
Applying Prerequisite Structure Inference to Adaptive Testing

Sam Saarinen
Brown University

Providence, Rhode Island
sam_saarinen@brown.edu

Evan Cater
Brown University

Providence, Rhode Island
Evan.ecater@gmail.com

Michael L. Littman
Brown University

Providence, Rhode Island
mlittman@cs.brown.edu

ABSTRACT

Modeling student knowledge is important for assessment design,

adaptive testing, curriculum design, and pedagogical intervention.

The assessment design community has primarily focused on con-

tinuous latent-skill models with strong conditional independence

assumptions among knowledge items, while the prerequisite discov-

ery community has developed many models that aim to exploit the

interdependence of discrete knowledge items. This paper attempts

to bridge the gap by asking, "When does modeling assessment item

interdependence improve predictive accuracy?" A novel adaptive

testing evaluation framework is introduced that is amenable to

techniques from both communities, and an efficient algorithm, Di-

rected Item-Dependence And Confidence Thresholds (DIDACT),

is introduced and compared with an Item-Response-Theory based

model on several real and synthetic datasets. Experiments suggest

that assessments with closely related questions benefit significantly

from modeling item interdependence.
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1 INTRODUCTION

This paper attempts to bridge the gap between two communities

of knowledge-modeling research. The paper is specifically built

around the question, "When does modeling assessment item in-

terdependence improve predictive accuracy?" This introduction

will provide context for the paper and distinguish this work from

related work in the literature.
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1.1 We are Discovering Prerequisite Structures

Although this paper uses an adaptive testing evaluation framework,

the techniques are most closely related to the Prerequisite Inference

literature. There are many educational uses for identifying depen-

dencies between topics, concepts, or questions. These uses include

defining constraints on curricular order (what order should topics

be taught in to maximize student learning) [4], providing course

recommendations [2] , designing adaptive testing systems (and in-

ferring student knowledge) [12], and efficiently validating new test

questions. Although the exact form of such relational structures

has varied across the literature, this paper will call all such devices

dependency maps. Prior work has attempted to deduce such de-

pendency maps from a variety of data sources using a variety of

techniques and evaluation methods. See Table 1 for a summary.

This work is motivated by the problem of detecting student

knowledge efficiently using student-sourced questions, a promising

approach to scalable assessment generation and adaptation [17].

Due to minimal expert oversight, there is no ground-truth source of

skill-labelings for questions assessing the same skill or knowledge,

nor is there a ground-truth dependency map to validate against (so

it cannot be used to measure performance of algorithms designed

for this problem). Furthermore, because the student-contributed

questions are often written without global awareness of the other

questions available, many questions are related or equivalent. This

motivates an adaptive testing system that attempts to minimize the

number of questions needed to accurately predict student perfor-

mance. (Note that even with expert-authored questions, experts

may wish to validate their own dependency maps empirically, or

to save themselves the effort of creating one manually.)

This paper aims to learn a dependency map on the basis of ex-

plaining (or predicting) the observed data, so the works closest to

this paper are the attempts to use Bayesian inference to infer pre-

requisite relationships among latent skills, given the mapping from

assessment questions to required skills [4, 7, 10]. Although those

approaches are promising and able to reproduce small artificially-

generated or expert-defined structures, they suffer from two pri-

mary limitations. First, the ground-truth mapping from questions

to measured latent skills is not available in the problem domain

considered here. Second, Bayesian inference methods are generally

both approximate and slow, limiting their scalability. This paper

considers structures with an order of magnitude more nodes than

those studied in prior work.

The algorithm explored here, DIDACT, also bears resemblance

to the prior Probabilistic Association Rules Mining work [8]. The

work presented here differs primarily in that this paper explicitly

considers the problem of predicting or filling in values in the dataset,

and the algorithm has been generalized to allow item equivalence.
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Table 1: Approaches to prerequisite map inference are grouped broadly by approach to validation, then by exact validation

method, then by source of data. This paper introduces a new evaluation framework for dependency maps and evaluates a

novel technique inspired by several existing ones.

