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As essential components of the wide-area measurement system (WAMS), phasor measurement units (PMUs),
frequency disturbance recorders (FDRs) and universal grid analyzers (UGAs) collect valuable data continuously
to reveal the dynamic variations of power systems and to enhance the operators’ situational awareness ability.
However, these devices are vulnerable to multiple types of data exception emerging in recent years, such as data
source ID mix exception spoofing, substantially threatening system security. To ensure the cyber security of
WAMS, this work proposes a new spatial signature extraction method, followed by the quadratic kernel support
vector machine (QKSVM)-based algorithm, to authenticate data source in WAMS. First, the load—frequency
characteristic (LFC), which can represent the impacts of load variations on frequency, is utilized to extract the
spatial signatures of FDRs located in different regions. Then, the quadratic kernel function is employed in the
QKSVM-based algorithm to map the signatures into Hilbert space to authenticate the data source more accu-
rately. Finally, case studies in the U.S. Western and Eastern power systems show that the proposed model-free
algorithm is less sensitive to system sizes, and can achieve a higher authentication accuracy in a much shorter
window length compared with other algorithms.

1. Introduction measurement data or data with a false source ID number to inject into
WAMS networks and devices, pretending to be measurements from
legitimate sensors [3-6]. Data spoofing aiming at mixing the data source

of SMDs can be performed in many ways and it can be concluded from

1.1. Backgrounds and motivations

Driven by the ever-increasing demand for wide-area monitoring and
advanced controls, modern power systems will be more and more
dependent on wide-area measurement systems (WAMS) [1,2]. However,
some data exception issues have already emerged towards the WAMS, in
which malicious attackers inject fake data to compromise measurement
data from synchrophasor measurement devices (SMDs) such as phasor
measurement units (PMUs), frequency disturbance recorders (FDRs) and
universal grid analyzers (UGAs), to deceive power system operators and
mislead them to make a wrong decision. Data spoofing issues occur
when the SMDs in WAMS are hacked and measurement data are
manipulated maliciously by hackers. Data spoofing uses false

Refs. [5] and [7] that i) Phasor data concentrators (PDCs) indeed can
check the PMU data quality and align the timestamps of PMU data,
however, it cannot handle the intentional change and the mix of PMU
data. Even though the PDCs are configurated correctly, there is nothing
PDCs can do if the data source ID is changed or mixed during the
communication from PMUs to PDCs. Since the attacks are carried out
artificially, they could happen at any time. ii) The data source ID can
also be changed or mixed during the communication from PDCs to data
storage servers, or even be changed or mixed in the data storage servers
if security mechanisms are not perfect. iii) The IEEE standard alerts that
users need to be aware of the risks of unsecured communications and
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should consider adopting more secure methods, which means there are
always potential threats during the communication process. Most
WAMS-based systems are quite vulnerable to data spoofing [8,9] since
they rely on unencrypted communication protocols and use only ID
numbers to verify the identities of SMDs. Therefore, it has significant
value to develop data source authentication algorithms.

1.2. Literature review

Existing research on this issue can be divided into three categories: i)
advanced state estimation combined with statistical algorithms to detect
direct false data injection attacks (FDIAs) in PMUs [10-14]; ii) defense
mechanism against GPS signal spoofing, which leads to fake PMU in a
round-about way [6,15]; and iii) machine learning-based algorithms to
detect data exception [5,16-18].

In [10], the Kullback-Leibler (KL) distance is employed to represent
the difference between the probability distribution determined by his-
torical data and the one that deviated from new measurement data
through state estimation. The value of KL distance will be very large
when there is a false data injection. In [11], Kalman filter (KF) is utilized
to estimate the state variables in power systems, and the chi-square
detector and Euclidean detectors are utilized together to detect system
abnormalities. In [12], a covariance selection-based data spoofing
detection algorithm for smart grids is proposed. This approach de-
composes the state estimation problem into several subproblems of
maximum likelihood estimation (MLE) so as to achieve a decentralized
and fast detection. In [13], the Markov graph of bus phase angles, which
is consistent with the power grid graph in normal conditions, is
employed to detect the data exception. This method leverages the fact
that the Markov graph would change if the power system is under data
spoofing. In [14], load forecast information, generation schedules and
measurement data are synthesized together and a predictive state esti-
mation method is used to detect anomalies for measured data. In [15],
the spoofing-matched algorithm is proposed to correct the measured
data under GPS data exception. In [6], a cross-layer defense mechanism
is proposed to detect simultaneous GPS data spoofing that aims to mix
the sources of PMUs. The carrier-to-noise ratio and trustworthiness
evaluation are respectively employed in two layers to cross authenticate
the data source. In [16], support vector machine (SVM) technique is
combined with state estimation to achieve the detection of stealthy false
data injection. In [17], several machine learning algorithms such as
SVM, k-nearest neighbor (k-NN) and sparse logistic regression (SLR) as
well as ensemble learning algorithms including adaptive boosting
(AdaBoost) and multiple kernel learning (MKL) are further studied for
state vector estimation (SVE) to detect data exception. The results show
that these machine learning algorithms are more sensitive to the system
size while the AdaBoost and MKL are more robust despite the longer
computational time. In [5] and [18], mathematical morphology (MM)-
based decomposition is used to extract the features of different PMUs/
FDRs, then multi-grained cascade forest (gcForest) and random forest
classifications are respectively employed to determine the source of
measurement data. The aforementioned algorithms are beneficial to
data exception detection but still have some limitations. For
[10-14,16,17], the whole and detailed mathematical models and elec-
trical parameters are required for performing state estimation. For
[6,15], the physical characteristics of GPS devices are further needed.
However, these models, parameters and characteristics may be inac-
cessible due to proprietary issues, or outdated due to system changes.
For the model-free algorithms in [5] and [18], their window length for
detection is quite long, making them difficult to detect data exceptions
timely in practical applications.

