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Abstract 

Howmicrobes adapt toanovelenvironment is acentral question inevolutionary biology. Although adaptive evolution must be fueled 

by beneficial mutations, whether higher mutation rates facilitate the rate of adaptive evolution remains unclear. To address this 

question, we cultured Escherichia coli hypermutating populations, in which a defective methyl-directed mismatch repair pathway 

causes a 140-fold increase in single-nucleotide mutation rates. In parallel with wild-type E. coli, populations were cultured in tubes 

containing Luria-Bertani broth, a complex medium known to promote the evolution of subpopulation structure. After 900 days of 

evolution, in three transfer schemes with different population-size bottlenecks, hypermutators always exhibited similar levels of 

improved fitness as controls. Fluctuation tests revealed that the mutation rates of hypermutator lines converged evolutionarily on 

those of wild-type populations, which may havecontributed to the absence of fitnessdifferences. Further genome-sequence analysis 

revealedthat, although hypermutator populations have higher ratesofgenomic evolution, this largely reflects strong genetic linkage. 

Despite these linkage effects, the evolved population exhibits parallelism in fixed mutations, including those potentially related to 

biofilm formation, transcription regulation, and mutation-rate evolution. Together, these results are generally inconsistent with a 

hypothesized positive relationship between the mutation rate and the adaptive speed of evolution, and provide insight into how 

clonal adaptation occurs in novel environments. 

Key words: adaptation, bottleneck effects, drift barrier, Escherichia coli, mutational load, mutation rate. 

 

 

Introduction 

Beneficial mutations are the ultimate source of adaptive evo- 

lution. Therefore, it is of interest to study how changes to 

mutational processes can influence the pace of adaptive pro- 

cesses. In terms of mutation rates, a theoretically complicated 

 

 

relationship with the rate of adaptation in asexual populations 

was proposed in the early studies on the evolution of sex 

(Muller 1932; Crow and Kimura 1965). These studies posited 

that, when mutation rates are low, such that the waiting time 

 

 

© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits 

non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
b
e
/a

rtic
le

/1
3
/1

2
/e

v
a
b
2
5
7
/6

4
3
2
0
4
3

 b
y
 A

riz
o
n
a
 S

ta
te

 U
n
iv

e
rs

ity
 u

s
e
r o

n
 0

8
 J

u
n
e
 2

0
2
2
 

Significance 

Although mutations are a critical source for the adaptation in a new environment, whether or not elevated mutation 

rates can lead to elevated adaptation rates remains unclear, especially when the environment is heterogeneous. To 

address this issue, we evolved E. coli populations with different starting mutation rates in a complex medium for 

900 days and then examined their fitness and genome profiles. In the populations with higher starting mutation rates, 

despite faster rates of genome evolution, fitness improvement is not significantly elevated, and most of the accumu- lated 

mutations represent passive consequences of linkage effects. 
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https://creativecommons.org/licenses/by-nc/4.0/
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for a beneficial mutation to arise in a population remains long, 

increases in the mutation rate can result in linear increases in 

the adaptation rate. In contrast, when mutation rates are rel- 

atively high, such that multiple beneficial mutations frequently 

arise in different individuals within an asexual population, 

beneficial mutations may interfere with each other’s oppor- 

tunity to spread through the entire population. Thus, the fa- 

cilitating effect of mutation on the rate of adaptation 

becomes diminished; a phenomenon later termed clonal in- 

terference (Gerrish and Lenski 1998). 

More recent theoretical studies have suggested that the 

effective number of beneficial mutations per population is 

critical for the strength of clonal interference, and effective 

population sizes and effect-size distributions of mutations 

have also been proposed to be influential (Gerrish and 

Lenski 1998; Wilke 2004; Kim and Orr 2005; Bollback and 

Huelsenbeck 2007; Desai and Fisher 2007; Park and Krug 

2007; Campos and Wahl 2010; Park et al. 2010; Good 

et al. 2012). When mutation rates are high, rare beneficial 

mutations can commonly emerge in genomes already con- 

taining some deleterious mutations, and such linkage can fur- 

ther impede adaptation, especially in asexual populations 

(Bachtrog and Gordo 2004; Good and Desai 2014; Luksza 

and Lassig 2014; McFarland et al. 2017; Penisson et al. 2017). 

The relationship between rates of mutation and adaptation 

is further complicated because mutation rates can be plasti- 

cally different in various environments (Williams and Foster 

2012; Long et al. 2016; Shewaramani et al. 2017) and evolve 

over time (Wielgoss et al. 2013; Swings et al. 2017). Given 

that most mutations are deleterious, high mutation rates cre- 

ate high mutational loads, potentially driving the spread of 

antimutator alleles and resulting in the evolution of lower 

mutation rates (Muller 1950; Kimura 1967; Lynch 2008). 

According to the drift-barrier hypothesis, the reduction of 

the mutation rate should continue until the addition of new 

antimutator alleles no longer reduces the mutational load to a 

significant enough extent to overcome genetic drift (Lynch 

2010; Sung et al. 2012; Lynch et al. 2016). Consequently, if 

two populations with initially different mutation rates adapt 

to the same constant environment, the resulting difference in 

fitness-improvement rates can be less than predicted if both 

populations converge evolutionarily to similar mutation rates. 

Although ample discussion exists on the relationship be- 

tween rates of mutation and adaptation, the theory has been 

mostly focused on constant environments with a simple fit- 

ness landscape, neglecting the likely complexity of more nat- 

ural environments. The limited empirical evidence in asexual 

populations suggests that adaptation rates are a concave- 

down function of the mutation rate (Arjan et al. 1999; 

Desai et al. 2007; Sprouffske et al. 2018). However, the ex- 

perimental environments in these studies were generally sim- 

ple and homogeneous (Arjan et al. 1999; Desai et al. 2007; 

Sprouffske et al. 2018), or the populations of interest were 

already well-adapted to the experimental environment 

 

(McDonald et al. 2012). Thus, it remains to be determined 

whether the relationship between rates of mutation and ad- 

aptation in richer and more complex environments follows 

the same patterns as observed in simpler settings. 

To study how the mutation rate affects adaptation in a 

more complex setting, we investigated the long-term evolu- 

tionary changes of Escherichia coli grown in culture tubes 

containing a complex medium, Luria-Bertani (LB) broth, com- 

prised a nutritionally rich mixture of multiple amino-acid 

based carbon sources (Sezonov et al. 2007). In contrast to 

evolution in flasks containing glucose-limited media, such 

environments can facilitate the rapid emergence of stable 

subpopulations and clonal divergence based on spatial niche 

differentiation and amino-acid metabolism divergence 

(Behringer et al. 2018). To vary the mutation rate, we evolved 

both WT populations (methyl-directed mismatch repair 

[MMR]þ) and hypermutator populations with an impaired 

MMR pathway (MMR-, obtained by mutL knockout), for 

which the single-nucleotide mutation rate is 140-fold higher 

than that for the WT genetic background (Lee et al. 2012). As 

different population-genetic environments can alter the fixa- 

tion probability of mutations and the proportion of effectively 

beneficial or deleterious mutations (Wahl et al. 2002), and 

different demographic settings have been found to affect 

the results of experimental evolution (Vogwill et al. 2016; 

Wein and Dagan 2019), for both WT and MMR- popula- 

tions, we performed three different transfer sizes in daily 

transfers: 1/10 (large, L), 1/10
4
 (medium, M), and 1/10

7
 (small, 

S) to explore the generality of our experimental results. Here, 

we examine the differences in phenotypic and molecular evo- 

lution among these populations over the course of 900 days. 

