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Data-Driven Event Identification in the U.S. Power
Systems Based on 2D-OLPP and RUSBoosted Trees
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Weikang Wang

Abstract—Accurate event identification is an essential part of
situation awareness ability for power system operators. Therefore,
this work proposes an integrated event identification algorithm for
power systems. First, to obtain and filter suitable inputs for event
identification, an event detection trigger based on the rate of change
of frequency (RoCoF) is presented. Then, the wave arrival time
difference-based triangulation method considering the anisotropy
of wave propagation speed is utilized to estimate the location of
the detected event. Next, the two-dimensional orthogonal locality
preserving projection (2D-OLPP)-based method, which is suit-
able for multiple types of measured data, is employed to achieve
higher effectiveness in extracting the event features compared with
traditional one-dimensional projection and principle component
analysis (PCA). Finally, the random undersampling boosted (RUS-
Boosted) trees-based classifier, which can mitigate the data sample
imbalance issue, is utilized to identify the type of the detected event.
The proposed approach is demonstrated using the actual measure-
ment data of U.S. power systems from FNET/GridEye. Comparison
results show that the proposed event identification algorithm can
achieve better performance than existing approaches.

Index Terms—Event identification, triangulation, two-
dimensional orthogonal locality preserving projection (2D-OLPP),
random undersampling boosted (RUSBoosted) trees, FNET/Grid-
Eye.

\AY%

Manuscript received August 30, 2020; revised January 17, 2021 and May
5, 2021; accepted June 20, 2021. Date of publication June 24, 2021; date of
current version December 23, 2021. This work was supported in part by the
Engineering Research Center Program of the National Science Foundation and
the Department of Energy under NSF Award no. EEC-1041877, the CURENT
Industry Partnership Program and the NSF Cyber-Physical Systems (CPS)
Program under Award no. 1931975, in part by the National Natural Science
Foundation of China under Grant 52077195, and in part by the Zhejiang
University Academic Award for Outstanding Doctoral Candidates under Grant
202022. Paper no. TPWRS-01481-2020. (Corresponding Author: Zhenzhi Lin.)

Shengyuan Liu is with the School of Electrical Engineering, Zhejiang Uni-
versity, Hangzhou 310027, China, and also with the Department of Electrical
Engineering and Computer Science, University of Tennessee, Knoxville, TN
37996 USA (e-mail: eelsy @zju.edu.cn).

Shutang You, Chujie Zeng, Hongyu Li, and Weikang Wang are with
the Department of Electrical Engineering and Computer Science, Univer-
sity of Tennessee, Knoxville, TN 37996 USA (e-mail: syou3@utk.edu;
czeng8@vols.utk.edu; hli90 @utk.edu; wwang72@vols.utk.edu).

Zhenzhi Lin is with the School of Electrical Engineering, Zhejiang University,
Hangzhou 310027, China, and also with School of Electrical Engineering,
Shandong University, Jinan 250061, China (e-mail: linzhenzhi @zju.edu.cn).

Xuetao Hu is with the School of Electrical Engineering, Zhejiang University,
Hangzhou 310027, China (e-mail: hxt_hult@yeah.net).

Yilu Liu is with the Department of Electrical Engineering and Computer
Science, University of Tennessee, Knoxville, TN 37996 USA, and also with Oak
Ridge National Laboratory, Oak Ridge, TN 37830 USA (e-mail: liu@utk.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TPWRS.2021.3092037.

Digital Object Identifier 10.1109/TPWRS.2021.3092037

, Member, IEEE, Zhenzhi Lin
, Xuetao Hu, and Yilu Liu

, Member, IEEE, Chujie Zeng, Hongyu Li,
, Fellow, IEEE

I. INTRODUCTION

HE dynamic response of power systems after disturbances
T is more and more complex due to the ever-increasing
power system scale and penetration of renewable energy sources
(RES) [1]. Hence, it becomes more difficult to detect, lo-
cate, and classify the events in power systems accurately and
timely. In the past, power system operators relied on field
crews to identify grid events according to operation records
and conduct the corresponding post-analysis thereafter. How-
ever, event detection and identification following in this way
have certain limitations, since real-time alerts cannot be sent
to system operators and control measures cannot be carried
out in a short time. On the one hand, the rapid detection and
accurate localization and identification of power system events
can greatly enhance the situation awareness capability for op-
erators and help them take timely correction measures. On the
other hand, the wide-area measurement system (WAMS) and
advanced metering infrastructure (AMI) have been deployed
widely in modern power systems and smart grids to enhance the
situation awareness ability of power system operators [2], [3].
Besides, the synchrophasor measurement devices (SMDs) such
as phasor measurement units (PMUs) [4], frequency disturbance
recorders (FDRs) and universe grid analyzers (UGAs) [S5] have
also been installed in many countries, which enable detecting
and identifying power system events in practice. Therefore,
it is feasible and also of great significance to study event
identification for actual power systems based on wide-area
measurements.

Recently, several studies have focused on this issue. They
can be divided into two categories: i) event detection that aims
to discover and locate disturbances in power systems; and ii)
event classification targeting at classifying what a disturbance
is. In [6], voltage amplitude data is analyzed by the discrete
wavelet transform (DWT) and Kalman filter to detect on-line
voltage events. In [7], voltage imbalances are detected by PMU
data with a downsampled negative sequence. In [8], offline
coherency identification of power systems is performed first
and the event is detected and located by monitoring the change
of cluster centers of voltage and frequency information. In [9],
geometric template matching and quality threshold clustering
are utilized to measure the similarly for dynamic responses
of frequency in different locations, and radial basis function
artificial neural network (RBF-ANN) is employed to estimate
other inaccessible measurements. In [10], DWT is employed for
PMU data and normalized wavelet energy (NWE) is defined to
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detect events and indicate their locations. To address the problem
of huge communication burden within event detection, several
data reduction methods are proposed to compress data first to
decrease the time delay of event detection on the data collection
stage. In [11], the least square-based curve fitting method is used
to compress PMU data. In [12], principle component analysis
(PCA) is employed to reduce the scale of PMU data. Then a
real-time event indicator whose threshold is given in advance is
used to determine whether there is an event in power systems. In
[13], dynamic programming is embedded in swing door trending
(SDT) to reduce the amount of streaming PMU data while
magnitude and slope rules are employed for event detection. In
[14], an unequal-interval reduction and reconstruction method
that can obtain higher accuracy for active and reactive power
data are proposed, and local outlier factor (LOF) is utilized to
detect and locate events in power systems. In [15], the T2 and
Q statistics are calculated in the process of PCA to detect load
generation mismatch and islanding events, respectively. On this
basis, moving window PCA is utilized in [16] for multiple event
detection. Besides, the k-nearest neighbor (KNN) method is used
for 72 and Q statistics in [17] to acquire two new monitoring
statistics for faster event detection. In [ 18], the dynamic response
of power systems is quantified by recurrence quantification
analysis (RQA), and two quantitative measures of recurrence
(i.e., recurrence rate and determinism) are used for data noise
reduction and event detection and localization.

