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Abstract- Event location in power systems is quite essential 

information for system operators to enhance control-room 

situational awareness capability. Therefore, it is of great 

importance to develop an event location estimation algorithm for 

transmission systems with high accuracy. With the development 

of wide-area measurement system (WAMS) such as 

FNET/GridEye, and the synchrophasor measurement devices 

(SMDs) such as frequency disturbance recorders (FDRs), the 

synchronous measurement data including frequency, voltage 

amplitude and phase angle can be collected and used for event 

location estimation. First, the phase angle and rate of change of 

frequency (RoCoF) trajectories are respectively used for 

determining two sets of wave arrival time associated with each 

FDR. Then, a convolutional neural network (CNN) is utilized to 

determine the wave arrival order to select the more suitable set of 

wave arrival times for a given case and to perform corresponding 

modifications. Next, the oscillation intensity associated with each 

FDR is determined based on phase angle trajectories in the center 

of inertia (COI) coordinate system. Finally, the multiple criteria 

for event location estimation are represented. Case studies and 

comparisons between the proposed and previous algorithms using 

actual and confirmed cases in U.S. power systems are performed 

to demonstrate the effectiveness and improvement of the 

proposed algorithm in practical applications. 

 
Index Terms—event location estimation, wave arrival time, 

convolutional neural network (CNN), oscillation intensity, 

triangulation, synchrophasor measurement, FNET/GridEye, 
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I.  INTRODUCTION 

CCURATE event location estimation is of great 

importance for enhancing the capability of power system 

operators. As one of the most fundamental infrastructures for 

society and modern industry, the electric power system has 

witnessed continuous growth for its scale and complexity in 

decades with the economic growth [1]-[3]. In the meantime, 

the emergence of the wide-area measurement system (WAMS) 

brings an unprecedented way for system operators to achieve 

fast and accurate monitoring and control of power systems [4]-

[6]. Since 2003, the frequency monitoring network, 

FNET/GridEye was been developed based on synchrophasor 

technologies [7], [8], and is currently operated by the 

University of Tennessee, Knoxville (UTK) and Oak Ridge 

National Laboratory (ORNL). In the past almost 20 years, the 

FNET/GridEye has provided many critical services, such as 

situation awareness, system operations, post-event analysis 

and compliance for the partners including utilities, balancing 

authorities (BAs), regional coordinators (RCs), electric 

reliability organizations (EROs), and the U.S. federal agencies. 

The contribution of FNET/GridEye is widely acknowledged 

by the power industry. 

As one of the most important functions of the 

FNET/GridEye, the event location estimation has been 

developed and deployed to enhance the situational awareness 

ability of system operators. The real-time information 

measured from frequency disturbance recorders (FDRs) is 

used by FNET/GridEye to achieve online detection and 

location estimation of power system events so as to inform 

operators the information of events in real time and take 

corresponding responses. The basic principle of event location 

estimation applied in FNET/GridEye is triangulation based on 

the different wave arrival times among FDRs at different 

locations [9], [10]. Once the wave arrival time of three or more 

FDRs is obtained, the locations of the event can be estimated 

by solving equations using the least square method [11], [12]. 

However, accurate determination of wave arrival time is very 

difficult in actual applications, which would further influence 

the accuracy of location estimation. With the recent progress 

on the application of machine learning approaches in power 

systems, data-based system estimation applications have also 

been studied to improve the accuracy of event location 

estimation [13]-[15]. In [13], recurrence quantification 

analysis (RQA) is applied and the change rate of recurrence 
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rate (RR) is utilized to show the buses near the event location. 

In [14], the short-time local outlier probability (ST-LOP)-

based algorithm is utilized to detect and locate the events 

associated with distributed energy resources. In [15], the 

similarity search with the local outlier factor (SS-LOF)-based 

algorithm is further developed and can achieve higher 

accuracy for event location estimation with slightly longer 

computation time.  

However, the aforementioned algorithms are simply model-

based or data-based, while synthesizing them together could 

bring potential opportunities to further improve the 

performance. Given this background, this work proposes a 

hybrid estimation algorithm for event location based on 

traditional wave arrival time determination and its 

modification using a convolutional neural network (CNN), and 

oscillation intensity determination. Concretely, the term 

“events” in this work refers to generation trip (GT), load 

shedding (LS) and associated oscillations in power systems. 

The contributions of this work can be summarized as follows. 

i) The wave arrival time is determined independently by 

utilizing the rate of change of frequency (RoCoF) and phase 

angle first, and then the CNN is utilized for determining the 

wave arrival order. Coincidence indexes are defined to select 

the more consistent one, and CNN helps to modify the wave 

arrival time of FDRs in sequence, which can greatly improve 

the accuracy of the final event location estimation result. 

ii)  The oscillation intensities measured by FDRs located in 

different places are also investigated and they are employed to 

improve the estimation accuracy of event location especially 

for the severe events in power systems with large disturbances. 

Besides, it is the first time to combine multiple event location 

estimation criteria associated with triangulation and deep 

learning techniques for enhancing the performance of event 

location estimation to our best knowledge. 

iii) Demonstrations in actual U.S. power systems are 

performed and the actual measured data from FNET/GridEye 

are utilized for batch verification. Compared with the existing 

algorithm deployed in FNET/GirdEye, the proposed algorithm 

can reduce the average estimation error by 16.79%. 

Furthermore, the parameter selection and corresponding 

sensitivity analysis are performed in detail to increase the 

applicability of the proposed event location estimation 

algorithm. 

The rest of this paper is organized as follows. The principle 

of the event location estimation algorithm deployed in 

FNET/GridEye based on wave arrival time determination and 

triangulation is briefly introduced in Section II. Section III 

introduces the hybrid algorithm for event location estimation 

based on oscillation intensity determination and wave arrival 

time modification using CNN. The verifications of the 

proposed methods using the actual measured data in the U.S. 

power system are conducted in Section IV, and the 

conclusions of this work are given in Section V. 