 

Results 

Higher Initial Mutation Rates Do Not Lead to Faster Rates 

of Fitness Improvement 

When batch cultured, E. coli commonly adapt to their exper- 

imental environments and show fitness improvement com- 

pared with their ancestors (Van den Bergh et al. 2018; 

McDonald 2019). To study fitness improvement in popula- 

tions originating from genetic backgrounds with different ini- 

tial mutation rates (MMR- and WT), we performed the 

experimental evolution in three different transfer dilution bot- 

tlenecks (L: 1/10, M: 1/10
4
, and S: 1/10

7
) for 900 days (sup- 

plementary fig. S1, Supplementary Material online). For each 

of six genetic background/transfer-size combinations (2 x 3), 

eight replicates were maintained. After 900 days of experi- 

mental evolution, we then performed head-to-head compe- 

tition assays between evolved populations and their 

corresponding ancestors using four replicates. Across all 21 

populations with data available (three were aborted; see 

Materials and Methods), mean fitness significantly increased 

relative to the time-zero ancestor, by a ratio of 1.14 (standard 
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A 900 days 
 

L M S 

1.8 1.8 1.8 

 

1.4 1.4 1.4 

 

1.0 1.0 1.0 

 

MMR− WT MMR− WT MMR− WT 

B 90 days 

1.8 

 
L S 

1.8 

 

1.4 1.4 
 

1.0 1.0 
 

MMR− WT MMR− WT 

C 300 days 

1.8 

 
L S 

1.8 

 

1.4 1.4 
 

1.0 1.0 
 

MMR− WT MMR− WT 

D 600 days 

1.8 

 
L S 

1.8 

 

1.4 1.4 
 

1.0 1.0 
 

MMR− WT MMR− WT 

Genetic background 
 

FIG. 1.—Fitness improvement during experimental evolution. For evolved populations under different transfer sizes (orange for L, 1/10; blue for M, 1/ 

10
4

; or green for S, 1/10
7

) and different genetic backgrounds (MMR- or WT), mean fitnesses relative to the ancestor at (A) Day 900, (B) Day 90, (C) Day 300, 

or (D) Day 600 are reported. Each open circle represents an estimated mean for an evolved population with at least three independent competition assays. 

The error bars represent SEs. Gray dashed lines denote the null expectation under no improvement from ancestral fitness. The means across all evolved lines 

for a combination of transfer size and genetic background are represented by colored horizontal lines; the numeric values of means and SEs are printed on 

the tops of each set of data. The P values for nested ANOVA are also shown on the top. 

 

error, or SE ¼ 0.019; P ¼ 5.8 x 10-7
, two-tailed t-test), indi- 

cating that the evolution of these populations was shaped by 

adaptive processes. 

The amount of fitness improvement of MMR- populations 

was not significantly different from that for WT populations at 

any of the transfer sizes (fig. 1A; L: P ¼ 0.26; M: P ¼ 0.46; S: 

P = 0.26 

  
  

P = 0.46 

  
  

P = 0.15 

  
  

P = 0.72 

  
  

P = 0.28 

  
  

P = 0.15 
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P ¼ 0.15, nested ANOVA). In addition, no transfer sizes pro- 

duced a ratio of mean fitness improvement significantly dif- 

ferent from 1.0. For example, for the L transfer size, the mean 

fitness improvement for MMR- and WT backgrounds are re- 

spectively 0.27 (SE ¼ 0.043) and 0.21 (SE ¼ 0.047), and there- 

fore the ratio (MMR-: WT) is 1.28 (SE ¼ 0.35). Similarly, the 

ratios are 0.69 (SE ¼ 0.28) and 2.76 (SE ¼ 1.98) in the M and S 

transfer sizes, respectively (fig. 1A). Thus, starting evolution as 

a hypermutator does not necessarily translate into a faster 

fitness-improvement rate. 

Previous studies of E. coli in simpler, more homogeneous 

environments have shown that the most rapid increases in 
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population fitness typically occur within 2,500 generations, 

after which the rate of adaptation significantly slows 

(Barrick et al. 2009). At 900 days, the L populations, which 

due to their large transfer size (1:10) experienced the least 

number of cell divisions (log210 ;:: 3.3 generations per day), 

had experienced ~3,000 generations, whereas the S popula- 

tions had experienced ~21,000 generations (log210
7
 ;:: 23.3 

generations per day). As such, the absence of significant dif- 

ferences in the cumulative amount of adaptation over this 

period—despite large differences in initial mutation rate— 

might be a consequence of both genetic backgrounds having 

exited an initial period of rapid fitness evolution. Thus, to 

better survey any temporal heterogeneity in the rate of adap- 

tation, we further assessed fitness after 90, 300, and 600 days 

of evolution in response to L and S transfer sizes. The results of 

nested ANOVA again demonstrate a lack of evidence for an 

increase in initial mutation rates leading to an increase in the 

amount of fitness improvement (fig. 1B–D). The results are 

not qualitatively changed even when the natural-logarithmic 

transformed fitness is used in the analysis (supplementary fig. 

S2, Supplementary Material online). Thus, high mutation rates 

did not result in accelerated fitness improvement in these 

asexual populations even in the early stages of adaptation. 

 

Mutation Rates Evolve to Be More Similar Throughout 

Experimental Evolution 

The indifference of adaptation rates to initial mutation rates 

might be explained if the mutation rates of hypermutator and 

WT populations became more similar during the evolution 

experiment, either due to a reduction in the mutation rate 

in initially hypermutating populations or to an increase of the 

rate in WT populations. To test this possibility, we performed 

fluctuation tests, which indirectly measure mutation rates at a 

resistance locus (Foster 2006), on different clones isolated 

from evolved populations after 900 days. Although the ratio 

of rifampicin-resistance mutation rates for the two ancestral 

lines (MMR-: WT) was 250 (supplementary fig. S3, 

Supplementary Material online), after 900 days of evolution, 

the mean difference in mutation rates between MMR- and 

WT backgrounds greatly decreased across all transfer sizes 

(fig. 2). For example, in the L transfer size, the mean mutation 

rate is 5.0 x 10-7
 (SE ¼ 2.7 x 10-7

) and 1.6 x 10-8
 

(SE ¼ 1.2 x 10-8
) for MMR- and WT evolved populations, 

respectively. Therefore, the ratio of mean mutation rates 

(MMR-: WT) was reduced to 32 (SE ¼ 29). However, this 

reduction seems mostly a consequence of the occasional 

emergence of higher mutation rates in the WT background, 

as only one population (115) among four tested WT/L pop- 

ulations shows a significant increase in the mutation rate for 

both tested clones. For the M and S transfer sizes, the ratios of 

mean mutation rates (MMR-: WT) were also reduced to 32 

(SE ¼ 15) and 12 (SE ¼ 3.9), respectively. However, here the 

repeated evolution of lower mutation rates in clones isolated 

 

from the MMR- background plays a more important role in 

the reduction, as all of the tested clones from MMR-/M and 

MMR-/S populations show a significant mutation rate de- 

crease. Thus, the evolutionary convergence of mutation rates 

likely contributes to the difference in adaptation rates being 

less than what might be expected based on initial differences 

in mutation rates. Interestingly, these observations demon- 

strate how transfer schemes can affect the evolutionary dy- 

namics of mutation rates in asexual populations. 

 

Genome Evolution Rates Are Less Different Than Predicted 

by Initial Mutation Rates 

To enhance our understanding of how the tempo and mode 

of genomic evolution relate to fitness and phenotypic evolu- 

tion, we performed metapopulation sequencing of each ex- 

perimental population roughly every 100 days to acquire 

mutation profiles of derived allele frequencies (DAFs; supple- 

mentary fig. S4, Supplementary Material online). For each 

combination of genetic background and transfer size, we es- 

timated the rate of genomic evolution by regressing the num- 

ber of mutations per clone (i.e., the sum of DAFs of all 

observed SNPs) of all populations against the number of gen- 

erations at each sampled time point. Because a quadratic re- 

gression model did not significantly outperform the linear 

regression (P ¼ 0.028 for MMR-/L; P > 0.10 for the others, 

nested ANOVA), we will focus on the results of the linear 

regression below. 

As with the rate of adaptation, for all three transfer sizes, 

the ratio of the rate of genomic evolution between the two 

backgrounds (MMR- versus WT) was much smaller than the 

initial difference in mutation rates (fig. 3A). For example, un- 

der the L transfer size, the rate of genomic evolution is 115 

(SE ¼ 5.3) and 30 (SE ¼ 4.3) mutations per clone per 1,000 

generations for MMR- and WT populations, respectively. 

