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Theory of mind enables an observer to interpret others’ behavior in terms of unobservable

beliefs, desires, intentions, feelings, and expectations about the world. This also empowers

the person whose behavior is being observed: By intelligently modifying her actions, she can

influence the mental representations that an observer ascribes to her, and by extension, what the

observer comes to believe about the world. That is, she can engage in intentionally communica-

tive demonstrations. Here, we develop a computational account of generating and interpreting

communicative demonstrations by explicitly distinguishing between two interacting types of

planning. Typically, instrumental planning aims to control states of the environment, whereas

belief-directed planning aims to influence an observer’s mental representations. Our framework

extends existing formal models of pragmatics and pedagogy to the setting of value-guided

decision-making, captures how people modify their intentional behavior to show what they

know about the reward or causal structure of an environment, and helps explain data on infant

and child imitation in terms of literal versus pragmatic interpretation of adult demonstrators’

actions. Additionally, our analysis of belief-directed intentionality and mentalizing sheds light

on the socio-cognitive mechanisms that underlie distinctly human forms of communication,

culture, and sociality.
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Introduction

Communicating often requires demonstration. Imagine

teaching a child to tie her shoes with words alone, or by

simply showing her the finished product—this is unlikely to

work. Instead, we must show her.

Because communicative demonstrations are essential for

humans, they are also routine. They occur when we coor-

dinate (Clark, 2005), cooperate (Jordan, Hoffman, Bloom,

& Rand, 2016), create novel signs (Scott-Phillips, Kirby, &

Ritchie, 2009), and control low-level motor behaviors dur-

ing interaction (Wolpert, Doya, & Kawato, 2003; Pezzulo

et al., 2019). Developmental psychologists, especially, em-

phasize the importance of communicative demonstrations.

This is because such social interactions enable infants and

children to learn a range of useful behaviors and representa-

tions, including action types, subgoals, tool functions, causal

structure, and normative concepts (Brand, Baldwin, & Ash-

burn, 2002; Brugger, Lariviere, Mumme, & Bushnell, 2007;

Southgate, Chevallier, & Csibra, 2009; Király, Csibra, &

Gergely, 2013; Hernik & Csibra, 2015; Buchsbaum, Gop-

nik, Griffiths, & Shafto, 2011; Butler, Schmidt, Bürgel, &

Tomasello, 2015; Sage & Baldwin, 2011; Hoehl, Zettersten,

Schleihauf, Grätz, & Pauen, 2014).

How do communicative demonstrations work? What cog-

nitive processes support generating and interpreting demon-

strations, as well as related communicative actions such as

gestures (Cartmill, Beilock, & Goldin-Meadow, 2012) and

depictions (Clark, 2016)? Intuitively, demonstrative shoe-

tying is very similar to ordinary shoe-tying, but also impor-

tantly distinct. When demonstrating we tie our shoes slowly,

with exaggerated motions, pausing at and repeating certain

key actions. When watching a communicative demonstration

these distinctive features serve as important clues, revealing

which parts of a sequence of actions are essential and which

are merely incidental.

Communicative demonstration takes an ordinary act with

its ordinary purpose and builds something richer on top of

it. It depends upon a shared understanding between the ac-

tor and the observer: That the actor intends not just perform

the ordinary action, but also to convey something about it.

This shared understanding allows each pause, repetition and

exaggeration to carry special significance.

Our goal is to explain how this works and why it is so im-

portant. Following others who have studied how we commu-

nicate with our actions (Sperber & Wilson, 1986; Tomasello,

Carpenter, Call, Behne, & Moll, 2005; Csibra & Gergely,
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2009; Tomasello, 2010; Clark, 2016), we draw inspiration

from a different medium of human communication: lan-

guage. Just as demonstration layers communication on top

of simple goal-directed action, language layers pragmatic in-

ference on top of simple literal meaning. This analogy is

central to our approach.

More specifically, contemporary accounts of language

emphasize that speakers’ words are not only chosen accord-

ing to their conventional semantic meaning, but also accord-

ing to a model of how they will be interpreted by the lis-

tener. Listeners, in turn, often reason about utterances in

light of these goals. For example, consider scalar impli-

cature (Spector, 2007; Frank & Goodman, 2012): When a

friend says to you, “I ate some of the pizza in the refriger-

ator,” how does this change your beliefs about the leftover

pizza? Although the literal meaning of the statement is con-

sistent with them having eaten all of the pizza, in an every-

day context the statement implies that not all of the pizza

was eaten; there is some left over. This is because you both

know that your partner has an intention to inform you and

that if they had wanted to inform you that was no pizza left,

they would have said they had eaten all of the pizza. These

pragmatic aspects of language use and comprehension have

been extensively studied (Grice, 1957; Horn, 1984; Sperber

& Wilson, 1986; Clark, 1996; Levinson, 2000).

We aim to show that communicative demonstration oper-

ates by similar logic. When demonstrating an action, we do

not just orient our behavior around its ordinary goal (anal-

ogous to a “literal” semantics), but also around an under-
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standing of the actor’s communicative intent (analogous to

“figurative”, or pragmatic meaning). This general theme has

been been examined by researchers in a number of disci-

plines, including linguistics (Clark, 2005, 2016), compara-

tive psychology (Tomasello, 2010), and developmental psy-

chology (Csibra & Gergely, 2009). Here, we precisely char-

acterize the cognitive mechanisms underlying communica-

tive demonstrations within a general mathematical frame-

work of probabilistic inference and decision-making. In par-

ticular, we build on the general ideas developed for coop-

erative communication (Shafto, Goodman, & Frank, 2012;

Shafto, Goodman, & Griffiths, 2014), game-theoretic exper-

imental pragmatics (Franke, 2009), and rational speech-act

theory (Goodman & Frank, 2016) and adapt them to the

domain of actions. To accomplish this, we integrate them

with a distinct set of ideas developed to model communica-

tion in the context of goal-directed planning and decision-

making (Newell & Simon, 1972; Sutton & Barto, 1998;

Dayan & Niv, 2008). This marriage of formal tools for mod-

eling decision-making and pragmatic inference is at the heart

of our proposal.

By drawing on ideas from pedagogy and pragmatics,

our computational approach helps answer two key questions

about how communicative demonstrations work. First, what

allows non-linguistic actions to have meaning? The literal

semantics of words are essential to creating their additional

pragmatic meaning, but actions (e.g., tying one’s shoes) must

derive their meaning differently. Second, how can actions

literally do things as well as figuratively show things? A

demonstrator must be able to anticipate and reason about the

literal effects of their actions (e.g., how they attain a secure

bow) as well as their communicative effects (e.g., how they

convey how to attain a secure bow). Meanwhile, an observer

must be able to determine whether actions are merely literal

or also communicative, and if so, what they are communi-

cating. Our aim is to answer these questions within a sin-

gle computational framework and test their empirical predic-

tions.

Two kinds of action and action interpretation

To characterize communicative demonstrations, we draw

on a distinction between two types of action (Shafto, Good-

man, & Frank, 2012): instrumental and belief-directed. In-

strumental actions are prototypically aimed at solving physi-

cal problems or accomplishing physical goals in an environ-

ment. For example, when someone is riding a bicycle, they

pedal with their legs, causing the wheels to turn. These ac-

tions are taken instrumentally to achieve a desired outcome,

such as quickly reaching a destination.

An agent’s actions can be interpreted as instrumental. In-

deed, this is the ordinary manner of interpreting actions.

It includes reasoning about a range of mental states about

the environment including others’ goals (Gergely, Nádasdy,
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of prior studies on infant social learning. Finally, we show

how our account extends existing computational approaches

to language pragmatics and pedagogy, how it connects with

a number of active topics in social cognition, and what it

suggests for future research on the cognitive processes un-

derlying human communication.

General Methods

Our goal is to understand how people produce, and others

learn from, communicative demonstrations. In particular, our

aim is to provide a normative, computational-level account of

these processes in the sense of predicting how communica-

tive demonstrations should be performed and interpreted by

rational agents (Marr, 1982; Anderson, 1990). In this sec-

tion, we describe the computational framework that spells

out these assumptions and structures our investigation.

It is organized around two key ideas, which together com-

prise this work’s main contributions. The first idea is that

demonstrators and observers are engaged in pragmatic rea-

soning that is grounded in interpreting actions as instrumen-

tal. In other words, each explicitly models the problem of

sending and receiving maximally informative signals. To for-

malize this, we borrow from prior models of pedagogical and

pragmatic reasoning (Shafto et al., 2014; Frank & Goodman,

2012; Rafferty, Brunskill, Griffiths, & Shafto, 2016; Sperber

& Wilson, 1986; Grice, 1957).

Specifically, we analyze pragmatic meaning as emerging

from recursive social reasoning (Camerer, Ho, & Chong,

2004). In this approach, a model begins by specifying a “lit-

eral” instrumental actor who chooses an action without mod-

eling the mental state reasoning of an observer; the observer

then models this choice by reasoning about the actor’s men-

tal states; the actor then chooses an action that maximizes the

probability of the observer drawing the correct inference; the

observer then models the actor as such; and so on. In the-

ory such “cognitive hierarchies” could proceed ad infinitum.

In practice, they attain their predictive power within a few

layers of recursive mentalizing (Camerer et al., 2004).

The second idea is that communicative demonstrations

involve reasoning about actions as both instrumental and

belief-directed. For example, a father showing his daugh-

ter how to tie shoes both wants her shoes to be tied (an in-

strumental goal) and also wants his daughter to learn how to

tie shoes (a belief-directed goal). Not only does this require

balancing two types of (potentially competing) goals, but it

requires reasoning about two distinct types of causal effects:

how actions influence the environment as well as how they

also influence an observer’s mental state. Meanwhile, an

observer must be able to interpret actions in terms of these

different levels. To characterize these planning and inference

processes, our approach marries insights from the study of

goal-directed planning (Dayan & Niv, 2008; Newell & Si-

mon, 1972; Puterman, 1994) and theory of mind (Dennett,

1987; Malle, 2008; Gergely & Csibra, 2003; Baker et al.,

2009).

These two key ideas—grounding the pragmatics of com-

municative action in instrumental action, and planning ac-

tions over a model of instrumental and belief-directed

effects—can be combined in a straightforward and produc-

tive manner. Specifically, we begin by defining a form of

instrumental action production and observation. We then al-

low belief-directed goals to structure pragmatic reasoning

that arises as the next level up of cognitive hierarchy. In

this manner a relatively simple and traditional planning prob-

lem of attaining an instrumental goal (e.g., catching a fish)

“grounds” the pragmatic inferences that structure the addi-

tional and more complex planning problem of attaining a

belief-directed goal (e.g., teaching a person to fish).

Instrumental planning and literal action interpretation

At the first level of a cognitive hierarchy we model an ac-

tor attempting to accomplish an instrumental goal—i.e., to

perform a task without regard for an observer. In order to do

this she must engage in planning, which involves reasoning

about what actions and associated consequences best achieve

her goals (Figure 2A). We suppose an actor has a model of

how her actions will affect the environment, W, and instru-

mental goals expressed in terms of utilities, GI . We denote

an instrumental plan as πI . This can be thought of as com-

puting the steps of a procedure (e.g., “First bring the flour

down from the shelf. Then get a spoon. Take out 2 cups.”

etc.). When an instrumental demonstrator acts out a plan, this

produces a sequence of events, which includes her physical

actions and their consequences (e.g., reaching for the flour,

moving it from the shelf to the counter, picking up a spoon,

etc.). Given a model and goals, an intentional agent plans and

then acts. We can express the probability of a demonstration

D (i.e., a particular sequence of actions and consequences):

P(D | W,GI) =
∑

πI

p(D | πI ,W)P(πI | W,GI) (1)

In Equation 1, P(πI | W,GI) expresses the output of a ra-

tional planning process, while p(D | πI ,W) expresses how an

actor’s planned actions interact with the environment. This

kind of model-based action selection is widely explored in

the literature on value-guided decision-making (Dayan &

Niv, 2008). An agent who plans and acts in this manner is

oblivious to the fact that anyone may be observing her. We

describe this model not because it describes an agent engaged

in communicative demonstration—it does not!—but rather

because it grounds successive levels of hierarchical mental

state inference that we are interested in. The next step is to

model an observer who attempts to learn from an actor’s be-

havior by assuming that the actor is purely instrumental (i.e.,

by assuming the model summarized in Equation 1).
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Belief-directed planning and pragmatic action interpre-

tation

In a communicative demonstration, the demonstrator has

not only instrumental intentions, but also belief-directed

ones. To return to our example, the fisherman wants not

only to catch a fish (an instrumental intention) but to show

an observer how to fish (a belief-directed intention).

Just as instrumental planning involves evaluating and

choosing plans over a model of the environment, we propose

that belief-directed planning involves doing so over a model

of the other person’s inferences. This means that rather than

just planning a sequence of possible actions and instrumen-

tal consequences, a demonstrator also plans over how her ac-

tions affect observer beliefs.

Specifically, we posit that it involves planning over the

rational inferences that an observer would draw by imputing

instrumental goals—those specified by Equation 2. In other

words, a demonstrator evaluates whether her actions would

accomplish her belief-directed goals by asking what infer-

ences an observer would draw from her actions. She mod-

els those inferences by assuming that the observer applies

Equation 2, modeling her as an instrumental agent. In this

way belief-directed actions are “grounded” in the semantics

of instrumental goals. (Later we discuss the possibility of

more complex planning over still higher-order inferences).