Data Source Validation Method Technique Reference

Expert (or Simulated) Dependency Map Recovery

Student Answers to Test Questions Plausible Structure Recovery Expectation Maximization on Pairwise Rela-

tionships

[4]

Pairwise Interaction Features Human Evaluation Various Regression Algorithms [3, 6]

Course Enrollment and Grades Reproducing Existing Course Pre-

requisites

Ranking by Conditional Success Ratios [2]

Probabilistic Student Knowledge

States from Test Questions

Rediscovery of Simulated and Ex-

pert Structure

Probabilistic Association Rules Mining [8]

Student Answers to Test Questions Rediscovery of Simulated and Ex-

pert Structure

Bayesian Model Selection [7, 10]

Data Self-Supervision

Student Answers to Test Questions Leave-One-Out Cross Validation Structural EM for Bayesian Model Selection [7]

Student Answers to Test Questions Data Reconstruction Error Restricted Bayesian Inference (DIDACT) this paper

There is also a fascinating body of work into Dependency Map

learning from natural language sources (Adorni et al. [1], for ex-

ample), but those techniques require a large text corpus (such as a

textbook), are not designed for relating assessment items, and the

evaluation method presented here is fundamentally different.

There is also work on predicting student responses using su-

pervised learning [11], but that work only applies to predicting

responses to a fixed set of questions given responses to a different

fixed set of questions, making it inapplicable for either detecting

prerequisite relationships or facilitating adaptive testing.

Finally, we also note that the methods presented here exploit

algorithms on directed acyclic graphs (DAGs) to explicitly simplify

the output and enforce global constraints in the dependency map,

a technique that has not appeared in the prior literature.

1.2 We do NOT use a Q-Matrix

Many approaches to inferring dependency maps aim to simplify

the problem through use of a Q-matrix, which maps a number of

assessment items to a smaller number of latent knowledge variables.

Q-matrix𝑄 has𝑄𝑖 𝑗 = 1 if question 𝑖 uses skill 𝑗 , and 0 otherwise. If

an exam is built by experts, a Q-Matrix may be hand-coded. In our

setting however, we do not use a Q-matrix. Instead, we design an

inference algorithm that scales well to large numbers of assessment

items.

1.3 We are Doing Adaptive Testing

Computer Adaptive Testing (CAT), or simply Adaptive Testing, has

a rich history in the literature, dating back to 1985 (Weiss [20]).

In recent years, many innovations in Knowledge Modeling have

been carried over to an Adaptive Testing setting [16]. We continue

this tradition, but with a novel evaluation framework for adaptive

testing that provides rich information around the tradeoff between

data-efficiency and accuracy.

1.4 We compare to Item Response Theory

Item Response Theory (IRT) assumes that students have skills which

influence their question answers. In Item Response Theory, the

simplest model is known as the 1-parameter logistic model, or the

1PL model. In a 1PL model, the ith learner is modeled by a single

parameter 𝜃𝑖 called ability or proficiency, and the question/item

is modeled by a difficulty parameter 𝑑 𝑗 . If we add a parameter 𝑎 𝑗
that specifies the discrimination ability of the question, the model

is known as a 2PL model. If we incorporate a parameter 𝑐 𝑗 that

specifies the likelihood of a guess, we have a 3PL model. Each

question in an IRT theory has an associated item response function,

often a logistic function. The difficulty, discrimination, and guess

parameters reshape the logistic function as follows:

𝑝 𝑗 (𝜃 ) = 𝑐 𝑗 +
1 − 𝑐 𝑗

1 + 𝑒−𝑎 𝑗 (𝜃−𝑑 𝑗 )

If the ability and difficulty parameters are allowed to be multi-

dimensional, the framework is called Multi-Dimensional Item Re-

ponse Theory (MIRT). At the time of writing, no general framework

for MIRT model learning operates directly from student response

data with no expert input [5].

Plajner [15] introduces a straightforward method for building

CAT models with IRT. They use empirical bayesian estimates of the

latent parameters based on answers, and compute the information

provided by asking a given question, consequently picking the

question that maximizes the information at each timestep. The use

of IRT in adaptive testing is well-established [18].