1.3. Contributions and organizations

In light of the above challenges, this work proposes a quadratic
kernel SVM (QKSVM)-based data source authentication algorithm for
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wide-area synchrophasor measurements in power systems and aims to
authenticate the data source of a large number of SMDs in bulk power
systems using low-reporting rate measurement data with a relatively
short time window. More specifically, the SMDs mentioned in this work
mainly refer to FDRs. The major contributions of this work can be
summarized as follows.

i) Inspired by the load-frequency characteristics, a novel feature
extraction method for measured data is first proposed. Compared
with discrete wavelet transformation (DWT) or MM in existing
methods, the proposed LFC-based method has more physical mean-
ing. In other words, more effective spatial signatures of FDR in
different places can be extracted, thus more effective input features
can be utilized for the source authentication algorithm.

ii) QKSVM-based algorithm has cooperated with the LFC-based spatial
signature extraction method for data source authentication.
Compared with other data source authentication algorithms, the
proposed algorithm can achieve better performances including:

e The proposed LFC-QKSVM algorithm does not require detailed
models and parameters of power systems, making it model-free and
more practical in actual applications;

The proposed LFC-QKSVM algorithm is less sensitive to the system

size, which can be used for a large number of SMDs (e.g. FDRs) in

bulk power systems;

The proposed LFC-QKSVM algorithm can achieve a much higher data

source authentication accuracy with a shorter window length using

low-reporting measurement data, which means data exceptions can
be detected more accurately and timely in practice.

The rest of this work is organized as follows. Section 2 gives the
problem descriptions for the data source authentication. Section 3
briefly introduces the concept of load-frequency characteristics (LFC)
and then presents the LFC-based spatial signature extraction method for
the measured data of FDRs. Section 4 introduces the QKSVM classifier
and proposes the corresponding data source authentication algorithm.
Section 5 performs case studies and comparisons on two actual U.S.
power systems, and examples of practical applications are also given.
Section 6 gives some meaningful discussions for the proposed algorithm.
Finally, several conclusions are given in Section 7.

2. Problem descriptions for the data source authentication of
SMDs

The aim of data source authentication is to detect whether there are
changes in the data source information for the SMDs. It should be
clarified that SMDs include PMUs, FDRs, UGAs, etc., and this work
mainly focuses on the FDRs deployed in FNET/GridEye [19]. FNET/
GridEye is a GPS-synchronized wide-area frequency measurement
network established by our research groups in the past few decades,
which can measure the frequency, phase angle and voltage amplitude,
and the measured data are transmitted via the Internet to the servers in
real time [20]. Therefore, if each FDR can be identified successfully, i.e.,
each FDR can be distinguished from other FDRs successfully, then the
problem of data source authentication can be solved. In other words,
“data source authentication” can be also regarded as the “data source
identification” (i.e., to know which FDR data come from) in this work.
Hence, the problem of data source authentication can be converted into
a classification problem. More specifically, since the historical mea-
surement data of FDRs can be obtained and utilized for training, the
problem of data source authentication is a supervised learning classifi-
cation problem, which can be solved by several feature extraction and
machine learning algorithms.

To evaluate the performance of different data source authentication
algorithms, several evaluation indexes are given here first.

i) Data authentication accuracy Rycc.
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Rye = (Ntp + Nin)/(Nte + Nin 4+ Nep + Npn) (€9)
ii) Recall rate of data authentication Ryecall.
Rrccat = Ntp/(N1p + Npn) (2)

iii) F-1 score of data authentication Rgj.
Rei = 2N3 /(N2 + NipNex + NipNep) 3

where Ngn, Npp, Nty and Np respectively denote the total numbers
of false negative, false positive, true negative and true positive samples
of data source authentication. Therefore, all the Race, Rr1 and Rrecall
indexes are the average and overall values in the total dataset. Gener-
ally, the larger the Racc, Rp1 and Ryecal are, the better the authentication
algorithm is [21].

3. LFC-Based spatial signature extraction method for FDR data

In practical applications, feature extraction should be performed
before employing the machine learning algorithm. In fact, the quality of
feature extraction has a large impact on the final result of a machine-
learning algorithm. Therefore, an LFC-based method is first proposed
in this section to extract the spatial signatures from the measured data
for each FDR. The load variations in power systems cause frequency
variation as well. In that case, the inertial effect is involved and the
primary (and secondary frequency) control will also be triggered for
generators to change the steam intake (or water intake) of the prime
mover and adjust the input power of the generator to meet the load
demand. These effects can be called as the load—frequency characteris-
tics [22-24]. Assume that there are M FDRs located in different places
and the frequency measured by the m™ FDR at time t is denoted as fm(0).
The frequency measured by the m™ FDR would be influenced by the load
variations in the region around the m™ FDR as well as the regions around
the rest M—1 FDRs. However, the load variations in different regions
would have different influences on the m'™ FDR, thus the features of data
measured by different FDRs could be extracted. Inspired by load-fre-
quency characteristics, it is assumed the following relationship holds.

filt+L)
At+L)

flE+L-1)
fHt+L-1)

fE+L-2)

=K, + K, fZ(HZL*z)

fult+1) fult+L—1) fult+L—2)

where M is the number of FDRs and L is the number of steps for the
LFC-based extraction method. Kj, Ko, ..., K; are all M*M matrices, and
the elements of them represent the LFC among different regions. In other
words, the spatial signatures of FDRs in different regions are included in
the matrices Ki, K, ..., K;.

It should be mentioned that power systems are complex nonlinear
systems and it may not be perfect to express the measurement frequency
of an FDR linearly by all measured frequencies of FDR in the region in
the previous L time. The motivations of using linear expression here are
as follows: i) According to the load—frequency characteristics [22-24],
the relationship between load and frequency can be linearized in the
steady-state operating point [23]. In a similar way, the frequency vari-
ations caused by load fluctuations among different regions can also be
regarded as linear approximately as long as the power systems are in the
steady-state operating point [23]. ii) It is also hard to determine which
higher-degree polynomial or nonlinear relationship should be utilized to
describe the LFC if extreme accuracy is required since the detailed load
model is quite complex. In fact, it can achieve acceptable accuracy by
using the linear expression for LFC in the steady-state operating point
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[23]. iii) More importantly, more parameters would be involved if a
more complex model is used. Thus, it would be much harder to solve
these parameters since more parameters required to be solved means
more equations are needed and the robustness of fitting results would
decrease too. Furthermore, nonlinear equations would cause the
multiple-solution problem, which should be avoided in practice. Hence,
the linear expression is utilized in this work for practical applications.

It can be seen that there are M*M*L unknowns to be determined in
Kj, Ky, ..., K;, but only M equations in (4). To solve this issue, the data
measured within the time range from ¢ + 1 to t + 2ML are used together
to form the following equation as.

BML><M = AMLxMLXMLxM (5)

where.