In order to capture this idea formally we distinguish be-

tween instrumental and belief-directed goals and planning

(Figure 2C). Recall that GI denotes instrumental goals ex-

pressed as utilities; we denote belief-directed goals as GB.

Given a planning model that includes both the environ-

ment (W) and the observer (OL) as well as instrumental and

belief-directed goals (GI , GB), belief-directed plans, πB, that

“solve” this planning problem are well defined (although we

consider the question of computational tractability in the dis-

cussion). When a demonstrator enacts this belief-directed

plan in the environment, they produce a demonstration D:

P(D | W,OL,GI ,GB) =
∑

πB

P(D | πB,W,OL)P(πB | W,OL,GI ,GB) (3)

Again, we emphasize that belief-directed planning de-

pends on reasoning about both the world (W) and a literal

observer’s belief dynamics (OL). This is because whereas

instrumental planning aims to influence aspects of the envi-

ronment, belief-directed planning aims to cause both envi-

ronmental and mental effects. In particular, a belief-directed

demonstrator plans and acts by reasoning about how her ac-

tions influence observer beliefs via their capacity for action

interpretation.

Finally, just as an observer can interpret actions in terms

of instrumental intentions, he can also interpret them in terms

of belief-directed intentions (Figure 2D). For instance, an ob-

server might assume that the demonstrator is attempting to

choose maximally informative actions (in order to accom-

plish her belief-directed goals) and interpret actions in light

of this fact. Formally, we can define pragmatic action in-

terpretation as recursive reasoning about the world W, literal

observer OL, instrumental goals GI , and belief-directed goals

GB:

b′(W,GI ,GB | D,OL) ∝

P(D | W,OL,GI ,GB)b(W,GI ,GB)
(4)

Analogously with the literal observer, OL, we can define

a pragmatic observer, OP(b′ | D, b), who updates their be-

liefs according to Equation 4. Figure 2 visualizes the func-

tional relationships between the different model components

as Bayesian Network Diagrams (Pearl, 1988) from the per-

spective of the different demonstrators and observers.

Higher-order and mixed-order planning and action inter-

pretation

Equations 1-4 define a sequence of recursive planning and

inference processes. In theory, one could have observers who

reason about qualitatively different demonstrators as well

as demonstrators who reason about more sophisticated ob-

servers. For instance, an observer could be uncertain about

whether they should interpret actions pragmatically: They

could be reasoning jointly about a demonstrator’s instrumen-

tal beliefs (e.g., where do they think the cookies are?) as well

as whether they have belief-directed intentions (e.g., are they

trying to show me where the cookies are?). Similar situations

have been studied in the context of epistemic trust (Mascaro

& Sperber, 2009; Shafto, Eaves, Navarro, & Perfors, 2012),

where knowledge and helpfulness are uncertain. We could

also consider a demonstrator who wants to show an uncertain

but pragmatic reasoner that they have a belief-directed inten-

tion (e.g., signal that they are signaling; Scott-Phillips et al.,

2009). These forms of inference and planning can be formal-

ized in terms of higher-order and mixed-order observers and

demonstrators.

In this paper, our primary goal is to understand the first

step of the process that relates goal-directed action to com-

municative action, so we largely focus on straightforward in-

stances of belief-directed planning and pragmatic action in-

terpretation. Nonetheless, we touch on questions about more

complex reasoning throughout the paper and return to them

in more detail in the general discussion.

Implementations of belief-space planning

Recursive mentalizing and model-based planning are both

computationally intensive, as is their combination. The work

presented here is not committed to a specific cognitive strat-

egy that people use to compute near-optimal solutions to

belief-state planning problems. Rather, our aim is to present

a computational-level account (Marr, 1982; Anderson, 1990)
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that characterizes the problem that people are solving when

generating and interpreting communicative demonstrations.

Nonetheless, to generate predictions and evaluate human

data requires a specific implementation of belief-space plan-

ning (and inference). Briefly, for our Gridworld simulations

and analyses, our approach involves first constructing an ap-

proximate, discrete belief-space dynamics model that is in-

dependent of the particular rewards on a task or trial. This

approximate belief-dynamics model is designed to only cap-

ture parts of the belief-space that are likely to be visited given

an initial belief and environmental dynamics. For a specific

trial, this approximate model is combined with an instrumen-

tal and/or belief-directed utility function and solved exactly

using dynamic programming (Bellman, 1957). We note that

in contrast to approaches that use sampling to do approxi-

mate planning (e.g., Hula, Montague, & Dayan, 2015), this

implementation allows us to straightforwardly compute ex-

pected rewards and action probabilities that can be used for

analysing human responses as well as defining higher-order

observers.

Further details about our implementation are reported in

the appendix and code itself is available at https://github

.com/markkho/comdem-data-code. Finally, although we

largely sidestep issues of computational cost here, we will

return to these questions in our discussion of future work.

Experimental Studies of Communicative Demonstration

Our account provides both quantitative and qualitative

predictions about demonstrator actions and observer infer-

ences. We test these in a Gridworld paradigm in which par-

ticipants played the role of demonstrator that could move a

circle on a grid of colored tiles, or observer who was shown

a demonstrator’s behavior. Experiments 1a and 1b focus on

communication of reward structure, while Experiments 2a

and 2b focus on learning relevant causal knowledge. Both

sets of studies use goal-directed behavior (i.e., doing an ac-

tivity) as a baseline to compare communicative behavior (i.e.,

showing an aspect of an activity). Using a combination of

behavioral measures, simulations, and model-fitting, we find

that belief-directed planning captures key aspects of people’s

communicative demonstrations.

Experiment 1: Communicating Reward Structure

Communicative demonstrations can be used to convey

several kinds of useful information. One important kind con-

cerns the “reward function”—i.e., information about what

is desirable and undesirable in the world. This is often ex-

pressed as a relationship between object features and re-

wards. For example, eating red tomatoes might keep you

healthy, while eating green tomatoes makes you sick. Thus, a

knowledgeable demonstrator will eat red tomatoes and avoid

green ones, and an uninformed observer can infer the true

reward structure by observing this.

The safe colors are and . the safe colors are and .

Show your partner that

Do

Condition

Show

Condition

Figure 3. Experiment 1 - Participants were either placed in a condi-

tion where they were simply told the reward function (left) or also

told to show the reward function to a partner (right). The red lines

are representative examples of behavior in the two conditions.

Experiment 1 uses this case study of teaching a reward

function to test our account of communicative demonstra-

tion. Critically, we note the methodological importance of

using feature-based rewards: Distinguishing between “do-

ing” an activity and “showing” relies on the possibility of

information that generalizes beyond the immediate activity.

This is because if a demonstrator is only showing how to

do the immediate activity, the best strategy is to simply do

the activity and have the learner copy those exact actions.

Moreover, as we explore in the discussion, this experimen-

tal consideration is closely related to theoretical claims that

relate communicative demonstrations to the transmission of

generalizable knowledge (Csibra & Gergely, 2009).

Thus, in Experiment 1a, we focus on how people in

the role of demonstrator convey feature-based—that is,

generalizable—information about rewards. Using a combi-

nation of behavioral and model-based analyses, we show that

people motivated to demonstrate task information uniquely

engage in strategies that reflect a combination of instrumental

and belief-directed planning. For example, we expect people

to engage in “targeted variability” where they strategically

visit tiles that have high diagnostic value. We first look for

these types of behavioral signatures predicted by the model

before reporting the results of model-fitting and parameter

estimation. Experiment 1b then focuses on observer judg-

ments. We find that people make more accurate and confi-

dent inferences when demonstrations are known to be com-

municatively generated, consistent with our model of prag-

matic action interpretation.

Method

Task. Participants were asked to navigate the Gridworld

shown in Figure 3 by moving the blue circle up, down, left,

or right on each time step. Yellow tiles were always “goal”

states, meaning that whenever it was entered, the participant

received +10 points and the trial ended. White tiles always
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reward 0 points. The remaining tile colors—orange, purple,

and blue—each were randomly assigned to be either safe or

dangerous, meaning that their reward values could either be

0 or -2 points respectively. Thus, the set of possible reward

structures formed by all combinations of safe or dangerous

yields a space of eight possible distinct reward structures.

Procedure. Sixty participants recruited from Amazon

Mechanical Turk performed the feature-based reward teach-

ing task; two were excluded due to missing data due to

recording error, leaving a total of 58 participants for analysis

(29 in each condition). They received a base pay of $1.00 and

received a bonus based on points received across the whole

experiment, with each point worth +/- 2 cents. The exper-

iment was organized into a training phase and test phase.

The training phase was designed to familiarize participants

with the domain by alternating between learning a reward

function and then applying it. On the learning trials, they

were not told the underlying reward structure (i.e. which

colors were safe/dangerous), but received immediate feed-

back on how many points were won or lost when stepping

on tiles. On the applying trials immediately following each

learning trial, they were given a new grid configuration that

required knowledge of tile color type, and applied what they

just learned about the tiles without receiving feedback. They

repeated this procedure 8 times for each of the 8 possible

combination of “safe” and “dangerous” colors. The order of

the reward functions was randomized between participants.

Following the training phase participants were split into

two conditions: One that only motivated completing the task

(the “Do” condition) and another that additionally motivated

demonstrating the task to an observer (the “Show” condi-

tion). Both Do and Show participants were told which col-

ors were safe and won or lost points based on which tiles

were safe or dangerous. Only Show participants were ad-

ditionally told that their behavior would be shown to an-

other person, that this person could not see the points they

received, that they would apply what they learned to a new

grid, and that the points won by their partner would be added

to their bonus. When bonuses were calculated, participants

each received what they would have had their partner done

as well as possible. Participants did not receive feedback

on the reward for each action, although this could be eas-

ily inferred from the information provided. Procedures were

approved by Brown University’s Research Protection Office

(protocol #1505001248, title: “Exploring human and ma-

chine decision-making in multi-agent environments”).

Simulated Demonstrators

We generated simulated behaviors of instrumental and

belief-directed demonstrators from our model for each of the

eight reward structures. Specifically, for each of the eight tri-

als, 200 sequences of states and actions were generated. Half

of these were from the instrumental demonstrator, which

correspond to the Do condition, while the other half were

from the belief-directed demonstrator, which correspond to

the Show condition. Details for how we formalized the task

and models are described in the supplementary materials.

Results

The open-ended nature of the task led to a range of par-

ticipant demonstrations, visualized in Figure 4a. These data

largely matched the qualitative and quantitative predictions

of the model simulations: Do participants selected routes

based exclusively on efficiency, whereas Show participants

took routes that additionally signaled feature reward val-

ues. To understand people’s behavior in light of the model,

we performed three sets of analyses. First, we examined

task-specific behavioral predictions based on our simulated

demonstrations. Specifically, we examined the number of

color tiles and the variability of color tiles visited as a signa-

ture of belief-directed planning. Second, we examined how

the sequences of actions people took in each condition led

to transitions in the belief-space of several observer models.

Finally, we performed a model comparison analysis to con-

firm that the behavior in Show is explained by belief-directed

planning and not a particular parameterization of pure instru-

mental planning.

Behavioral Analysis. Our model predicts that instru-

mental action and communicative demonstrations will differ

from one another in systematic ways. For instance, on tri-

als where multiple colors are safe (e.g., orange and blue in

Figure 3, it may be worthwhile for belief-directed planning

to engage in “targeted variability” where multiple tiles types

are visited, whereas pure instrumental planning would lead

to visiting only one or the other if it is maximally efficient

for reaching the goal. We quantified these types of predicted

differences by calculating the proportion of orange, blue, or

purple tiles visited in a trajectory (color visitation propor-

tion) and the entropy of the frequency distribution over or-

ange, blue, and purple tiles in a trajectory (color visitation

entropy). As shown in Figure 5A (top row), both color vis-

itation proportion and entropy was generally higher for the

belief-directed model, although this varied by the particular

reward function.

We then calculated color visitation proportion and entropy

for the empirical trajectories and performed two sets of anal-

yses. First, we analyzed the trajectories independently of the

planning models using a mixed-effects logistic regression for

color visitation proportion and a mixed-effects linear regres-

sion for color visitation entropy. For both of these models,

condition was included as a fixed effect while by-participant

and by-item (i.e., reward function) random intercepts were

fit. Show condition trajectories had a greater color visitation

proportion (β = 2.59, S E = 0.47, Z = 5.46, p < .0001

[Wald Z test]) as well as color visitation entropy (β = 0.16,
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the task parameters and whether the demonstrator has infor-

mative intentions. Using the same analysis over final belief

in the trial parameters as before, we find that condition was

significant (β = 0.23, S E = 0.03, t(56.00) = 6.45, p < .001

[Satterthwaite’s approximation]). Additionally, we used a

similarly structured analysis to determine if the uncertain

pragmatic observer tracks whether the demonstrator was at-

tempting to be informative. We found a significant effect of

condition (β = 0.09, S E = 0.03, t(56.00) = 3.51, p < .001

[Satterthwaite’s approximation]), which confirms that peo-

ple’s actions in Show are not only more informative, but in-

terpreted as more intentionally informative by an uncertain

model.

In summary, we examined how people’s behaviors in Do

and Show affected the beliefs of three types of observer mod-

els (literal, pragmatic, and uncertain pragmatic). People’s

behavior in Show better conveyed the underlying structure

of the task for all three observer models. Additionally, we

found that Show demonstrations are themselves interpretable

as intentionally informative to an observer who is unsure.