In [19], minimum-volume-enclosing ellipsoid (MVEE) is
constructed based on voltage, frequency and power flow data,
and clustering methods are used for event identification. In [20],
the distances between the events to be studied and the pre-defined
event dictionary is calculated by the angle between their sub-
spaces, which are used for further classification analysis. In [21],
time-frequency analysis and fast discrete S-transform (FDST)
are utilized to select several features, and extreme machine
learning is employed for classifying events. In [22], a diffusion
type kernel density estimator (DKDE) and deep neural network
are used for real-time event identification while the impact on
identification accuracy due to the fluctuation and penetration
level of RES are also studied. However, the aforementioned
algorithms are suitable for single event identification only, which
limits their application in practical situations. Therefore, some
latest studies aim to achieve multiple event detection in power
systems. In [23], multiple events are regarded as the combi-
nation of several typical “root events” recorded in frequency
monitoring network (FNET) [24] and a sparse unmixing method
is proposed to distinguish them. Furthermore, this method is
boosted by cluster-based sparse coding in [25] to achieve better
performance. In [26], the dominant eigenvalues and singular
values are extracted as input features fed into the convolutional
neural network (CNN) and the previous events are predicted and
subtracted from the real-time measured data so as to identify
events accurately. In [27], a Teager—Kaiser energy operator
(TKEO)-based method is introduced for event detection and
the 1-nearest neighbor (INN) classifier with energy similarity
measure (ESM) that has superposition property is employed
together to identify multiple events in power systems.

It can be seen that almost all existing studies do not
consider the time and location of events in the process of
event identification. In fact, accurate time and location can
help filter suitable data for event identification so as to im-
prove its performance. Therefore, this work aims to pro-
pose an event identification with the event time and loca-
tion considered, and to achieve higher event identification
accuracy by using advanced machine learning algorithms.
The major contributions of this work can be summarized as
follows.

1) To the best of our knowledge, this work for the first
time, proposes an event identification algorithm with
the event time and location considered to improve iden-
tification accuracy for actual power systems. Further-
more, with the help of FNET/GridEye, the proposed
event identification algorithm can be deployed easily
and achieve real-time situational awareness for power
systems.

2) The event time determination algorithm based on the rate
of change of frequency (RoCoF) and the event location de-
termination algorithm based on triangulation using the dif-
ferences of wave arrival times among SMDs are presented.
Compared with the traditional triangulation method, the
proposed algorithm further considers the anisotropy of
wave propagation speed, which can obtain more accurate
event locations.

3) The two-dimensional orthogonal locality preserving pro-
jection (2D-OLPP) is utilized to extract the inher-
ent features of different types of events that occur in
power systems. It can extract event features from the
2D perspective directly rather than unfolding the 2D-
features into a vector and then using one-dimensional
analysis methods. In fact, the measured data are with
multiple types (i.e., frequency, voltage phase angle
and amplitude), which means the original measured
data are in 2D form. Therefore, the presented 2D-
OLPP method is more suitable and can achieve better
effectiveness.

4) On this basis of feature extraction by 2D-OLPP, the ran-
dom undersampling boosted (RUSBoosted) trees, which
can mitigate the issue of sample imbalance in confirmed
event cases, are employed for event identification. Com-
pared with other event identification algorithms, it can
achieve the highest recall rate, accuracy and Fl-score,
which means it achieves better performance than existing
algorithms.

The rest of this paper is organized as follows. The principles
for event time and location determinations based on triangu-
lation are presented in Section II; the 2D-OLPP-based event
feature extraction method is proposed in Section III; the event
identification classifier based on RUSBoosted trees is proposed
in Section IV; case studies on actual U.S. power systems and
corresponding comparisons with other algorithms are performed
in Section V; some discussions and illustrations are given in
Section VI; finally, the conclusions and further works are given
in Section VII.
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II. EVENT TIME AND LOCATION DETERMINATIONS BASED ON
TRIANGULATION UTILIZING ROCOF AND CONSIDERING
CHARACTERISTICS OF WAVE PROPAGATION

Accurate event time and location determinations are the basis
of event identification. Concretely, the result of event time deter-
mination is the prerequisite and trigger of event identification,
and the results of event location determination can provide quite
specific geographical information, which can also enhance the
performance of event identification. Hence, the latest devel-
opments of event time and location determinations based on
triangulation are presented in this section. It is worth mentioning
that compared with the previous triangulation algorithm, the
latest one replaces the voltage phase angle curves with RoCoF
curves as the wave to be studied and considers the anisotropy
of the speed of wave propagation so as to obtain more accurate
triangulation results. Assume the frequency curve of the m™
SMD can be denoted as f,, = [fm.1, fm,25 --os frn, NI, (M =1,
2, ..., M), where M and N are the number of SMDs and the
number of sample points, respectively. In fact, there will be large
frequency fluctuations when events happen in power systems.
Thus, the RoCoF can be used for event time determination and
defined as

RoCoF
RoCoF __/m,n—rAt

m,n At

where At is the time interval and r is the sampling rate of
measured data. In practice, an event will be detected if

_ rRoCoF
m,n
ey

M
> NE > EM 2
m=1
where
1,if max { | fROCF|} > p
Nk = : =1,2,....,M (3

™= 0,if max { | fRECF|} <

where 1 is the threshold of RoCoF for event time determination,
NF is the 0-1 variable that indicates whether the m® SMD
detects an event. « is a predefined ratio and equation (2) means an
event will be detected and declared if kM SMDs from M SMDs
received the frequency fluctuations. After an event is detected,
more detailed analyses [28], [29] will be performed for RoCoF
and phase angle curves to determine the wave-front arriving time
tvave of the m™ SMDs (m = 1, 2, ..., M). Hence, the following
equation holds if the differences between electrical distance and
physical distance are neglected.

