location

Search the closest power plant near| Estimation

the FDR with the largest intensity
and use the location of searched
plant as the final event location

The ratio of the
largest to the second largest
intensity>7?

Use the triangulation result
with the least variance as
the final event location

Triangulate by the weight least square
method and obtain coresponding variance

End

Fig. 8. Flowchart of proposed hybrid algorithm.
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In the first stage, the measured data are denoised and
smoothed by using the median filter, and the RoCoF is
obtained by (8). In the second stage, the two different sets of
wave arrival time are respectively determined by phase angle
and RoCoF, and CNN is employed for selecting the set of
wave arrival time for a given case and giving corresponding
modifications. In the meantime, the oscillation intensity near
each FDR is determined based on phase angle data in COI
coordinate system. In the last stage, multiple criteria are used
to estimate the event location for a given case
comprehensively. Concretely, if the difference of oscillation
intensity between the largest and the second-largest exceeds a
given threshold #, the event location will be estimated as the
location of the power plant that is nearest to the FDR with the
largest oscillation intensity; otherwise, the event location will
be estimated by triangulation based on the differences among
wave arrival time that is determined by phase angle, RoCoF,
and CNN modification. In the estimation process, the number
of FDRs (i.e., Nr) will be iterated from 3 to 10 to find the
result with the least variance.

IV. CASE STUDIES

To verify the effectiveness of the proposed algorithm, the
actual measured and confirmed cases are utilized in this
section for demonstrations and comparisons. Concretely, Case
1 is mainly utilized to illustrate the effectiveness of the
criterion based on wave arrival time determination and CNN
modification; Case 2 is mainly utilized to illustrate the
effectiveness of the criterion based on oscillation intensity. In
addition, the test performed on a large number of cases is also
given to show the improvement of the proposed algorithm
when compared with the previous one. It should be clarified
that almost 800 events have been recorded by FNET/GridEye
in the past and some of them are confirmed by power
companies (e.g., North American Electric Reliability
Corporation (NERC)), and the CNN model has been trained by
them. Concretely, 80% of confirmed cases are utilized to train
the CNN model, and the rest of them are utilized in work for
testing the performance of the proposed hybrid event location
estimation algorithm. Since the data are collected by deployed
FDRs, the data arrival rate (i.e., data reporting rate) of this
work is 10Hz, i.e., 10 points per second. Furthermore, the GPS
coordinates of each FDR and the GPS coordinates of each
power plant are the network data required for the analysis of
this work.

A. Case 1: Generation Trip Occurs in Michigan

At 2019-10-19 21:59:03 UTC, a generation trip event in
Michigan was detected by FNET/GridEye and this case is
taken as an example of the aforementioned wave arrival time
and order determination methods. In this case, the criterion
based on oscillation intensity is not triggered, so only the
trajectories of RoCoF and detrended phase angle are shown in
Fig. 9, respectively. Based on the pre-tuned thresholds, the
wave arrival time of each FDR determined by phase angle and
RoCoF is given in Table I. Besides, the wave arrival order
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determined based on CNN is also given. It can be seen from
Table I that the wave arrival time determined based on RoCoF
is more consistent with the order determined based on CNN.
Therefore, the wave arrival times determined by RoCoF are
used for this case. It is worth mentioning the wave arrival time
of UsNyLewiston1436 (i.e., 21:59:04.500) is later than the one
of UsNyLeroy985 (i.e., 21:59:04.300). Thus, the wave arrival
time of UsNyLewistonl436 will be modified as 21:59:04.300
in practice and the final wave arrival time of each FDR is
given in the last column of Table I.

0.02 T T T
Upper Threshold

Valid Caleulatjon Window

RoCoF (Hz/s)
o

-0.01 - 1 b

1 Lower Threshold
0,02 I . . L )
0 fe=fpre 10 e 20 30 TEtTposi 40 50 60

Time (s)

(@)

02

Detrended Phase
Angle Trajectories (rad)

1 b Oubres

" 14 17 20 23 26

(b)
Fig. 9. RoCoF and detrended phase angle trajectories of Case 1. (a) RoCoF
trajectories; (b) Detrended phase angle trajectories.