II.  EVENT LOCATION ESTIMATION ALGORITHM BASED ON 

WAVE ARRIVAL TIME DETERMINATION AND TRIANGULATION 

The basic principle of event location estimation based on 

triangulation is to utilize the different delays of the wave 

arrival time of FDRs at different locations to represent the 

corresponding distances between actual event location and 

FDRs. Theoretically, three FDRs are enough for triangulation 

while more FDRs are needed for the robustness of the 

estimation algorithm in practice. First, coordinate system 

transformation should be performed to avoid nonlinear 

triangulation equations. Then, the event detection criterion is 

represented, which is the prerequisite of event location 

estimation. Next, a wave arrival time determination method 

that serves for triangulation is introduced. Finally, the linear 

form of triangulation for event location estimation is given. 

A.  Mutual Transformation between Geographic Coordinate 

Reference System and Universal Transverse Mercator Grid 

System 

Generally, the geographic coordinate reference (GCR) 

system is used for the global position system (GPS), so the 

locations of deployed FDRs and the event location to be 

estimated are denoted as latitude and longitude coordinates. 

Therefore, the formula of the distance between the actual event 

location and the nth FDR will be in the nonlinear form as 
E 1

E E Ecos [sin sin cos cos cos( )]n n n nD R      −= + −   (1) 

where R is the radius of the earth; E  and n  are the latitudes 

of the actual event location and the nth FDR, respectively; βE 

and βn are their longitudes, respectively. To avoid solving 

nonlinear equations in Section II-D, the latitude and longitude 

coordinates in the GCR system are required to be transformed 

into x-y coordinates in the universal transverse Mercator 

(UTM) grid system as shown in Fig. 1. Denote x and y as the 

horizontal and vertical coordinates in the UTM system, and α 

and β as the latitude and longitude coordinates in the GCR 

system. The transformation [16]-[17] from the GCR system to 

the UTM system could be expressed as follows. 
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where x0 is false northing and x0=0 for all zones in the northern 

hemisphere. y0 is false easting and y0=500 for every zone. β0 is 

the longitude of the prime meridian and β0=0. R is the radius of 

earth and R=6378.137. f is the flattening of earth and 

f=3.35381×10-3. k0 is the scale factor associated with the 

distance from the central meridian of the projection and its 

typical value is 0.9996.  
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Fig. 1. Schematic diagram for coordinate system transformation. 

 

The transformation between GCR system and UTM system 

would cause up to 0.1% error [16], which is accurate enough 

for this work. Once the latitude and longitude coordinates are 

transformed into x-y coordinates, the distance between the 

actual event location and the nth FDR be can obtained by 

 E 2 2

E E( ) ( )n n nD x x y y= − + −  (4) 

Thus, the strongly nonlinear operators sin( ) , cos( ) , and 

-1cos ( )  in (1) are eliminated and (4) can be easily 

reformulated into the linear form which will be further 

discussed in Section II-D. After determining the final event 

location, the x-y coordinates can be transformed back to 

latitude and longitude coordinates by 
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where Zzone[1, 60] is the current code of UTM zones, which 

is related to the study area. 

B.  Event Detection Trigger in FNET/GridEye Based on the 

RoCoF 

FNET/GridEye is a pilot wide-area phasor measurement 

system that can cover the national level power grid at a low 

cost. FDRs in the FNET/GridEye transmit the collected phasor 

measurements to the data center located at the UTK and 

ORNL. The FNET/GridEye data center employs a multi-layer 

architecture as shown in Fig. 2, and it is designed to receive, 

process, and archive real-time synchrophasor measurements 

[18]. In this work, the frequency data, phase angle data, and 

voltage amplitude data are taken from the FNET/GridEye for 

event location and they are all real-time synchrophasor 

measurements with a 10Hz reporting rate. 
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Fig. 2. Structure of the FNET/GridEye data center. 

 

For a detected event in power systems, the aforementioned 

data of N FDRs would be archived with the T time window 

with 10Hz resolution. They can be denoted as 

 Data Fre Ang Amp{ , , }N T N T N T  =L L L L  (7) 

Since noises exist in measurement data, it would be better 

to narrow the window for wave arrival time determination as 

short as possible. Therefore, a rough event time should be 

obtained first for further analysis, which is also the 

prerequisite for wave arrival time determination. The steps of 

real-time event detection can be briefly summarized as follows. 

Step 1: Denoise the recorded frequency data by the median 

filter and save them in a buffer for further analysis. 

Step 2: Determine the RoCoF of the nth FDR (n=1, 2, …, 

NFDR) at time t as 

 win

Fre Fre

, ,RoCoF

, FDR

win

=       ( 1, 2,..., )
n t N n t

n t

L L
L n N

N

+ −
=  (8) 

where NFDR is the number of FDR available online and Nwin is 

the window length (i.e., number of sample points) for the 

RoCoF. 
win

Fre

,n t NL +  and Fre

,n tL  are the frequency data of the nth 

FDR (n=1, 2, …, NFDR) at time t+Nwin and time t, respectively. 

In actual applications, Nwin is selected as 6 according to 

experience for avoiding noise and obtaining more robust 

results. To illustrate the influence of this parameter, 

corresponding sensitivity analysis is performed in Section V. 

Step 3: If more than N  FDRs satisfy the inequation (9), 

the event is detected and the event time is determined as tE 

 
E

RoCoF

, FDR| |         ( 1,2,..., )n tL n N =  (9) 

where N  and    are the thresholds used for event detection 

and can be tuned by past events. To illustrate the influence of 

these thresholds, the corresponding sensitivity analysis is also 

performed in Section V. 

C.  Wave Arrival Time Determination for FDRs Located in 

Different Places Based on Phase Angle Trajectories 

After an event is detected by FNET/GridEye, the wave 

arrival time for each FDR (i.e., tn, n=1, 2, …, NFDR) can be 

determined based on phase angle trajectories. As shown in Fig. 

3, there usually exists a monotonic increasing or decreasing 

trend before the disturbance, and such a trend needs to be 

removed. It is noted that the initial phase angle values of all 

FDRs are shifted to 0 in Fig. 3 for better illustrations. In this 

work, the system median angle curve within 4 seconds [19] 
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before the disturbance is used to construct the trend. As a 

straight line, the trend crosses the middle point of the median 

angle curve and has the same slope. The detrended angle 

trajectories are shown in Fig. 4 and the trend is deducted from 

each phase angle curve. 