A = v (Y — %Y m =1,2,..., M 4)

where

dm=Rpcos™ ! [sin o, sin & 4 cos(BF — B, ) sin o

sin v, |
&)
where d,, is the distance between the m™ SMD and the actual
location of the detected event, Ry, is the radius of the earth. v,,
is the wave propagation speed from the event location to the
m™ SMD. a,, and 3,,, are the latitude and longitude of the mt
SMD, respectively. o and 3 are the latitude and longitude of

the event location, and ¢F is the time when the event happens,
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respectively. In (4) and (5), @y, B and ¢F are the variables to be
solved, and v,,, and ¢}]*V° can be viewed as the known variables.
Therefore, the objective function for finding the least square
fitting error of event location determination can be represented
as

M M

min L(a®, B¥ %)= Z g2 = Z [d — v (tr — tE)]2

m=1
(6)
where M’ is the number of SMDs used for event location
determination. To solve (6), the partial derivative of L should
equal 0 as

m=1

oL

— =2%=0 (7
ox
where 2 = [, 3%, tF] and J is the Jacobian matrix as
Oeq ’ Oea | ... Oepp T
0al |z 9o | Oak =
J = 85]13 85% aak]{:/ (8)
ap¥ |, 957 |, apY |,
V1 U2 v
where
Oem,
E
0ol |,
—R[cos af sin a,,, — cos au,y, cos(BE — B,,) sin o]

B /1 — [sin aF sin oy, + cos ay, cos(BE — f,,) cos aF]

(€))

Oem

OpE

x

E cos ayy, cos(B® — B)

B /1 — [sinaF sin a,, + cos oy, cos(BE — B,,,) cos aF]
(10)

—Rcosa

Therefore, the /™ iteration can be denoted as

) =20 4+ [—(377) 1T 7¢] (11)

It is noted that the values of J and e in (11) will change
in each iteration and the iteration will be terminated when
[(JTJ)~1J%¢]| is smaller than a given threshold (e.g., 107). It
should be noted that (11) can be calculated only the column
of the J is full rank, in other words, the columns of J should
be linearly independent and JTJ should be invertible. If the
column of the J is not full rank, on the one hand, the other
alternative SMDs can be selected to ensure JTJ is invertible;
on the other hand, Moore-Penrose pseudoinverse [30] can be
utilized for solving the irreversible problem during iteration. It
should be mentioned that the most important improvement of
the presented event location determination algorithm is that the
differences in wave propagation speeds in various directions are
considered. In fact, the frequency wave is electromechanical and
its speed is different for various directions. However, in the past,
the values of v,,, (m =1, 2, ..., M) are assumed as the same one
and denoted to one variable v as shown in Fig. 1(a), while now
they are assigned as different values as shown in Fig. 1(b) so as
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0 )

Fig. 1. Illustration of wave propagation speed. (a) Without the anisotropy of
wave propagation speed considered; (b) With the anisotropy of wave propagation
speed considered.

to achieve better performance for event location determination.
Indeed, it is not easy to determine the accurate values of v,,
(m=1,2, ..., M), but this problem can be solved by studying
the past confirmed cases for estimating the wave propagation
speed associated with each SMD. Although these values are not
always very accurate for all cases, diversifying them would have
a better performance compared with assuming that they all have
the same value.

The algorithms for event time and location determinations
have been deployed in one of the famous WAMSs in U.S. power
systems, i.e., FNET/GridEye [31], and more illustrations can be
found in Section IV.

III. EVENT FEATURE EXTRACTION BASED ON 2D-OLPP

Itis worth mentioning that feature extraction is a very essential
process before using classifiers to identify the types of events that
happened. Therefore, the 2D-OLPP-based method is presented
in this section for extracting the event features so as to enhance
the effectiveness of event identification. Locality preserving
projection (LPP) is one of the manifold methods, whose main
idea is to learn the local neighborhood structure of samples in
high-dimensional spaces and find a space that can retain the
manifold structure so that the samples can get a better local
neighbor relationship after being projected to a low-dimensional
space when compared with principal component analysis (PCA)
or linear discriminant analysis (LDA) [32]. In detail, LPP is
a linear mapping for dealing with a variational problem that
aims to preserve the neighborhood structure of a given dataset
optimally. LPP is a choice for the classical linear technique
(i.e., PCA), which projects the data onto the directions with
the largest variance. The LPP can be determined by searching
the optimal linear approximations to the eigenfunctions of the
Laplace Beltrami operator on the manifold if high dimensional
datalies on a low dimensional manifold [33]. Therefore, LPP has
several data representation properties of nonlinear methods such
as Locally Linear Embedding (LLE) and Laplacian Eigenmaps
[33]. As for the 2D-OLLP method used in this work, it is an
extended method from LPP and has the same basic principles
and similar solving process with LPP. The differences between
them are that 2D-OLLP can handle the two-dimensional data
directly and it uses orthogonal bases when performing projection
so as to achieve less computation burden.

In this work, the frequency, voltage angle and amplitude data
are available and utilized for feature extraction. Assume the

measured data of the i™ event can be denoted as

A= (AT ADE AT (12)
where Alre, A? "€ and A? ™P are respectively the frequency,
voltage angle and amplitude data of the i event measured by
SMDs located in different places during the detected time period.
Generally, the data of several SMDs nearest to the event location
determined in Section II would be selected for feature extraction.
It can be seen from (12) that the A ; is a matrix rather than a vector,
so the traditional LPP method is no longer feasible for extracting
the event features in this case. To solve this problem, there are
two solutions: i) unfold the matrix into a vector and then use the
traditional LPP method; ii) use 2D-LPP method directly for the
matrix. In fact, it has been illustrated in [32] that using the 2D-
LPP method directly has two advantages: one is that it can reduce
the computation time and achieve higher classification accuracy
compared with using the traditional LPP method; another is that
the computational efficiency can be further improved if using
orthogonal bases in the space transformation. Therefore, the 2D-
OLPP-based method is suitable for extracting the event feature
in this work.