TABLE I
RESULTS OBTAINED BY PHASE ANGLE-BASED AND ROCOF-BASED WAVE
ARRIVAL TIME DETERMINATION AS WELL AS THE CNN-BASED ARRIVAL
ORDER DETERMINATION FOR CASE 1

FDR Name i Rocor Order | Final ,
UsOhAkron998 21:59:03.948 | 21:59:04.000 1 21:59:04.000
UsNyLewistonl436 | 21:59:04019 | 21:59:04.500 2 21:59:04300
UsNyLeroy985 21:59:04031 | 21:59:04300 3 21:59:04.300
CaOnToronto703 21:59:01323 | 21:59:05300 4 21:59:05.300
UsOhChilliecothe670 | 21:59:04.119 | 21:59:05.300 5 21:59:05.300

In Fig. 10, the blue and red rectangles respectively indicate
the first 5 FDRs selected by the previous location estimation
algorithm and the proposed hybrid algorithm, and the number
indicates its order, while the numbers in purple ones indicate
the order determined by CNN. The actual event location is
(42.304845, -83.152733), which is denoted as the red pin in
Fig. 10. It can be seen that the proposed hybrid algorithm is
more accurate with regard to the wave arrival order. The final
estimated locations determined by the previous and proposed
hybrid algorithms are given in Table II and shown in Fig. 10 as
the white and blue pins, respectively. It can be seen that the
proposed hybrid algorithm reduces the error from 265.78mi to

92.21mi when compared with the previous algorithm.

TABLE II
COMPARISONS WITH THE PREVIOUS ALGORITHM FOR CASE 1

Previous Algorithm [11], [19]

Proposed Algorithm

Error

92.21mi

Estimated Location Error Estimated Location

(40.7506, -78.4953) 265.78mi (43.6103, -83.4856)
Actual Location: (42.304845, -83.152733).

Ang RoCoF Q FDR
Q@B 2

i Previous ?}Proposed Actual
4 Algorithm / Algorithm ocation

Fig. 10. Results of the phase angle-based and RoCoF-based wave arrival time
and CNN-based wave arrival order.

B. Case 2: Generation Trip Event Occurs in Florida

At 2018-01-12 21:53:10 UTC, a generation trip event in
Florida was detected by FNET/GridEye, and the
corresponding frequency and COI phase angle trajectories are
shown in Fig. 11. Besides, the COI phase angle trajectories of
the FDRs with the largest and the second-largest oscillation
intensities (i.e., UsFIMiamil000 and UsAlAndalusia938) are
shown in Fig. 12. It can be seen that [\/,>y=1.3, so the
oscillation intensity-based criterion is activated and the event
location is estimated at the closest power plant near FDR
UsFIMiamil000. The final estimation results obtained by the
previous algorithm and the proposed algorithm are given in
Table III, and it can be seen that the proposed algorithm can
achieve much smaller error (i.e., reducing the error from
87.51mi to 44.98mi), which demonstrates the effectiveness of
the oscillation intensity-based criterion.

60.01 0.2

60.00 il 0.1

a
©
©
©

0 feseieg)

59.98 -0.1
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Phase Angle (rad)

59.97 -0.2

59.96 03 |
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10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s) Time (s)

Fig. 11. Frequency and COI phase angle trajectories of Case 2. (a) Frequency
trajectories; (b) COI phase angle trajectories.

59.95
[

TABLE IIT
COMPARISONS WITH THE PREVIOUS ALGORITHM FOR CASE 2

Previous Algorithm [11], [19] Proposed Algorithm

Estimated Location Error Estimated Location Error

(26.6967, -81.7831) 87.51mi (26.0686, -80.1984) 44.98mi

Actual Location: (26.6986, -80.3747).
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Fig. 12. Oscillation intensity determined for Case 2.
C. Practical Applications in Actual U.S. Power Systems and
Batch Comparisons between the Proposed and the Previous
Algorithms

It should be mentioned that the tests in a large number of
cases are also required for comprehensive comparisons. There
are total of 100 confirmed cases employed in this section and
the results are shown in Fig. 13. It can be seen that both the
proposed and previous algorithms can achieve small errors
(i.e., <200miles) for most cases and the proposed algorithm is
slightly better than the previous one. However, there are large
estimation errors for several extreme cases when using the
previous algorithm while the proposed algorithm can greatly
reduce the estimation errors. The statistics of errors for batch
comparisons between the proposed and the previous algorithm
are given in Table IV. Note that the case with the largest error
(i.e., 10020mi) of the previous algorithm in Fig. 12 is removed
for fair comparisons, since this outlier would greatly increase
the mean value and standard deviation of the previous
algorithm. Even though, it can be seen from Table IV that the
proposed hybrid algorithm outperforms the previous one from
all aspects. The maximum value, median value and mean value
of errors are respectively reduced by 45.96%, 9.11%, and
16.79%, which show the accuracy promotion of the proposed
algorithm. The standard deviation of errors is reduced by
48.84%, which indicates the greater robustness of the proposed

algorithm.
TABLE IV
STATISTICS OF ERRORS FOR BATCH COMPARISONS BETWEEN THE PROPOSED
AND THE PREVIOUS ALGORITHM

in advance by checking if the matrix A in (15) is singular or if
the value of residuals in (16) is extremely large. Therefore,
corresponding notices can be delivered by the proposed
algorithm for the quite inaccurate cases in advance to remind
operators it is necessary to verify these results before use.