Although it should now be apparent how IRT and Dependency

Map inference can be both used within an adaptive testing frame-

work, it may be beneficial to clarify their differences. Fundamentally,

IRT is rooted in the assumption that there are (at most) a small

number of latent continuous skills that independently predict cor-

rectness on each item. This assumption of conditional independence

among the items given the skills is very elegant, allowing efficient

model inference and preserving the simplicity of the model. In con-

trast, Dependency Map inference is fundamentally premised on the

idea that assessment items exhibit interdependence.
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1.5 We are NOT Doing Knowledge Tracing

Knowledge tracing is the task of modelling student knowledge over

time to accurately predict future student performance [14]. When

systems can accurately model student knowledge, content can be

suggested to students based on individual needs. In the literature it

is common to use a Bayesian model of the knowledge of a student,

updating learner’s latent knowledge using a hidden Markov model

as learners interact with exercises [19]. Recent models propose

using recurrent neural networks to predict student responses based

on their past activity [13, 14]. The fundamental difference between

knowledge tracing (KT) and CAT is that while in KT system de-

signers are trying to maximize the student’s knowledge through

exercises that teach concepts, CAT is focused on testing a student’s

knowledge, as accurately and efficiently as possible. This is not to

say that the two tasks are unrelatedÐboth KT and CAT use models

of student knowledge. For example, the use of IRT andMIRTmodels

for knowledge representation, Bayesian networks, and Q-Matrices

are used throughout the both the KT and CAT literatures.

1.6 Contributions

This paper has three primary contributions. First, a quantitative

evaluation framework for adaptive testing is introduced that al-

lows control of the tradeoff between data efficiency and accuracy

through a settable parameter 𝛾 . Second, a fast algorithm for mining

dependency relationships and doing adaptive testing is presented.

This algorithm does a restricted form of Bayesian reasoning that

achieves high accuracy, brief runtime, and high data-efficiency.

Third, experiments on real and simulated data suggest that model-

ing of item interdependencies has a significant impact on predictive

power when the assessment is narrow in scope.

2 VALIDATION METHOD

The value of a model should ultimately be measured by how well

it predicts unseen/new data. This perspective is inherently cap-

tured by the adaptive testing problem, where the goal is to ask

questions until the student’s responses to the remaining items can

be predicted with high accuracy. There are two primary objec-

tives involved in adaptive testing systems. The first is efficiencyÐto

minimize the number of questions asked. The second is robust-

ness. Adaptive testing suffers from asymmetrical error conditions

whereby asking unnecessary questions is much less expensive than

mislabeling student knowledge of an item. These two kinds of error

are difficult to compare directly in terms of, for example, total cost

in student time, so we use a proxy condition: All inferred student

responses should be provided with at least some minimum accu-

racy threshold denoted 𝛾 . For example, 𝛾 = .95 indicates a model

should only predict the student’s response to a question if it is at

least 95% likely to get it right. This requires the model to both have

high accuracy and to know that it has high accuracy. This setup

motivates the following active-learning-style problem:

(1) Train on a dataset of previous student correctness scores on

a variety of assessment items, possibly with missing values.

(2) For each (test set) student, repeatedly select a question to

ask and then receive a response, or issue a stop command.

(3) After the stop command, predict the student’s responses to

any remaining questions.

(4) For every predicted response that is correct, give score 1. For

every predicted response that is incorrect, give score −
𝛾
1−𝛾 .

This penalty gives expected score 0 when the algorithm has

exactly confidence 𝛾 . Note that questions that were asked

(not predicted) receive score 0.

This scoring scheme is simple and allows traditional train/test splits,

cross validation, or online learning evaluations. It is in the best

interest of the tested algorithm to only predict responses that it

believes it will get correct with probability greater than 𝛾 and to

ask the question if its confidence is less than 𝛾 . If its confidence is

exactly 𝛾 , guessing or asking yield the same score in expectation.

This metric allows us to explore the tradeoff between data effi-

ciency and accuracy by adjusting 𝛾 . With 𝛾 equal to 0, the score is

the number of questions that were inferred correctly without being

asked. If the score is normalized by the total number of questions,

this is a fairly direct measure of the łefficiency" of the adaptive test-

ing system Ð how many questions (on average) the system is able

to predict responses to without asking them. Here, the baseline to

compare to is an algorithm that just guesses that each student will

do what the majority do on each item (get it correct or incorrect).

This baseline asks no questions of new students, so the only way to

improve over its score is by using responses to some questions to

improve the accuracy of predictions made on the rest (by modeling

student ability or inter-question relationships, for example). Note

that it is difficult to achieve scores near 1 when there are only a

small number of assessment items, due to the proportional cost

of gathering information. However, as the number of assessment

items grows, the opportunities for modeling to accurately predict

responses to a large fraction of the items increases.