The presented 2D-OLPP-based event feature extraction
method aims to minimize the weighted sum of squares of the
distances between measured data samples in the low dimen-
sional space [32] and it can be denoted as

M N
minz Z (Bl - Bj)Sij

i=1j=1

(13)

where B; = A;( is the projection of A; using the orthogonal
basis matrix (= [y, - - -, ), and k is the number of orthog-
onal vectors that can span the new low-dimension space. Sy; is
the element of similarity weight matrix S and can be determined
by Euclidean distance or Gaussian kernel function [32]. The
objective function (13) can be further converted [32], [34] as

min ("AT(L ® E)A(
st. ("AT(Q® E)A¢=1
C;F k=0
where Q is a diagonal matrix whose diagonal elements equal to
N
> Siji=
j=1
1,2, ..., M). E is the identity matrix, L = Q-S, and ® is the

Kronecker product operator, respectively. It can be seen from
(14) that the constraints guarantee the orthogonality of the bases

¢

Vi=1,2. k-1k>2 IV

the sum of corresponding columns of S, i.e., Q;; =

The problem (14) can be solved separately in two situations,
i.e.,k=1and k > 2. Forthe first situation (i.e., k = 1), the second
constraint in (14) can be neglected and ¢, can be determined
by solving the eigenvector of (15) associated with the smallest
non-zero eigenvalue A [32], [34] as:

(T(L®E)AC=1AT(Q ® E)AC (15)

To solve the situations of k > 2, i.e., to consider the second
constraint in (14), Lagrangian multipliers can be involved, and
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the ¢, can be obtained through minimizing the following La-
grangian function ’(/J(k) [32], [34] as

k-1
p®) = (FAT(L®E)AC, — Y 1ii ¢,

i=1
— G AT QO E)A¢, — 1]
where pu1, pto, . . ., pr—1 are Lagrangian multipliers correspond-

ing to the second constraint in (14). Equation (16) can be
optimized by letting its partial derivatives equal to 0 as

(16)

(k)
&ga =("TAT(Q®E)AC-1=0 (17)
o(F)
i}:c&fzo (18)
(k)
agc =2AT(L® E)A(,
k
k-1
~2AT(Q®E)AL, - > pi; =0 (19)
i=1

It is noted that ¢} ¢; = 0 (i<k) since they are orthogonal
bases. Therefore, utilize ¢} to multiply (19) and the A can be
obtained as

_ AT(L®E)A(,
- AT(Q@E)A(,

It is demonstrated in [34] that AT (Q ® E)A is non-singular
and positive definite, which means it is invertible. A series
of k-1 equations can be obtained from multiplying (19) by
C?AT(Q ®@E)A (i =1, 2, ..., k-1) continuously and their
compact form can be reorganized to obtain the elements of
pF D =[p, g, ., 1] as
Pt = 2D D) TAT(Q © B)A] AT (L ® E)AC,

2D

A (20)

where

CF D = [¢y,¢ay e 5 Ch] (22)

oY = [(-ITAT(QEE)AI (Y (23

Multiply (19) by [AT(Q ® E)A] " and replace (¥~ using
(21), then the equation can be obtained as

(E-ZM)AT(Q@E)A] 'AT(L @ E)A(, =4¢, (24)
where

z®) = [AT(Q®E)A] (M VgV I (25)

Thus, (24) can be converted into the problem of solving
the eigenvector of (26) associated with the smallest non-zero
eigenvalue [34] as

X® = (E - z2M)AT(Q® E)A] '[AT(L® E)A] (26)

Thus, the (= [{;,¢{;,---, (] can be determined iteratively
and served as the input features for event identification. It is
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noted that the aforementioned ( is a generalized denotation,
and the features of the ;™ event can be denoted as (7 in
Section IV.

IV. EVENT IDENTIFICATION BASED ON RUSBOOSTED TREES

Once the event features are extracted in Section III, they can
be fed into the classifiers to identify the types of detected events.
In this work, four types of events are considered for event iden-
tification, i.e., short-circuit fault (SCF), generation trip (GT),
load shedding (LS), and line trip (LT). Due to the nature of the
different occurrence possibilities for these events, the recorded
events that happened in actual power systems are mainly the GT,
LS and LT while the number of SCF in the transmission system is
limited. Therefore, an essential issue for the event identification
in this work is the sample imbalance of training data [35], [36].
In such a situation, it is difficult to establish an effective classifier
since the traditional data mining method would tend to predict
most of the samples into the majority class. As a simple example,
if there are 998 negative samples, but only 2 positive samples,
one learning method can achieve a 99.8% precision rate by
returning a classier that always predicts the new sample as a
negative one. Such a classier, however, is often worthless since it
does not predict any positive cases. In other words, it can achieve
a high precision rate but a terrible recall rate [37]. To solve
this issue in this work, on the one hand, simulated data in the
simplified actual power system are also utilized in combination
with measured data for classier training; on the other hand, an
advanced machine learning method (i.e., RUSBoosted trees) that
can mitigate the sample imbalance problem #5154 #.25| A
J5. [38] is employed in this work. This section will introduce
the RUSBoosted trees-based event identification method and the
details of simulated data will be introduced in Section V.

In fact, several techniques are presented to deal with the
class imbalance problems, such as data sampling and boosting.
For data sampling, there are two types, i.e., undersampling and
oversampling. Undersampling means to remove some samples
in the majority class to maintain the class balance in the training
set while oversampling means to duplicate the samples in the mi-
nority class to maintain the class balance in the training set. The
typical undersampling method is random undersampling (RUS)
and the typical oversampling methods are synthetic minority
oversampling technique (SMOTE) [39] and adaptive synthetic
(ADASYN) sampling method [40]. It should be noted that either
RUS, SMOTE and ADASYN has its strength and weakness.
For RUS, removing samples in the majority class may cause
the information loss problem; however, it greatly reduces the
training time and multiple RUS can be performed to mitigate the
information loss problem. For SMOTE and ADASYN, although
there is no information loss problem, the over-fitting problem
would be caused when using the oversampling data. Further-
more, the computation burden increases significantly since a
larger training set is used [41]. For boosting, it is a technique to
boost the effectiveness of classification by revising and updating
the weight of each sample in the training process. If the samples
with minority class are classified incorrectly, then they would be
assigned with larger weights in the following training rounds.
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Fig. 2. Illustration of the RUSBoosted tree-based method.