Xyrxu = : : : (6)

R I Y @

fit+ML+1) fo(t+ML+1) Su(t+ML+1)

| AG+ML+2) f(t+ML+2) fult+ML +2)
By = . : . )
fi(t+2ML) fo(t+2ML) Sult+2ML)
Aprmr = [F?>F/2\7~~>Fm (€))
fu(t+L) fu(t+L—1) Su(t+1)
Fz — ﬁn(t+:L+ 1) fm(t""L) ﬁ?l(t+2) (9)
St 4 LML —1) fult + L+ ML—2) - fult+ ML)

where the elements of Xy, xa are the M*M*L unknowns in K1, Ko, ...,
K;. Thus, M*M*L equations are obtained in (5) and Kj, Ko, ..., K; can be
determined by solving these equations together. The i column (i =1, 2,
...y M) of Xpp«m has M*L elements. For example, K}'l represents the
impact of LFC in the 1st region on the frequency data measured by the
1st FDR at time ¢ + 1; K-*™ represents the impact of LFC in the M region
on the frequency data measured by the 1st FDR at time ¢t + L. As for the
linear equation (5), it can be solved successfully as long as the square
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matrix Ay xuz is a full rank matrix. On the one hand, it can be seen from
(9) that both the column and row elements of Ay .y are linear inde-
pendent, which means the Ay «py is a full rank matrix theoretically. On
the other hand, the FDRs can obtain high-precision measurements,
which means the numerical problems can be avoided in actual situa-
tions. Therefore, the linear equation (5) can be solved successfully for
the most time. Besides, the pseudo-inverse method can be used in case
Apxmr is a singular matrix.

It is also worth mentioning that although some advanced machine
learning algorithms such as the convolutional neural network (CNN) can
extract the features automatically, they might not obtain good results for
this specific work. Details of this point can be found in the comparisons
among different data source authentication algorithms in Section 5.

4. QKSVM-Based data source authentication algorithm

Once the features are extracted, the QKSVM-based algorithm is
employed to authenticate the data source. Assume that the spatial sig-
natures extracted from the i data sample can be denoted as.

x = (KK LK KM R KM, (10)

The basic idea of the SVM technique is to classify several samples
into different classes based on their distances to the separating hyper-
plane. Further, the QKSVM algorithm utilizes the quadratic kernel
function to achieve better performance of the data source authentication
considering the problem of linear inseparability. For better under-
standing, SVM is introduced briefly first, then the quadratic kernel
function is involved to illustrate the process of the QKSVM algorithm.

Basically, the data source authentication problem can be converted
into a linear inseparable problem as.

I
min Sl|w] +n;y,~ an

s.tyi(wix; +b)21 —y,, 720, i=1,2,...,N,

where w and b are respectively the normal vector and intercept of the
separating hyperplane. It can be seen from (10) that the values of data
sample x; (i = 1, 2, ..., Ny) are determined by the matrix X, and the
matrix X is determined by the matrices A and B according to (5). y; is the
class of the i data sample and Ny is the number of data samples in total;
y; is a slack variable for the ih data sample and 7 is the corresponding
penalty coefficient associated with misclassification. In practical appli-
cations, 7 is usually set to 1.0 by default and can be tuned by grid search
with cross-validation (GridSearchCV) method [25] according to actual
situations. To solve the problem in (11), its dual problem is involved and
can be further converted [26] as.
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Ny Ny Ny
1 T
m;n E E E aiajy,»y,(xixj) — E a;
=1 =1 i=1

(12)
N
sty ay =0,0<a<r, i =1,2,...,N,
i=1

=

where ¢;>0, y;>0andi=1, 2, ..., N;. Due to the problem of linear
inseparability, it is hard for a linear model to obtain good performance
for data source authentication as illustrated in Fig. 1a. Therefore, the
kernel function is employed in this work to improve the accuracy of data
source authentication. The basic idea of kernel function ®(x,z) = ¢(x)
¢(z) is to utilize a non-linear transformation ¢(x) to map the input space
(i.e., Euclidean space shown in Fig. 1a) onto a characteristic space (i.e.,
Hilbert space shown in Fig. 1b). Then, the problem of searching non-
linear separating boundary in Euclidean space is converted into the
problem of searching a linear separating boundary in Hilbert space.

In this work, the quadratic kernel function ®(x;,x;) = (xJx; + 1)2 is
involved to convert the data samples in Euclidean space into Hilbert

ittt S
: :
i :

1
HEY) | Import historical FDR data | H
= :
HE = H
! g | Pre-process data by time alignment and missing data filling | i

=

S i
H _? | Extract the spatial signatures of FDRs by LFC-based method | !
S :
' Train M basic QKSVM classifiers utilizing the extracted spatial i
[ signatures and then combine them to obtain the final M-class i
H QKSVM classifier utilizing the “one-versus-all” method H
1 1
) ’

e e g

| Update the monitoring time window |<7
v

| Acquire real-time FDR data and set m=0 |

by the trained QKSVM classier for the
" FDR changed?

Alert is sent to system operators as the ith
FDR is under data exception

Fig. 2. Flow chart of the proposed LFC-based spatial signature extraction
method and QKSVM-based data source authentication algorithm.
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Fig. 1. Schematic diagram for SVM with a kernel function. (a) Euclidean space before the transformation. (b) Hilbert space after the transformation.
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space. It can be noted from problem (12) that the variables associated
with data samples are only the inner productx]x;. In fact, the x]x; can be
viewed as a linear kernel function (i.e., ®(x;,x;) = x;rxj) for the tradi-
tional SVM, and it can be replaced by the quadratic kernel function ®(x;,

x) = (xlx; + 1)2 directly [26] to obtain the QKSVM format as follows.

N N Ns

m‘:'n % Z Zaiajyiyjq)(xhxj) - Zai
=1 =1

- a3
Ny
s.t. Zaiy,- =0, 0<a;<n, i =1,2,...,N;
i=1

It should be clarified that: data source authentication is a multi-class
classification problem in this work although the equations (11)-(13) are
the derivations for a basic QKSVM that can only perform binary classi-
fication. In fact, the derivations of the basic QKSVM classifier are the key
points for the classification problem, and once the basic QKSVM clas-
sifiers can be obtained, they can be easily combined by the “one-versus-
all” method [27] to solve the multi-class classification problem.

The integrated flow chart of the proposed LFC-based spatial signa-
ture extraction method and QKSVM-based data source authentication
algorithm is given in Fig. 2. In the off-line stage, historical data are pre-
processed and employed for extracting spatial signatures, then the
QKSVM-based detector is trained based on a large number of cases. In
the on-line stage, the well-trained QKSVM detector will be utilized for
data source monitoring. In practical applications, an alert will be trig-
gered and corresponding information can be sent to system operators
once the data exception is detected.