At high 𝛾 , the model is primarily concerned with accuracy; with

such a steep penalty for wrong predictions, themodel will be willing

to ask many questions in order to ensure that each remaining

inference is correct. Here, the baseline is an algorithm which asks

all questions, achieving score 0 every time.While this baseline is not

very efficient, it is perfectly accurate, and so suffers no penalties. The

danger for algorithms based on models is that the models must not

over-estimate their confidence of a student’s response - otherwise

they stand to suffer large negative penalties for incorrect guesses.

At 𝛾 = 1, there is an infinite penalty for even a single incorrect

inference, so any score above 0 is highly impressive. Note that if

questions can be guessed (or mistakes made) with some probability

𝜖 (the maximum noise in the observation), models should simply

ask most questions when 𝛾 > 1 − 𝜖 . Along this line of thinking, the

most practically relevant range on these plots is the range from
1

2
≤ 𝛾 ≤ 1 − 𝜖 . In this range, there will be questions for which

majority rule is no longer a safe guessing strategy, but careful

modeling still has a chance of inferring responses accurately. In

terms of interpretation, 𝛾 =
1

2
is the point at which asking a single

question has about the same cost as simply teaching that content.

3 A FAST DISCRETE MODEL

Bayes Nets are quite general and very data efficient, but can be

computationally slow to learn and do inference in as the number of

variables grows. This paper therefore presents a discrete model that

balances the flexibility of interdependence modeling with the speed

of inference under assumptions of independence. The algorithm
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curriculum. The goal of this section is to illuminate how some of

these use cases can benefit from modeling the interdependence of

assessment items.

5.1 How to Make Exams More Reliable

Large assessments can often be made more reliable by removing

questions that have little relevance to the rest of the exam. In the

ideal of the adaptive test setting, the minimal number of questions

are asked to accurately predict responses to the remaining questions,

so a natural way of ranking items (represented as random variables

𝑋𝑖 ) is by the following:

𝑅(𝑋𝑖 ) =
∑

𝑗

𝐼 (𝑋𝑖 , 𝑋 𝑗 ),

where 𝐼 (𝑋𝑖 , 𝑋 𝑗 ) is the mutual information between 𝑋𝑖 and 𝑋 𝑗 . Note

that this score includes the amount of mutual information the

variable has with itself, which is just the entropy of the random

variable 𝐻 (𝑋𝑖 ) = 𝐼 (𝑋𝑖 , 𝑋𝑖 ). It slightly favors questions that are

neither too easy nor too hard for most students.

Given ameans of ranking questions, assessments can be designed

subject to budget constraints for a particular 𝛾 . This goal can be

accomplished by adding questions in order of decreasing rank until

the mean score at 𝛾 begins to decrease.

5.2 How to Evaluate Students

Student abilities can be represented as a vector indicating whether

the student has mastered each item. Given a dependency map, this

vector space has a partial ordering that captures possible learning

trajectories for each student. It also allows for fine-grained student

diagnostics - perhaps the student isn’t lacking practice, but specific

prerequisite knowledge that would allow them to succeed. Although

there are many possible ways to collapse the student mastery vector

into a single grade or score, the fine-grained vector may hold more

utility for practical classroom use.

5.3 How to Infer a Curriculum

Just as student ability vectors define a partial order over students,

the dependency map defines a partial order over content. By the

assumptions of the model, content appearing in the dependency

map cannot be mastered before the content it is dependent on. Thus,

all prerequisite topics should occur in a curriculum before the topic

that depends on them.

6 CONCLUSION

This paper provided empirical evidence that assessments involving

closely related items are likely to benefit from interdependencemod-

eling. To facilitate these experiments, a novel evaluation framework

was introduced that explicitly navigates the tradeoff between data-

efficiency and accuracy in adaptive testing. Additionally, a novel

algorithm for interdependence modeling, DIDACT, was introduced,

which achieves high performance while remaining computationally

efficient. Finally, these results were connected to related educational

problems, including assessment creation, adaptive pedagogy, and

curriculum design. These results can be applied directly in future

work expanding the use of dependency modeling in adaptive test-

ing, which may be of particular use when assessment items come

from nontraditional sources or the pool of items changes over time.

Future work may consider how to extend these models to more

general models of assessment than binary correct/incorrect items.
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