 
Median Angle Trend

4 sec

 
Fig. 3. Monotonic increasing or decreasing trend before the disturbance.  

 

For each FDR, its wave arrival time based on phase angle 

trajectories can be determined as the point when its detrended 

angle trajectory exceeds a certain threshold. As shown in Fig. 

4, the threshold is set as the sum of a confidence parameter   

and the average value 
pre  of detrended angle trajectories 

before disturbances. Three seconds before the disturbance is 

used to determine the pre-disturbance average angle 
pre , 

while the confidence parameter   is fixed within the range 

from 0.8 to 3.2, which is empirically justified by historical 

cases in FNET/GridEye [19]. Then the final threshold is 

defined as 

 
thres pre  = +  (10) 

Thus, the wave arrival time of each FDR (i.e., tn, n=1, 2, …, 

NFDR) is determined as the first time that its detrended phase 

angle trajectory exceeds the threshold. 

 

θthres

θpre
ε

 
Fig. 4. Wave arrival time determination based on detrended phase angle 

trajectories 

D.  Event Location Estimation Based on Triangulation 

Once the wave arrival time of each FDR is determined, the 

following equations can be obtained based on the relationship 

between distance and the time delay of wave travel. 
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 (11) 

where v is average wave travel speed and is assumed as a 

uniform value for different directions; NT is the number of 

FDRs employed for triangulation (3≤NT≤NFDR). Subtract the 

adjacent equations in (11), several linear equations can be 

obtained as 

 
T T T T
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 (12) 

where cn and 
TNc  are constants and their values are 
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        (13) 

It can be seen from equations (12) and (13) that xE, yE and tE 

are the variables to be solved and all other variables are known. 

Concretely, the locations of each FDRs (i.e., xn and yn, n=1, 

2, …, NT) can be obtained in advance, the wave arrival time 

(i.e., tn, n=1, 2, …, NT) can be determined by equation (10). 

Therefore, these equations can be solved by the least square 

method by 

 T -1 T=( )A A A c  (14) 

where ̂ =[
E E Ê

ˆ ˆ, ,x y t ]T, c=[
T1 2, ,..., Nc c c ]T and  
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( )N N N
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x x y y v t t

x x y y v t t

 − − − −
 

− − − − 
 
 

− − − −  

A  (15) 

It should be mentioned that the NT should be equal to or 

larger than 3, which can be either explained from a physical or 

mathematical perspective. From the physical perspective, at 

least three measurement points and corresponding distance can 

uniquely locate the source point in 2D plane. From the 

mathematical perspective, the rank of the product of two 

matrices is smaller than either of them according to the theory 

of linear algebra. A is a NT×3 dimensional matrix and ATA is a 

3×3 dimensional matrix. Therefore, NT is required to be 3 or 

larger so that ATA can be a full rank matrix and (ATA)-1 in 

equation (14) can be solved. 

In practical applications, NT will be iterated from 3 to 10 

and the final result is determined with the least fitting residuals. 

The fitting residuals can be denoted as 

 
T

2 2 2

E E E E

1

ˆˆ ˆ( ) +( ) ( )
N

n n n

n

e x x y y t t
=

= − − + −  (16) 

It is also worth mentioning that the principle of selecting 

FDRs is to select the FDRs with the earliest NT wave arrival 

times. After the final Ex̂  and Eŷ  are determined, the latitude 

and longitude of the event E̂  and 
E̂  can be determined as 

well by coordinate system transformation mentioned in 

Section II-A. 

III.  HYBRID ALGORITHM FOR EVENT LOCATION ESTIMATION 

During the applications of the algorithm mentioned in 

Section II, it is found that the estimation errors are still very 

large for several cases (e.g., >800miles). The most critical 

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on June 08,2022 at 20:25:44 UTC from IEEE Xplore.  Restrictions apply. 



0885-8977 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2022.3173974, IEEE
Transactions on Power Delivery

 5 

reason could be that the system frequency wave is the 

electromechanical wave whose speed is different for different 

directions. Therefore, assuming v as a uniform value would 

cause errors. However, if the v is set as an anisotropic variable, 

then (11) would be the underdetermined system of equations 

and the solution of event location cannot be obtained. 

Therefore, the variable v is still assumed as a constant in this 

work and a new hybrid event location estimation algorithm is 

presented in this section for further mitigating the location 

estimation errors as small as possible. Compared with existing 

ones, the new algorithm: i) considers the oscillation intensity 

as an auxiliary criterion for the severe events; ii) takes both the 

phase angle data and the RoCoF data for wave arrival time 

determination, and a CNN structure is proposed for further 

time modification. 

A.  Oscillation Intensity Determination of Events 

In fact, considerable phase angle variations would be caused 

when major events happen in power systems. Therefore, these 

characteristics can be utilized to boost the performance of 

event location estimation. 

It should be mentioned that i) the initial phase angles of 

different buses are already different which is hard to measure 

the oscillation intensity differences among different places 

intuitively; and ii) a reference phase angle trajectory is needed 

for determining the oscillation intensity in different places 

while how to automatically select a suitable reference 

trajectory should be taken into consideration. For the first issue, 

it can be solved by subtracting the value of the first point (i.e., 
Ang

,1nL ) from the subsequent values, which can be represented as 

 Ang Ang Ang

, , ,1n t n t nL L L

= −  (17) 

where Ang

,n tL  and Ang

,1nL  are the phase angle data of the nth FDR at 

time t and the beginning point of the event (i.e., tE in (9)), 

respectively. For the second issue, the concept of center of 

inertia (COI) can be utilized, and all phase angle trajectories 

can be transformed into COI coordinate system, i.e., 

 AngCOI Ang Ang

, , COIn t n tL L L


= −  (18) 

where Ang

COIL  is the COI for the phase angle and can be 

calculated as 

 
Ang Ang

COI ,

1 1

= /
N N

n n t n

n n

L H L H


= =

   (19) 

where Hn is the inertia near the nth FDR and can be estimated 

by the method introduced in our previous work [20] using 

synchrophasor measurement data at multiple locations. 