Model-fitting Analysis. As a final, stronger test of the

distinction between doing an activity and showing an activ-

ity, we employ model fitting. This approach ensures that the

effectiveness of Show trajectories is due to belief-directed

planning and not a particular parameterization of instrumen-

tal planning. For example, people could simply act more

randomly in the Show condition rather than engage in tar-

geted variability. Additionally, model-fitting allows us to un-

derstand people’s low-level actions—e.g., movements in the

cardinal directions—in terms of high-level psychological and

computational constructs—e.g., communicative utilities and

recursive models of an observer. Here, we describe our gen-

eral results and report details related to implementation and

parameter estimates in the supplementary materials.

Our main question is whether including belief transitions

and utilities in a demonstrator’s planning model explains

behavior in Show but not in Do. To assess this, we fit

maximum-likelihood parameters for the instrumental planner

and for the belief-directed planner to each participant. Since

instrumental planning is a nested version of belief-directed

planning (i.e., where belief transitions and utilities are ig-

nored), we compared model-fits in each condition using a

log-likelihood ratio test with three degrees of freedom differ-

ence per participant. For Do, the instrumental model was not

rejected (χ2(87) = 100.78, p = .15), whereas for Show, it

was (χ2(87) = 391.60, p < 10−39), indicating that the belief-

directed planning model provides a better explanation of be-

havior for the Show but not Do. Additionally, we can com-

pare models for individual participants. Figure 5c shows the

likelihood-ratio test statistic associated with each participant.

We used a permutation test (Hesterberg, Moore, Monaghan,

Clipson, & Epstein, 2005) with 10, 000 random permutations

to determine whether the difference in mean test statistics

between Do and Show was significant (Do LR mean = 3.47,

S.D. = 4.63; Show LR mean = 13.50, S.D. = 8.78). None

of the permutations exceeded the true difference in mean test

statistic (p = 1
10001

< 10−4) indicating that more participants

in Show are explained by belief-directed planning.

Given belief-directed planning models fit to each individ-

ual participant’s collection of demonstrations, we can also

examine the parameters corresponding to planning goals and

representations. In particular, we examined two parameters

corresponding to the strength of the demonstrator’s com-

municative goal (GB) and the informativeness of instrumen-

tal actions for a literal observer (OL) in light of the Do

and Show conditions. As expected, we find that estimated

communicative goal strength was higher for Show than Do

(Wilcoxon Signed-Ranks test: Z = −2.11, p < .05). Sim-

ilarly, we find that instrumental action informativeness to

be higher for Show than Do (Wilcoxon Signed-Ranks test:

Z = 1.98, p < .05). Moreover, these two parameter estimates

are correlated in Show but not in Do, indicating a coupling

between the representational and motivational dimensions

of communicative demonstrations (Do: r = .27, p = 0.16;

Show: r = .50, p < .01). These analyses of individually fit

parameters provide further confirmation that the behavior in

Show results from a planning process informed by literal ac-

tion interpretation. For complete details on how these param-

eters were specified, please see the supplementary materials.

To summarize, we find that belief-directed planning pro-

vides a better model of behavior in Show than in Do.

Experiment 1b: Learning Reward Structure from

Demonstrations

We next turn to observer behavior. Specifically, we evalu-

ated whether communicative demonstrations are effective for

teaching human observers the true reward function, and also

whether observers’ expectations of communicative (“show-

ing”) or non-communicative (“doing”) behavior matter. Par-

ticipants were either placed in a Communicative or Non-

Communicative interpretation condition, corresponding to

the literal and pragmatic observer models, respectively. They

were then given the trajectories from either the Show or Do

conditions in Experiment 1a. Overall, we find a large posi-

tive effect on observer accuracy and confidence when given

demonstrations from Show versus Do, and a small positive

effect of observer interpretation consistent with the model

predictions.

Materials and Procedure. The stimuli were the

state/action/next-state sequences produced by participants in

Experiment 1a. These were generated from the eight criti-

cal trials from the 29 participants the Do/Show demonstrator

conditions, for a total of 464 demonstrations. Each partic-

ipant was told they would observe a single demonstration

from a partner. They were also assigned to a Communica-

tive or Non-Communicative interpretation condition. The in-





12 HO, CUSHMAN, LITTMAN & AUSTERWEIL

Do Show
Demonstrator Condition

0.6

0.7

0.8

0.9

1.0

Correct
Belief

(Probabilities)

Model
Literal Action Interpretation
Pragmatic Action Interpretation

Do Show
Demonstrator Condition

0.6

0.7

0.8

0.9

1.0

Correct
Proportion

Experiment
Non-Communicative
Communicative

Figure 6. Comparison of model and human observers learning from human demonstrations. Observer models were either literal observers

or pragmatic observers, and were given Experiment 1a trajectories from the Do or Show condition. Left panel shows the correct probability

that a color is safe (not the probability of the task) in order to facilitate comparison with Experiment 1b. Participants in Experiment 1b were

either told the demonstrator was intentionally communicating (Communicative condition) or nothing (Non-Communicative condition), were

given Do or Show trajectories, and gave safe/dangerous judgments for each color that were coded as correct or incorrect. Error bars are

bootstrapped 95% confidence intervals.

Results. Participants exposed to Show trajectories were

more accurate and confident in their beliefs, compared with

participants exposed to Do trajectories. To analyze accu-

racy, we used a mixed-effects logistic regression with cor-

rect/incorrect judgments as the outcome variable. By-trial

(reward function), by-demonstrator, and by-observer inter-

cepts were used as random effects, and both sets of instruc-

tions and their interaction were set as fixed effects using

contrast coding. The effect of whether the trajectories were

from Do or Show (demonstrator instructions) was significant

(β = 0.40, S E = 0.11, Z = 3.64, p < .001 [Wald Z test])

as was the effect of the Communicative/Non-Communicative

interpretation (observer instructions) (β = 0.13, S E = 0.07,

Z = 2.02, p < .05 [Wald Z test]). Demonstrator Show in-

structions had a larger effect size, corresponding to an in-

crease in observer accuracy by 1.5 times, as compared to

observer Communicative instructions, which corresponds to

an increase in observer accuracy by 1.14 times. There was

no significant interaction (β = 0.09, S E = 0.14, Z = 0.64,

p = .52 [Wald Z test]). This general pattern parallels the

simulation results (Figure 6).

Confidence judgments were analyzed by mixed-effects

linear regression. Reported confidence was the outcome

variable; trial, demonstrator, and observer were random ef-

fects; and demonstrator instructions, observer instructions,

and their interaction were fixed effects. Observers receiv-

ing Show demonstrations were more confident (β = 3.34,

S E = 0.93, t(57.20) = 3.59, p < 0.001 [Satterthwaite’s ap-

proximation]), as were those receiving Communicative in-

structions (β = 3.57, S E = 0.87, t(1790.85) = 4.08, p <

0.0001 [Satterthwaite’s approximation]). There was no sig-

nificant interaction (β = 1.16, S E = 1.75, t(1790.85) = 0.67,

p = .51 [Satterthwaite’s approximation]). In short, the gener-

ation and interpretation of demonstrations as communicative

increased both accuracy and confidence.

Discussion

Are people’s communicative demonstrations reflective of

belief-directed planning? Experiment 1 addressed this ques-

tion in the context of communicating information about re-

ward structure. To test this, in Experiment 1a participants

performed a series of tasks that differed by reward structure

and were motivated to merely “Do” or additionally “Show”

the task. In Experiment 1b, these demonstrations were ob-

served by a separate set of participants, who were either told

that the demonstrations were produced communicatively or

not told this. These participants were then asked for their

beliefs about the reward structure.

Our analyses of demonstrators’ behavior as well as ob-

servers’ judgments provide evidence for belief-directed plan-

ning and pragmatic action interpretation described by our ac-

count. First, we show that the belief-directed demonstrator

model predicts how people will modify their goal-directed

behavior by increasing the variability of color tiles visited on

specific trials. Second, using three different observer model

variants, we find that Show demonstrations more effectively

convey the underlying task structure and that they are more

likely to be interpreted as intentionally informative by a ratio-

nal model. Additionally, the qualitative pattern of judgments

provided by two of these models (the literal and pragmatic

observer) match those of participants in Experiment 1b. Fi-

nally, the model-comparison analysis of Do/Show demon-

strations allows us to conclude that the variability in actions

taken in communicative demonstrations are not simply due

to undirected noise, but rather belief-directed planning.
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In short, Experiment 1 tests the predictions of our demon-

strator and observer models in the context of conveying in-

formation about reward structure. Overall, we find that the

differences between planning and interpreting instrumental

actions versus communicative demonstrations can be under-

stood in terms of our account of recursive planning and in-

ference.

Experiment 2: Communicating Causal Structure by

Demonstration

Actions can convey more than just the reward structure

of the world; they can also convey its causal structure. For

instance, consider showing someone else how to use a can

opener. You would want to make sure that they learn the

key causal dependencies between squeezing the handles and

puncturing the lid, and between rotating the handle and cut-

ting the lid free. Exaggerating certain motions involved in

using a can opener can provide clear evidence of the underly-

ing causal mechanism and would directly result from belief-

directed planning, even though these exaggerations may not

be the most efficient way to actually open the can.

In Experiment 2, we examine how people modify their in-

strumental actions to convey information about hidden causal

structure. We used a variation on the Gridworld task in which

certain tiles have different probabilistic outcomes (Figure 7),

allowing us to examine how people exploit complex dynam-

ics of an environment when acting communicatively. In par-

ticular, having probabilistic causal affordances enables us to

directly test whether communicative demonstrators are lever-

aging observers’ capacity for theory of mind when planning

over beliefs. This is because such situations allow demon-

strators to show that they are trying to do something, even

if it is potentially costly or may not succeed. For instance,

suppose you want to show someone how to use a can opener,

but it fails on some cans and breaks them because it is of

poor quality. You may still be able to convey how can open-

ers work by using properly exaggerated motions to indicate

how you expect it to work, even if it does not actually work

the way it is supposed to. In this experiment, we intro-

duce “jumper tiles” that allow agents to jump over dangerous

tiles. This provides opportunities for participants to show ob-

servers when certain tiles are jumpers by taking extra jump-

ing actions as well as showing them that they can be used to

avoid dangerous tiles by taking risky jumps that sometimes

do not work.

As we discuss, our framework for planning and interpreta-

tion of communicative demonstrations allows us to compare

belief-directed planning not only to instrumental planning,

but also to variants that make weaker assumptions about ob-

servers. For instance, whether an observer engages in in-

verse planning or simple causal reasoning will affect whether

a demonstrator engages in risky jumping. Overall, we find

that the full belief-directed planning model uniquely predicts

how people will act to convey causal structure through their

actions.

Method

Task. We used the layout shown in Figure 7a to test how

people convey causal structure. Each trial, people start at the

bottom center of the grid and must reach the yellow goal tile

(worth 50 points) in as few steps as possible (each step was

penalized -1 point). Dangerous tiles (red) are always worth

-10 points. “Jumper tiles” (green) are worth zero points, but

stochastically cause the agent to jump over the immediate

tile, thus avoiding losing points if it is dangerous. Within

a trial, all of the jumper tiles are either “strong”, meaning

that 3/4ths of the time the tile moved the agent two steps

and 1/4th of the time moved it only one step, or “weak”, in

which the probabilities were reversed. As a result, the value

of actions from a particular jumper tile depends on both the

layout of the dangerous and jumper tiles, as well as whether

the jumper tiles are strong or weak.

Procedure. 80 Amazon Mechanical Turk participants

participated for payment. The overall design of this exper-

iment was similar to that of Experiment 1 with a few modifi-

cations. Participants were trained on the basic experimental

interface and interacted with a set of 16 exploration grids in

which they had to figure out whether the jumper tiles were

strong or weak. The grids were designed such that there was

no way to try a jumper tile without some risk of entering a

dangerous tile. After each of these exploration rounds, they

had to answer whether they thought the jumper tiles on that

trial were strong or weak and won or lost 50 points based

on their answer. They were then split into two conditions:

Do and Show. Forty-one participants were assigned to Show

while 39 were assigned to Do. In Do, participants were al-

ways told whether the jumper tiles were strong or weak; in

Show, they were also told this information but were addition-

ally told that their behavior would be shown to a partner who

would have to answer whether the jumper tiles were strong

or weak. They would then win or lose 50 points based on

their partner’s answer.

Both conditions were given the same set of 8 grids twice.

We designed the grids to favor certain trajectories when

jumper tiles were weak (weak affording), others when jumper

tiles strong (strong affording), and others whether the jumper

tiles were weak or strong (Figure 7b). We arranged these

variations to distinguish between doing and showing, be-

cause sometimes the most effective way to communicate

task structure would be to incur the risk of jumping onto

a dangerous tile. Each grid was then presented where the

jumper tiles were strong and weak, for a total of 16 distinct

rounds per person. Procedures were approved by University

of Wisconsin-Madison ED/SBS IRB (Study #2017-0830, ti-

tle: “Studying human and machine interactions”).
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Strong Jumpers Weak Jumpers(a)

Strong Jumper

Affording
Weak Jumper
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(b)

Figure 7. Experiment 2 paradigm. Each trial had a particular configuration of dangerous tiles (red) and jumper tiles (green). (a) Example

trajectories showing whether the jumper tiles are strong (the agent is usually moved two tiles after stepping off it) or weak (agent is only

sometimes moved two tiles). Dotted line indicates a successful jump of two tiles. Within a trial, jumper tiles are either all strong or all weak.