Therefore, the RUSboosted-trees presented in this work com-
bine the techniques of data sampling and boosting to mitigate the
class imbalance problem. It is worth mentioning that the tests
in different datasets [38] demonstrate that the RUSboost and
SMOTEBoosting can achieve similar performance (RUSboost
is often better than SMOTEBoosting in fact) while RUSboost
is much faster. Therefore, the authors of Ref. [38] highly rec-
ommend using the RUSBoost for improving the classification
effectiveness.

The basic principle of RUSBoosted trees is two-fold: i) uti-
lize random undersampling to mitigate sample imbalance; and
ii) combine the results of several classification and regression
trees (CARTS) to boost the performance of the final result. An
illustration is shown in Fig. 2 and the steps of the RUSBoosted
trees-based event identification method can be summarized as
follows.

Step 1: Initiate the weight of the i CART with the j sample
as wij:1/NE<i:172>---7NCART§j:1727--~7NE)7
where Ncagrr is the number of CARTs used for event
identification and Ny is the number of events in original data
set, respectively. Let i = 1.

Step 2: Utilize the random undersampling method as shown in
Fig. 2 to generate Ny data set DEVS (j = 1,2, ..., Nyet) for
the i CART from the original data set D whose elements
are the event features extracted in Section III. Besides, obtain
the weights wPJLUS associated with the data set DRUS (j=
1,2,..., Neet)-

Step 3: Train the /" CART based on D}YS and w[5"S to obtain
the /" CART classier for event identification as y}; = x:(¢7),

where y;; is the predicted type label for the j™event and x;(+)
is the function of the i classifier, respectively.
Step 4: Determine the prediction loss for the i CART classifier
as
M

€ = Z [1— I(yjaylij)]

j=1

27

where y; is the true type label of the /™ event and I(-,-)
is the indicative function. I(y;,y;;)= 1 if y; = y;;, otherwise
I(yJ7 y:]): 0.

Step 5: Obtain the weight update factor for the i CART classifier
as (28) and update the weight for the (i+1)"" CART classifier
and the jM event sample as (29).

i :6‘7;/(1 —qu) (28)

05 1=1(y;.y'i5)]

0.5[1-1(y;.y's;
wiin, (1-1I(y;.y' )/Z

Wit1,5 = Wi;M;
(29)
Step 6: If i = Ncagr, go to Step 7; otherwise, i = i+1 and go
to Step 2.

Step 7: Determine the final classier based on RUSBoosted trees
by weighted vote from the Noagrr classifiers as

NcarT 1
Xiinar (") = arg max > Iha(cY) = ullog-
1=1
(30)

where u is the enumerable type label.

For better illustration, the flowchart of event identification is
given in Fig. 3. It can be seen that there are offline and online
stages in the proposed approach. In the offline stage, data prepa-
ration, parameter tuning and classifier training are completed in
advance, as these steps relatively time-consuming and largely
rely on historical data and confirmed events. However, in the
online stage, the rapid monitoring for power system events can
be achieved and corresponding information can be sent to system
operators in almost real time and saved in the database for further
analysis.

V. CASE STUDIES

To demonstrate the performance of the proposed event iden-
tification algorithm, the actual measured data of the U.S. power
system from FNET/GridEye are employed for case studies.
Besides, the comparisons between the proposed and other event
identification algorithms are given for detailed analysis.

A. Case Studies of Event Identification in Actual U.S. Power
Systems

To better illustrate the effectiveness of the proposed event
identification algorithm, a confirmed generation trip event that
happened in U.S. Eastern Interconnection (EI) system is taken
as an example. In 2020-04-04 16:56:32 UTC, several generation
units are tripped in Dominion Power-Brunswick County Power
Station with a total amount of 578MW. The measured frequency,

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on June 08,2022 at 20:30:51 UTC from IEEE Xplore. Restrictions apply.



100

Offline Stage Online Stage

—PI Update time window and obtain measured data |<—

¥

Tune the
une e £ Pre-process the raw data to obtain the filtered
parameters o frequency, voltage angle and amplitude curves
filters based on 7

historical data

Determine the RoCoF curve based on (1)

wondA}Q

Tune the threshold N
based on historical
events

Is (2) satified?

| An event is detected and saved to database |
|

v

| Determine the wave arriving time of each SMD |

Determine the
wave propagation
speeds in different
direction based on

historical events

Utilize (8)~(10) to triangulate the
detected event with the anisotropy of
wave propagation considered
I

v

Extract the event features from several

=
)
&
=
N
=
=5
S
=1

SMDs near the event location determined =

based on 2D-OLPP method g

=5

Train the * (:;’
RUSBoosted trees Utilize the well-trained RUSBoosted trees-based g.
)

=}

based on historical classifier to identify the type of detected event
events *

Send information to system operators
and backup the results in database

Flowchart of the proposed event identification algorithm.

Fig. 3.

TABLE I
INFORMATION OF THE FDRS WITH THE EARLIEST WAVE ARRIVAL TIME OF THE
STUDIED GENERATOR TRIP EVENT

Wave Arrival Wave Propagation

Order FDR Name Time Speed
1 UsVaNewportnews847 12.88079s 1042.20km/s
2 UsNcClayton1060 13.03242s 1031.05km/s
3 UsNcRaleigh891 13.03520s 981.18km/s
4 UsVaRichmond601 13.07382s 959.90km/s
5 UsSCCharleston762 13.40013s 996.79km/s
6 UsScAiken931 13.40068s 888.68km/s
7 UsNcCharlotte963 13.49149s 742.90km/s
8 UsGaNorcross984 13.51401s 831.90km/s
9 UsAlBirmingham873 13.53389s 886.95km/s
10 UsNjTomsriver774 13.57967s 1102.86km/s

RoCoF, voltage angle and amplitude curves are shown in the
four sub-graphs in Fig. 4, respectively. In Fig. 4(b), the red
dash line denotes the event time determination threshold. It can
be seen that there are large fluctuations from about the 13™
second, and the event time determination trigger is activated right
after that. Therefore, the generation trip event is successfully
detected and the event location determination will be further
executed.