12000 T T T

1000 roposed Algorithm

10000 [~

Previous Algorithm |4
800

8000 = oo

Error (miles)

6000 [- 400 g ]
200 - oD
T S s icasisauai - f
50 60 70 80 90 100 N
2000 F [ _ 1
¢
Oo 10 20 30 40 50 60 70 80

Case (ascending order)
Fig. 13. Comparisons between the proposed and previous algorithms.

The event location estimation algorithm has been deployed
in FNET/GridEye and an event report with the estimated event
location and other critical information can be generated for
each detected event in power systems, as shown in Fig. 14.

It is noted that the CNN part is trained by past confirmed
events in Python 2.7 environment with 4-fold cross-validation
by using GTX 1060 GPU, and the rest parts are implemented
in MATLAB 2020a environment with Core 15-7400 CPU and
16GB RAM. The training time for CNN model is 22h16min,
the testing time for each case is around 1s. It can be seen that
although it cost long time to train the CNN model, the online
testing time is quite short. Since the training can be performed
in off-line stage, the computation time of the proposed event
location estimation algorithm is acceptable in practical
application.

Statistics of Errors Previ([)lu ls ]:A[llggolrithm :ll;; (:)[:'(i)tslf::l Change
Minimum Value Omi Omi 0%
Maximum Value 1355.28mi 732.40mi -45.96%

Median Value 92.41mi 83.99mi -9.11%
Mean Value 154.30mi 128.40mi -16.79%
Standard Deviation 268.36mi 137.30mi -48.84%

It should be acknowledged that the maximum error of the
proposed algorithm (i.e., 732.40mi) is not acceptable. However,
these relatively large errors of the proposed algorithm are
associated with the numerical problems in the process of
solving linear equations. Concretely, the cause of numerical
problems is unsuitable FDRs (e.g., FDRs that are located too
close) are selected, which leads to the singularity of matrix A
in (15). Although few situations with relatively large errors
cannot be completely avoided, these situations can be known
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Event Date Event Time Event Type Estimated Amount

2020-01-25 20:02:46 UTC Generation Trip 640 MW

PointA Point B Point C Point C Prime

60.0253 Hz 599782 Hz 59.9807 Hz N/AHz

MOD-027-1 Event Inter Connection Estimated Reliability Coordinator ROCOF

NO El MRO N/A

Estimated Event Location Additional Location Information

44 1988 near Mankato Energy Center power plant (MRO) in (Mankato,MN,56001).

*Due to limited knowledge on WEGC and ERCOT, the magnitude estimation may not be accurate. Please verify it before use
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Fig. 14. Event report generated by FNET/GridEye for a given case.
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V. DISCUSSIONS

This work aims to propose a practical event location
estimation algorithm for applications, therefore, several
parameters or thresholds are required to be introduced to deal
with various actual situations, and they are determined
according to the engineering experience from past events. In
fact, if the measured data are ideal, these parameters and
thresholds are unnecessary or can be easily selected. However,
it makes no sense if the practical situations are not considered.
Therefore, it is also significant to study these parameters or
thresholds (i.e., N,, 7 , Nwin, &, , §,, 17 ) comprehensively

for better applications in practice. Concretely, N, and 7 are
associated with the event time determination, which cannot be
known very precisely for actual events, therefore, simulated
data with noise considered are utilized for the sensitivity
analysis for them about event time determination. Nwin, ¢, and

¢, are associated with the RoCoF determination and wave

arrival time determination. Although it is hard to judge their
influence directly, the performance obtained by different
values of them can be reflected by the final errors in location
estimation. Therefore, the actual measured data are utilized for
the sensitivity analysis of Nwin, ¢, and ¢, . Similarly, although

it is hard to evaluate the parameter 7 directly, the performance
obtained by different values of 7 can be reflected by the final

errors in location estimation. Therefore, the actual measured
data are utilized for the sensitivity analysis of 7 as well.