(b) Example of regions of grid with different affordances based on whether the jumper tiles are strong or weak.

Simulated Demonstrators

Similar to Experiment 1, we simulated both instrumental

and belief-directed demonstrators for both strong and weak

variants of the Gridworld trials. However, we also generated

two types of belief-directed demonstrator. The first was a

demonstrator who planned over a literal observer who per-

formed inverse planning—i.e., it assumes that the observer

reasons about instrumental intentions. The second was a

demonstrator who planned over a lesioned literal observer

that does not perform inverse planning and can only do causal

reasoning. Fifty sequences of states and actions were gener-

ated for each of these three models for each transition func-

tion and Gridworld.

Results

As in Experiment 1a, we performed three sets of anal-

yses to understand participants’ behavior (Figure 8): task-

specific behavioral predictions, performance in model ob-

servers’ belief-space, and by-participant model-fitting. For

the behavioral analyses, we focused on jumping rate and

risky jumping rate, as these are key signatures of belief-

directed planning. Risky jumping in particular allows us to

contrast demonstrations designed for observers engaging in

inverse planning versus one that only does causal reasoning.

Overall, these analyses allow us to evaluate whether peo-

ple’s communicative behavior is explained by planning over

a model of observers’ beliefs from several different perspec-

tives.

Jumping and Risky Jumping. Jumpers allow people

to take inconvenient or risky actions to convey information

about the task. For example, repeatedly jumping off of green

tiles can provide evidence of the underlying causal mecha-

nism by providing observers the opportunity to directly ob-

serve the relevant statistics. However, our set up also pro-

vides demonstrators with an opportunity to convey their ex-

pectation that a particular outcome is likely by taking risky

jumps, where possible outcomes have a large influence on

rewards. For instance, if green jumper tiles were strong, an

agent could try to use it to jump over a red tile, whereas if it

were weak, they would not. If the observer can reason about

an actor’s intention to use jumpers to skip over red tiles—that

is, if they can engage in literal action interpretation—, then

a communicative demonstrator could use risky jumping to

signal their expectations. In contrast, a rational communica-

tive agent who does not think the observer can reason about

intentions would not take risky jumps if they did not have

to. These two possible communicative agents correspond di-

rectly to belief-directed planning over a full literal observer

and planning over a lesioned observer that we simulated. As

shown in Figure 8A (top row), although both types of agents

engage in more jumping than the instrumental agent baseline,

only planning over a full literal observer predicts more risky

jumping.

We analyzed participants’ jumping and risky jumping in-

dependent of the models and then with the model predic-

tions. For our first set of analyses, we fit a linear mixed-

effects model to the number of jumps per round and a lo-

gistic mixed-effects model to whether jumps were risky. A

jump was defined as any action that had a non-zero prob-

ability of moving two tiles, while a risky jump was coded

as any jump that had a non-zero probability of landing on

a red tile. Both models included condition (Do/Show) as a

fixed effect as well as by-participant and by-item random in-

tercepts. The Show condition had significantly more jumps

per round (β = 0.71, S E = 0.14, t(79.71) = 5.22, p < .0001

[Satterthwaite’s approximation]) and jumps that were risky

(β = 0.98, S E = 0.24, Z = 4.16, p < .0001 [Wald Z test]),

matching the qualitative patterns of belief-directed planning.

To assess whether belief-directed planning over the full

literal observer predicted risky jumping over and above plan-

ning over the lesioned literal observer, we compared two

nested logistic regression mixed-effects models. Both mod-

els set whether a jump was risky as the dependent variable,

included by-participant and by-item random effects, and used

data from both Do and Show conditions. The first model con-

tained only the lesioned planning risky-jump proportions as a

fixed effect for each grid, transition strucutre (strong/weak),
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three types of model observers as in Experiment 1a: a lit-

eral observer, a pragmatic observer, and an uncertain prag-

matic observer. The observer models were generated using

the same procedure as in Experiment 1a.

We used the same mixed-effects model as in the previous

analyses to determine whether Show and Do demonstrations

resulted in different final beliefs. All three observer mod-

els learned the target better from the Show than Do demon-

strations (Show/Do fixed effect for Literal Observer belief

in strong/weak: β = 0.08, S E = 0.02, t(78.00) = 5.03,

p < .001; Pragmatic Observer: β = 0.11, S E = 0.02,

t(78.00) = 5.82, p < .001; Uncertain Pragmatic Observer:

β = 0.09, S E = 0.02, t(78.00) = 5.21, p < .001 [Sat-

terthwaite’s approximation]). Additionally, for the uncer-

tain pragmatic observer, we found that the model interpreted

Show demonstrations as being more likely to be commu-

nicative (Show/Do fixed effect: β = 0.17, S E = 0.02,

t(78.00) = 7.20 [Satterthwaite’s approximation], p < 0.001).

Figure 8b plots mean beliefs by condition for each observer

model. Collectively, these analyses indicate that participants

in Show chose action sequences that are consistently success-

ful in modifying the belief state of an observer towards the

target belief.

Model-fitting Analyses. For our final set of analyses,

we used by-participant model fitting and model comparison

to determine whether belief-directed planning explains be-

havior in the Show condition but not the Do condition. We

performed the same analyses as in Experiment 1a. Likeli-

hood ratio tests at the condition level revealed that both Do

and Show behavior was explained better by belief-directed

planning (Do: χ2(117) = 174.27, p < .0001; Show:

χ2(123) = 1328.24, p < 10−200). However, a comparison

of participant-level likelihood-ratio test statistics revealed a

clear difference in how well the models account for behavior

in each condition (Figure 8C). Specifically, we used a per-

mutation test to compare means of the likelihood ratio test

statistic in each condition (10, 000 random permutations) and

found none of the permutations exceeded the true difference

in mean test statistic (p = 1
10001

< 10−4). This indicates that

belief-directed planning captures variability in Show behav-

ior that is distinct from Do.

Additionally, the participant-level fits allow us to assess

individual parameter estimates and whether they reflect the

belief-directed planning goals and representations in our

model. As in Experiment 1a, we examined parameters as-

sociated with communicative goal strength and instrumen-

tal action informativeness (full details on how these param-

eters are specified are available in the supplementary mate-

rials). As expected, we found that estimated communica-

tive goal strength was higher in Show than in Do (Wilcoxon

Signed-Ranks test: Z = −5.04, p < .0001). However, we

did not find a difference in instrumental action informative-

ness (Wilcoxon Signed-Ranks test: Z = −0.98, p = .33).

These analyses provide further confirmation that our model

of belief-directed planning captures the qualitative dimen-

sions of people’s communicative demonstrations.

Experiment 2b: Learning Causal Structure from Demon-

strations

Following the same structure as Experiment 1b, we tested

whether Show demonstrations better conveyed information

than Do demonstrations, as well as whether Communicative

or Non-Communicative instructions influenced learning. We

found that Show demonstrations were more effective at con-

veying the correct causal structure, but we found no effect

of observer interpretation, consistent with the simulation re-

sults.

Materials, Procedure, Simulations. Three-hundred

and twenty participants (150 female, 168 male, 2 neither)

were recruited via Amazon Mechanical Turk to participate

in our study. Two participants were assigned to each of

the 80 demonstrators from Experiment 2a in two condi-

tions (Communicative and Non-Communicative) using psi-

Turk (Gureckis et al., 2016). After completing a consent

form, participants were shown instructions explaining that

they would watch their partner play a game, that their goal

was to reach the yellow square on each round and win 50

points, that red squares caused them to lose 10 points, and

that green tiles were jumper tiles.

Participants observed their partner play 16 rounds of the

game and had to determine whether the jumpers on that

round were strong or weak. Each correct/incorrect answer

was worth +/- 5¢. In only the Communicative condition they

were told “Your partner knows that you are watching and is

trying to show you whether the jumpers on that round are

strong or weak.”

Participants viewed a video of each demonstration as

many times as they wanted (but at least once) and provided

two judgments: whether the jumpers on that trial were strong

or weak, and their confidence on a continuous slider rang-

ing from “No Confidence” to “Extremely Confident”. After

completing all 16 trials, participants were asked several post-

task questions. Procedures were approved by University of

Wisconsin-Madison ED/SBS IRB (Study #2017-0830, title:

“Studying human and machine interactions”).

Using the same parameters as in the Experiment 2a simu-

lations, we calculated both literal observer and pragmatic ob-

server beliefs for Do or Show trajectories from Experiment

2a. Aggregated results are shown in Figure 9.

Results. We analyzed participants’ strong/weak judg-

ments and confidence ratings using mixed-effects models.

We coded strong/weak judgments as correct or incorrect. A

mixed-effects logistic regression was fit with correctness as

the predictor variable; item (i.e. transition function and grid

configuration), participant, and trial number intercepts as

random effects; and demonstrator condition (Do/Show), ob-
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Figure 9. Experiment 2b model and human observers learning from human demonstrations. Observer models are either literal or pragmatic.

Error bars are bootstrapped 95% confidence intervals.

server condition (Communicative/Non-Communicative), and

their interaction as fixed effects. We found a significant effect

of demonstrator condition corresponding to Show demon-

strations increasing correctness by 2.31 times (β = 0.90,

S E = 0.18, Z = 5.11, p < .0001 [Wald Z test]). However,

there was no effect of observer interpretation (β = −0.01,

S E = 0.10, Z = −0.13, p = .90 [Wald Z test]) and no in-

teraction (β = 0.08, S E = 0.21, Z = 0.38, p = .70 [Wald Z

test]).

For confidence judgments, we fit a mixed-effects linear

model with confidence as the predictor variable; item, par-

ticipant, and trial number intercepts as random effects; and

observer condition, demonstrator condition, and their inter-

action as fixed effects. We found no effect of either demon-

strator condition, observer condition, or their interaction.

Discussion

People can intentionally communicate causal knowledge

through their actions. Experiment 2 tested whether people

did this consistent with belief-directed planning using a Grid-

world paradigm with strong or weak jumper tiles. We find

that people are willing to use jumping and risky jumping as a

signal for causal structure, and that belief-directed planning

explains the behavior of Show participants more than Do par-

ticipants. Risky jumping, in particular, provides strong evi-

dence for belief-directed planning since it relies on the ob-

server’s beliefs about a demonstrator’s aversion to risk and

their causal knowledge. Finally, we find that observers more

successfully learn causal structure from Show rather than Do

participants, consistent with our model.

The current results further illustrate the generality of

our framework for modeling communicative demonstrations.

Similar to Experiment 1, we find that the model explains dif-

ferences between doing and showing behaviors and their in-

terpretation. We note that unlike in Experiment 1, we did

not find that the framing of the trajectories as communica-

tive or not influenced observer inferences. This may be due

to the fact that the space of possible causal structures was

smaller (two versus eight) and that the relative effectiveness

of Do versus Show demonstrations left little room for ob-

server interpretation to have an effect. In the next section, we

analyze previous developmental studies in which infant ob-

servers were given experimentally controlled demonstrations

in communicative or non-communicative contexts. There we

find cases in which observer interpretation has a large influ-

ence on inferences.

Infant and Child Observer Studies

The previous adult experiments illustrate how belief-

directed planning and pragmatic interpretation facilitate

powerful forms of teaching and social learning. At the

same time, the developmental literature documents a range of

findings on the interpretation of communicative demonstra-

tion and their relation to learning action-guiding representa-

tions (Brugger et al., 2007; Southgate et al., 2009; Király et

al., 2013; Hernik & Csibra, 2015; Buchsbaum et al., 2011;

Butler et al., 2015; Sage & Baldwin, 2011; Hoehl et al.,

2014). Having formalized the actor and observer roles in

communicative demonstrations, we next compare the major

qualitative predictions of our model against previous devel-

opmental findings.

Specifically, we revisit three studies in which an infant

or child observed experimentally controlled demonstrations.

Each set of studies focused on a different type of action-

guiding representation that could be conveyed demonstra-

tively: Király et al. (2013) focus on differential imitation

of subgoals, Butler and Markman (2012) focus on learning

generic causal properties, while Hernik and Csibra (2015)

focus on inferring novel functional properties of tools. In

each case, what is being conveyed is a decision-making rep-

resentation that can be directly reflected in intentional action

and thus demonstration.
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are theoretically relevant, we have attempted to stay true to

the original interpretations of the researchers. This illustrates

how our approach can formally describe the key qualitative

findings from the literature.

Learning Causal Structure from Demonstrations

Summary of Findings. Butler and Markman (2012)

(Experiment 3) investigated how 3- and 4-year-olds learned

about a novel causal property by observation, and how this

depends on the communicative context. In their paradigm,

participants observe an experimenter clean up a set of ob-

jects (these had been made messy in a prior distractor tasks,

ostensibly the main task). The objects included many paper-

clips as well as a novel object (a wooden block with tape on

it) that, earlier, had been labeled a “blicket”. At the critical

point of the experiment, the experimenter moves the blicket

on top of the paperclips and they adhere to it by magnetic

force.