Sometimes, it is hard to estimate the value of Hn. In these 

situations, the values of all Hn (n=1,2, …, N) can be regarded 

as the same value, and then (18) would be degraded into 

 
AngCOI Ang Ang

, , ,

1

1 N

n t n t n t

n

L L L
N

 

=

= −   (20) 

An illustration of the phase angle trajectories in the original 

coordinate system and COI coordinate system is shown in Fig. 

5. It can be seen that it difficult to measure the relative angle 

differences among different trajectories intuitively in Fig. 5a, 

while it will be more vivid if using Fig. 5b. Therefore, the 

oscillation intensity of the event near the nth FDR can be 

defined as 

    AngCOI AngCOI

, ,
11

max minn n t n t
t Tt T

I L L
  

= −  (21) 

The oscillation intensity describes the extent of phase angle 

variation and can be used for characterizing the distance 

between the actual event location and the given FDR. 

Generally, the higher the In is, the shorter the distance between 

the actual event location and the nth FDR is. However, in 

actual applications, it is found that using wave arrival time to 

determine the distance is more accurate than using oscillation 

for most cases. Indeed, the idea of incorporating the intensity 

into the event location estimation is empirical and it is based 

on the evidence that severe events would lead the large 

oscillations of phase angle near the event location. Generally, 

the larger the oscillations, the nearer the event location to the 

measurement devices. To avoid the misapplications of the 

oscillation intensity-based method, the oscillation intensity is 

only used as an auxiliary criterion and is designed for the 

severe events that happen in power systems that cause large 

oscillation. For these situations with severe events, a parameter 

η is also defined for deciding whether trigger this criterion and 

the effectiveness of the oscillation intensity-based criterion 

will be shown in Section IV-B and Section V-C, which 

achieves quite good results. 

 

 
(a)                                                         (b) 

Fig. 5. Illustration of phase angle trajectories. (a) Original coordinate system; 
(b) COI coordinate system. 

B.  Wave Arrival Time Modification Based on CNN 

Since the wave arrival time determination method based on 

phase angle as given in (10) is not quite accurate in some cases 

in practice, another wave arrival time determination method 

based on RoCoF is also represented as a supplement. In 

addition, a CNN structure is utilized to decide which one 

should be used and to give corresponding modifications for a 

certain case. The rationale and necessity of using CNN for 

determining wave arrival order are as follows. 

i) Both the wave arrival time determination method based 

on phase angle trajectories and RoCoF require the subjective 

engineering experience and different wave arriving times may 

be obtained by them, which need additional modification.  

ii) CNN structure only needs the objective measurement 

data as the inputs to determine the wave arrival order by 

comparing each data pair, and the measurement data in the 

whole time interval are utilized, which can give more 

comprehensive results. 

iii) CNN structure can only determine the wave arrival 

order since the ground truth of event time cannot be known 
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and cannot be utilized for training. Therefore, the wave arrival 

time is determined based on phase angle trajectories and 

RoCoF first and is modified based on the CNN model after 

that. 

In fact, the rate of change of frequency (RoCoF) is the time 

derivative of the power system frequency and has been utilized 

for power system relay [21], event detection [22] or event 

classification [23] recently. The effectiveness of using RoCoF 

has been demonstrated in the literature. As the derivative of 

the frequency signal, RoCoF is more sensitive to the frequency 

change in power systems when compared with frequency data 

itself and can detect the power system event or perform 

frequency relay much faster. The wave arrival time based on 

RoCoF can be determined as the first time t that satisfies (22) 

for generation trip events and (23) for load shedding events. 

   
E pre E post

RoCoF RoCoF

, , 1max min ,  n t n t
t t t t t

L L 
−   +

  (22) 

   
E pre E post

RoCoF RoCoF

, , 2min max ,  n t n t
t t t t t

L L 
−   +

  (23) 

where tpre and tpost are the times before and after the event 

occurs, respectively; 1  and 2  are parameters and has been 

tuned as -0.015 and 0.015 by past events, respectively. To 

illustrate the influence of these thresholds, the corresponding 

sensitivity analysis is performed in Section V. 

In brief, the CNN-based time modification is developed by 

determining the wave arrival order. Because the number of 

available FDRs in each event is uncertain, the order is 

determined in a pairwise manner for better flexibility and 

robustness. The inputs of the proposed CNN-based model are 

the frequency data from two FDRs to be compared, and the 

outputs of the proposed CNN-based model are the results (i.e., 

0 or 1) that denote which FDR wins. Therefore, each time the 

CNN model compares two FDRs to determine their relative 

wave arrival order as shown in Fig. 6. For an event with NFDR 

available FDRs, NFDR(NFDR-1) comparisons would be 

performed and the Borda count method [24] is applied to 

aggregate pairwise orders into the order of all FDRs. 

Let k

i  represents the outcome of the kth comparison for the 

ith FDR, then it can be denoted as 
th th1,          if the  FDR wins in the  comparison

0,         otherwise

k

i

i k
 = 


 (24) 

Therefore, the quantity k

i i

k

N =   corresponds to the 

number of comparisons that the ith FDR wins. The wave arrival 

order of all FDRs then is derived from the descending order of 

their numbers of pairwise wins. In other words, the first FDR 

in wave arrival order has the largest number of wins, the 

second FDR has the second largest number of wins, and the 

rest are similar. Thus, although the wave arrival time cannot be 

obtained by the proposed CNN model, the wave arrival order 

can be determined and can be denoted as W
CNN 

n  (n=1, 2, …, 

NFDR). However, the judgment on the coincidence of RoCoF 

and phase angle results with the CNN ordering is inconvenient 

based on observation. Therefore, a proper coincidence index 

should be defined. Assume that the wave arrival time 

determined by phase angle and RoCoF are denoted as t
Ang 

n  and t
RoCoF 

n , and the corresponding order are denoted as W
Ang 

n  and W
RoCoF 

n  (n=1, 2, …, NFDR), then the coincidence indexes can be 

defined as 

 