It should be clarified that: i) event time cannot be obtained
very precisely for actual events but can be obtained for
simulated ones, therefore, the first sensitivity analysis needs to
be performed by simulated data; ii) simulated data are lack of
geographic information (i.e., GPS coordinates), therefore, the
last two sensitivity analyses need to be performed by the actual
measured data. Furthermore, using actual measured data would
be more in line with the actual situation and can test the
robustness of the proposed algorithm.

A. Sensitivity Analysis of N, and t for Event Time
Determination
N, and 7

T

are two parameters for event detection.
Concretely, N, controls the least number of FDRs receiving

disturbance wave can announce an event, and ¢ controls the
weakest wave fluctuation that can announce an event. Small
values of N, and 7 can detect the events more sensitively

while it may also cause error detections; on the contrary, large
values of N, and 7z can detect the events more firmly while

it may cause missing detections. To study the influence of N,

and 7 on event time determination, hundreds of simulated
cases are utilized for sensitivity analysis, and the average
errors for event time determination are shown in Fig. 15. It
should be mentioned that Gaussian noises with 30dB signal-
noise ratio (SNR) were added for the simulated data.

It can be seen from Fig. 15 that the average errors are
relatively small when N, <5 and 0.020<7 <0.030. Therefore,

any values of N, and 7 that within the above range can be
selected for event time determination since the values of the

10

average errors are relatively smaller and stable in this range. In
particular, the smallest average error is 0.1735 and is obtained
when N, =4 and ¢ =0.0221. Therefore, the parameters N, =4
and 7 =0.0221 are employed in this work. It should be
clarified that different selections of the parameters N, and z
would cause the increase of average errors in this work.
However, the differences among errors would not be very
large as long as N, <5 and 0.020<7z <0.030.

Average Errors (s)

—

ooz 0015

=
TEzmo {0035 0030 0025
T 7

Fig. 15. Result of the sensitivity analysis of N, and 7 .

B. Sensitivity Analysis of Nyin, &, and &, for RoCoF
Determination and Wave Arrival Time Determination

Due to the measurement noise in actual situations,
practicable values of RoCoF cannot be obtained if Nyin=1,
which would cause large errors for event location estimation.
Due to the same reason, the parameters £, and &, are also
introduced to determine the wave arrival time more precisely.
Therefore, the sensitivity analysis of Nwin, ¢, and ¢, is
performed in this sub-section, and their influences on the final
location estimation errors are shown in Fig. 16. It is noted that
¢, and §, are symmetric variables (i.e., {;=—¢, ) and the

values in the x-axis denote the values of ¢, . It is also worth
mentioning that each group of the parameters Nyin, &, and ¢,

are tested by all actual measured events mentioned in Section
IV-C, and the errors in Fig. 16 are the mean values.

500
400
300
200

100

Average Error (miles)

Fig. 16. Result of the sensitivity analysis of Ny, ¢, and &, .

It can be seen that the errors are quite large when Nyin is
smaller than 5 or larger than 15. Although different cases may
have the different best selection of £, and ¢, , the sensitivity

analysis finds that ¢, and ¢, also have an insensitive interval.
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The results in Fig. 16 demonstrate that the event location
estimation errors are relatively small when ¢ is larger than

0.002 or smaller than 0.001. Therefore, as long as
0.001< ¢, <0.002 (i.e., —0.002 < &, <—0.001), the change of

¢, and £, will not have a large impact on the final event

location estimation accuracy.

In summary, the errors in the center of Fig. 16 are relatively
small and stable, so the parameters can be selected in this
range with no big difference. Hence, Nyin=6, ¢, =0.015, and

¢, =-0.015 are utilized in the proposed algorithm.

C. Sensitivity Analysis of n for the Triggering Condition of
Oscillation Intensity Criteria

The parameter 1 decides whether the oscillation intensity
criteria should be used. Similar to Section V-B, the value of 7

is enumerated and tested by all actual events, and the results
are shown in Fig. 17. It can be observed that the errors are very
larger on the left side and decrease sharply with the increase of
n . However, the errors increase again when 7 larger than

1.20. The reason is the reliability of oscillation intensity
criteria for location estimation is lower than the criteria of
wave arrival time (e.g., oscillation may occur far away from
the fault source sometimes). Therefore, the errors can be quite

large when 7 is near to 1 (i.e., oscillation intensity criteria
would be always triggered). When 7 is set too large