The “demonstration” occurred in one of three experimen-

tal conditions: Accidental, in which the blicket was appar-

ently dropped on the paperclips while being put away and the

experimenter exclaimed “Oops!”; Intentional, in which the

experimenter appeared to purposefully place the blicket on

the paperclips without engaging the child; and Communica-

tive, in which he addressed the child (“Look, watch this”) be-

fore placing the blicket on the paperclips (Figure 11a). The

children were then given a set of inert (i.e., non-magnetic)

blickets and paperclips to play with.

Their main analyses revealed two important patterns of

results for the 4-year-olds (but not 3-year-olds). First, those

in the Communicative condition showed greater exploration

and pickup-attempts than those in the Intentional and Ac-

cidental conditions. Second, there was no detectable dif-

ference in exploration or pickup-attempts between the Ac-

cidental and Intentional conditions (Figure 11D). These re-

sults indicate an influence of communicative context on how

observers draw inferences.

Model Results and Discussion. The model captures the

relationships between exploration/pickup-attempts in the Ac-

cidental, Intentional, and Communicative conditions in terms

of literal and pragmatic interpretation. As illustrated in Fig-

ures 11A-C, we model observers as reasoning about whether

or not blickets are magnetic (i.e., whether paperclips tend to

attach to them) while also assuming that the observer ini-

tially understands the event as one in which the demonstrator

has goal of putting the blicket away. We model observer in-

ferences in the Accidental and Intentional conditions both as

literal action interpretation, but model the Accidental demon-

strator as “slipping” while attempting to put the blicket away.

Inferences in the Communicative condition are then modeled

as resulting from pragmatic interpretation. Figure 11C shows

the results for a single parameterization of the model, but we

found that the overall pattern of results was robust. Complete

details on the formalization and alternative parameterizations

can be found in the supplementary materials.

To understand the model, first consider the Intentional and

Communicative conditions. Leading up to the critical part of

the experiment, the participants can infer that the demonstra-

tor has the goal of putting the blicket away since they had

just put all the other objects away. Then at the critical part,

the demonstrator places the blicket on the paperclips, caus-

ing them to stick together. Interpreted literally, the action

appears as unexplained noise since it is irrelevant to putting

the blicket away. However, the resulting observation that the

paperclips stick to the blicket is informative: It provides ev-

idence that blickets are magnetic. This is important because

when the same demonstration is interpreted pragmatically,

the act of placing the blicket on the paperclips and the obser-

vation that they stick together can be explained in terms of

belief-directed intentions. In particular, the formerly unex-

plained action can be attributed to informative goals, while

the possibility that the evidence for blicket-magnetism is in-

tentional strengthens the inferences drawn from that very

evidence. In other words, pragmatic interpretation leads to

stronger inferences about blicket-magnetism due to deviation

attribution and inferential amplification.

Our model can also explain why the Intentional and Acci-

dental conditions did not differ. Specifically, in both condi-

tions, the blicket landing on the paperclips is not relevant to

the instrumental intention to clean the table—in both cases,

this event is interpreted as noise. A difference is the source

of the noise: In the Intentional condition, the noise is inter-

nal to the demonstrator’s decision process, while in the Acci-

dental condition the noise is “external”; for whatever reason,

the demonstrator’s hand slipped. Nonetheless, in both cases,

the resulting observation itself provides only unintended ev-

idence for blicket-magnetism.

Inferring Novel Tool Functions from Demonstration

Summary of Findings. Hernik and Csibra (2015) ex-

amined how infants could learn about novel tools and their

functions. In a series of studies infants observed familiariza-

tion training videos in which a demonstrator manually used

novel tools (e.g., a pink or blue flower pot turned upside

down) on objects (e.g., a peeled or unpeeled banana). Their

first study has two key features. First, these training demon-

strations were marked as communicative by the demonstra-

tor. Second, the objects were apparently transformed by a

tool (e.g. an unpeeled banana, placed briefly under a blue

tool, became peeled; a peeled banana, placed briefly under

a pink tool, became unpeeled—healed). During the test tri-

als they attempted to diagnose what the children had learned

1All models in this section were implemented using WebPPL

(Goodman & Stuhlmüller, 2014) and can be found at https://

github.com/markkho/comdem-data-code.
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Figure 11. Summary and model of Butler and Markman (2012), Experiment 3. (a) Participants were shown a demonstration of the blicket

(brown block) landing on the paperclips and sticking in one of three conditions: Accidental, Intentional, or Communicative. (b) Task

model with possible transitions to and from states (Blicket on Table, Paperclips Attached, Paperclips Unattached, and Blicket Put Away)

when taking actions (Put Away and Put on Paperclips). The only instrumental goal is putting the blicket away (green check). (c) Two

possible causal relations correspond to blickets being magnetic or inert. Arrow width indicates relative probabilities. These differ based

transition probabilities to Paperclips Attached and Paperclips Unattached (highlighted in orange). (d) Empirical results. Four-year-olds

explored blickets more and attempted to elicit magnetism more in the Communicative condition. (e) The pragmatic action interpretation

model (green) reasons about the demonstrator’s informative goals, which leads to an amplification of the inferences produced by the literal

observer model (blue).

about what the tools do. In order to do this, they showed

infants videos of each tool while it was in use, such that the

initial condition of the object was not observed. This was

done without any communicative marking. On congruent

trials, the final state of an object was congruent with that of

the training trials for a tool (e.g., a peeled banana for a blue

tool). On incongruent trials, the resulting state was the same

as the initial state typically observed in the training phase for

a tool (e.g., an unpeeled banana for a blue tool). Critically,

they found significantly greater looking times on incongruent

test trials, indicating that infants’ expectations were violated

when the result state of the tool differed from those of the

training trials (Figure 12A, first row).

The authors also reported two additional comparison stud-
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ies2. In the first of these, demonstrations were still commu-

nicative and child-directed, however, tools did not transform

objects in the training trials. Unlike in the original study, they

found no detectable difference between congruent and incon-

gruent test trials. In the second comparison study, demon-

strations were no longer child-directed and the tools trans-

formed the objects in the training trials (as in the first study).

Here, although they found a difference in congruent and in-

congruent looking times for initial test trials, this difference

did not persist past the first set of test trials, unlike in the orig-

inal study. Collectively, these three studies (summarized in

Figure 12A) suggest that communicative marking and state

changes interact when encoding novel tool functions, leading

to especially robust, context-sensitive learning.

Model Results and Discussion. We model the observer

in a single experimental trial as reasoning about whether the

novel tool has the function of being a “banana peeler” or

not (Figure 12B). Overall, we find a close correspondence

between experimental looking times reported by Hernik and

Csibra (2015) and the surprisal (negative log-likelihood) val-

ues for the literal/pragmatic observers with different training

sequences (Figures 12C-D). In particular, the modeling ac-

counts for two central features of the results: The difference

in sustained violation of expectation between Studies 1 and

3, and the absence of a violation of expectation in Study 2.

According to our account, these are explained by the ampli-

fication of inferences that result from pragmatic action inter-

pretation.

First, consider the difference between Studies 1 and 3:

The transformation demonstrations in Study 1 are performed

in a child-directed communicative context, while those of

Study 3 are not. (In other words, they correspond to the

Communicative and Intentional conditions, respectively, of

Király et al., 2013 and Butler & Markman, 2012). Thus,

we model Study 3 participants as engaging in literal action

interpretation when observing the transformation sequence.

Although this allows them to draw a weak inference that the

novel object is a banana peeler, it is easily defeated given

contrary evidence, and so fails to drive robust violation of

expectation in the test phase. In contrast, in Study 1, the com-

municative context makes the demonstrator’s belief-directed

intentions apparent, and so we model the participants as rea-

soning pragmatically. A pragmatic observer recognizes that

evidence for the tool being a banana peeler has been inten-

tionally presented to them, which leads to an amplification

of the literal inference. In short, compared to participants in

Study 3, those in Study 1 would reason that not only does

the novel tool coincide with the change in the object, but

the demonstrator wants the observer to know that this is a

reliable feature of the world.

Meanwhile, our treatment of Study 2 uniquely draws out

an important aspect of our model of pragmatic action inter-

pretation: Although a communicative context is established,

the demonstrator does not perform an action with any clear

instrumental purpose. Put simply, the tool does not do any-

thing (alternatively, one might say, the child fully expects

that a random novel tool will not peel a banana, and thus no

information is conveyed). In principle, the communicative

context would allow for inferences to be amplified, but in

this case it fails because there is nothing obvious to amplify.

Notably, our model actually identifies Study 2 congruent

trials as more surprising than incongruent trials because the

demonstrator’s attempts to use the tool suggests that they ex-

pect it to change, even though it does not. (In other words

they are surprised not by the state of the banana, but by the

persistence of the demonstrator). Indeed, although Hernik

and Csibra (2015) found no significant difference between

congruent/incongruent looking times, they report that more

than half of the infants tended to look at the congruent events

more than the incongruent events.

Imitating Subgoals based on Communicative Demonstra-

tions

Summary of Findings. Experiment 1 of Király et al.

(2013) examined children’s imitation of goal-directed behav-

ior. In the modeling phase, infants observed an experimenter

sit down and then bend over to use their head to touch a

novel object, causing it to light up. This demonstration was

performed in a 2 × 2 design. The first factor was whether

the context was communicatively cued or not. In the Com-

municative conditions, the experimenter looked at the infant,

called their name, and made sure they were paying atten-

tion before the demonstration. In the Intentional3 conditions,

the demonstrator did not interact with the infant, but waited

until a signal was given from another experimenter that the

infant was paying attention before performing the demon-

stration. The second factor manipulated whether the demon-

strator’s hands were occupied or free (Figure 13A). In the

Hands-Occupied conditions, the demonstrator was wearing a

blanket and clutching it with their hands. In the Hands-Free

conditions, they were wearing a blanket but their hands were

placed on the table next to the novel object.

During the test phase children had the opportunity to in-

teract with the novel object. The main analysis examines

whether the infants imitated the demonstrator by attempting

to turn the light on with their head based on the two factors.

Neither main effect was significant, but the interaction was

significant. Specifically, in the Communicative condition,

there was more imitation of the head action in the Hands-

Free condition than the Hands-Occupied condition, whereas

2Hernik and Csibra (2015) report a fourth study that conceptu-

ally replicates the results of Studies 1 and 3. The analysis of Study

4 in terms of our framework is identical to that of Studies 1 and 3.
3Király et al. (2013) use the term “Incidental” to describe this

condition.
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Figure 12. Summary and model of Hernik and Csibra (2015) Experiments 1, 2, and 3. (a) Participants viewed video trials where novel tools

(blue or pink flower pots) were used on bananas (peeled or unpeeled). The banana either changed or not when the tool was used. Note that

the event sequence for a single tool here. Violation of expectation (VOE) measures were used to assess whether a novel functional concept

(e.g. the tool is a banana peeler) was learned. VOE was sustained across multiple test trials only when training occurred with communicative

marking and target transformation. (b) Possible causal structures in our model of a single trial. It is possible that the banana changes from a

state Unpeeled, to a new state, Peeled, regardless of what action is taken for some (unspecified) reason unrelated to the flower pot. If the tool

is a banana peeler (top), then using it makes a transformation more likely. If it is not (bottom), then tool use has no additional effect. Note

that although the participants never see the banana change without the tool, the model considers the possibility that the tool has no effect.

(c) Looking-time results from studies 1-3. (d) Model posterior surprisals for congruent/incongruent test trial observations. A pragmatic

observer trained on a tool-transformation sequence (left) has a high surprisal on an incongruent trial. The same observer model trained on a

non-transformation sequence (middle) expects both sequences nearly equally. A literal observer trained on a tool-transformation sequence

(right) has a higher surprisal on the incongruent observation, but lower than the first pragmatic observer.

there was no detected difference in the Intentional condition

(Figure 13D).

Intuitively, a person who turns on a light with their head in

the Hands-Occupied condition uses their head only because

their hands are occupied, whereas a person who turns on a

light with their head in the Hands-Free condition uses their

head because it is necessary or preferable. Moreover, a per-

son who communicatively demonstrates turning on a light

with their head in the Hands-Free condition is choosing a

highly diagnostic signal that head-use is important or prefer-

able. Our model naturally captures these intuitive principles.
Model Results and Discussion. The modeling captures

two key patterns in the results: (1) In Hands-Free, head-use

imitation increases from the Intentional to Communicative

conditions, and (2) in Hands-Occupied, head-use imitation

decreases from the Intentional to Communicative conditions.

Our model explains how these effects arise naturally when

an observer engages in pragmatic action interpretation in the

Communicative conditions.

Figures 13B-C illustrate our formalization of the task.

A key aspect of the experiment we model is the difference
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Figure 13. Summary and model of Király et al. (2013), Experiment 1 results. (a) Participants observed an experimenter use their head to

light up a novel object in one of two conditions: Wearing a blanket (Hands-Free) versus holding a blanket (Hands-Occupied)—and in a

Communicative or Intentional condition (not shown). (b) A minimal model of the environmental constraints - The demonstrator can start in

the Hands Free state and deterministically transition to the Light On state by taking either Use Head or Use Hand, or Do Nothing. Alterna-

tively, they can start in Hands Occupied and take Use Head or Do Nothing. (c) Space of possible utility functions in model, corresponding to

subgoal/goals of the demonstrator. Plus signs indicate actions with a stronger bias (e.g., lower cost for achieving the goal). Checks indicate a

+1 reward. (d) Empirical results in Király et al. (2013). Infants differentially attempt to use their head in the Communicative conditions but

not the Intentional conditions. Error bars are 95% binomial confidence intervals. (e) Model results. After observing either the Hands-Free

or Hands-Occupied demonstration, each observer model has a belief over the three possible utility functions, which induces an expected

reward function. This plots the observer’s softmax probability ( 1
α
= 2.5) of taking Use Head from Hands Free under the expected rewards.