5. Case studies

The proposed LFC-based spatial signature extraction method and
QKSVM-based data source authentication algorithm are tested by actual

WASHINGTON =

OREGON

v

CA'l:IFORNI
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measured data in two actual U.S. power systems and examples for
practical applications are also given. In addition to that, comprehensive
discussions associated with different kernel functions of SVM, the
combinations of feature extraction methods and machine learning al-
gorithms are given in detail, which demonstrate the advantages of the
proposed LFC-QKSVM-based data source authentication algorithm. In
Section 5.1, the data descriptions and testing environment are intro-
duced. In Sections 5.2 and 5.3, the studies on data authentication of
every FDR pair are performed, which means that the data exception
faults are tested in different locations. In Section 5.4, two scenarios for
two different types of data exceptions (i.e., only two data sources of
FDRs are mixed and multiple sources of FDRs are mixed) are analyzed
for demonstrating the effectiveness of the proposed algorithm.

5.1. Descriptions of the measurement data used for case studies

To demonstrate the effectiveness of the proposed LFC-based spatial
signature extraction method and the QKSVM-based data source
authentication algorithm, two cases with actual data collected from
FDRs in FNET/GridEye are employed. In this work, the data are
collected in the period from 2019/09/06 00:00:00.000 to 2019/09/06
23:59:59.900 with a 10 Hz reporting rate. Besides, these data are
collected from 15 FDRs in the U.S. Western Interconnection Grid and 54
FDRs in the U.S. Eastern Interconnection Grid, respectively.

According to common practice, 80% and 20% of the datasets are
assigned as the training and test sets and all cases are performed on
MATLAB 2020a installed on Windows 10 platform with Core i7-9700
CPU and 16 GB RAM. It is worth mentioning that the spatial signa-
tures of FDRs in different regional systems are significantly different, so
it is not difficult to detect the data source ID mix exceptions among
different regional systems. Hence, this work focuses on the more difficult
one, i.e., data source ID mix exceptions within the same regional sys-
tems. Thus, two cases for the U.S. Western and Eastern Interconnection

MONTANA

SOUTH
DAKOTA

NEBRASKA

*Jnited States

KANSAS

Fig. 3. Locations of 15 FDRs in the U.S. Western Interconnection Grid.
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Fig. 4. Extracted spatial signatures of different FDRs in the U.S. Western Interconnection Grid.

Grids are studied separately as follows.

5.2. Case studies and comparisons between the proposed algorithm and
existing algorithms for the U.S. Western Interconnection Grid

After pre-processing, the data of 15 FDRs on 2019/09/06 are avail-
able in the U.S. Western Interconnection Grid, and their locations are
shown in Fig. 3.

First, the LFC-based spatial signature extraction method is performed
with the parameter L = 10. For better illustration, only the 1st spatial
signature of FDRs #1-15 is plotted in Fig. 4. Although their variation
tendencies are similar at the first sight, there still are some differences
among these FDRs in the zoom-in view of the feature figures, which can
help to identify each FDR. For example, their relative ranks are un-
changed for the 1st feature. Thus, the relative ranks of feature values can
be utilized as an index to detect the data exceptions. For example, once
the data source ID of FDRs is mixed or changed, the relative ranks of
FDRs will be changed and a corresponding alert can be triggered in this
case. It should be mentioned that 150 features are extracted by the

proposed LFC-based method for each FDR, and they are considered
comprehensively and utilized as the input data for the QKSVM-based
data source authentication algorithm to determine whether there is a
data source ID mix exception. It should be clarified that it is not trying to
emphasize the similarity of the characteristics of FDRs in different lo-
cations. On the contrary, although their variation tendencies are similar
at the first sight, there still are some differences among these FDRs in the
zoom-in view of the feature figures, which can help to identify each FDR.
For this case, the penalty coefficient 7 is tuned as 0.37714 by the Grid-
SearchCV method [25] and historical data for the implementation of
data source authentication, which can achieve relatively robust and
good results. The results of QKSVM-based data source authentication are
shown in Fig. 5. In Fig. 5, the numbers in the lower-left corner denote the
distances between FDR pairs and the lengths of yellow bars describe the
relative values of the distances. For example, the first number “552”
means the distance between FDR pair 1&2 is 552 km. The numbers in
the upper-right corner denote the false authentication rates associated
with FDR pairs, and the blanks mean the false authentication rates are
smaller than 1%. It is noted that the false authentication rate for the m™

FDR # False Authentication Rate
1 2 3 4 5 6 8 9 10 |11 |12 [ 13 | 14 | 15

1

2 [552 e -1 1111

3 [1182 [ 1403 47

4 [ 421 [ 404 [1557

5 [ 641 [ 985 | 558/ |1044 1
T | 6 [1747 [1583 [ 1083 [ 1936 [1388 __ ’
< [ 7 ['556 |[356 |Foes [ (663 | 7201274 o/
§ 8 [ 858 | 3637[1403 | 765 41112 [1327 | 394 R
£ | 9 [400 [l40d [1587(] 21 )1023 [1925 | 651 | 765 ]
o | 10 [1552 [1240 [1300 |1632 [1396 | 528 [1007 | 919 [1626 Rad

11 [ 967 | 762 [[941 [1105 [[852 [ 834 | 446 [ 551 [1004 | 592 4>

12 [ 559( 8 1402 [412 [987 [1578 | 353 | 355 | 41247238 | 747

13 | 302 | 435 (1458 | 124 | 984 [1897 | 628 4796 | 103 [1624 [1074 | 443

14 [1266 [1474(] 86 7} eaa {7051 [ 1132 [ 1459 [1618 [1303 | 980 |1473 | 1540
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Fig. 5. Results of data source authentication in the U.S. Western Interconnection Grid.
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FDR is defined as Rfase;m = Nep,m/(Nep,m + NtN,m), Where Npp , and
Nrn,m are the numbers of false-positive and true-negative samples of the
mh FDR, respectively. Generally, the smaller the Rajse m is, the better the
authentication algorithm is. It can be seen that the data source
authentication by the proposed algorithm achieves quite high authen-
tication accuracy. For most FDR pairs, they can be authenticated
correctly with more than 99% probability. The worst result happens
between the FDRs #3 and #14, and they could be authenticated
incorrectly from each other with 37% probability. In summary, the
proposed LFC-based spatial signature extraction method and QKSVM-
based data source authentication algorithm for FDRs in the U.S. West-
ern Interconnection Grid can achieve 89.60% accuracy.