Therefore, the ratio of the genomic-evolution rates is only 

3.8 (SE ¼ 0.58). Similarly, in the M and S transfer sizes, the 

ratios are 20 (SE ¼ 1.3) and 23 (SE ¼ 1.6), respectively. This 

observation remains qualitatively similar even when different 

kinds of measurements for genomic divergence are used, for 

example, the number of detected mutations (supplementary 

fig. S5A, Supplementary Material online), nucleotide diversity 

(supplementary fig. S5B, Supplementary Material online), or 

when genomic divergence was estimated only by synony- 

mous SNPs (supplementary fig. S6, Supplementary Material 

online). 

To further survey how genomic evolutionary rates vary 

across experimental populations and to determine if the 

mean rates accurately represent the majority of experimental 

populations, we separately measured the rate of genomic 

evolution for each experimental population (supplementary 

fig. S7, Supplementary Material online). This revealed that 

the distribution of rates in the WT populations under the L 

transfer size is wider than the distributions of rates in all other 
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10−10 
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10−7 

10−8 
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M, MMR − M, WT 

10−5 

10−6 

 

  

10−7 

10−8 

10−9 
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S, MMR − S, WT 

10−5 

10−6 

10−7 
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10−9 
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FIG. 2.—Evolution of mutation rates after 900 days of experimental evolution. Each panel shows mutation rates of evolved populations in a combination 

of transfer size (orange for L, 1/10; blue for M, 1/10
4

; or green for S, 1/10
7

) and genetic background (MMR- or WT). In each combination, three or four 

evolved populations were tested. Two clones per evolved population were isolated and measured. An open circle and an error bar represent the mean and 

the 95% confidence interval for a clone. The gray dashed line represents the mutation-rate estimate of the corresponding ancestor. Each colored horizontal 

line represents a mean mutation-rate measurement of a combination; the value of mean and the SE are also printed. 

 

combinations of genetic background and transfer sizes. 

Specifically, in the L transfer size, although five of the eight 

WT populations exhibit a genomic evolutionary rate of ~10 

mutations per clone per 1,000 generations, one WT popula- 

tion (115) has a rate about ~2x higher, and two WT pop- 

ulations (101 and 113) have a rate close to 100, ~10x higher 

and similar to MMR- populations. Consistent with the 

fluctuation-test results noted above, these results suggest 

that some, but not all, WT populations under the L transfer 

size evolved a higher mutation rate (see Discussion). 

 

Mutations Arising in Hypermutators Are More Likely to Be 

Fixed 

Using longitudinal metagenomics-sequencing data allows 

one to observe evolutionary dynamics at the level of single 

mutations and thus better understand the entire adaptive 

process. Here, we focus on fixed mutations because they 

are more likely to contribute to adaptation than polymorphic 

mutations or other mutations that are transient in a popula- 

tion. Because our experimental-environment setting facilitates 

the development of subpopulation structure, we applied 

clade-aware hidden Markov chain (caHMM) analysis. 

Assuming coexistence of two clades (major and minor) in 

the population, caHMM considers each mutation’s DAFs 

found in different sequencing time-points and then infers 

which clade each mutation belongs to, whether each muta- 

tion reaches within-clade fixation, and when a fixed mutation 

reaches fixation (Good et al. 2017). 

One characteristic parameter in an adaptive process is the 

fraction of mutations that reached fixation in a population. 

Using the observed numbers of both detected and fixed 
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mutations, we first tested whether hypermutator populations 

have a different fraction of mutation that reached fixation. 

Different mutation types have a different potential to impact 

populational fitness. For example, compared with synony- 

mous SNPs, nonsynonymous SNPs have a greater potential 

to change protein functions; intergenic SNPs have a greater 

potential to change protein expression; and structural varia- 

tions (SVs; including indels and mobile-element insertions) 

have a greater potential to disrupt a protein. Therefore, we 

performed separate tests on the conditional fractions of these 

four functional categories of detected mutations that reached 

fixation. 

Although not always significant, the fixation fraction in the 

MMR- populations is generally higher than in WT popula- 

tions across different transfer sizes and different categories of 

mutations (fig. 4A). The fixation fraction is similar across dif- 

ferent categories of mutations, regardless of their perceived 

potential to affect fitness, suggesting that the fixation of most 

mutations is a consequence of genetic hitchhiking as opposed 

to intrinsic beneficial effects. 

Another critical factor determining the temporal dynamics 

of a mutation is the underlying fitness effect. Using the tem- 

poral data of allele frequencies for a mutation, we can quan- 

tify the net selection coefficient, which reflects an allele’s own 

fitness effects but can be potentially influenced by the effects 

of linked mutations. We did not find a significant difference 

between the selection coefficients of fixed mutations in the 

two genetic backgrounds (fig. 4B). More importantly, we also 

found that different categories of mutations show similar 

mean selection coefficient estimates, which again suggests 

a pivotal contribution of hitchhiking effects to the mutational 

dynamics of genome evolution in asexual populations. Given 

this observation, we assumed that the fixation of mutations 

that occurred in the same clade at the same time belong to 

one selective sweep. After calculating the mean selection 

coefficients per selective sweep, we again found no signifi- 

cant differences of selection coefficients between two genetic 

backgrounds (supplementary fig. S8, Supplementary Material 

online). 

 

Neutrality Tests Reveal Partial Evidence for Positive 

Selection 

FIG. 3.—Rate of genomic evolution in evolved populations. Each panel 

shows the results of evolved populations in two genetic backgrounds 

(MMR- and WT) in a transfer size (L, M, or S). Each dot shows a mean 

number of SNPs per clone for MMR- (open circles) or WT (closed circles) 

populations at a sequencing time point. The error bars represent the as- 

sociated standard errors (some are invisible because smaller than the 

height of points). The colored dashed and solid lines are linear regressions 

against the time for MMR- and WT populations, respectively. The esti- 

mated slope (b) and associated standard error are also printed for each 

regression line. The gray dashed and solid lines represent how evolved 

populations accumulate mutations under neutral expectation with the 

initial mutation rates of MMR- and WT ancestors. 

In theory, comparing the number of fixed mutations in func- 

tional categories of sites with different potential effects on 

fitness can summarize general patterns in the mode of ge- 

nome evolution (McDonald and Kreitman 1991; Rand and 

Kann 1996). If a population has experienced strong positive 

selection on protein function or expression, it is expected that 

there will be more fixed mutations with a greater potential to 

change protein function or expression than mutations with 

smaller such potential. If a population has experienced puri- 

fying selection on protein function or expression, it is expected 

that there will be fewer fixed mutations with a potential to 
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FIG. 4.—Analysis of strength of natural selection associated with fixed mutations in different categories in different treatments of experimental 

evolution. (A) Each symbol shows the population mean fraction of detected nonsynonymous mutations (squares), intergenic mutations (diamonds), syn- 

onymous mutations (crosses), or SV mutations (triangles) that reached within-clade fixation in each combination of transfer size (L, M, or S) and genetic 

background (MMR- or WT). The error bars show the 95% confidence intervals. (B) Each symbol shows the mean selection coefficient of nonsynonymous 

mutations (squares), intergenic mutations (diamonds), synonymous mutations (crosses), or SV (triangles) that are fixed in any clade in any population 

belonging in a combination of transfer size and genetic background. The error bars show the 95% confidence intervals. (C) Each square shows the 

population mean neutrality index of nonsynonymous mutations for a combination of transfer size and genetic background. The error bars show the 95% 

confidence intervals. The horizontal gray lines denote the point of neutrality (1.0). (D) Each square shows the population mean neutrality index of intergenic 

mutations for a combination of transfer size and genetic background. The error bars show the 95% confidence intervals. The horizontal gray lines denote the 

point of neutrality (1.0). 

 

change protein function/expression than mutations with 

smaller such potential. Therefore, the ratio of the number 

of fixed nonsynonymous synonymous SNPs (FN) to the num- 

ber of fixed synonymous SNPs (FS) or the ratio of the number 

of fixed intergenic SNPs (FI) to FS is predicted to be elevated by 

strong positive selection. Similarly, FN/FS or FI/FS are predicted 

to be small with a strong purifying selection. However, these 

ratios are not necessarily directly comparable in MMR- and 

WT backgrounds because the two genetic backgrounds have 

varied mutational spectra and different relative rates of non- 

synonymous and synonymous mutations (Lee et al. 2012). 