FDR

Ang CNN

1

A2C 2

FDR

| |

1

N

n n

n

W W

C
N

=

−

= −


 (25) 

 

FDR

RoCoF CNN

1

R2C 2

FDR

| |

1

N

n n

n

W W

C
N

=

−

= −


 (26) 

where CA2C and CR2C respectively denote the consistency 

between W
Ang 

n  and W
CNN 

n  and the consistency between W
RoCoF 

n  

and W
CNN 

n . If CA2C>CR2C, then W
Ang 

n  is more consistent with W
CNN 

n ; otherwise, W
RoCoF 

n  is more consistent with W
CNN 

n . Next, the 

more consistent one’s wave arrival time would be utilized and 

is denoted as t
mid 

n . (i.e., t
Ang 

n  or t
RoCoF 

n ). It should be noted that 

although the order of t
mid 

n  is more consistent with W
CNN 

n , there 

still are some differences. Hence, the t
mid 

n  should be further 

modified as  

  CNN

mid mid

FDRmin ,      1,2,...,
n

n n W
t t t n N= =  (27) 

so as to avoid the situation that the FDRs with the front order 

are with the late wave arrival time. For example, if NFDR=5 and 

the t
Ang 

n , t
RoCoF 

n  and W
CNN 

n  determined are shown in Fig. 7.  
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Fig. 6. CNN structure for wave arrival time modification. 
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From t
Ang 

n  are t
RoCoF 

n , W
Ang 

n  and W
CNN 

n  can be determined and 

compared with W
CNN 

n . Since CA2C<CR2C, t
RoCoF 

n  is taken as t
mid 

n . It 

can be seen that t
mid 

2 >t
mid 

3  and t
mid 

4 >t
mid 

5 , which are conflict with 

the W
CNN 

n . Therefore, t
mid 

2  is further modified and t2=t
mid 

3 =4.300; t
mid 

4  is further modified and t4=t
mid 

5 =5.312. 
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Fig. 7. An example for the wave arrival time modification based on the CNN 

model. 

 

C.  Comprehensive Event Location Estimation Algorithm with 

Multiple Criteria Considered for Practical Applications 

In fact, a single criterion cannot achieve good performance 

in practical applications due to the measurement data quality, 

communication delay and unexpected errors. Therefore, it is of 

great necessity to pre-process the measured data first and then 

combine multiple estimation criteria together so as to reduce 

the errors of final event location estimation. The flowchart of 

the proposed hybrid event location estimation algorithm is 

shown in Fig. 8, and there are three stages as follows. 

i) Data pre-processing;  

ii) Wave arrival time and oscillation intensity determinations;  

iii) Event location estimation.  

 

Data Pre-processing
Begin

Load frequency, voltage angle and amplitude data

Denoise the data using the median filter

Obtain RoCoF by (8)

Determine the event time with the 

criterion (i.e. RoCoF>0.005Hz/s) 

Determine the wave 

arriving time of each 
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Determine the wave arriving 

order of each FDR by CNN 

based on measured data 

Use the wave arriving order by CNN 

and modify the wave arriving time

Determine the oscillation intensity 

based on voltage angle data
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intensity>η?
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the FDR with the largest intensity 

and use the location of searched 

plant as the final event location
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Triangulate by the weight least square 
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Use the triangulation result 
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by phase angle trajectory 

 
Fig. 8. Flowchart of proposed hybrid algorithm. 

 

In the first stage, the measured data are denoised and 

smoothed by using the median filter, and the RoCoF is 

obtained by (8). In the second stage, the two different sets of 

wave arrival time are respectively determined by phase angle 

and RoCoF, and CNN is employed for selecting the set of 

wave arrival time for a given case and giving corresponding 

modifications. In the meantime, the oscillation intensity near 

each FDR is determined based on phase angle data in COI 

coordinate system. In the last stage, multiple criteria are used 

to estimate the event location for a given case 

comprehensively. Concretely, if the difference of oscillation 

intensity between the largest and the second-largest exceeds a 

given threshold η, the event location will be estimated as the 

location of the power plant that is nearest to the FDR with the 

largest oscillation intensity; otherwise, the event location will 

be estimated by triangulation based on the differences among 

wave arrival time that is determined by phase angle, RoCoF, 

and CNN modification. In the estimation process, the number 

of FDRs (i.e., NT) will be iterated from 3 to 10 to find the 

result with the least variance. 

IV.  CASE STUDIES 

To verify the effectiveness of the proposed algorithm, the 

actual measured and confirmed cases are utilized in this 

section for demonstrations and comparisons. Concretely, Case 

1 is mainly utilized to illustrate the effectiveness of the 

criterion based on wave arrival time determination and CNN 

modification; Case 2 is mainly utilized to illustrate the 

effectiveness of the criterion based on oscillation intensity. In 

addition, the test performed on a large number of cases is also 

given to show the improvement of the proposed algorithm 

when compared with the previous one. It should be clarified 

that almost 800 events have been recorded by FNET/GridEye 

in the past and some of them are confirmed by power 

companies (e.g., North American Electric Reliability 

Corporation (NERC)), and the CNN model has been trained by 

them. Concretely, 80% of confirmed cases are utilized to train 

the CNN model, and the rest of them are utilized in work for 

testing the performance of the proposed hybrid event location 

estimation algorithm. Since the data are collected by deployed 

FDRs, the data arrival rate (i.e., data reporting rate) of this 

work is 10Hz, i.e., 10 points per second. Furthermore, the GPS 

coordinates of each FDR and the GPS coordinates of each 

power plant are the network data required for the analysis of 

this work.  

A.  Case 1: Generation Trip Occurs in Michigan 

At 2019-10-19 21:59:03 UTC, a generation trip event in 

Michigan was detected by FNET/GridEye and this case is 

taken as an example of the aforementioned wave arrival time 

and order determination methods. In this case, the criterion 

based on oscillation intensity is not triggered, so only the 

trajectories of RoCoF and detrended phase angle are shown in 

Fig. 9, respectively. Based on the pre-tuned thresholds, the 

wave arrival time of each FDR determined by phase angle and 

RoCoF is given in Table I. Besides, the wave arrival order 
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determined based on CNN is also given. It can be seen from 

Table I that the wave arrival time determined based on RoCoF 

is more consistent with the order determined based on CNN. 