In particular, our models capture the exaggerated difference in the communicative conditions.

between the available actions in Hands-Free versus Hands-

Occupied. In Hands-Free, both Use Hand and Use Head

are available, whereas in Hands-Occupied, only Use Head

is available. The differential structure of available actions

directly affects what evidence is provided about what actions

are optimal. This evidence, in turn, interacts with whether

the observer interprets actions literally or pragmatically. We

discuss this process in the Hands-Free conditions and then

the Hands-Occupied conditions.

In the Hands-Free conditions, the demonstrator can use

either his hands or his head. When a literal observer sees the

demonstrator use his head to turn on the light, she will as-

sume that this is either because using one’s head is optimal,

or because the demonstrator acted suboptimally (which can

always occur with some low probability). This only causes a

slight increase in her belief that head-use is optimal since her

prior belief was low and there remains the possibility that

the demonstrator acted suboptimally. Notably, however, a
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pragmatic observer will draw stronger inferences. This is

because she assumes that the demonstrator used his head not

only for instrumental reasons (e.g., to efficiently turn on the

light), but also belief-directed reasons (e.g., to provide diag-

nostic information). Put informally, the communicative con-

text leads to amplification of existing inferences: The prag-

matic observer knows that the demonstrator wants the literal

observer to have certain inferences, which strengthens those

inferences. (It is as if the pragmatic observer reasons: “He

wants me to think that head-use is optimal, so head-use really

must be optimal”). The communicative context also offers

an explanation for seemingly suboptimal behavior: The lit-

eral observer only attributes head-use to suboptimality or the

low-probability case of head-use being optimal. In contrast,

the pragmatic observer can attribute head-use to the belief-

directed goal to inform her that head-use is optimal.

In contrast to the Hands-Free conditions, in the Hands-

Occupied conditions, the demonstrator can only use his head.

(This is known to the observer, who can see that the demon-

strator’s hands are occupied). To a literal observer, head-use

provides evidence that turning the light on is a goal, but it

does not imply that head-use is optimal in general. Rather,

it provides evidence that one should turn on the light, even

if it requires using one’s head. Interpreted pragmatically, the

overt evidence for this becomes stronger evidence that turn-

ing on the light is a goal (i.e., inferential amplification), lead-

ing to the strong inference that one should turn on the light

(which is typically done with one’s hands).

Given the resulting observer inferences about goals and

subgoals, we simulate imitation by calculating how they

would act in Hands-Free. Figure 13E plots the probability

of the literal and pragmatic observers taking Use Head af-

ter observing the demonstrator actions in Hands-Free versus

Hands-Occupied for a particular set of parameters. In the

supplementary materials, we describe the formalization of

the task in more detail and provide an analysis across a range

of parameterizations. Overall, we find that the pragmatic

action interpretation model is able to capture the qualitative

pattern of results reported in the original experiments.

General Discussion

How do people communicate with their actions? To ad-

dress this question we combine ideas from work on inverse

planning and linguistic pragmatics. Specifically, we develop

and test an account of communicating with one’s actions in

terms of belief-directed planning and pragmatic action inter-

pretation. Our account formalizes two ideas: First, commu-

nicative demonstrations are grounded in shared assumptions

about the interpretation of instrumental action. That is, both

demonstrator and observer understand instrumental planning

and inverse planning. Second, communicative demonstra-

tors rationally plan their actions based on their model of

the environment and an observer’s inverse planning. Prag-

matic action interpretation then involves reasoning about the

instrumental and belief-directed intentions underlying such

demonstrations. We have shown how this model facilitates

powerful forms of teaching and observational learning in the-

ory and captures data from novel and existing experiments in

practice.

In Experiments 1 and 2, we used our models to predict

how people teach about novel tasks by engaging in belief-

directed planning as well as how they learn via pragmatic

action interpretation. Using a combination of simulations

and model-fitting, we show a close correspondence between

our account and human behavior and judgments. Addition-

ally, we examined three previously reported developmental

studies of learning from communicative demonstrations in

order to assess the theoretical import of our models. Each

set of studies focus on learning a different decision-making

representation: Király et al. (2013) examine imitation of

subgoals; Butler and Markman (2012) test learning about

generic causal properties; and Hernik and Csibra (2015)

study inferring novel tool functions. We show how these

previously reported findings can be understood in terms of

belief-directed planning and pragmatic action interpretation

given particular contexts and environmental constraints.

In short, we have developed and tested a model for charac-

terizing communicative demonstrations that combines ideas

from work on language pragmatics and pedagogy (Frank &

Goodman, 2012; Shafto et al., 2014) with work on value-

guided decision-making and planning (Dayan & Niv, 2008;

Newell & Simon, 1972). This adds to a growing body

of computational work that characterizes the communica-

tive aspects of non-verbal social interactions (Ho, Cushman,

Littman, & Austerweil, 2019; Ho, MacGlashan, Littman, &

Cushman, 2017). Additionally, our formal approach pro-

vides a complementary perspective to existing accounts of

the evolution and development of cognitive abilities support-

ing human social learning (Tomasello et al., 2005; Csibra &

Gergely, 2009). In the remainder of this section, we discuss

the implications of our work for formal models of social cog-

nition as well as our understanding of the cognitive mecha-

nisms underlying human sociality.

Summary of Model Contributions

We have developed a framework for characterizing com-

municative demonstrations that combines ideas from instru-

mental planning with those from pragmatic reasoning. Our

approach extends existing accounts in several ways by pro-

viding an account of how the meaning of communicative ac-

tions are grounded as well as how agents can reason about

both the instrumental and belief-directed effects of actions.

Grounding Communication in Instrumental Action.

Our model reveals connections between communicative

demonstrations and other forms of communication, such as

language and teaching by example. For instance, in Ra-



COMMUNICATION IN ACTION 25

tional Speech Act (Frank & Goodman, 2012; Goodman &

Frank, 2016; Yoon, Tessler, Goodman, & Frank, 2017) and

Bayesian Pedagogy (Shafto et al., 2014) models, a transmit-

ter (e.g. a speaker or teacher) provides a signal (e.g. an

utterance or an example) to a receiver (e.g. a listener or

learner) who must infer an underlying message (e.g. a lin-

guistic meaning or novel concept). In these settings, candi-

date signals have a default interpretation, which communica-

tive partners can use to recursively anticipate each others’ se-

lection of a particular signal and interpretation of that signal.

In models of linguistic pragmatics, this default interpretation

is the semantics of words, while in models of concept teach-

ing, it is a probabilistic concept class. One way to identify

such interpretations is to estimate them empirically, for in-

stance, by asking people what the expected semantics are in

non-pragmatic contexts (Frank & Goodman, 2012; Kao, Wu,

Bergen, & Goodman, 2014). Alternatively, one can derive

constraints on default interpretations assuming the cooper-

ative interpretation is optimal (Yang et al., 2017). From a

theoretical perspective, the default interpretation of signals

plays a critical role in determining how interactants can co-

ordinate on the meaning of a communicative act.

Our model illustrates a new and powerful form of default

interpretation: instrumental action and inverse planning. In

our model, the default interpretations are determined by re-

lating possible environments that an agent occupies to a the-

ory of instrumental action within that environment. That is,

it is derived from value-guided decision-making, a general

framework for describing the behavior of any adaptive sys-

tem or organism (Sutton & Barto, 1998; Newell, 1982; An-

derson, 1990). Prior work has established that the capacity

to recognize intentional behavior is present in humans from a

young age (Gergely & Csibra, 2003; Malle, 2008). In recent

years, various aspects of mindreading, including reasoning

about beliefs, desires, intentions, uncertainty, appraisal, and

emotions, have been cast as probabilistic inference (Baker,

Jara-Ettinger, Saxe, & Tenenbaum, 2017; Kiley Hamlin, Ull-

man, Tenenbaum, Goodman, & Baker, 2013; Ong, Zaki, &

Goodman, 2015). Put simply, we propose that people can

ground inferences about what a person is trying to commu-

nicate in inferences about what she is trying to do.

Reasoning about the instrumental and belief-directed

effects of actions. Instrumental actions are not inherently

communicative, but people can nonetheless use them com-

municatively. For example, consider a cyclist who takes her

hands off of the handlebars as she is riding. In itself, this is

a meaningless physical action. But, in the right context, it

acquires communicative meaning: Suppose that the cyclist is

riding beside her friend in the park and, while her friend is

watching, takes her hands off the handlebars without falling

over. In doing so, she is effectively saying, “I don’t need my

hands to stay balanced!”

Our model explains what kind of context allows inher-

ently “meaningless” actions to become “meaningful” via a

process of recursive planning and inference. Specifically,

demonstrators plan over the instrumental and belief-directed

effects of their actions, while observers infer the instrumen-

tal and/or belief-directed intentions behind a demonstrator’s

actions. We characterize these processes by merging a for-

malization of sequential decision-making (Newell & Simon,

1972; Puterman, 1994) with a formalization of recursive the-

ory of mind (Camerer et al., 2004; Baker et al., 2009).

By focusing on the interplay of instrumental and belief-

directed planning, this work builds on several existing mod-

els and suggests new directions for research. In particular, by

introducing inverse planning as a component of a learner’s

inference model, we extend work by Shafto et al., 2014

(Experiment 3) that modeled how people teach causal con-

cepts, as well as work by Buchsbaum et al., 2011 that mod-

eled teaching action sequences. Related work by Rafferty

et al., 2016 models the role of planning over learner beliefs

to teach concepts and considers how different models of a

learner’s belief dynamics affect teaching strategies. Here, we

briefly explored observer uncertainty about the demonstrator

(e.g., the uncertain pragmatic observer who reasons about

whether demonstrators are communicative), but characteriz-

ing demonstrator uncertainty about the observer in instru-

mental planning settings is a promising direction for future

work.

Connections and Future Directions

Communicative demonstrations play a key role in teach-

ing and social learning as well as a range of human so-

cial interactions. Moreover, as we have argued, the mecha-

nisms underlying communicative demonstration can be un-

derstood in terms of familiar ideas from probabilistic in-

ference (Tenenbaum & Griffiths, 2001), model-based plan-

ning (Dayan & Niv, 2008), and cooperative communica-

tion (Shafto et al., 2014; Goodman & Frank, 2016). Here,

we discuss how our account and findings connect to other

active areas of research.

First, while there is extensive research into the mech-

anisms of standard instrumental planning, belief-directed

planning has been less systematically explored. In our dis-

cussion of the model, we noted how recursive reasoning and

planning are both computationally demanding processes. A

promising approach will be to ask whether, and how, the

key features that enable efficient and powerful instrumental

planning in physical domains might also extend to the case

of belief-directed planning. These include hierarchical ac-

tion representations (Botvinick, Niv, & Barto, 2009; Barto

& Mahadevan, 2003), state abstractions (Ho, Abel, Grif-

fiths, & Littman, 2019), and function approximation (Sutton,

McAllester, Singh, & Mansour, 2000). Additionally, by bet-

ter understanding the computational processes involved in

belief-directed planning, we can ask whether it relies on the
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same cognitive and neural substrates as instrumental plan-

ning, or instead on analogous but distinct mechanisms and

representations.

Second, our planning and inference models underscore

the flexibility of human social learning mechanisms, which

can help us understand the distinctive scale and scope of hu-

man sociality and culture. For example, there is an emerg-

ing consensus that both human children and certain non-

human primates can imitate in the strong sense of copying

intentions (Whiten, McGuigan, Marshall-Pescini, & Hop-

per, 2009). Nonetheless, only humans appear to engage in

“overimitation” whereby seemingly causally irrelevant ac-

tions are still copied by an observer with high fidelity (Lyons,

Damrosch, Lin, Macris, & Keil, 2011). Thus, precisely char-

acterizing the mechanisms underlying overimitation will be

key for understanding human cultural transmission (Keupp,

Behne, & Rakoczy, 2018; Clay & Tennie, 2018). Our

account extends previous computational proposals that at-

tempt to provide a rational interpretation of overimitation

(e.g., Buchsbaum et al., 2011). Specifically, because our

framework allows for reasoning about whether an actor has

communicative intentions, what their content might be, and

how they plan to convey this information, it can capture dif-

ferent pragmatic inferences than those of previous accounts.

For instance, interpreting an action as an ostensive cue re-

quires recognizing that the demonstrator is first establish-

ing they have an intention to communicate something and

then taking actions to communicate it. Put another way, our

framework could be used to derive ostensive cues as com-

ponents of a larger plan whose ultimate goal is to convey

information.

Additionally, our account naturally raises the question,

“What kinds of belief-directed goals do people tend to have”,

and the complementary question, “What kinds of belief-

directed goals do we tend to expect of others?” Put dif-

ferently, what are the actual and subjective priors on com-

municative intentions? Some existing theories take a strong

stand on these questions. For instance, the theory of natu-

ral pedagogy (Csibra & Gergely, 2009) proposes that child

observers treat communicative demonstrations as conveying

relevant, generalizable information (e.g. “blickets are mag-

netic”), and a number of findings support this view (Butler &

Tomasello, 2016; Butler & Markman, 2012). Our approach

suggests a way to understand why this might be the case:

Relevant, generalizable knowledge is useful, adults have lots

of it, and infants and children have much less. If an adult

initiates communication with a child, the theory of natural

pedagogy embodies a very natural prior on the adult’s com-

municative intentions. But different settings and social rela-

tionships might imply very different distributions over com-

municative intentions, as we consider next.