To address this issue, we normalized the observed FN/FS by 

the ratio of nonsynonymous and synonymous mutations (UN/ 

US) previously observed in a mutation accumulation experi- 

ment that utilized our exact ancestral genotypes (Lee et al. 
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2012). The ratio of these ratios (FN/FS)/(UN/US), will be referred 

to as the neutrality index of nonsynonymous SNPs, because 

ratios significantly >1.0 or <1.0 imply, respectively, a pre- 

dominance of positive selection in driving mutation fixation 

or a predominance of purifying selection driving mutation 

extinction. This index is analogous to Tachida’s index for neu- 

trality (Tachida 2000), but with a different normalizing ap- 

proach—via results from mutation-accumulation 

experiment instead of polymorphism, and is a preferred 

approach as it eliminates any potential problems with 

selection on silent sites. This definition of the neutrality 

index can be applied to any kind of mutation. For example, 

we also define the neu- trality index of intergenic SNPs as 

(FI/FS)/(UI/US), where UI is the number of intergenic mutations 

observed in mutation accu- mulation (Lee et al. 2012). 
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The neutrality index of nonsynonymous SNPs in MMR- 

populations under the L transfer size is significantly larger 

than one, consistent with strong positive selection (fig. 4C). 

Moreover, the neutrality index of intergenic SNPs in MMR- 

populations under all transfer sizes is significantly smaller than 

one, suggesting overall strong purifying selection on inter- 

genic SNPs (fig. 4D). On the contrary, the neutrality index in 

WT populations never significantly differs from 1.0. Although 

this may indicate a weaker strength of selection in WT pop- 

ulations, it may also be the result of insufficient statistical 

power due to an overall smaller number of fixed SNPs in 

WT populations, evident by their large confidence intervals 

associated with the point estimation. 

 

Parallel Evolution of Fixed Mutations at the Genic and 

Nucleotide Level 

As the previous analysis suggests that the statistical power of 

the neutrality index may be insufficient, we also considered 

parallelism of fixed mutations to examine the action of posi- 

tive selection using two different metrics. First, we utilized a 

sum of G-scores to measure the excess parallelism across fixed 

nonsynonymous mutations relative to the expectation based 

on gene lengths (Tenaillon et al. 2016). For each gene, a 

higher G-score implies that the gene is more enriched for 

fixed nonsynonymous mutations than expected by gene 

length. Summing the G-scores of all genes for each combi- 

nation of genetic background and transfer size revealed sta- 

tistical significance in all cases (z-test, fig. 5A). Second, we 

calculated the mean Bray–Curtis similarity of the number of 

fixed nonsynonymous mutations across all genes (Turner et al. 

2018) for all pairwise comparisons of evolved populations in 

each combination of genetic background and transfer size, 

again revealing statistically significant similarity in all cases (z- 

test, supplementary fig. S9, Supplementary Material online). 

Therefore, both findings suggest that positive selection has 

shaped the genomic evolution of populations in all genetic- 

background/transfer-size combinations. 

The analysis of parallelism also helps reveal which muta- 

tions are most likely to be drivers of adaptation. Using the 

same G-score analysis, in each genetic-background/transfer- 

size combination, we identified genes that were overrepre- 

sented for fixed nonsynonymous mutations (P < 0.05, 

Bonferroni correction; fig. 5B). Gene Ontology (GO) analysis 

on these gene subsets revealed that significantly enriched GO 

terms were often related to transcription regulation and bio- 

film formation (supplementary table S1, Supplementary 

Material online). Using similar methods, we also identified 

subsets of genes enriched for fixed mutations in intergenic 

regions (fig. 5C) and for structural mutations, including indels 

and IS-element insertions (fig. 5D). Together, the genes in 

these lists serve as good candidates for revealing the various 

mechanisms important to adaptation in complex environ- 

ments (see Discussion). 

 

In addition to genic-level parallelism, we also identified 

nucleotide-level parallelism. In particular, 197 cases of parallel 

fixed nonsynonymous mutations were identified in at least 

two experimental populations within the same combination 

of transfer size and genetic background (supplementary table 

S2, Supplementary Material online). Because the probability 

that fixed mutations would occur by chance at a given non- 

synonymous site in at least two experimental populations is 

very low, the observed parallelism at the nucleotide-level 

again suggests positive selection and identifies important can- 

didates for studying the molecular mechanisms associated 

with adaptation in complex media. For example, three instan- 

ces of parallel mutation within fimH were located in its 

mannose-binding domain and therefore may be good candi- 

dates for future functional studies of cell adhesion (Schembri 

et al. 2001). Furthermore, three instances of parallel-fixed 

nonsynonymous mutations were found in genes with GO 

terms associated DNA repair or DNA replication, including 

dnaE (DNA pol III subunit a), yajL (protein/nucleic acid degly- 

case 3), and nrdA (ribonucleoside-diphosphate reductase 1, a 

subunit dimer). As all three of these cases arose in M and S 

transfer sizes with MMR- backgrounds, they may be good 

candidates for studying the molecular mechanisms associated 

with lowering mutation rates. 

 

Discussion 

Here, we describe the effect of the initial mutation rate on the 

rate of fitness improvement and genomic evolution by exper- 

imentally evolving E. coli with two distinct mutation-rate back- 

grounds. Although the initial difference in mutation rates of 

these two genetic backgrounds is >100x, after 900 days of 

evolution, the differences in the net rates of fitness improve- 

ment (0.7–2.7 fold), in the mutation rates (12- to 32-fold), 

and in the level of genome evolution (4- to 23-fold) are much 

smaller. These results suggest that elevating the mutation 

rates in asexual populations does not proportionally increase 

the rate of fitness improvement, possibly due to clonal inter- 

ference, linkage to deleterious mutations, and/or evolution of 

lower mutation rates. In addition, we found that mutations 

arising in MMR- populations exhibit a higher fraction of fix- 

ation than mutations in WT populations, whereas mutations 

in categories with different fitness effects show similar fixation 

probabilities within each genetic-background treatment, sug- 

gesting the strong influence of hitchhiking effects in genome 

evolution in these populations. Despite the strong linkage, a 

high degree of parallelism in mutations arising in particular 

genes and nucleotides still suggests positive selection shaping 

genome evolution in all transfer-size/genetic-background 

combinations. The observed mutations with high parallelism 

serve as excellent candidates for understanding the mecha- 

nisms of adaption to the complex conditions provided by the 

experimental environment. 
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FIG. 5.—Evolutionary parallelism as evidence for positive selection. (A) The vertical arrow shows the observed sum of G-scores, representing the extent of 

parallel mutation for a particular combination of transfer size and genetic background. The histogram shows the distribution of 20,000 simulated sums of G- 

scores, representing the null distribution of evolutionary parallelism. The significance of the observed sums can be evaluated by z-scores (z > 1.65 for one- 

tailed P < 0.05). (B) List of genes with fixed nonsynonymous mutations. Significance levels (simulated P values with Bonferroni correction) are shown by the 

different nonblack colors of tiles. Genes with no such hits in a particular combination are shown by black tiles. (C) List of genes with fixed intergenic 

mutations. Significance levels (simulated P values with Bonferroni correction) are shown by the different nonblack colors of tiles. Intergenic regions with no 

such hits in a particular combination are shown by black tiles. (D) List of genes significantly overrepresented for structural mutations that are likely under 

positive selection. Yellow tiles highlight genes observed in at least two populations and yielding simulated P values < 0.05 after Bonferroni correction. 
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Effects of High Mutation Rates on Evolution 

Our experiments reveal that, even over 900 days of evolution 

in a complex medium, hypermutating E. coli does not neces- 

sarily exhibit a faster rate of adaptation than wild-type E. coli. 