In this actual case, SMDs located in different places detected
the propagation waves at different time as shown in Table I, and
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Fig. 4. Measured data curves for the event happens in 2020-04-04 16:56:32

UTC. (a) Frequency; (b) RoCoF; (c) Voltage angle; (d) Voltage amplitude.

the wave propagation speeds associated with different SMDs
(i.e., FDRs in FNET/GridEye) estimated by historical confirmed
events are also given in Table L. It is observed that wave prop-
agation speeds associated with SMDs located at grid edges are
slightly larger compared with those located in the middle of
the grid. This is primarily because grid edges have less inertia.
It should be mentioned that the farther an SMD is from the
true event location, the less accurate the wave arrival time
determination will be. Therefore, 5~10 SMDs with the earliest
wave arrival time are enough and suitable for triangulation
according to practical experience. Based on this principle, the
event location is estimated at (37.8208, —77.4462). It can be
seen that the distance between the true event location and the
estimated one is only 119.6 km, which is very close (especially
considering the sparse distribution of current FNET/GridEye
sensors) and enough for choosing suitable data curves of SMDs
to identify the type of event later.

It is worth mentioning that the proposed algorithm can be
deployed for real-time applications and large-scale event cases.
In fact, for each detected event, an event report including the
estimated event location and the FDRs that receive the wave
propagation earliest can be generated as shown in Fig. 5, which
can support the following event identification. For event iden-
tification, the frequency, voltage angle and amplitude curves of
the FDRs with the earliest wave arrival time are utilized for
extracting corresponding features based on 2D-OLLP method
and then the features are input into the well-trained RUSBoosted
trees-based classier. In this case, Ncagrr 1s set as 20 according
to training results and all 20 CART classifiers vote this event as a
generation trip event. Therefore, this event is correctly identified
as a generation trip.
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TABLE I
NUMBERS AND TYPES OF EVENT IDENTIFICATION CASES

Type Number Actual Simulated
Short-Circuit Fault 384 43 341
Line Trip 742 162 580
Load Shedding 1135 674 461
Generation Trip 821 368 453
Total 3082 1247 1835

B. Comparisons with Other Event Identification Algorithms
Using Numerous Actual Measured and Simulated Cases

Since the number and types of confirmed event cases in
power systems are limited, batch simulations in simplified actual
power systems (e.g., Inter-connected New England test system
(NETS) and New York power system (NYPS), and WECC-179
bus power system) are performed to supplement the data for
event identification demonstration. There are a total of 3082
actual measured or simulated event identification cases with
four different types, and the numbers and typical curves of
different types of events are given in Table II and Figs. 6-9,
respectively. The hold-out method and cross-validation method
are two commonly used methods for performance evaluation of
different algorithms [42]. In general, the hold-out method, which
divides the whole data set into the training set and the test set,
is suitable for large scale data set since it can be carried out fast
while the result largely depends on how to divide the training set
and the test set. In this work, the number of cases is not very large,
so the cross-validation method is more suitable since the result
is more reliable although a larger computation burden is caused.
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Concretely, the whole data set is divided into k equal-sized
subsets randomly and the cross-validation process is repeated k
times. In each time, a single subset is used for testing the model,
and the rest k-1 subsets are used as the training set. Obviously,
the cross-validation is more reasonable than the hold-out method
and suitable for data set with a relatively small scale. Therefore,
the 10-fold cross-validation (k = 10 is commonly used) [42] is
utilized to test the proposed algorithm, and the training set and
test set are not explicitly represented in this work.
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Fig. 10.  Confusion matrices of the proposed event identification algorithm.

(a) TPR and FNR; (b) PPV and FDR.

TABLE III
EVALUATION INDEXES FOR THE PROPOSED 2D-OLPP-RUSBOOSTED
TREES-BASED EVENT IDENTIFICATION ALGORITHM

Type Precision Recall Accuracy F1
Short-Circuit Fault 85.6% 93.6% 90.2% 89.4%
Line Trip 98.1% 94.4% 97.2% 96.2%
Load Shedding 95.4% 96.3% 96.5% 95.8%
Generation Trip 96.4% 97.6% 97.4% 97.0%

It can be seen from Figs. 6-9 that different types of events
have different data curves, so the proposed 2D-OLPP method is
utilized to extract the event features of each event type. It should
be clarified that not all measured data curves but those from
FDRs that are closest to the estimated event location are used
for feature extraction and event identification since they have
less wave arrival time errors in practical applications. It can also
be seen from Table II that the numbers of different types of
events are quite unbalanced. Thus, the proposed method based
on RUSBoosted trees is employed to mitigate this issue and
to identify the types of various event cases, and the results are
shown in Fig. 10 and Table III. On the one hand, the confusion
matrix associated with the true positive rate (TPR) and false-
negative rate (FNR) is given in Fig. 10(a) and the sum of each
column is equal to 100%. The TPR is also called as precision and
is defined as Rp = Npp/(Ntp + Npp), where Npp and Npp
are the numbers of true-positive (TP) event samples and false-
negative (FP) event samples from the prediction results of the
algorithm, respectively. For example, in the set of event samples
that are predicted as the 1% type (i.e., short-circuit fault), there are
82.6% of them are true short-circuit fault events while 14.5%,
1.4% and 1.4% of them are respectively line trip, generation
trip and load shedding events in fact but incorrectly predicted as
short-circuit fault event.

On the other hand, the confusion matrix associated with
positive predictive values (PPV) and false discovery rate is given
in Fig. 10(b) and the sum of values in each row is equal to
100%. The PPV is also called as the recall rate and is defined
as Rp = Npp/(Ntp + Npn), where Npy is the number of
false-negative (FN) event samples. For example, for the true 1%
type (i.e., short-circuit fault) of event samples, 93.6% of them are
correctly predicted while 6.4% of them are incorrectly predicted
as line trip events.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 37, NO. 1, JANUARY 2022

It can be seen that the precision and recall rate can only
reflect the performance of the event identification algorithm
from one aspect, so two more comprehensive evaluation in-
dexes are also employed for comparison, i.e., accuracy 2, =
(N1p+N1N)/(N1p+NrNn+Npp+Npn) and Fl-score Ry, =
2RpRr/(Rp + Rr); where N7y is the number of true negative
event samples. It can be seen from Table III that the proposed
2D-OLPP-RUSBoosted trees-based algorithm achieves good
performance for event identification. It is noted that the evalua-
tion indexes of the short-circuit fault events are relatively small,
and the reason is that the number of short-circuit fault events for
training is the least as shown in Table II.