Therefore, the wave arrival times determined by RoCoF are 

used for this case. It is worth mentioning the wave arrival time 

of UsNyLewiston1436 (i.e., 21:59:04.500) is later than the one 

of UsNyLeroy985 (i.e., 21:59:04.300). Thus, the wave arrival 

time of UsNyLewiston1436 will be modified as 21:59:04.300 

in practice and the final wave arrival time of each FDR is 

given in the last column of Table I. 

I1

Valid Calculation Window

tE- tpre tE+tposttE

Upper Threshold

Lower Threshold

 
(a) 

θthres

θpre
ε

 
(b) 

Fig. 9. RoCoF and detrended phase angle trajectories of Case 1. (a) RoCoF 

trajectories; (b) Detrended phase angle trajectories. 

 
TABLE I 

RESULTS OBTAINED BY PHASE ANGLE-BASED AND ROCOF-BASED WAVE 

ARRIVAL TIME DETERMINATION AS WELL AS THE CNN-BASED ARRIVAL 

ORDER DETERMINATION FOR CASE 1 

FDR Name 
Ang

nt  
RoCoF

nt  Order Final tn 

UsOhAkron998 21:59:03.948 21:59:04.000 1 21:59:04.000 

UsNyLewiston1436 21:59:04.019 21:59:04.500 2 21:59:04.300 

UsNyLeroy985 21:59:04.031 21:59:04.300 3 21:59:04.300 

CaOnToronto703 21:59:01.323 21:59:05.300 4 21:59:05.300 

UsOhChilliecothe670 21:59:04.119 21:59:05.300 5 21:59:05.300 

… … … … … 

 

In Fig. 10, the blue and red rectangles respectively indicate 

the first 5 FDRs selected by the previous location estimation 

algorithm and the proposed hybrid algorithm, and the number 

indicates its order, while the numbers in purple ones indicate 

the order determined by CNN. The actual event location is 

(42.304845, -83.152733), which is denoted as the red pin in 

Fig. 10. It can be seen that the proposed hybrid algorithm is 

more accurate with regard to the wave arrival order. The final 

estimated locations determined by the previous and proposed 

hybrid algorithms are given in Table II and shown in Fig. 10 as 

the white and blue pins, respectively. It can be seen that the 

proposed hybrid algorithm reduces the error from 265.78mi to 

92.21mi when compared with the previous algorithm. 
 

TABLE II 

COMPARISONS WITH THE PREVIOUS ALGORITHM FOR CASE 1 

Previous Algorithm [11], [19] Proposed Algorithm 

Estimated Location Error Estimated Location Error 

(40.7506, -78.4953) 265.78mi (43.6103, -83.4856) 92.21mi 

Actual Location: (42.304845, -83.152733). 
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Fig. 10. Results of the phase angle-based and RoCoF-based wave arrival time 

and CNN-based wave arrival order. 

B.  Case 2: Generation Trip Event Occurs in Florida 

At 2018-01-12 21:53:10 UTC, a generation trip event in 

Florida was detected by FNET/GridEye, and the 

corresponding frequency and COI phase angle trajectories are 

shown in Fig. 11. Besides, the COI phase angle trajectories of 

the FDRs with the largest and the second-largest oscillation 

intensities (i.e., UsFIMiami1000 and UsAIAndalusia938) are 

shown in Fig. 12. It can be seen that I1/I2>η=1.3, so the 

oscillation intensity-based criterion is activated and the event 

location is estimated at the closest power plant near FDR 

UsFIMiami1000. The final estimation results obtained by the 

previous algorithm and the proposed algorithm are given in 

Table III, and it can be seen that the proposed algorithm can 

achieve much smaller error (i.e., reducing the error from 

87.51mi to 44.98mi), which demonstrates the effectiveness of 

the oscillation intensity-based criterion. 

 
Fig. 11. Frequency and COI phase angle trajectories of Case 2. (a) Frequency 

trajectories; (b) COI phase angle trajectories. 

 
TABLE III 

COMPARISONS WITH THE PREVIOUS ALGORITHM FOR CASE 2 

Previous Algorithm [11], [19] Proposed Algorithm 

Estimated Location Error Estimated Location Error 

(26.6967, -81.7831) 87.51mi (26.0686, -80.1984) 44.98mi 

Actual Location: (26.6986, -80.3747). 
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Fig. 12. Oscillation intensity determined for Case 2. 

C.  Practical Applications in Actual U.S. Power Systems and 

Batch Comparisons between the Proposed and the Previous 

Algorithms  

It should be mentioned that the tests in a large number of 

cases are also required for comprehensive comparisons. There 

are total of 100 confirmed cases employed in this section and 

the results are shown in Fig. 13. It can be seen that both the 

proposed and previous algorithms can achieve small errors 

(i.e., <200miles) for most cases and the proposed algorithm is 

slightly better than the previous one. However, there are large 

estimation errors for several extreme cases when using the 

previous algorithm while the proposed algorithm can greatly 

reduce the estimation errors. The statistics of errors for batch 

comparisons between the proposed and the previous algorithm 

are given in Table IV. Note that the case with the largest error 

(i.e., 10020mi) of the previous algorithm in Fig. 12 is removed 

for fair comparisons, since this outlier would greatly increase 

the mean value and standard deviation of the previous 

algorithm. Even though, it can be seen from Table IV that the 

proposed hybrid algorithm outperforms the previous one from 

all aspects. The maximum value, median value and mean value 

of errors are respectively reduced by 45.96%, 9.11%, and 

16.79%, which show the accuracy promotion of the proposed 

algorithm. The standard deviation of errors is reduced by 

48.84%, which indicates the greater robustness of the proposed 

algorithm. 
TABLE IV 

STATISTICS OF ERRORS FOR BATCH COMPARISONS BETWEEN THE PROPOSED 

AND THE PREVIOUS ALGORITHM 

Statistics of Errors 
Previous Algorithm 

[11], [19] 