This observation is consistent with previous experimental- 

evolution results over a shorter period and in simpler media, 

such as glucose medium DM25 for 1,000 generations (Arjan 

et al. 1999) and glucose medium DM1,000 for 3,000 gener- 

ations (Sprouffske et al. 2018). Our experiments further dem- 

onstrate that populations with initial hypermutator 

backgrounds can rapidly evolve lower mutation rates. 

Together with other empirical work on prokaryotic 

(Sprouffske et al. 2018) and eukaryotic hypermutators 

(McDonald et al. 2012), these results suggest that strong ge- 

netic load due to deleterious mutations remains a pivotal fac- 

tor in the evolution of mutation rates, consistent with the 

drift-barrier hypothesis (Lynch 2010; Sung et al. 2012). 

Beneficial mutations may also play a role in the evolution of 

hypermutators, suggested by our finding that the evolution of 

higher mutation rates tends to be found in populations with 

the L transfer size. Even when some new hypermutator alleles 

can spread in a population by linkage with other beneficial 

mutations during the adaptive process and thus briefly im- 

prove the rate of adaptation (Sniegowski et al. 1997; 

Tenaillon et al. 1999, 2001), such events are usually transitory 

(Giraud et al. 2001; Desai and Fisher 2007; Wielgoss et al. 

2013). Moreover, the fact that lowering the mutation rate 

could not have involved a reversion of deleted MMR in our 

experiments implies that there is excess capacity for improving 

replication fidelity through other parts of E. coli genome. As 

mutation-rate evolution occurred over a relatively short period 

in our study, the results bear on several critical questions for 

future studies, including the rapidity of the dynamics of the 

evolution of mutation rates and the consequences for the 

mutational spectrum. Another interesting question on the re- 

lationship between genetic backgrounds and evolutionary 

outcomes is whether different genetic backgrounds alter 

the set of beneficial mutations in the fitness landscape. As 

there is significant parallelism between WT and MMR- pop- 

ulations in each of the three transfer sizes (supplementary fig. 

S10, Supplementary Material online), the differences in their 

fitness landscapes are likely limited. 

 

Effect of Genetic Linkage on Evolution 

In asexual populations with reduced recombination, the fate 

of a mutation is largely affected by its association with other 

mutations due to strong genetic linkage (Gillespie 2000; 

Neher 2013; Couce et al. 2017). Extensive hitchhiking is a 

feature of our evolving E. coli populations, as we observe 

similar fractions of fixed mutations and net associated fitness 

effects for fixed mutations across different functional catego- 

ries. To better illustrate this effect of genetic linkage, we 

showed that the temporal DAF changes of any two SNPs in 

 

the same genome are highly correlated (i.e., a rightly skewed 

distribution of correlation coefficients) and result in more 

largely positive correlation coefficients than for a random ex- 

pectation of nonlinked mutations (supplementary fig. S11, 

Supplementary Material online). Therefore, even though 

MMR- populations show a range of genome-evolution rates 

4–23x higher than WT populations, the excess of fixed muta- 

tions does not directly contribute to adaptation rates. Rather, 

with no recombination in the experimental populations, the 

adaptation rates are heavily affected by clonal interference 

and linkage to deleterious mutations (Schiffels et al. 2011). 

In the future, it will be interesting to measure the fitness of 

single clones within a population to further reveal the effect of 

clonal interference. By sequencing single clones and measur- 

ing fitness effects of single mutations, it will be possible to 

separate the driver mutations from hitchhiking mutations and 

to dissect the evolutionary dynamics under linked selection. 

 

Effects of Transfer Sizes on Evolution 

The three different transfer sizes (L, M, and S) implemented in 

our evolution experiment allow us to compare adaptive pro- 

cesses in different population-genetic environments. In the- 

ory, when the transfer size is large, there should be more 

effectively beneficial mutations. Consistent with this theoret- 

ical prediction, the populations cultured with the L-transfer 

size show the highest rates of fitness gain (fig. 1). The fitness 

again may be due to the improvement of protein functions, as 

the observed neutrality index of nonsynonymous mutations in 

MMR- populations under L transfer size is >1.0 and the 

highest (fig. 4C). On the contrary, the populations cultured 

with the S-transfer size may have accumulated more delete- 

rious mutations and thus show less fitness improvement. 

We also found that the populations under the L-transfer 

size tend to evolve higher mutation rates (fig. 2), as hyper- 

mutator alleles may hitchhike with more selective sweeps of 

beneficial mutations. Previous research has also demonstrated 

that the spread of hypermutator alleles tends to be found in 

populations with larger sizes or weaker bottleneck effects 

(Raynes et al. 2014). As a result, even though the mutation 

rates of populations in two genetic backgrounds (WT and 

MMR-) evolved to be closer to each other during the experi- 

ments with all three transfer sizes, the driving mechanisms are 

different between populations under the L transfer size and 

those under M or S transfer size (fig. 2). 

We note that an L-size transfer requires fewer cell divisions 

to reach the stationary phase than an M-size or S-size transfer. 

Therefore, populations under the L transfer size may experi- 

ence a longer stationary phase during experimental evolution. 

Considering different staying times in the stationary phase 

potentially is critical for interpreting many results across 

transfer-size treatments. For example, when calculating the 

rate of genomic evolution (fig. 3), we estimated generation 

numbers by the required number of cell divisions in the 
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exponential growth phase, assuming no cell death during the 

stationary phase. Such an assumption can overestimate the 

rate of genomic evolution, and the overestimation in L pop- 

ulations can be the strongest due to the longest stationary 

phase. 

Given that the physiological features of E. coli can be dif- 

ferent in exponential and stationary phases (Pletnev et al. 

2015), the evolutionary pressure under different transfer sizes 

may also vary as their relative durations within the two phases 

differ. A population can adapt by improving its maximum 

growth rate in the exponential phase, increasing its carrying 

capacity, and decreasing its death rate during the stationary 

phase, or a combination of both. The fitness effects combined 

among different growth phases were focused in our fitness 

assays. In our case, however, the adaptive mechanisms of the 

populations in different transfer sizes are probably similar, as 

we still found significant parallelism in the fixed enriched 

mutations across different transfer sizes (supplementary fig. 

S12, Supplementary Material online). 

This issue of different durations in different growth phases 

should not directly affect our main conclusion regarding 

evolved fitness under different genetic backgrounds in the 

same transfer size. However, in our competition assays, the 

transferred ratio at inoculation (1/100) was not the same as 

the daily transferred ratios applied to the experimentally 

evolved populations, especially for S populations (1/10
7
). 

Because the relative durations in different growth phases in 

competition assay can be different from the ones in experi- 

mental evolution, the measured fitness may not reflect the 

genuine fitness improvement during the experimental evolu- 

tion. To explore whether this problem has limited our abilities 

to identify the fitness differences in different genetic back- 

grounds, we performed another set of competition assays 

for S/MMR- and S/WT populations using 1/10
7
 as the trans- 

ferred ratio at inoculation. The results show no significant 

differences between the evolved populations in two genetic 

backgrounds (supplementary fig. S13, Supplementary 

Material online), similar to the previous results (fig. 1). 

Therefore, our conclusion, that there is no strong relationship 

between hypermutators and the overall rate of fitness im- 

provement, remains unchanged, although how much E. coli 

evolved specifically in different growth phases is worth study- 

ing in the future. 

 

The Possible Role of Biofilm Formation in Adaptation 

With respect to the specific genes and biological processes 

that appear to be targetes for adaptation, our analysis of 

candidate genes suggests that biofilm formation is an impor- 

tant characteristic in adapting to the complex setting imposed 

by the experimental environment. In particular, the formation 

of type I fimbriae is critical for biofilm formation in E. coli (Pratt 

and Kolter 1998). Consistently, several genes enriched for 

fixed nonsynonymous mutations are related to formation of 

 

type I fimbriae (fig. 5B), including fimH and fimG, which ac- 

count for components the type I fimbriae (Waksman and 

Hultgren 2009; Le Trong et al. 2010), fimB, and fimE, which 

regulate the expression of fimAICDFGH operon (Olsen et al. 

1998), and proQ (RNA chaperone) and lsrK (autoinducer-2 

kinase), which also facilitate biofilm formation (Li et al. 