It can also be seen from Fig. 5 that the distances between different
FDRs do influence the authentication accuracy. For instance, the data
source authentication result mistakes data sources for FDR pair 3&14
with a 37% probability (see the purple circles in Fig. 5); and mistakes
data sources for FDR pair 4&9 with a 28% probability (see the blue
circles). Correspondingly, the distance between FDR pair 3&14 is 86 km
and the distance between FDR pair 4&9 is 21 km, which are very close.
However, the distance between FDR pair 2&12 is 8 km while the cor-
responding false authentication rate is only 3% (see the pink circles in
Fig. 5), which is quite low. It is noted that the tests are performed several
times and the results are similar, i.e., the distance between FDRs does
influence the authentication accuracy while other impact factors also
influence the accuracy. These factors include electrical distance and
inherent signatures of devices, which deserve further studies.

Specifically, the inherent signatures of devices indicate the unique
characteristics of each FDR, such as the measurement noise and mea-
surement variance. For example, even two FDRs located in the same
place would have a slight difference in the measurement data since these
two FDRs cannot have the completely same measurement characteris-
tics. Due to the different electronic components and product batches, the
measurement noise would be different and their variances would be
different too. These characteristics are only associated with each certain
FDR, so they are called inherent signatures of devices here and can be
utilized for the data authentication of FDRs. Similarly, in modern
WAMSs, the apparatuses are different and from different vendors. If the
measurement devices are heterogeneous or have different accuracy
levels, then these differences can be regarded as more distinct features
and can be more useful for authenticating the data sources. In other
words, data source authentication can be achieved earlier in such situ-
ations. Therefore, this work mainly forces on the more difficult situa-
tions, i.e., studying the data source authentication algorithm for
homogeneous measurement devices with the similar reporting rate and
accuracy level in WAMS.

To demonstrate the effectiveness and superiority of the proposed
algorithm, several existing data source authentication algorithms (i.e.,
algorithms based on MM-gcForest [5], MM-RFC [18] and DWT-BP [28])
are employed for comparisons, whose results are given in Table 1. It
should be noted that the values listed in Table 1 are the average values of
the data source authentication for different FDR pairs (i.e., different
locations in the U.S. Western Interconnection Grid). It can be seen that
the accuracy obtained by other algorithms is much lower and cannot be

Table 1
Evaluation Indexes of Data Source Authentication in the U.S. Western Inter-
connection Grid by Using Different Algorithms.

Index MM- MM-RFC DWT-BP CNN Proposed LFC-
gcForest [5] [18] [28] QKSVM

Accuracy  40.62% 43.19% 34.35% 69.20%  89.60%

Recall 6.54% 44.44% 37.34% 42.86%  76.92%

F-1 10.55% 58.48% 47.58% 49.34%  79.37%

DWT: Discrete Wavelet Transform MM: Mathematical Morphology BP: Back
Propagation.
gcForest: multi-grained cascade Forest CNN: Convolutional Neural Network.
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used in practical applications. It should be clarified that most of the
existing algorithms have a relatively good performance if the number of
FDRs is not large. For example, if only three or five FDRs need to be
authenticated, then the algorithms based on DWT-BP [28] or MM-RFC
[18] can achieve about 75%~85% accuracy. In the meantime, the
MM-gcForest [5] algorithm is greatly improved from [18] and can
achieve relatively high accuracy even for ten FDRs. To compare the
proposed algorithm with the advanced machine learning algorithm that
can extract features automatically, the result of the CNN-based algo-
rithm is also given in Table 1. It can be seen that the CNN-based algo-
rithm performs better than the existing ones while can only achieve
69.2% accuracy either. In this work, the LFC-based feature extraction
method is utilized for raw data before performing QKSVM algorithm.
For CNN, however, the raw data are directly utilized as the input data of
the network. Although CNN also has the ability for feature extraction, it
is more suitable for feature extraction for pictures. In addition, the recall
rate and F-1 score determined by different algorithms are further given
in Table 1 to evaluate the performances of different algorithms for such a
class imbalance classification problem. It can be seen that the proposed
LFC-QKSVM algorithm can achieve the best results with regard to
different evaluation indexes. Hence, it can be concluded that the pro-
posed QKSVM-based algorithm combined with the LFC-based spatial
signature extraction method outperforms the other four algorithms.

5.3. Case studies and comparisons between the proposed algorithm and
existing algorithms for the U.S. Eastern Interconnection Grid

To show the effectiveness of the proposed LFC-based spatial signa-
ture extraction method and QKSVM-based data source authentication
algorithm for a large number of FDRs, the data of the U.S. Eastern
Interconnection Grid are utilized. After pre-processing, the data from 54
FDRs are available in the U.S. Eastern Interconnection Grid on 2019/09/
06, and their locations are shown in Fig. 6. Similar to Fig. 4, the LFC-
based spatial signature extraction method is performed with the
parameter L = 3 first, then the QKSVM-based algorithm is used. For this
case in the U.S. Eastern Interconnection Grid, the penalty coefficient 7 is
tuned as 3.736 by GridSearchCV method [25] and historical data for the
implementation of data source authentication, which can achieve rela-
tively robust and good results. The average accuracy of the proposed
algorithm for data source authentication in the U.S. Eastern Intercon-
nection Grid is 80.12%, and the results obtained by other existing al-
gorithms are also given in Table 2 for comparisons.

It can be seen that the accuracies of all algorithms decrease
compared with the results obtained in the U.S. Western Interconnection
Grid due to the increase in the number of FDRs. For the proposed LFC-
QKSVM algorithm, the accuracy only decreases from 89.6% to 80.12%
while the accuracies of the other three existing algorithms decrease
much more. The CNN-based algorithm works better than the existing
ones while can only achieve 64.3% accuracy too. In addition, the recall
rate and F-1 score determined by different algorithms are further given
in Table 2. It should be noted that the values listed in Table 2 are the
average values of the data source authentication for different FDR pairs
(i.e., different locations in the U.S. Eastern Interconnection Grid). It can
be seen that the proposed LFC-QKSVM algorithm can achieve the best
results with regard to different evaluation indexes. Therefore, it can be
concluded that the proposed LFC-QKSVM algorithm earns a great
improvement compared with other algorithms especially when a large
number of data of FDRs are required to be authenticated.

5.4. Examples of practical applications

In order to illustrate the proposed algorithm in practical applica-
tions, two scenarios in the U.S. Western and Eastern Interconnection
Grids are studied as examples. Scenario 1 is utilized to demonstrate the
effectiveness of the proposed data source authentication algorithm when
only two data sources of FDRs are mixed. Scenario 2 is utilized to
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Table 2
Evaluation Indexes of Data Source Authentication in The U.S. Eastern Inter-
connection Grid by Using Different Algorithms.