Proposed 

Algorithm 
Change 

Minimum Value 0mi 0mi 0% 

Maximum Value 1355.28mi 732.40mi -45.96% 

Median Value 92.41mi 83.99mi -9.11% 

Mean Value 154.30mi 128.40mi -16.79% 

Standard Deviation 268.36mi 137.30mi -48.84% 

 

It should be acknowledged that the maximum error of the 

proposed algorithm (i.e., 732.40mi) is not acceptable. However, 

these relatively large errors of the proposed algorithm are 

associated with the numerical problems in the process of 

solving linear equations. Concretely, the cause of numerical 

problems is unsuitable FDRs (e.g., FDRs that are located too 

close) are selected, which leads to the singularity of matrix A 

in (15). Although few situations with relatively large errors 

cannot be completely avoided, these situations can be known 

in advance by checking if the matrix A in (15) is singular or if 

the value of residuals in (16) is extremely large. Therefore, 

corresponding notices can be delivered by the proposed 

algorithm for the quite inaccurate cases in advance to remind 

operators it is necessary to verify these results before use.  
 

 
Fig. 13. Comparisons between the proposed and previous algorithms. 

 

The event location estimation algorithm has been deployed 

in FNET/GridEye and an event report with the estimated event 

location and other critical information can be generated for 

each detected event in power systems, as shown in Fig. 14. 

It is noted that the CNN part is trained by past confirmed 

events in Python 2.7 environment with 4-fold cross-validation 

by using GTX 1060 GPU, and the rest parts are implemented 

in MATLAB 2020a environment with Core i5-7400 CPU and 

16GB RAM. The training time for CNN model is 22h16min, 

the testing time for each case is around 1s. It can be seen that 

although it cost long time to train the CNN model, the online 

testing time is quite short. Since the training can be performed 

in off-line stage, the computation time of the proposed event 

location estimation algorithm is acceptable in practical 

application.  

 

 
Fig. 14. Event report generated by FNET/GridEye for a given case. 
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V.  DISCUSSIONS 

This work aims to propose a practical event location 

estimation algorithm for applications, therefore, several 

parameters or thresholds are required to be introduced to deal 

with various actual situations, and they are determined 

according to the engineering experience from past events. In 

fact, if the measured data are ideal, these parameters and 

thresholds are unnecessary or can be easily selected. However, 

it makes no sense if the practical situations are not considered. 

Therefore, it is also significant to study these parameters or 

thresholds (i.e., N ,   , Nwin, 1 , 2 ,  ) comprehensively 

for better applications in practice. Concretely, N  and    are 

associated with the event time determination, which cannot be 

known very precisely for actual events, therefore, simulated 

data with noise considered are utilized for the sensitivity 

analysis for them about event time determination. Nwin, 1  and 

2  are associated with the RoCoF determination and wave 

arrival time determination. Although it is hard to judge their 

influence directly, the performance obtained by different 

values of them can be reflected by the final errors in location 

estimation. Therefore, the actual measured data are utilized for 

the sensitivity analysis of Nwin, 1  and 2 . Similarly, although 

it is hard to evaluate the parameter   directly, the performance 

obtained by different values of   can be reflected by the final 

errors in location estimation. Therefore, the actual measured 

data are utilized for the sensitivity analysis of   as well. 

It should be clarified that: i) event time cannot be obtained 

very precisely for actual events but can be obtained for 

simulated ones, therefore, the first sensitivity analysis needs to 

be performed by simulated data; ii) simulated data are lack of 

geographic information (i.e., GPS coordinates), therefore, the 

last two sensitivity analyses need to be performed by the actual 

measured data. Furthermore, using actual measured data would 

be more in line with the actual situation and can test the 

robustness of the proposed algorithm. 

A.  Sensitivity Analysis of N  and    for Event Time 

Determination 

N  and    are two parameters for event detection. 

Concretely, N  controls the least number of FDRs receiving 

disturbance wave can announce an event, and    controls the 

weakest wave fluctuation that can announce an event. Small 

values of N  and    can detect the events more sensitively 

while it may also cause error detections; on the contrary, large 

values of N  and    can detect the events more firmly while 

it may cause missing detections. To study the influence of N  

and   on event time determination, hundreds of simulated 

cases are utilized for sensitivity analysis, and the average 

errors for event time determination are shown in Fig. 15. It 

should be mentioned that Gaussian noises with 30dB signal-

noise ratio (SNR) were added for the simulated data. 

 It can be seen from Fig. 15 that the average errors are 

relatively small when N <5 and 0.020<   <0.030. Therefore, 

any values of N  and    that within the above range can be 

selected for event time determination since the values of the 

average errors are relatively smaller and stable in this range. In 

particular, the smallest average error is 0.1735 and is obtained 

when N =4 and   =0.0221. Therefore, the parameters N =4 

and   =0.0221 are employed in this work. It should be 

clarified that different selections of the parameters N  and    

would cause the increase of average errors in this work. 

However, the differences among errors would not be very 

large as long as N <5 and 0.020<   <0.030.  

 
Fig. 15. Result of the sensitivity analysis of N  and   . 

B.  Sensitivity Analysis of Nwin, 1  and 2  for RoCoF 

Determination and Wave Arrival Time Determination 

Due to the measurement noise in actual situations, 

practicable values of RoCoF cannot be obtained if Nwin=1, 

which would cause large errors for event location estimation. 

Due to the same reason, the parameters 1  and 2  are also 

introduced to determine the wave arrival time more precisely. 

Therefore, the sensitivity analysis of Nwin, 1  and 2  is 

performed in this sub-section, and their influences on the final 

location estimation errors are shown in Fig. 16. It is noted that 

1  and 2  are symmetric variables (i.e., 1 2= − ) and the 

values in the x-axis denote the values of 1 . It is also worth 

mentioning that each group of the parameters Nwin, 1  and 2  

are tested by all actual measured events mentioned in Section 

IV-C, and the errors in Fig. 16 are the mean values. 

 

 
Fig. 16. Result of the sensitivity analysis of Nwin, 1  and 2 . 