2007; Sheidy and Zielke 2013). We additionally observed an 

enrichment of mutations in the intergenic region of fimE/fimA 

(fig. 5C) which contains a phase-variable promoter for regu- 

lating the expression of the fimAICDFGH operon (Abraham 

et al. 1985; Spears et al. 1986). Lastly, the list of genes 

enriched with structural mutations (fig. 5D) also includes 

fimE, which primarily turns off the expression of 

fimAICDFGH operon, and several genes related to 

gatYZABCD operon, including gatZ, gatB, and gatA, whose 

deletions can increase biofilm formation (Domka et al. 2007). 

Many of these candidate genes related to type I fimbriae con- 

tributed to the adaptation in an earlier experimental environ- 

ment of a similar nature (Behringer et al. 2018). Moreover, 

structural mutations in gatZ and gatA genes have been found 

to contribute to the initial adaptation of E. coli in a mouse gut, 

another example of a complex environment (Barroso-Batista 

et al. 2014). Studying the genetic variants promoting the evo- 

lution of biofilm in complex environments is of particular in- 

terest in the field of public health, as the evolution of biofilm 

has been considered to be related to the evolution of micro- 

bial social behaviors (Tarnita 2017), the evolution of pathoge- 

nicity (Kaper et al. 2004; Naves et al. 2008; Rossi et al. 2018), 

and the evolution of antibiotic resistance (Avalos Vizcarra 

et al. 2016; Sharma et al. 2016). Thus, understanding the 

evolution of biofilm formation may be key to increasing the 

efficiency of treatments in patients to combat the fast emer- 

gence of antibiotic resistance and pathogenicity. 

 

Candidate Transcriptional Regulators Involved in 

Adaptation 

Because we have provided fresh media every day during ex- 

perimental evolution, a fast switch from stationary phase to 

exponential growth phase may bring benefits to the evolving 

populations (Monod 1949; Navarro Llorens et al. 2010). 

Interestingly, several genes enriched in fixed nonsynonymous 

mutations in our study are transcription regulators, including 

arcA, cadC, cytR, rbsR, rseB, and sspA (fig. 5B). The genes 

enriched in structured variations also include transcription reg- 

ulators, such as arcB, cadC, rpoS, and nlpD (fig. 5C). The 

mutations in these genes may contribute to the transcriptomic 

reprogramming for the fast switch from stationary phase to 

exponential phase. For example, rseB is a negative regulator 

of the stationary-phase effector, sigma factor E (Missiakas 

et al. 1997); and both cytR and rbsR are repressors to the 

carbon limitation effector, cAMP-CRP (Bell et al. 1986; 

Mauzy and Hermodson 1992; Kristensen et al. 1996). 

Therefore, gain-of-function mutations in these three genes 
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can theoretically reduce the chance that cells stay in stationary 

phase. In addition, arcA, arcB, cadC, rpoS, and sspA are 

known as stress-responding activators (Iuchi et al. 1989; 

Lange and Hengge-Aronis 1991; Watson et al. 1992; 

Williams et al. 1994; Rolfe et al. 2011), suggesting that loss- 

of-function mutations in these genes are beneficial in the ex- 

perimental environment involving a frequent supply of fresh 

media imposing low stress. Further investigation is needed to 

determine whether any of these mutations do indeed bring 

such benefits to the experimentally evolved populations. 

 

Concluding Remarks 

To sum up, our results reveal that high mutation rates in E. coli 

have only a very limited influence on the rate of adaptation. 

Our findings may provide useful insight for understanding 

clinically relevant processes involving asexual populations, 

such as the evolution of improved growth rates in pathogens 

and the emergence of antibiotic resistance in natural or host 

environments. Compared with the previous lab experiments 

in simpler environmental settings, our experimental evolution 

results in complex media are likely to be more representative 

of natural or host environments, which are usually highly het- 

erogeneous. For example, a combination of the occasional 

emergence of hypermutators under weaker bottlenecks and 

the consistent evolution of antimutators under stronger bot- 

tlenecks may explain why a low to intermediate frequency of 

hypermutators is usually found in pathogen populations 

(Couce et al. 2016; Veschetti et al. 2020). Whether the ele- 

vated mutation rates affect adaptation rates and the pattern 

of genome evolution in these populations under natural or 

host environments merits further research. For example, 

hypermutators may be critical for a founding population in 

a new environment, especially with epistasis in the fitness 

landscape, but such an effect of hypermutation can diminish 

after in subsequent generations (Mehta et al. 2019). 

 

Materials and Methods 

Strains 

The ancestral strains used in experimental evolution are 

descendants of PMF2 and PMF5, provided by the Foster Lab 

(Lee et al. 2012). PMF2 is a prototrophic derivative of E. coli K- 

12 str. MG1655, and its genetic background is called WT in 

the article. PMF5 is derived from PMF2 with mutL deletion, 

providing the MMR- genetic background. For both kinds of 

strains, a 3513 bp deletion to the araBAD operon is further 

introduced by lambda red recombineering as a neutral 

marker. Plates with TA agar (1% arabinose, 1%tryptone, 

0.5% NaCl, 0.1% yeast extract, 0.005% TTC [Sigma 

T8877]) are used for examining the deletion of araBAD op- 

eron. The colonies with an araBAD deletion (ara-) appear to 

be pink; otherwise, the colonies (araþ) appear to be purple. 

 

Experimental Evolution 

When we established the experimental populations, the an- 

cestral strains were first cultivated overnight at 37 oC on LB 

agar plates, and then their single-isolated progenitor colonies 

were inoculated in a 16- x 100-mm glass tube with 10 ml of 

LB-Miller broth (BD Difco). The tubes were cultured at 

175 rpm shaking at 37 oC. Every day, cultures are thoroughly 

vortexed and transferred into a new tube with 10 ml of fresh 

LB broth. Three different transfer sizes are used: 1 ml (large), 

1 ml (medium), and 1 nl (small), which correspond to different 

dilution factors: 10-1
, 10-4

, and 10-7
. Specifically, for small- 

size transfers, we first diluted 1 ml vortexed bacterial liquid 

with 10 ml fresh LB broth and then mixed 10 ml of this 

1:10
4
 diluted bacterial liquid with another 10 ml fresh LB 

broth. Initially, for each combination of genetic background 

and transfer size, we set up eight replicate tubes. For prevent- 

ing cross-contamination, four replicates are ara- and four rep- 

licates are araþ. During the experimental evolution, 

experimental populations at Day 90, 200, 300, 400, 500, 

600, 700, 800, 900 were frozen in -80 oC freezers for 

analysis. 

 

Competition Assay 

When evaluating the fitness of an evolved population (ara-), 

we performed head-to-head competition assays between 

evolved populations and the corresponding ancestor (araþ). 

We used the WT ancestor and the MMR- ancestor for 

evolved populations with WT or MMR- genetic backgrounds, 

respectively, as there may be some slight fitness effects for the 

mutL deletion (fitness ¼ 0.97 with SE ¼ 0.04 by the competi- 

tion assay described here, n ¼ 5). At the beginning of the 

competition assay, we inoculated the frozen samples of the 

evolved population and the corresponding ancestor in two 

different tubes each of which contains 10 ml of fresh LB broth 

at 37 oC shaking at 175 rpm overnight. For the competition, 

we then put both 50 ml aliquot from the evolved population 

and 50 ml aliquot from the ancestor into a new tube with 

10 ml of LB broth at 37 oC shaking at 175 rpm for 24 h. 

The shaking speed and the temperature used in the compe- 

tition are the same as what was used in experimental evolu- 

tion. Immediately after inoculation (Day 0) and after 24- 

h competition (Day 1), we used plate-counting to determine 

the colony-forming units (CFU) of both the ancestor and the 

evolved population. Specifically, we serially diluted 100 ml al- 

iquot in 900 ml phosphate buffered saline. To distinguish the 

evolved population from the ancestor, we plated serially di- 

luted aliquots on TA agar because ara- colonies will appear 

to be pink, whereas the ancestor (araþ) will appear to be 

purple. The TA agar plates were incubated at 37 oC overnight. 