Index MM- MM-RFC DWT-BP CNN Proposed LFC-
gcForest [5] [18] [28] QKSVM

Accuracy  23.50% 17.33% 19.61% 64.3% 80.12%

Recall 29.17% 57.69% 63.11% 74.35%  86.96%

F-1 8.38% 42.06% 39.28% 52.84%  75.11%

demonstrate the effectiveness of the proposed data source authentica-
tion algorithm when multiple sources of FDRs are mixed in large-scale
power systems.

5.4.1. Scenario 1: Data sources of FDRs #3 and #9 in the U.S. Western
Interconnection Grid are mixed from 22:00:00 to 22:09:59

In this scenario, the data from 00:00:00 to 19:59:59 are used as the
training set and the data from 20:00:00 to 23:59:59 are used as the
testing set. The performances of practical applications of the proposed
data source authentication are shown in Figs. 7 and 8, and the off-line
training time and on-line authentication time for this scenario are
given in Table 3.

In the period of 22:00:00 to 22:09:59, the data sources of FDRs #3
and #9 are mixed intentionally. Due to the space limitation, only the
authentication results of FDRs #3 and #9 are given in Figs. 7 and 8. The
reporting rate of FDRs is 10 Hz, and the window length of the proposed
algorithm is 1 s (i.e., every 10 samples of frequency data are used to
authenticate FDR sources once). Therefore, there are 4*3600 = 144,000
points in Fig. 7 or 8. The blue circles and green rhombuses denote the
data source authentication results for FDRs #3 and #9, respectively.
Besides, the detailed views for the beginning and ending periods of data

exception are shown in the sub-boxes in Figs. 7 and 8, respectively. It can
be seen that data from FDRs #3 and #9 are correctly authenticated as
the data from sources #3 and #9 for most of the time from 20:00:00 to
21:59:59 and 22:10:00 to 23:59:59 (see the left and right parts of Figs. 7
and 8). In the period of data exception (i.e., 22:00:00 ~ 22:09:59), it can
be seen from the monitoring graph that the mixed data from FDRs #3
and #9 are correctly identified as the data from sources #9 and #3,
indicating a data exception that exchanges the data sources of FDRs #3
and #9 is ongoing (see the middle parts of Figs. 7 and 8). It is noted that
although there could be some authentication disturbances at the
beginning and end of the data exception, the authentication result would
be stabilized later on, as can be seen from the detailed views of Figs. 7
and 8. Therefore, it can be concluded that the proposed algorithm is
effective in practical applications.

As for the computation time, it can be seen from Table 3 that the
proposed LFC-QKSVM spends 322.63 s for training while 0.0651 s for
authentication. Although the off-line training stage requires a relatively
long time, the on-line authentication stage just requires a quite short
time. Therefore, the proposed LFC-QKSVM can meet the real-time
requirement.

5.4.2. Scenario 2: Data sources of FDRs #8, #30 and #50 in the U.S.
Eastern Interconnection Grid are mixed from 22:01:00 to 22:02:59

In this scenario, the data from 00:00:00 to 19:59:59 are used as the
training set. The data from 20:00:00 to 23:59:59 are used as the testing
set and the performances of practical applications are shown in Fig. 9. In
Fig. 9, the blue stars, orange triangles and yellow crosses circles denote
the data source authentication results for FDRs #8, #30 and #50,
respectively. In the period of 23:01:00 to 23:02:59, the data sources of
FDRs #8, #30 and #50 are mixed intentionally. To show the results
clearly, only the identified sources of FDRs #8, #30 and #50 are given
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Fig. 8. Data source authentication for FDR #9 in the U.S. Western Interconnection Grid in practice.

from the monitoring graph that the data from mixed FDRs #8, #30 and
#50 are respectively recognized as sources #30, #50 and #8, which
indicates a data exception happened and the data sources of FDRs #8,
#30 and #50 are mixed from each other. Therefore, it can be concluded

Table 3
Off-line Training time and On-line Authentication Time of the Proposed LFC-
QKSVM Algorithm for Scenario 1.

Algorithm Window Offline Training  On-line Authentication that the proposed algorithm is also effective when applied for large-scale
Length fime Time power systems with a large number of FDRs.

MM-gcForest 10 min 59.32s 0.0524 s As for the computation time, it can be seen from Table 4 that the

MIE/?—]RFC (18] 10 min 18.64 5 0.0073 s proposed LFC-QKSVM spends 1565.38 s for training while 0.3433 s for

LFC-QKSVM 1s 32263 s 0.0651 s authentication. Although the time of the on-line stage increase with the

increase of the number of FDRs, the on-line authentication time is still
within 1 s and is acceptable for on-line application. It is noted that the
in Fig. 9. Besides, the off-line training time and online authentication window lengths of MM-gcForest and MM-RFC algorithms are 10 min
time for this scenario are given in Table 4. while the window length of the proposed LFC-QKSVM is 1 s. Therefore,

It can be seen from Fig. 9 that data from FDRs #8, #30 and #50 are the data samples for MM-gcForest and MM-RFC algorithms are fewer
correctly authenticated as in sources #8, #30 and #50 when no data than the data samples for the LFC-QKSVM algorithm, although the data
exception arises (i.e., 23:00:00 ~ 23:00:59 and 23:03:00 ~ 23:05:00). In points in each sample for MM-gcForest and MM-RFC algorithms are
the period of data exception (i.e., 23:01:00 ~ 23:02:59), it can be seen



S. Liu et al.

International Journal of Electrical Power and Energy Systems 140 (2022) 108083

54 153 T T T |5 T T T
50 2 N o
* 45— v v * %, v -
[}
8 40 Lo v -
5.1 # A, * .
335 I VY
€ 30 PR Yg( N
o RRRARARRARARKARKARRKKKAAKKIIRX VA’ v V V »
L L 5 -
§ 25 v v & 7 % FDR#8
£ *
=20} _ w T v FDR#30| -
L5t ¥ ' w J %‘;&} FDR #50|
=}
% ]
< % % o
v ! 1 !
23:00:30 23:01:00 23:01:30 23:02:00 23:02:30 23:03:00 23:03:30 23:04:00 23:04:30 23:05:00
Time 2019/09/06
Fig. 9. Monitoring graph for FDRs #8, #30 and #50 in the U.S. Eastern Interconnection Grid in practice.
improve the training efficiency for QKSVM.
Table 4

Off-line Training time and On-line Authentication Time of the Proposed LFC-
QKSVM Algorithm for Scenario 2.