(i.e., >1.2), then the criteria would not be triggered anymore.
Therefore, 7 =1.15 is utilized in this work so that the

oscillation intensity criteria would only be triggered for
auxiliary location estimation when oscillations are large

enough.
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Fig. 17. Result of the sensitivity analysis of 7.
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D. Illustrations about the Practical Significances of
FENT/GridEye and the Proposed Event Location Estimation
Algorithm

The practical significances of FNET/GridEye and the
proposed event location estimation algorithm can be clarified
in the following three aspects.

i) The FNET/GridEye is a WAMS network deployed at the
distribution level and high dynamic accuracy FDRs are used to
measure the frequency, phase angle, and voltage for the U.S.
power systems [25], [26]. Compared with transmission-level
WAMS and commercial PMUs, the installation density of
FDR is much smaller. Therefore, it is unfair to compare the
effectiveness of event location estimation between the
algorithm using FDR data and the algorithm using PMU or
SCADA data. In fact, the proposed algorithm was also tested
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by using actual PMU data, and the error is 0 for most cases.
Hence, it is the limitations of the number of measurement
devices and data that cause the relatively large errors, rather
than the proposed event location estimation algorithm.

ii) Even though the SCADA system can locate the events
more accurately sometimes, the FNET/GridEye also have
unique significance under the situations in the U.S. power
systems. It should be noted that there are several power
utilities in the U.S. and each power utility can only access their
own measurement data and do not have an overall view of the
whole power system. In contrast, the measurement data of
FNET/GridEye are national-wide and are much easier to
access when compared with PMU data. Therefore, the
FNET/GridEye can be utilized for global analysis for the U.S.
power systems, which is impossible for PMU or SCADA
system deployed by different power utilities. For example, a
forced oscillation was observed across the entire Eastern
Interconnection from 08:44:41 UTC to 09:02:23 UTC on
January 11, 2019 [27]. First, Reliability Coordinators (RCs)
identified oscillation on PMU data and notified RC Hotline;
then FNET/GridEye provided videos of oscillation event [28];
next, the source was tentatively determined as Bayside #2
Steam Unit in Florida; finally, North America Electric
Reliability Corporation (NERC) issued PMU data request,
worked with possible source, and performed further oscillation
analysis on wide-area data set. Therefore, it can be seen that
FNET/GridEye and the corresponding event location
estimation algorithm play an important role during the actual
event identification process. They provide a global view and
preliminary location so as to coordinate the further actions
among different power utilities, and also to help select critical
PMU data required for further analysis.

iii) Traditional event location estimation algorithms using
PMU data are generally based on the voltage phase
information and they do not rely upon machine learning or
deep learning algorithms and do not need huge training data
indeed. However, the principle of these traditional algorithms
is to determine the event location as the most impact PMU. In
such a situation, the estimation results are always one of the
deployment locations of PMUs, and the actual event locations
cannot be given. The estimation error can be very large if the
actual event location is far away from the nearest deployed
PMU. In contrast, the proposed event location estimation
algorithm can estimate the actual event location based on
triangulation, oscillation intensity, and CNN comprehensively.
In brief, the traditional algorithms can only give qualitative
results while the proposed algorithm can give quantitative
results.

VI. CONCLUSIONS

In this work, a hybrid event location estimation algorithm is
proposed, which can be divided as three aspects: i) phase angle
and RoCoF trajectories are used to determine the wave arrival
time; ii) CNN is used to determine the wave arrival order so as
to modify the wave arrival time determined in i) for
triangulation; and iii) COI phase angle trajectories are used for
determining the oscillation intensity. The proposed hybrid
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algorithm is illustrated by two typical events cases and also
verified by numerous actual and confirmed cases in the U.S.
power systems. Compared with the existing event location
estimation algorithm, the proposed one can achieve much
fewer estimation errors, especially for the extreme cases in
practical applications.

It should be mentioned that the wave propagation speed is
assumed uniform so that the triangulation equations can be
solved successfully with enough conditions in this work.
However, the system frequency wave is an electromechanical
wave and its propagation speed is different at different

directions in fact, which might lead to certain estimation errors.

and is also an obstacle for several years. Besides, the FDR can
achieve a 10Hz reporting rate and better performance is
expected to be achieved once the better instrumentations with
a much higher reporting rate (1.44kHz) [29] developed by
UTK are widely deployed. Therefore, how to consider the
influence of the anisotropy of frequency waves and how to
utilize the more advanced instrumentation to achieve better
performance will be further studied in our future work.
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