We then identified the plate with 30–300 total colonies and 

counted the number of colonies for the evolved population 

and the ancestor. Based on the colony numbers and the di- 

lution factor during the serial dilution, we then calculated the 
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CFU of the ancestor before the competition (A0), the CFU of 

the ancestor after the competition (A1), the CFU of the 

evolved population before the competition (E0), and the 

CFU of the evolved population after the competition (E1). 

The fitness of the evolved population (w) relative to the an- 

cestor was then calculated by the following formula: 

w ¼ lnðE1=E0Þ=lnðA1=A0Þ; 

which is the ratio of two Malthusian parameters (Lenski et al. 

1991). 

At Day 0 of the competition assay, we also serially diluted 

and plated 100 ml aliquot of evolved population as a control. 

For an evolved population, if both purple and pink colonies 

were found in the countable control plates (30–300 colonies 

per plate), the data will be discarded from the analysis be- 

cause we are not sure about the source of the pink colonies in 

the experimental plates. 

 

Fluctuation Test and Mutation Rate Estimation 

We quantified mutation rates of evolved populations (at Day 

900) and ancestors by fluctuation tests (Foster 2006). Briefly, 

fluctuation tests measure the rate of resistance to the antimi- 

crobial rifampicin which is conferred by mutations to rpoB. For 

each combination of genetic background and transfer size, 

the four ara- populations were assayed. For each population, 

two biological replicates with different starting clones were 

assayed. For each of the WT or MMR- ancestor, we also run 

replicate experiments in different starting clones. For each 

clone, 40 replicate experiments were performed. A number 

of mutants as determined by CFU/ml were converted to an 

estimated mutation rate and a corresponding 95% confi- 

dence interval by the function “newton.LD” function in the 

R package “rSalvador” (Zheng 2017). 

 

DNA Isolation and High-Throughput Sequencing 

We conducted high resolution population tracking by collect- 

ing 1 ml of culture at Day 90, 200, 300, 400, 500, 600, 700, 

800, and 900 of experimental evolution. We used the DNeasy 

UltraClean Microbial Kit (Qiagen 12224; formerly MO BIO 

UltraClean Microbial DNA Kit) to extract DNA. For library 

preparation and sequencing, we submitted DNA to either 

the Hubbard Center for Genomic Analysis at the University 

of New Hampshire, the Center for Genomics and 

Bioinformatics at Indiana University, or the CLAS Genomics 

Facility at Arizona State University for library preparation and 

sequencing. Library preparation was done by the Nextera 

DNA Library Preparation Kit (Illumina, FC-121-1030) following 

an augmented protocol for optimization of reagent use (Baym 

et al. 2015) before being pooled and sequenced as paired- 

end reads on an Illumina HiSeq 2500 (UNH) or an Illumina 

NextSeq 500 (Indiana; ASU). The target depth is 100x. 

 

Sequencing Analysis 

We performed Sequencing analysis on the Mason and 

Carbonate high-performance computing clusters at Indiana 

University. The quality control of sequencing reads was per- 

formed by Cutadapt version 1.9.1 (Martin 2011), which 

removes residual adapters and trims low-quality sequences. 

The qualified sequencing reads were then mapped to the E. 

coli K-12 substr. MG1655 reference genome (NC_000913.3). 

All mutations and their DAFs were identified using Breseq 

version 0.30.2 with the predict-polymorphisms parameter set- 

ting (Deatherage and Barrick 2014). Furthermore, several cri- 

teria of further quality checks were applied to the samples 

which we will only include in the following analysis: 1) mean 

sequencing depths >10; 2) any WT sample identified to con- 

tain the 1,830 bp deletion in mutL from the PMF5 progenitor 

strain was discarded; 3) regions lacking sequencing coverage 

(i.e., depth ¼ 0) must be smaller than 5% of the genome; and 

4) the sequencing result should reflect the correct genetic 

background in terms of ara markers, including a nonsynon- 

ymous SNP at position 66528, an intergenic SNP at position 

70289, and a multiple base substitution mutation (SUB) at 

position 66533. For an araþ population, we required either 

of two SNPs showing DAF < 0.2. For an ara- population, we 

required either of two SNPs showing DAF > 0.8 or the SUB is 

detected. 

In the end, 396 genomic profiles passed QC and were 

included in the following analysis (supplementary table S3, 

Supplementary Material online). In the case of M transfer 

size under WT background, only six out of eight replicates 

of evolved populations are left for the following analysis be- 

cause the other two were potentially contaminated by 

MMR- strains. In the other five combinations of transfer 

size and genetic background, there are still eight replicates 

of evolved populations for the following analysis. For every 

evolved population subject to the following analysis, its se- 

quencing profiles are available in at least seven different time 

points. 

To make sure that we do not use mutations that originated 

from the starting clone before experimental evolution in the 

analysis, we discarded any mutations with a DAF ¼ 1.0 at one 

time point for at least 11 experimental populations with the 

same genetic background from the analysis. Furthermore, the 

highly repetitive sequences in rsx genes are known to cause 

errors in SNP calling (McCloskey et al. 2018), so they were also 

discarded from the analysis. 

 

Number of Guaranteed Generations 

Given the observation that carrying capacity of experimental 

populations can be recovered within a transfer period (i.e., 1 

day), the guaranteed generation numbers in 900 days for di- 

lution factors  10-1
, 10-4

, and 10-7
 were, respectively, es- 

timated as 900 times of log2(10), log2(10
4
), and log2(10

7
), 

which are equal to ~ 3.0k, 12k, and 21k. 
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Rate of Genomic Evolution 

The level of genomic divergence for each experimental pop- 

ulation at each time point is defined by summing all DAFs of 

detected mutations. We then calculated the mean genomic 

divergence across all eligible experimental populations in each 

combination of transfer size and genetic background. We 

further performed the linear regression by the function 

“lm” in R with formula “mean genomic divergence ~ guar- 

anteed generations þ 0,” which enforces the y-intercept as 0. 

The slope of the regression is the estimated rate of genomic 

evolution. We also performed a nonlinear regression using the 

formula “mean genomic divergence ~ guaranteed genera- 

tions þ square root of guaranteed generations þ 0,” which 

was previously proposed to catch the trend of diminishing 

returns (Tenaillon et al. 2016). 

 

Identification of Fixed Mutations by Hidden Markov Chain 

For each population, caHMM was performed using a modi- 

fied version (Behringer et al. 2020) of previously released code 

(Good et al. 2017). For the populations in which caHMM did 

not finish, we instead performed well-mixed hidden Markov 

chain (wmHMM) using a modified version (Behringer et al. 

2020) of previously released code (Good et al. 2017). The 

single clade in wmHMM is defined as the basal clade. Fixed 

mutations are then defined as mutations that are inferred to 

be fixed in basal, major, or minor clade in the results of either 

analysis. 

 

Estimation of Selection Coefficients 

For each fixed mutation, we estimated its selection coeffi- 

cients by its temporal data of DAFs. If a mutation is in the 

basal clade, no correction is needed. If caHMM infers a mu- 

tation belongs to the major or minor clade, its corrected allele 

frequency will be the DAF divided by the proportion of the 

population belonging to the major or minor clade (also in- 

ferred by caHMM). For each of two available consecutive 

time points i and j, if the corrected allele frequencies at 

both time points (pi and pj) are smaller than 0.95 and larger 

than 0.05, the selection coefficient is calculated as 

ln 
p j

(
ð1 - pi 

 
Þ 

=

(
t - t

 
; 

  

 

 

number of nonsynonymous SNPs fixed within a clade or fixed 

in an entire population, FS is the number of synonymous SNPs 

fixed within a clade or fixed in an entire population, UN is the 

number of nonsynonymous SNPs in the mutation- accumula- 

tion experiment, and US is the number of synonymous SNPs in 

the mutation accumulation-experiment. We also similarly de- 

fined (FI/FS)/(UI/US) as neutrality index of intergenic SNPs, 

where FI is the number of intergenic SNPs fixed within a clade 

or fixed in an entire population, and UI is the number of 

intergenic SNPs in the mutation-accumulation experiment. 