We have focused on communicative demonstrations

aimed at teaching skills, but this model applies to a much

larger array of human behaviors. Often, for instance, we use

communicative demonstrations in arbitrary contexts to con-

vey our feelings (e.g., giving roses on Valentine’s Day), in-

tellect (e.g., asking a very technical question during a depart-

ment colloquium) or income (e.g., driving a Maserati). Such

demonstrations are a form of costly signaling (Gintis, Smith,

& Bowles, 2001) and have been studied in situations ranging

from information search (Hoffman, Yoeli, & Nowak, 2015)

to time-consuming deliberation (Jordan, Hoffman, Nowak,

& Rand, 2016; Levine, Barasch, Rand, Berman, & Small,

2018) to third-party punishment (Millet & Dewitte, 2007;

Fehrler & Przepiorka, 2013; Jordan, Hoffman, Bloom, &

Rand, 2016). We would expect that many of the benefits of

communicative demonstrations for teaching skills carry over

into these other settings. For instance, the capacity to adap-

tively generate and interpret costly signals in novel contexts

may play a key role in supporting complex forms of coop-

eration, coordination, and politics, much like how flexible

teaching supports enhanced cultural accumulation (Tennie,

Call, & Tomasello, 2009). Future research should explore the

connections between the mechanisms we explore here, sig-

naling behaviors in other domains, and the distinctive scale

and scope of human sociality.

Conclusion

We have formulated and tested a computational account

of communicative demonstrations based on rational, belief-

directed planning and pragmatic action interpretation. The

models we develop build on existing theoretical work and

are supported by the results of novel experiments and previ-

ously reported findings. This account provides insight into

the mechanism of human communication, imitation, and in-

teraction while also suggesting future directions for examin-

ing the relationship between communicative demonstrations

and other dimensions of human sociality.

References

Anderson, J. R. (1990). The adaptive character of thought. Psy-

chology Press.

Baker, C. L., Jara-Ettinger, J., Saxe, R., & Tenenbaum, J. B. (2017).

Rational quantitative attribution of beliefs, desires and percepts

in human mentalizing. Nature Human Behaviour, 1(4), 0064.

Baker, C. L., Saxe, R., & Tenenbaum, J. B. (2009). Action under-

standing as inverse planning. Cognition, 113(3), 329–349. doi:

10.1016/j.cognition.2009.07.005

Barto, A. G., & Mahadevan, S. (2003). Recent advances in hierar-

chical reinforcement learning. Discrete event dynamic systems,

13(1-2), 41–77.

Bellman, R. (1957). A markovian decision process. Journal of

mathematics and mechanics, 679–684.

Botvinick, M. M., Niv, Y., & Barto, A. C. (2009). Hierarchically

organized behavior and its neural foundations: a reinforcement

learning perspective. Cognition, 113(3), 262–280.



COMMUNICATION IN ACTION 27

Brand, R. J., Baldwin, D. A., & Ashburn, L. A. (2002). Evidence

for ‘motionese’: modifications in mothers’ infant-directed ac-

tion. Developmental science, 5(1), 72–83.

Brugger, A., Lariviere, L. A., Mumme, D. L., & Bushnell, E. W.

(2007). Doing the right thing: Infants’ selection of actions to im-

itate from observed event sequences. Child development, 78(3),

806–824.

Buchsbaum, D., Gopnik, A., Griffiths, T. L., & Shafto, P. (2011).

Children’s imitation of causal action sequences is influenced by

statistical and pedagogical evidence. Cognition, 120(3), 331–

340.

Butler, L. P., & Markman, E. M. (2012). Preschoolers use inten-

tional and pedagogical cues to guide inductive inferences and

exploration. Child development, 83(4), 1416–1428.

Butler, L. P., Schmidt, M. F., Bürgel, J., & Tomasello, M. (2015).

Young children use pedagogical cues to modulate the strength

of normative inferences. British Journal of Developmental Psy-

chology, 33(4), 476–488.

Butler, L. P., & Tomasello, M. (2016). Two- and 3-year-olds inte-

grate linguistic and pedagogical cues in guiding inductive gen-

eralization and exploration. Journal of Experimental Child Psy-

chology, 145, 64 - 78. doi: https://doi.org/10.1016/j.jecp.2015

.12.001

Camerer, C. F., Ho, T.-H., & Chong, J.-K. (2004). A cognitive hi-

erarchy model of games. The Quarterly Journal of Economics,

119(3), 861–898.

Cartmill, E. A., Beilock, S., & Goldin-Meadow, S. (2012). A word

in the hand: action, gesture and mental representation in hu-

mans and non-human primates. Philosophical Transactions of

the Royal Society B: Biological Sciences, 367(1585), 129–143.

Clark, H. H. (1996). Using language. Cambridge: Cambridge

University Press.

Clark, H. H. (2005). Coordinating with each other in a material

world. Discourse studies, 7(4-5), 507–525.

Clark, H. H. (2016). Depicting as a method of communication. Psy-

chological Review, 123(3), 324–347. doi: 10.1037/rev0000026

Clay, Z., & Tennie, C. (2018). Is overimitation a uniquely hu-

man phenomenon? Insights from human children as compared

to bonobos. Child development, 89(5), 1535–1544.

Collins, A. G. E., & Frank, M. J. (2018). Within- and across-

trial dynamics of human EEG reveal cooperative interplay be-

tween reinforcement learning and working memory. Proceed-

ings of the National Academy of Sciences, 201720963. doi:

10.1073/pnas.1720963115

Csibra, G., & Gergely, G. (2009). Natural pedagogy. Trends in

cognitive sciences, 13(4), 148–153.

Dayan, P., & Niv, Y. (2008). Reinforcement learning: The Good,

The Bad and The Ugly. Current Opinion in Neurobiology, 18(2),

185–196. doi: 10.1016/j.conb.2008.08.003

Dennett, D. C. (1987). The intentional stance. MIT press.

Eaves, B. S., & Shafto, P. (2017). Parameterizing developmen-

tal changes in epistemic trust. Psychonomic bulletin & review,

24(2), 277–306.

Eaves Jr, B. S., & Shafto, P. (2012). Unifying pedagogical reason-

ing and epistemic trust. In Advances in child development and

behavior (Vol. 43, pp. 295–319). Elsevier.

Fehrler, S., & Przepiorka, W. (2013). Charitable giving as a signal

of trustworthiness: Disentangling the signaling benefits of altru-

istic acts. Evolution and Human Behavior, 34(2), 139–145.

Frank, M. C., & Goodman, N. D. (2012). Predicting Pragmatic

Reasoning in Language Games. Science, 336(6084), 998–998.

doi: 10.1126/science.1218633

Franke, M. (2009). Signal to act: Game theory in pragmatics.

Institute for Logic, Language and Computation.

Gergely, G., & Csibra, G. (2003). Teleological reasoning in infancy:

The naıve theory of rational action. Trends in cognitive sciences,

7(7), 287–292.

Gergely, G., Nádasdy, Z., Csibra, G., & Bíró, S. (1995). Taking

the intentional stance at 12 months of age. Cognition, 56(2),

165–193. doi: 10.1016/0010-0277(95)00661-H

Gintis, H., Smith, E. A., & Bowles, S. (2001). Costly signaling and

cooperation. Journal of theoretical biology, 213(1), 103–119.

Goodman, N. D., & Frank, M. C. (2016). Pragmatic language inter-

pretation as probabilistic inference. Trends in cognitive sciences,

20(11), 818–829.

Goodman, N. D., & Stuhlmüller, A. (2014). The Design and Imple-

mentation of Probabilistic Programming Languages. http://

dippl.org. (Accessed: 2018-9-12)

Grice, H. P. (1957). Meaning. The philosophical review, 377–388.

Gureckis, T. M., Martin, J., McDonnell, J., Rich, A. S., Markant,

D., Coenen, A., . . . Chan, P. (2016). psiTurk: An open-source

framework for conducting replicable behavioral experiments on-

line. Behavior research methods, 48(3), 829–842.

Hernik, M., & Csibra, G. (2015). Infants learn enduring functions

of novel tools from action demonstrations. Journal of Experi-

mental Child Psychology, 130, 176–192.

Hesterberg, T., Moore, D., Monaghan, S., Clipson, A., & Epstein,

R. (2005). Bootstrap Methods and Permutation Tests. In

D. Moore & G. P. McCabe (Eds.), Introduction to the Practice

of Statistics. New York: Freeman.

Ho, M. K., Abel, D., Griffiths, T. L., & Littman, M. L. (2019).

The value of abstraction. Current Opinion in Behavioral Sci-

ences, 29, 111 - 116. doi: https://doi.org/10.1016/j.cobeha.2019

.05.001

Ho, M. K., Cushman, F., Littman, M. L., & Austerweil, J. L. (2019,

mar). People teach with rewards and punishments as commu-

nication, not reinforcements. Journal of Experimental Psychol-

ogy: General, 148(3), 520–549.

Ho, M. K., Littman, M., MacGlashan, J., Cushman, F., & Auster-

weil, J. L. (2016). Showing versus doing: Teaching by demon-

stration. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,

& R. Garnett (Eds.), Advances in Neural Information Processing

Systems 29 (pp. 3027–3035). Curran Associates, Inc.

Ho, M. K., Littman, M. L., Cushman, F., & Austerweil, J. L.

(2018). Effectively learning from pedagogical demonstrations.

In C. Kalish, M. Rau, T. Rogers, & J. Zhu (Eds.), Proceedings

of the 40th Annual Conference of the Cognitive Science Society

(pp. XX–XX). Austin, TX: Cognitive Science Society.

Ho, M. K., MacGlashan, J., Littman, M. L., & Cushman, F. (2017).

Social is special: A normative framework for teaching with and

learning from evaluative feedback. Cognition. doi: 10.1016/

j.cognition.2017.03.006

Hoehl, S., Zettersten, M., Schleihauf, H., Grätz, S., & Pauen, S.

(2014). The role of social interaction and pedagogical cues for

eliciting and reducing overimitation in preschoolers. Journal of

Experimental Child Psychology, 122, 122–133.



28 HO, CUSHMAN, LITTMAN & AUSTERWEIL

Hoffman, M., Yoeli, E., & Nowak, M. A. (2015). Cooperate without

looking: Why we care what people think and not just what they

do. Proceedings of the National Academy of Sciences, 112(6),

1727–1732.

Horn, L. (1984). Toward a new taxonomy for pragmatic inference:

Q based and r-based implicature. In D. Schiffrin (Ed.), Mean-

ing, form, and use in context: Linguistic applications (p. 11-42).

Georgetown University Press.

Hula, A., Montague, P. R., & Dayan, P. (2015). Monte carlo plan-

ning method estimates planning horizons during interactive so-

cial exchange. PLoS Comput Biol, 11(6), e1004254.

Jara-Ettinger, J., Gweon, H., Tenenbaum, J. B., & Schulz, L. E.

(2015). Children’s understanding of the costs and rewards un-

derlying rational action. Cognition, 140, 14–23. doi: 10.1016/

j.cognition.2015.03.006

Jordan, J. J., Hoffman, M., Bloom, P., & Rand, D. G. (2016). Third-

party punishment as a costly signal of trustworthiness. Nature,

530(7591), 473.

Jordan, J. J., Hoffman, M., Nowak, M. A., & Rand, D. G. (2016).

Uncalculating cooperation is used to signal trustworthiness. Pro-

ceedings of the National Academy of Sciences, 113(31), 8658–

8663.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Plan-

ning and acting in partially observable stochastic domains. Arti-

ficial intelligence, 101(1-2), 99–134.

Kao, J. T., Wu, J. Y., Bergen, L., & Goodman, N. D. (2014). Non-

literal understanding of number words. Proceedings of the Na-

tional Academy of Sciences, 111(33), 12002–12007.

Keupp, S., Behne, T., & Rakoczy, H. (2018). The rationality of

(over)imitation. Perspectives on Psychological Science, 13(6),

678-687. doi: 10.1177/1745691618794921

Kiley Hamlin, J., Ullman, T., Tenenbaum, J., Goodman, N., &

Baker, C. L. (2013). The mentalistic basis of core social cog-

nition: Experiments in preverbal infants and a computational

model. Developmental science, 16(2), 209–226.

Király, I., Csibra, G., & Gergely, G. (2013). Beyond rational

imitation: Learning arbitrary means actions from communica-

tive demonstrations. Journal of experimental child psychology,

116(2), 471–486.

Levine, E. E., Barasch, A., Rand, D., Berman, J. Z., & Small, D. A.

(2018). Signaling emotion and reason in cooperation. Journal

of Experimental Psychology: General, 147(5), 702.

Levinson, S. (2000). Presumptive Meanings: The Theory of Gen-

eralized Conversational Implicature. MIT Press.

Luce, R. D. (1959). On the possible psychophysical laws. Psycho-

logical review, 66(2), 81.