Algorithm Window Off-line Training On-line Authentication
Length Time Time
MM-gcForest 10 min 186.90 s 0.1654 s
[5]
MM-REC [18] 10 min 65.45 s 0.0269 s
LFC-QKSVM 1s 1565.38 s 0.3433 s

more than the data points in each sample for the LFC-QKSVM algorithm.
In fact, the data sample and data point are different concepts. The
relationship between them is: one data sample is described by several
features as shown in equation (10), while the features are extracted
based on a large number of original data points that belong to this data
sample. It can be seen that the number of data samples of the LFC-
QKSVM algorithm utilized for training is much more than the ones of
MM-gcForest and MM-RFC algorithms, although the points in each
sample are fewer. Therefore, the computation time of the LFC-QKSVM
algorithm shown in Tables 3 and 4 is much longer than MM-gcForest
and MM-RFC algorithms.

Indeed, the training time of the proposed algorithm is much higher
than the other two algorithms in Tables 3 and 4, while it is worth for the
improvement of data source authentication accuracy as shown in Ta-
bles 1 and 2. Besides, it should be clarified that the computation time of
the proposed LFC-QKSVM algorithm shown in Tables 3 and 4 is not
obtained by running in parallel for each FDR. On the one hand, the
trained model can be used for a quite long time as long as the power
system model does not have large change and the old FDRs are not
replaced by new ones. Therefore, the LFC-QKSVM model do not need to
be updated too frequently, and once for several days is enough. Hence,
the training time is feasible in practical applications. On the other hand,
there are several methods that can be utilized to accelerate the
computation process. If more FDRs are required to be authenticated in
the future, dedicated servers instead of a single desktop can be further
deployed. Furthermore, parallel techniques can be utilized as well to
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Fig. 10. Comparisons among different kernel functions for SVM.

10

6. Discussions
6.1. Discussions on the kernel functions of SVM

In fact, several kernel functions can be applied for SVM. To select the
best kernel function for the proposed data source authentication algo-
rithm, linear, cubic, Gaussian and quadratic kernel functions are
compared. Their results in the U.S. Western and Eastern Interconnection
Grids are given in Fig. 10.

It can be seen that the accuracy obtained by Gaussian kernel function
is the lowest; the ones obtained by polynomial (i.e., linear, quadratic,
and cubic) kernel functions are all higher and the quadratic kernel
function achieves the best performance. The reasons are that i) the
extracted spatial signatures may not be in Gaussian distribution; ii)
under-fitting and over-fitting problems may exist if linear or cubic
functions are used. It can be seen that the quadratic kernel function can
always achieve high accuracy, indicating that the quadratic kernel
function is the most suitable kernel function for SVM in data source
authentication. To be honest, it is hard to give an affirmative conclusion
that whether there is an over-fitting problem when using the quadratic
kernel function. However, it can be seen that the results obtained by the
quadratic kernel function are better when comparing the results ob-
tained by linear and cubic kernel functions. Therefore, it can be at least
concluded that the influence of the under/over-fitting problem when
using the quadratic kernel function is much lighter than the influence
when using the linear or cubic kernel function. In other words, it is
suggested to use QKSVM for data source authentication in this work.

6.2. Discussions on the importance of cooperation between LFC-based
spatial signature extraction and QKSVM

To demonstrate the importance of cooperation between LFC-based
spatial signature extraction and QKSVM, comprehensive comparisons
among different combinations of feature extraction methods and ma-
chine learning algorithms are performed, and their results in the U.S.
Western and Eastern Interconnection Grids are given in Figs. 11 and 12,
respectively. The x-axis denotes different machine learning algorithms
(i.e., gcForest, RFC, BP and QKSVM) and the y-axis denotes different
feature extraction methods (FFT, DWT, MM and LFC). It is noted that all
the tests are performed on the same data set with the same window
length (i.e., 1 s) and reporting rate (i.e., 10 Hz). The results of using
original frequency measurements (i.e., feature extraction is not per-
formed before utilizing classifiers) are also given in Figs. 11 and 12 for
comparisons. It can be seen that using feature extraction methods can
always achieve better performance than using the original frequency
measurements, which also demonstrates the necessity of feature
extraction.

It can be seen from Figs. 11 and 12 that: i) The LFC-based spatial
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Fig. 11. Accuracies in the U.S. Western Interconnection Grid by using different feature extraction methods and machine learning algorithms.
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Fig. 12. Accuracies in the U.S. Eastern Interconnection Grid by using different feature extraction methods and machine learning algorithms.

signature extraction method can always help achieve the highest accu-
racy no matter what machine-learning algorithms are followed. ii) The
QKSVM-based data source authentication algorithm can achieve the
highest accuracy among different machine learning algorithms when
combined with LFC. iii) The performance of the QKSVM-based data
source authentication algorithm is inferior to other ones if its input
features are extracted by the other three feature extraction methods,
which means that it is quite important to utilize LFC and QKSVM
together to achieve the best performance for data source authentication
in this situation.

The reasons behind the improvement of accuracy are that: i) the
quality of feature extraction can greatly influence the effectiveness of
machine-learning algorithms, and using original data means no feature
extraction is performed before data authentication. ii) Although the
feature extraction methods such as FFT, DWT and MM have good per-
formance for signal processing and other fields, they do not consider the
special characteristics of power systems. Therefore, they may not suit-
able for data source authentication for power systems and cannot ach-
ieve as good results as in other fields. iii) The proposed LFC-based
feature extraction method considers the inherent load—frequency char-
acteristics of power systems, so it is more suitable to extract the spatial
signatures from the measured data. In other words, the proposed LFC-
based feature extraction method considers the special characteristics
of power systems so as to achieve better performances than others.
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6.3. Discussions on the impact of data reporting rate

In the previous study (i.e., Ref. [18]), it is stated that the MM-RFC
algorithm can achieve high accuracy even when two SMDs are located
several miles away, which seems to conflict with the phenomena in this
work. However, it should be clarified that the data reporting rate of
PMUs (i.e., 120 Hz) in Ref. [18] is much higher than the one of FDRs (i.
e., 10 Hz) in this work. If a lower reporting rate is utilized, the perfor-
mances of the MM-gcForest and MM-RFC algorithms will decrease
dramatically (see Fig. 4 in [18]) for the SMDs located closely. To
demonstrate this point, tests with the 10 Hz reporting rate in the same
system as [18] are utilized and the results are: the LFC-QKSVM algo-
rithm can achieve 94.12% accuracy while the MM-RFC algorithm can

Table 5

Evaluation Indexes of Data Source Authentication in The U.S. Western and
Eastern Interconnection Grids by Using Different Parameters L for the LFC-Based
Extraction Method.