The values of UN, US, and UI are from a previously published 

mutation-accumulation experiment of our ancestral lines (Lee 

et al. 2012). We calculated population-specific indexes and 

then acquired population-wise mean and SE. The populations 

with FN ¼ 0 and FI ¼ 0 were discarded in the calculation of 

neutrality index of nonsynonymous and intergenic SNPs, 

respectively. 

 

Calculation of G-Scores 

For each combination of genetic background and transfer 

size, we quantified the parallelism of the fixed nonsynony- 

mous mutations using the sum of G-scores across genes 

(Tenaillon et al. 2016). A larger G-score for a gene suggests 

that the fixed nonsynonymous mutations are more overrep- 

resented in that gene. Specifically, to calculate a genic G- 

score (Gi), we first counted the observed number of fixed 

nonsynonymous mutations in gene i (Oi) per a combination 

of genetic background and transfer size. We then calculated 

the expected number for gene i (Ei) by Otot(Li/Ltot), where 

Otot ¼ Ri Oi, Li is the number of nonsynonymous sites for 

gene i, and Ltot ¼ Ri Li. In the end, Gi is defined by 

2Oiln(Oi/Ei) or defined as zero when Oi ¼ 0 or when 

2Oiln(Oi/Ei) < 0. 

It was noted that the null expectation of G-scores varies 

with total number of fixed nonsynonymous mutations 

(Behringer et al. 2020). Therefore, for each combination of 

genetic background and transfer size, we performed 20,000 

simulations in each of which Otot hits are randomly distrib- 

uted among all Ltot sites across all genes in the reference 

genome. Then the significance of the sum of G-scores was 

evaluated by the z score defined by (the observed sum— 

mean of simulated sums)/(standard deviation of simulated 
 

 
 

where ti and tj are the numbers of guaranteed generations at 

time point i and j, respectively. The negative values were dis- 

carded. The largest positive value across all pairs of time point 

was used as the final measurement. 

 

Calculation of Neutrality Index 

As discussed in the main text, we defined (FN/FS)/(UN/US) as 

the neutrality index of nonsynonymous SNPs, where FN is the 

 

Calculation of Mean Bray–Curtis Similarity 

For each combination of genetic background and transfer 

size, we also quantified the parallelism of the fixed nonsynon- 

ymous mutations using the mean Bray–Curtis similarity across 

all pairs of experimental populations (Turner et al. 2018; 

Behringer et al. 2020). Specifically, for a pair of populations 

j and k, their Bray–Curtis similarity is defined by 

i j 

sums). 
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ioij - oik 

 
each gene i following the methods described in the above 

1 - P (
o

 
þ o

  ;

 section. 

 

where oij and oik are the observed number of fixed nonsynon- 

ymous mutations in gene i for population j and k, respectively. 

For each combination of genetic background and transfer 

size, we also performed 1,000 simulations to acquire the null 

distribution. In each simulation, we randomly sample the non- 

synonymous sites up to the number of observed fixed non- 

synonymous mutations for each population and calculated 

mean Bray–Curtis similarity as described above. After acquir- 

ing the null distribution, we evaluated the significance of the 

observed mean Bray–Curtis similarity by calculating the z 

score defined by (the observed value—mean of simulated 

values)/(standard deviation of simulated values). 

 

Overrepresentation of the Genes Affected by 

Nonsynonymous Nutations 

To evaluate the significance of G-score for gene i, we directly 

compared the Gi to the distribution of 20,000 simulated Gi, 

and the P value was defined as the proportion of simulated Gi 

larger or equal to the observed Gi. For multiple test correction, 

we multiplied each gene’s P value by the number of genes 

with at least one hit by the set of fixed nonsynonymous muta- 

tions (Bonferroni correction). The genes are called significant 

only if the genes show Bonferroni corrected P value < 0.05. 

 

Enrichment Test of GO Terms and KEGG Pathways 

Using the set of significant genes, we performed the enrich- 

ment test of GO terms using the function “enrichGO” in R 

package “DOSE” (Yu et al. 2015) with q-value cut-off ¼ 0.05 

and the organismal database as org. EcK12.eg.db. We also 

performed the enrichment test of KEGG pathways using the 

function “enrichKEGG” in the same package but found no 

terms with q-value < 0.05. 

 

Overrepresentation of the Intergenic Regions Affected by 

Fixed Mutations 

The identification of the intergenic regions affected by muta- 

tions was also performed by the way similar to identify the 

genes affected by nonsynonymous fixed mutations in genic 

G-score approach (Tenaillon et al. 2016). Instead of focusing 

on genic regions, genome-wide intergenic regions are fo- 

cused. For each combination of genetic background and 

transfer size, we first counted the observed number of inter- 

genic mutations in intergenic region i (Oi), and the expected 

number for intergenic region i (Ei) was calculated by Otot(Li/ 

Ltot), where Otot ¼ Ri Oi, Li is the length for intergenic region i, 

and Ltot ¼ Ri Li. The G-score for intergenic region i (Gi) was 

then calculated by 2Oiln(Oi/Ei), following the methods de- 

scribed in the above section. We also performed 20,000 sim- 

ulations and determined the Bonferroni corrected P value for 
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Overrepresentation of the Genes Affected by Structural 

Fixed Mutations 

The identification of the genes affected by structural fixed 

mutations was performed by the way similar to identify the 

genes affected by nonsynonymous fixed mutations in genic 

G-score approach (Tenaillon et al. 2016). Structural mutations 

include indels and IS-element insertions. For each combination 

of genetic background and transfer size, we first counted the 

observed number of populations with any structural muta- 

tions in gene i (Oi), and the expected number for gene i (Ei) 

was calculated by Otot(Li/Ltot), where Otot ¼ Ri Oi, Li is the gene 

length for gene i, and Ltot ¼ Ri Li. The G-score for gene i (Gi) 

was then calculated by 2Oiln(Oi/Ei), following the methods 

described in the above section. 

We also performed 20,000 simulations and determined 

the Bonferroni corrected P value for each gene i following 

the methods described in the above section. As a result, we 

found all the genes with Oi 2: 2 show Bonferroni corrected P 

value < 0.05. 

 

Correlations Between Pairs of SNPs 

For each evolved population, we focused on the nonsynon- 

ymous, synonymous, and intergenic SNPs in which at least 

two nonzero DAFs were found. For each pair of two such 

SNPs, we calculated the change of DAFs. Then we calculated 

Pearson’s correlation coefficients across only all the odd- 

numbered changes of DAFs to avoid nonindependence 

(Lynch and Ho 2020). That is to say, if a population has se- 

quencing profiles available for analysis at every sampling time 

points (Days 90, 200, 300, 400, 500, 600, 700, 800, 900), we 

calculate Pearson’s correlation coefficients using the five 

changes of DAFs: the one between Day 0 and 90, between 

Day 200 and 300, between Day 400 and 500, between Day 

600 and 700, and between Day 800 and 900. For another 

example of population, if its sequencing profile at Day 90 is 

discard from analysis due to its low quality, we calculate the 

Pearson’s correlation coefficients using only the four changes 

of DAFs: the one between Day 0 and 200, between Day 300 

and 400, between Day 500 and 600, and between Day 700 

and 800. Note that at least four changes of DAFs are used for 

each evolved population because no populations have more 

than two missing profiles. We then get the distribution of 

Pearson’s correlation coefficients for each evolved population. 

To establish the baseline for comparison in each combina- 

tion of transfer size and genetic background, we also gener- 

ated the set of Pearson’s correlation coefficients using two 

random mutations from two different random populations 

with all sequencing profiles available (i.e., they are unlinked 

for sure). We followed the same procedure above to calculate 

Pearson’s correlation coefficients for each pair of unlinked 
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mutations. When simulating a distribution of Pearson’s corre- 

lation coefficients, we used 100 pair of unlinked mutations. 

We then repetitively performed 100 rounds of simulation to 

get the mean and SE for the distribution. 

 

Supplementary Material 

Supplementary data are available at Genome Biology and 

Evolution online. 
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