To show the improvement of the proposed algorithm, the
results of event identification obtained by other state-of-the-art
algorithms are given in Table IV for comparisons. It should be
mentioned that the determination of the hyperparameters for ma-
chine learning algorithms is crucial to the performance of event
identification. For the proposed 2D-OLPP-RUSBoosted trees-
based algorithm, the hyperparameters include maximum number
of splits, number of learners and learning rate, which can
be tuned by grid search with cross-validation (GridSearchCV)
method [44] according to actual situations. In this work, the
maximum number of splits is tuned as 30, the number of learners
(i.e., Ncarr) is tuned as 20, and learning rate is tuned as 0.1,
respectively. In general, the under-fitting problem may be caused
if Noarr 1s set too small, while the over-fitting problem may be
caused if Noarr is set too large. Therefore, the value of NcArr
is tuned by the GridSearchCV method in practice. Furthermore,
the setting of Ncagrr has little relationship with the scale of
samples (i.e., the number of events for training) since the number
of features extracted by 2D-OLPP is unchanged. For the random
undersampling, a larger Ncart may help to reduce the risk of
information loss problem while a larger computation burden and
the over-fitting problem will be caused in the meantime.

It can be seen that the proposed algorithm outperforms
other algorithms for most evaluation indexes (i.e., 95.9%
for the recall rate, 96.1% for accuracy and 95.5% for
Fl-score). Indeed, the cluster-based sparse coding algorithm
obtains higher precision (i.e., 98.1%) than the proposed
algorithm (i.e., 95.1%), but its recall rate is much lower
(i.e., 88.6% v.s. 959%) and the accuracy and Fl-score
are lower (i.e., 92.6% v.s. 96.1%; 93.1% v.s. 95.5%) as
well. It should be clarified that the precision and recall rate
indexes in Table IV denote the weighted average values for
all types of events, i.e., Rp = (NscrRp,scr+NirRp 1T+
NrsRpLs+NaTRp,a1)/(Nscr+Nur+Nus+NaT), where
Nscr, Nir, Nis, and Ngrt denote the numbers of the
short-circuit fault, line trip, load shedding, and generation
trip events, respectively. Thus, the precision index can be
determined. Similarly, the recall rate, accuracy and F1-value
in Table IV can be determined in this way as well, which
can measure the performances of different algorithms
comprehensively.

For the LSTM-based algorithm that has advantages on
processing time-series data, it can obtain better performance
than CNN indeed since more time-series information is
considered. However, it is still inferior to the proposed
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TABLE IV
COMPARISONS OF EVENT IDENTIFICATION AMONG DIFFERENT ALGORITHMS

Algorithm Precision Recall Accuracy F1 Computation Time

1-Nearest Neighbors [27] 86.9% 91.5% 90.2% 89.1% 13.2s

Support Vector Machine [43] 84.5% 80.5% 84.6% 82.5% 14.7s

Sparse Unmixing [23] 93.5% 80.6% 86.9% 86.6% 1.53s

Cluster-Based Sparse Coding [25] 98.1% 88.6% 92.6% 93.1% 1.65s
Convolutional Neural Network [26] 92.1% 74.3% 75.3% 82.2% 546.82s
Long Short-Term Memory Network [45] 93.4% 80.2% 86.6% 86.3% 963.31s
2D-OLPP-Random Forest 93.9% 94.0% 93.2% 94.0% 35.44s
2D-PCA-RUSBoosted Trees 88.6% 87.5% 90.7% 88.1% 47.37s
2D-OLPP-ADASYNBoosted Trees 95.2% 94.6% 96.3% 94.9% 326.91s
2D-OLPP-SMOTEBoosted Trees 94.6% 95.2% 95.6% 94.9% 345.46s
Proposed 2D-OLPP-RUSBoosted Trees Algorithm 95.1% 95.9% 96.1% 95.5% 53.06s

2D-OLPP-RUSBoosted trees-based algorithm. The reason is the TABLE V

proposed algorithm considers the imbalance of event samples
and use random undersampling to mitigate this issue. Therefore,
the proposed algorithm can achieve a much higher recall rate
for event identification when compared with other algorithms.
It is worth mentioning that the 2D-OLPP-random forest and the
2D-PCA-RUSBoosted trees-based algorithms are also tested,
and the comparisons show the advantages of the random under-
sampling and OLPP separately by control the feature extraction
method or event classifier fixed.

To demonstrate the effectiveness of RUS, the comparisons
among ADASYNBoosted trees, SMOTEBoosted trees and
RUSBoosted trees with the same 2D-OLPP feature extraction
method are also given in Table I'V. It can be seen that the values
of the four indexes are similar while the computation time of
ADASYNBoosted trees and SMOTEBoosted trees are much
longer. The reasons are that: i) Several CARTSs are utilized in the
proposed 2D-OLPP-RUSBoosted trees-based algorithm, so the
random undersampling would be performed several times inde-
pendently, which means the risk of information loss problem can
be greatly reduced. ii) Essentially, both the undersampling and
oversampling methods cannot create new information, which
means they can obtain similar performance theoretically. iii)
The ADASYN and SMOTE methods resample massive samples
during training, which means that the scale of the dataset would
be enlarged and the computation burden would be increased
significantly.

The computation times of other algorithms are also given in
Table IV and all tests are performed on Windows 10 platform
with Intel i5-7400 CPU and 16GB RAM. Although the com-
putation times of the first four algorithms are much shorter,
their identification performances are inferior to the proposed
2D-OLPP-RUSBoosted trees-based algorithm. Therefore, it can
be concluded that the proposed 2D-OLPP-RUSBoosted trees-
based algorithm outperforms other algorithms when comprehen-
sively considering the performance and computation for event
identification.