 

It can be seen that the errors are quite large when Nwin is 

smaller than 5 or larger than 15. Although different cases may 

have the different best selection of 1  and 2 , the sensitivity 

analysis finds that 1  and 2  also have an insensitive interval. 
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The results in Fig. 16 demonstrate that the event location 

estimation errors are relatively small when 1  is larger than 

0.002 or smaller than 0.001. Therefore, as long as 

10.001 0.002   (i.e., 20.002 0.001−   − ), the change of 

1  and 2  will not have a large impact on the final event 

location estimation accuracy. 

In summary, the errors in the center of Fig. 16 are relatively 

small and stable, so the parameters can be selected in this 

range with no big difference. Hence, Nwin=6, 1 =0.015, and 

2 =-0.015 are utilized in the proposed algorithm. 

C.  Sensitivity Analysis of   for the Triggering Condition of 

Oscillation Intensity Criteria 

The parameter   decides whether the oscillation intensity 

criteria should be used. Similar to Section V-B, the value of   

is enumerated and tested by all actual events, and the results 

are shown in Fig. 17. It can be observed that the errors are very 

larger on the left side and decrease sharply with the increase of 

 . However, the errors increase again when   larger than 

1.20. The reason is the reliability of oscillation intensity 

criteria for location estimation is lower than the criteria of 

wave arrival time (e.g., oscillation may occur far away from 

the fault source sometimes). Therefore, the errors can be quite 

large when   is near to 1 (i.e., oscillation intensity criteria 

would be always triggered). When   is set too large 

(i.e., >1.2), then the criteria would not be triggered anymore. 

Therefore,  =1.15 is utilized in this work so that the 

oscillation intensity criteria would only be triggered for 

auxiliary location estimation when oscillations are large 

enough.  

 

 
Fig. 17. Result of the sensitivity analysis of  . 

D.  Illustrations about the Practical Significances of 

FENT/GridEye and the Proposed Event Location Estimation 

Algorithm  

The practical significances of FNET/GridEye and the 

proposed event location estimation algorithm can be clarified 

in the following three aspects. 

i) The FNET/GridEye is a WAMS network deployed at the 

distribution level and high dynamic accuracy FDRs are used to 

measure the frequency, phase angle, and voltage for the U.S. 

power systems [25], [26]. Compared with transmission-level 

WAMS and commercial PMUs, the installation density of 

FDR is much smaller. Therefore, it is unfair to compare the 

effectiveness of event location estimation between the 

algorithm using FDR data and the algorithm using PMU or 

SCADA data. In fact, the proposed algorithm was also tested 

by using actual PMU data, and the error is 0 for most cases. 

Hence, it is the limitations of the number of measurement 

devices and data that cause the relatively large errors, rather 

than the proposed event location estimation algorithm. 

ii) Even though the SCADA system can locate the events 

more accurately sometimes, the FNET/GridEye also have 

unique significance under the situations in the U.S. power 

systems. It should be noted that there are several power 

utilities in the U.S. and each power utility can only access their 

own measurement data and do not have an overall view of the 

whole power system. In contrast, the measurement data of 

FNET/GridEye are national-wide and are much easier to 

access when compared with PMU data. Therefore, the 

FNET/GridEye can be utilized for global analysis for the U.S. 

power systems, which is impossible for PMU or SCADA 

system deployed by different power utilities. For example, a 

forced oscillation was observed across the entire Eastern 

Interconnection from 08:44:41 UTC to 09:02:23 UTC on 

January 11, 2019 [27]. First, Reliability Coordinators (RCs) 

identified oscillation on PMU data and notified RC Hotline; 

then FNET/GridEye provided videos of oscillation event [28]; 

next, the source was tentatively determined as Bayside #2 

Steam Unit in Florida; finally, North America Electric 

Reliability Corporation (NERC) issued PMU data request, 

worked with possible source, and performed further oscillation 

analysis on wide-area data set. Therefore, it can be seen that 

FNET/GridEye and the corresponding event location 

estimation algorithm play an important role during the actual 

event identification process. They provide a global view and 

preliminary location so as to coordinate the further actions 

among different power utilities, and also to help select critical 

PMU data required for further analysis. 

iii) Traditional event location estimation algorithms using 

PMU data are generally based on the voltage phase 

information and they do not rely upon machine learning or 

deep learning algorithms and do not need huge training data 

indeed. However, the principle of these traditional algorithms 

is to determine the event location as the most impact PMU. In 

such a situation, the estimation results are always one of the 

deployment locations of PMUs, and the actual event locations 

cannot be given. The estimation error can be very large if the 

actual event location is far away from the nearest deployed 

PMU. In contrast, the proposed event location estimation 

algorithm can estimate the actual event location based on 

triangulation, oscillation intensity, and CNN comprehensively. 

In brief, the traditional algorithms can only give qualitative 

results while the proposed algorithm can give quantitative 

results. 

VI.  CONCLUSIONS 

In this work, a hybrid event location estimation algorithm is 

proposed, which can be divided as three aspects: i) phase angle 

and RoCoF trajectories are used to determine the wave arrival 

time; ii) CNN is used to determine the wave arrival order so as 

to modify the wave arrival time determined in i) for 

triangulation; and iii) COI phase angle trajectories are used for 

determining the oscillation intensity. The proposed hybrid 
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algorithm is illustrated by two typical events cases and also 

verified by numerous actual and confirmed cases in the U.S. 

power systems. Compared with the existing event location 

estimation algorithm, the proposed one can achieve much 

fewer estimation errors, especially for the extreme cases in 

practical applications.  

It should be mentioned that the wave propagation speed is 

assumed uniform so that the triangulation equations can be 

solved successfully with enough conditions in this work. 

However, the system frequency wave is an electromechanical 

wave and its propagation speed is different at different 

directions in fact, which might lead to certain estimation errors. 

and is also an obstacle for several years. Besides, the FDR can 

achieve a 10Hz reporting rate and better performance is 

expected to be achieved once the better instrumentations with 

a much higher reporting rate (1.44kHz) [29] developed by 

UTK are widely deployed. Therefore, how to consider the 

influence of the anisotropy of frequency waves and how to 

utilize the more advanced instrumentation to achieve better 

performance will be further studied in our future work. 
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