Index L=10 L=3

Western Eastern Western Eastern
Accuarcy 89.60% 81.53% 88.10% 80.12%
Recall 76.92% 87.24% 75.32% 86.96%
F-1 79.37% 76.85% 77.67% 75.11%
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achieve about 48% accuracy. Therefore, it is the difference in reporting
rate that causes the uncoordinated phenomena between Ref. [18] and
this work. In fact, this work aims to authenticate the data source of a
large number of FDRs in bulk power systems using low-reporting rate
measurement data with a relatively short time window. If high-reporting
data are available, the algorithms [3,5,18] in the previous work can be
employed to authenticate the data source of SMDs that are located close
to each other.

6.4. Discussions on the impact of parameter L for the LFC-Based
extraction method

Generally, the larger L could help to extract more signatures and
achieve high accuracy. However, it also results in more equations to be
solved and more computation time. Therefore, to obtain the trade-off
between authentication accuracy and computation time, it is recom-
mended to select a relatively large L for power systems with a small
number of FDRs to be authenticated and select a relatively small L for
power systems with a large number of FDRs to be authenticated. To
demonstrate that the deterioration of evaluation indexes is mainly
caused by the increase of FDR number rather than the parameter L, the
test results on the U.S. Western Interconnection Grid with L = 3 and the
test results on the U.S. Eastern Interconnection Grid with L = 10 are also
given in Table 5 for comparisons. It can be seen that the results obtained
by L = 10 are slightly better than the results obtained by L = 3 for both
the two interconnection grids. However, even the parameter L = 10 is
used for the U.S. Eastern Interconnection Grid, its results are still worse
than the one of the U.S. Western Interconnection Grid with L = 3.
Therefore, it can be concluded that performance decrease is mainly
caused by the increase of FDT number rather than the reduction of L
from 10 to 3 in Section 5.

6.5. Discussions on the impact of data exception in practice

From the power system application perspective, lots of potential
impacts would be caused if the data source information is mixed. For
example, the error of event location estimation for power systems would
be greatly increased. At 2019-10-19 21:59:03, there was a generation
trip event occurs in the U.S. Eastern Interconnection Grid and the FDRs
UsOhAkron998, UsNyLewiston1436, UsNyLeroy985, CaOnToronto703
and UsOhChilliecothe670 are the first five FDRs that received the elec-
tromechanical waves of the frequency drop. Based on the different de-
lays of wave arrival time, the event location can be estimated as the GPS
coordinate (43.6103, —83.4856), which is 92.21 miles away from the
actual location (42.3048, —83.1527). However, if the data source in-
formation of FDRs is mixed, then the estimation errors will increase
dramatically. For example, if the source information of UsOhAkron998
and UsOhChilliecothe670 is mixed, then the estimated location would be
(45.6578, —84.5223), which is 242.75 miles away from the actual
location. If the source information among more FDRs is mixed, the errors
could increase even up to 800 miles. Therefore, data exception could
cause a great impact in practice and data source authentication is
meaningful for practical applications in power systems.

6.6. Discussions on the relationship between data exception detection and
data spoofing prevention

It should be mentioned that in addition to detecting data exceptions,
preventing data spoofing is another essential point for data source
authentication. For data spoofing prevention, there are several mature
techniques and protocols. For example, the secure sockets layer (SSL),
also known as transport layer security (TLS) later, is used for data
transmission on websites. SSL consists of a record layer and a transport
layer. The record layer protocol determines the encapsulation format of
the data in the transport layer. The transport layer security protocol uses
the asymmetric encryption calculus to authenticate the communication
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party, after which the symmetric key is exchanged as the session key
[30]. Besides, other asymmetric cryptographic/authentication algo-
rithms such as RSA and Elgamal can also be utilized for preventing data
spoofing. However, on the one hand, these asymmetric cryptographic/
authentication algorithms need additional information during the data
transmission, which cannot be employed for the current FDRs directly.
On the other hand, they mainly aim to prevent data spoofing rather than
detect ongoing data exceptions. This work mainly focuses on detecting
data exceptions and authenticate the data sources only based on the
measurement data, while how to prevent data spoofing is not the main
point of this work. Therefore, the asymmetric cryptographic/authenti-
cation algorithms are considered in detail in this work.

7. Conclusions

In this work, a novel feature extraction method based on LFC and a
data source authentication algorithm based on QKSVM are proposed.
First, the spatial signatures of FDRs located in different regions are
extracted. Then, the QKSVM algorithm is employed to authenticate the
data source of each FDR. Case studies in the U.S. Western and Eastern
Interconnection Grids demonstrate the effectiveness of the proposed
algorithm in authenticating measurement data in actual systems. Some
conclusions can be drawn as follows.

i) The cooperation of the proposed LFC-based spatial signature
extraction method and the QKSVM-based data source authenti-
cation algorithm can achieve higher authentication accuracy
compared with existing algorithms. The proposed data source
authentication algorithm can achieve higher accuracy with a
much shorter time delay.

It is essential to determine a suitable kernel function for SVM,

which has large impact on the final authentication result.

Concretely, linear and cubic/Gaussian kernel functions might

respectively cause under-fitting and over-fitting problems in this

case, so the most suitable kernel function is determined as the
quadratic one in this work.

iii) The highest authentication accuracy for data sources can be
achieved if the LFC-based method and the QKSVM-based algo-
rithm are utilized simultaneously. Combining one of them with
another feature extraction method or machine learning algorithm
will reduce accuracy.

iv) The geographic distances among different FDRs have an obvious
but not decisive influence on the authentication accuracy of the
proposed algorithm. Generally, the authentication accuracy in-
creases with the geographic distance between different data
sources. However, this correlation does not always hold due to
other factors (i.e., electrical distance and inherent signatures of
the devices).

ii)

Although several analyses have been done in this work, there are still
some issues and work that are required to be further studied as follows in
the future.

i) More attention is required to be paid to the inherent signatures of
SMDs and their physical meanings. Once this issue can be
handled, the performance of data authentication will be much
better and more robust.

ii) The module can be operated within the PDCs. More specifically,
for the FNET/GridEye system, the LFC-QKSVM module can be
operated in the action layer of the OpenPDC framework [29],
which is designed to handle multiple FDRs/PMUs. Currently, the
OpenPDC in FNET/GridEye has been processing data from more
than 300 FDRs in real-time. Our future work will study the
computational complexity/overhead of this module in real-time
operation on this actual monitoring system.
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iii) The results of this work can support building an authenticated
dataset of system frequency. With the help of this dataset, elec-
trical network frequency filtered from audios or videos can be
compared with the dataset so as to achieve corresponding
forensic analysis.

Data exception detection and data spoofing prevention are the
two essential points for data source authentication. This work
mainly focuses on data exception detection and data spoofing
prevention is worth further studying in the future.
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