C. Testing of the Effects of Noise and Data Loss

It should be mentioned that the employed data set consists
of actual measured and simulated cases, therefore, it is worth

EVALUATION INDEXES FOR THE PROPOSED 2D-OLPP-RUSBOOSTED
TREES-BASED EVENT IDENTIFICATION ALGORITHM CONSIDERING THE
EFFECTS OF LOSS AND NOISE IN DATA

Type Precision Recall Accuracy F1
Short-Circuit Fault 83.2% 92.4% 89.6% 88.9%
Line Trip 97.1% 93.5% 96.4% 94.9%
Load Shedding 94.5% 95.4% 95.2% 95.2%
Generation Trip 94.0% 96.7% 97.0% 96.2%

testing the robustness of the proposed algorithm considering the
effects of noise and data loss. To do this testing, Gaussian noise
with zero mean and 0.1mHz standard deviation is added in the
simulated data and it is assumed that 1% of data in simulated
cases are randomly lost, which are similar to the actual situation
of measurement data in FNET/GridEye.

Before using the proposed algorithm, data pre-processing
should be performed in advance for both the measured and
simulated data, which can mitigate the effects of loss and noise
data. The principles of pre-processing are: i) if an FDR does not
have available measurements in a given time window or most of
the time, then it will be abandoned; ii) using linear interpolation
method to fill the missing data; iii) using 5-point moving median
filter to denoise and avoid outlier data.

After the data pre-processing, the proposed 2D-OLPP-
RUSBoosted trees-based algorithm is tested and the results are
shown in Table V. Compared with Table III, it can be seen that the
performance decreases slightly, which is still acceptable in most
situations. Therefore, it can be concluded that the noise and data
loss do affect the performance of the proposed algorithm, while
the effects are acceptable and the robustness of the proposed
algorithm is good.

It also should be clarified that the topology change would
influence the performance of the proposed algorithm. However,
this effect has been considered already in this work. It can be
seen from Section V.B that the data used for case studies are
constituted by the measured data of U.S. power systems from
FNET/GridEye, the simulated data of NETS-NYPS, and the
simulated data of the WECC-179 bus power system. The topolo-
gies of these three power systems are different from each other, in
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other words, the topologies can be regarded as changeable in the
testing stage. In the meantime, the final testing results in Table IIT
and Table V show that the proposed 2D-OLPP-RUSBoosted
trees-based algorithm can achieve good performance, which
means that the performance of the 2D-OLPP-RUSBoosted trees-
based algorithm can be ensured when topology changes.

VI. DISCUSSIONS AND ADDITIONAL ILLUSTRATIONS

The measurement system configuration is important for im-
plementing the proposed event identification algorithm success-
fully. FNET/GridEye is a wide-area monitoring system that
covers worldwide power systems. As the essential elements,
FDRs can measure the frequency, voltage angle and amplitude
information. Besides, FDRs have a GPS module to provide
accurate timestamps to measurements. The data collected by the
FDR are sent through the Internet to the data center, and then
processed in the data server and then digested in web servers,
real-time application servers, post-event analysis and storage
servers, and backup servers [24]. By 2020, it has around 300
sensor units deployed around the world and most of them are
deployed in the U.S., which provides strong supports for the
event detection and identification in this work.

It is noted that besides the four types of event aforemen-
tioned (i.e., short-circuit fault, line trip, load shedding and
generation trip), there are oscillation events in power systems as
well, such as low-frequency oscillation (LFO) with a frequency
around 0.1~2.5Hz, sub-synchronous oscillation (SSO) with a
frequency slightly below 50Hz or 60Hz, and high-frequency
oscillation (HFO) with a frequency of hundreds or thousands
of Hertz [46]. Due to the limited sampling rates (i.e., 10Hz)
of current widely deployed FDRs, the SSO and HFO cannot
be monitored and identified by the proposed algorithm in this
work indeed. According to the Shannon’s sampling theorem,
the data sampling rate of each FDR should reach more than
two times the frequency of oscillation theoretically, therefore,
it is unrealistic to monitor and identify SSO and HFO events
indeed. For the same reason, the high-frequency faults caused
by the high integration of power electronic equipment are also
hard to be monitored by the proposed algorithm. If the advanced
version of FDRs (i.e., UGAs), which can achieve up to 1.44kHz
sampling rate [5], can be widely deployed in the future, the
SSO could be detected and identified theoretically while it is
still hard to detect HFO events. It should be acknowledged that
the proposed algorithm aims to detect and identify the events
associated with the electromechanical transient processes and
has limitations for the electromagnetic transient processes. For
the LFO events, the FNET/GridEye can monitor and analyze
them successfully by the matrix pencil method [47]. It should
be mentioned that it is found that most LFO events are caused
by generator trip and load shedding events in fact [48], which
means that they are generator trip or load shedding events in
essence. Therefore, they are classified as either generator trip or
load shedding events in this work.

In the future, more and more RES will be connected to power
systems, which will involve more uncertainties and fluctuations
in power systems. Thus, it is more important to monitor and
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identify the events that occur in power systems timely and accu-
rately. It can be seen that the proposed 2D-OLPP-RUSBoosted
trees-based algorithm is only based on measurement data and
does not require the detailed model of power systems. Therefore,
theoretically, the proposed algorithm can adapt to detect and
identify the ever-increasing events in power systems as long as
the Shannon’s sampling theorem is satisfied.

VII. CONCLUSION AND FUTURE WORKS

In this work, an eventidentification algorithm is proposed with
event time and location determination considered for real power
systems. First, the RoCoF is utilized to detect events that occur in
power systems; then, the differences among wave arrival times
for SMDs located in different places are employed for event
localization with the preliminary but first-time consideration for
the anisotropy of wave propagation speed; finally, on the basis of
event time and location, a 2D-OLPP-RUSBoosted trees-based
algorithm is proposed for accurate event identification, which
can achieve better performance than existing algorithms. Al-
though the identification for multiple events is not discussed
in this work, they were already achieved in our previous work
[24], [25], and can be applied for the proposed algorithm when
necessary. Nevertheless, it should be mentioned that we found
lots of identified load shedding events are actually pump storage
units turning off the motors, because they have quite similar
system responses. Therefore, further work is to distinguish
pump storage events from load shedding events in actual power
systems. A possible solution is that the location information of
the pump storage stations can be further involved in the process
of event identification. For example, if an event is detected near
the location of a pump storage station and is identified as a load
shedding event at first, then it can be inferred that it is a pump
storage event actually. In such a situation, a threshold or a weight
may need to be tuned to distinguish these two types of events,
which is worth further studies in the future.
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