Lyons, D. E., Damrosch, D. H., Lin, J. K., Macris, D. M., & Keil,

F. C. (2011). The scope and limits of overimitation in the

transmission of artefact culture. Philosophical Transactions of

the Royal Society of London B: Biological Sciences, 366(1567),

1158–1167. doi: 10.1098/rstb.2010.0335

Malle, B. F. (2008). The fundamental tools, and possibly univer-

sals, of human social cognition. Handbook of motivation and

cognition across cultures, 267–296.

Marr, D. (1982). Vision: A computational investigation into the

human representation and processing of visual information. San

Francisco: W. H. Freeman and Company.

Mascaro, O., & Sperber, D. (2009). The moral, epistemic, and min-

dreading components of children’s vigilance towards deception.

Cognition, 112(3), 367–380.

Millet, K., & Dewitte, S. (2007). Altruistic behavior as a costly sig-

nal of general intelligence. Journal of research in Personality,

41(2), 316–326.

Munos, R., & Moore, A. (2002). Variable Resolution Discretization

in Optimal Control. Machine Learning, 49(2-3), 291–323. doi:

10.1023/A:1017992615625

Nassar, M. R., & Frank, M. J. (2016). Taming the beast: extracting

generalizable knowledge from computational models of cogni-

tion. Current Opinion in Behavioral Sciences, 11, 49–54. doi:

10.1016/j.cobeha.2016.04.003

Newell, A. (1982). The knowledge level. Artificial Intelligence, 18,

87–127.

Newell, A., & Simon, H. A. (1972). Human problem solving

(Vol. 104) (No. 9). Prentice-Hall Englewood Cliffs, NJ.

Ong, D. C., Zaki, J., & Goodman, N. D. (2015). Affective cognition:

Exploring lay theories of emotion. Cognition, 143, 141–162.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Net-

works of plausible inference. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc.

Pezzulo, G., Donnarumma, F., Dindo, H., D’Ausilio, A., Konva-

linka, I., & Castelfranchi, C. (2019). The body talks: Senso-

rimotor communication and its brain and kinematic signatures.

Physics of life reviews, 28, 1–21.

Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a

theory of mind? Behavioral and brain sciences, 1(4), 515–526.

Puterman, M. L. (1994). Markov Decision Processes: Discrete

Stochastic Dynamic Programming (1st ed.). New York, NY,

USA: John Wiley & Sons, Inc.

Rafferty, A. N., Brunskill, E., Griffiths, T. L., & Shafto, P. (2016).

Faster Teaching via POMDP Planning. Cognitive Science,

40(6), 1290–1332. doi: 10.1111/cogs.12290

Sage, K. D., & Baldwin, D. (2011). Disentangling the social and

the pedagogical in infants’ learning about tool-use. Social De-

velopment, 20(4), 825–844.

Scott-Phillips, T. C., Kirby, S., & Ritchie, G. R. (2009). Signalling

signalhood and the emergence of communication. Cognition,

113(2), 226 - 233. doi: https://doi.org/10.1016/j.cognition.2009

.08.009

Shafto, P., Eaves, B., Navarro, D. J., & Perfors, A. (2012). Epis-

temic trust: Modeling children’s reasoning about others’ knowl-

edge and intent. Developmental science, 15(3), 436–447.

Shafto, P., Goodman, N. D., & Frank, M. C. (2012). Learning

from others: The consequences of psychological reasoning for

human learning. Perspectives on Psychological Science, 7(4),

341–351.

Shafto, P., Goodman, N. D., & Griffiths, T. L. (2014). A ratio-

nal account of pedagogical reasoning: Teaching by, and learn-

ing from, examples. Cognitive Psychology, 71, 55–89. doi:

10.1016/j.cogpsych.2013.12.004

Southgate, V., Chevallier, C., & Csibra, G. (2009). Sensitivity to

communicative relevance tells young children what to imitate.

Developmental science, 12(6), 1013–1019.

Southgate, V., Senju, A., & Csibra, G. (2007). Action anticipation

through attribution of false belief by 2-year-olds. Psychological

Science, 18(7), 587–592.



COMMUNICATION IN ACTION 29

Spector, B. (2007). Scalar implicatures: Exhaustivity and gricean

reasoning. In A. B. M. Aloni & P. Dekker (Eds.), Questions in

dynamic semantics (p. 225 - 249). Elsevier.

Sperber, D., & Wilson, D. (1986). Relevance: Communication and

cognition. Cambridge, MA, USA: Harvard University Press.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An

introduction. Cambridge, MA: MIT press.

Sutton, R. S., McAllester, D. A., Singh, S. P., & Mansour, Y. (2000).

Policy gradient methods for reinforcement learning with func-

tion approximation. In Advances in neural information process-

ing systems (pp. 1057–1063).

Tenenbaum, J. B., & Griffiths, T. L. (2001). Generalization, sim-

ilarity, and Bayesian inference. Behavioral and brain sciences,

24(4), 629–640.

Tennie, C., Call, J., & Tomasello, M. (2009). Ratcheting up the

ratchet: on the evolution of cumulative culture. Philosophical

Transactions of the Royal Society of London B: Biological Sci-

ences, 364(1528), 2405–2415.

Tomasello, M. (2010). Origins of human communication. MIT

press.

Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H.

(2005). Understanding and sharing intentions: The origins of

cultural cognition. Behavioral and brain sciences, 28(5), 675–

690.

Whiten, A., McGuigan, N., Marshall-Pescini, S., & Hopper, L. M.

(2009). Emulation, imitation, over-imitation and the scope of

culture for child and chimpanzee. Philosophical Transactions

of the Royal Society B: Biological Sciences, 364(1528), 2417–

2428. doi: 10.1098/rstb.2009.0069

Wingate, D., Goodman, N. D., Roy, D. M., Kaelbling, L. P., &

Tenenbaum, J. B. (2011). Bayesian policy search with policy

priors. In Twenty-second international joint conference on arti-

ficial intelligence.

Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying com-

putational framework for motor control and social interaction.

Philosophical Transactions of the Royal Society of London B:

Biological Sciences, 358(1431), 593–602.

Yang, S. C.-H., Yu, Y., Givchi, A., Wang, P., Vong, W. K., & Shafto,

P. (2017). Optimal Cooperative Inference. arXiv preprint

arXiv:1705.08971.

Yoon, E. J., Tessler, M. H., Goodman, N. D., & Frank, M. C.

(2017). “I won’t lie, it wasn’t amazing”: Modeling polite indi-

rect speech. In Proceedings of the thirty-ninth annual conference

of the cognitive science society.



30 HO, CUSHMAN, LITTMAN & AUSTERWEIL

Supplementary Materials

Details of Formalism

In this section, we describe the details of our modeling

framework and implementation. The presentation is intended

to be self-contained but builds on formal models of sequen-

tial decision-making and reinforcement learning in Markov

Decision Processes (MDPs), reviewed in Puterman, 1994;

Sutton & Barto, 1998. Code for the models and analyses

are available at https://github.com/markkho/comdem

-data-code.

Instrumental Planning and Acting

People can take intentional actions in order to achieve

their goals. For instance, when riding a bicycle to work, one

has the goal of reaching a destination while also minimizing

the amount of pedaling one has to do. This requires having a

model of the world (e.g., of how pedaling affects the wheels

and which streets lead to work) as well as a goals (e.g., being

at work, pedaling as little as possible). Planning involves us-

ing a world model to reason about what actions best realize

one’s goals and then enacting a plan.

Formally, planning and intentional action relies on a world

model that captures causal knowledge about the world and

utilities for different states of affairs. For a particular possi-

ble world w ∈ W, a transition model P(s′ | s, a; w) is defined

over an object-level state space S and describes how the en-

vironment probabilistically updates to a new state s′ given

a previous state s and an action a. An agent’s instrumental

goal maps states to utilities, GI : S → R. An agent’s instru-

mental goals can have multiple components such as the goal

to minimize action costs or use subgoals (e.g., reaching work

while pedaling as little as possible).

Planning involves computing how well a sequence of ac-

tions realizes goals, given a model of the world. This can

be represented by the value of an action, which is how much

future expected utility one gains from an action, given that

afterwards, one takes all the best actions. In general, this

quantity is difficult to compute (Bellman, 1957), but we as-

sume that in these relatively simple settings people can com-

pute this quantity near optimally.

Formally, the Q-value of an action a taken from a state s

in world w given instrumental goal GI is represented by the

following recursive equations:

Q(a, s; w) =
∑

s′

P(s′ | s, a; w)
[

GI(s, a, s′) + γmax
a′

Q(a′, s′; w)
]

,
(5)

where γ ∈ [0, 1] is a discount rate that controls the relative

weighting of temporally close and distant utilities.

Q-values express the goodness of actions, but a linking

function is required to translate them into action probabil-

ities. To allow for systematic deviations from perfect op-

timality, we use an ε-softmax decision rule that has been

successfuly applied to modeling human decision-making in

psychology and reinforcement learning (Luce, 1959; Nas-

sar & Frank, 2016; Collins & Frank, 2018). The ε-softmax

decision-rule has two parameters: a random choice proba-

bility ε and a softmax inverse temperature parameter α. In-

tuitively, the decision rule expresses randomly selecting any

available action with probability ε or choosing an action that

soft-maximizes the Q-value with inverse temperature param-

eter α. The action probabilities associated with a plan π are

then:

π(a | s; w) = (1 − ε)
eαQ(s,a;w)

Z(s; w)
+
ε

|A(s)|
, (6)

where Z(s; w) =
∑

a eαQ(s,a;w) is a normalizing constant and

|A(s)| is the number of actions available at a state s.

Enacting a plan involves both the agent’s plan and the

actual dynamics of the world. In this work, we fo-

cus on how enacted plans lead to demonstrations that

both the actor and observer are aware of. Formally, a

demonstration is a sequence of states and actions, D =

(s0, a0, s1, ..., sT−1, aT−1, sT ) that results from executing a

plan π in the world w. The probability of a demonstration

starting from a state s0 is then:

P(D | π,w) =

T
∏

t=0

π(at | st; w)P(st+1 | st, at; w) (7)

Inverse planning and literal observer models

We are interested in how observers interpret demonstra-

tions, and what consequences this has for communication.

The interpretation of intentional action has been successfully

modeled as inverse planning (Baker et al., 2009), in which

a generative model of planning is “inverted” to allow for in-

ferences about what intentions gave rise to an observed se-

quence of actions. In our case, we are interested in how

observers can draw inferences about the world by assuming

actions are generated by a plan. Formally, this corresponds

to doing Bayesian inference over the demonstration model

expressed in Equation 7:

P(w | D,GI) ∝ P(D | w,GI)P(w)

=
∑

π

P(D | π,w)P(π | w,GI)P(w) (8)

As we discuss in the main text, this process of inverse

planning can be used to define a literal observer model OL

by associating beliefs b with probability distributions that are

updated according to Equation 8. Specifically, the one-step

literal observer belief state updates upon observing a state,
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action, and next-state are given by:

OL(b′ | s,b, a, s′)

=























1
if for all w,

b′(w) ∝ π(a | s; w)P(s′ | s, a; w)b(w)

0 otherwise

(9)

We note that this formulation of belief-state transitions is

analogous to techniques for transforming partially observ-

able Markov decision processes (POMDPs) into fully ob-

servable belief-state Markov decision processes (Kaelbling,

Littman, & Cassandra, 1998). The key difference is that we

consider belief dynamics in another agent rather than in one’s

own belief space. Additionally, here we assume that observer

belief dynamics are deterministic and known, but it would be

straightforward to extend these ideas to richer observer infer-

ence models (e.g., see work by Rafferty et al., 2016).

Planning and Acting in Belief Space

Instrumental plans determine the optimal actions given a

world model w and instrumental goals GI . We can extend

this logic to planning and acting in belief space by having

Q-values additionally incorporate observer belief dynamics,

OL, and belief-directed goals, GB. Formally, the Q-values for

a belief-directed agent are:

Q(a, s, b; w) =
∑

s′,b′

P(s′ | s, a; w)OL(b′ | s, b, a)
[

GI(s, a, s′; w)

+ βGB(b′, b; w)

+ γmax
a′

Q(a′, s′, b′; w)
]

(10)

where β ∈ R+ is a belief-directed goal weighting parameter.

Note that when β = 0, the belief-directed Q-values are equal

to the instrumental Q-values.

This formulation is general enough to express arbitrary

belief-directed goals (e.g., wanting to hide one’s intentions

rather than show them). Here, we focus on belief-directed

goals that involve increasing an observer’s belief in the true

state of the world:

GB(b′, b; w) = b′(w) − b(w). (11)

Given the Q-values over joint ground and belief states

(Equation 10), we can use the ε-softmax decision rule to

determine the belief-directed plan, π(a | s, b; w). Note that

belief-directed plans, unlike instrumental plans, are deter-

mined by both the current state of the world s, as well as

the observer’s current beliefs, b.

Approximating Belief-directed planning. Here we de-

scribe the algorithmic details of our approximation proce-

dure for solving a belief-directed plan for the Gridworld tasks

(Experiments 1 and 2). To model planning in belief space,

it is necessary to approximate the value function. We did

this by constructing a discretized, point-based MDP with

an approximate ground and belief-state transition function

P̂(s′, b′ | s, b, a) (Munos & Moore, 2002). We discretized

the original belief-state space to a set BD and constructed

a transition function where, for each a ∈ A, s ∈ S , and

bD ∈ BD, P̂(s′, b′
D
| a, s, bD) =

∑

b′ P(s′ | s, a; w)OL(b′ |

bD, s, a, s
′)NN(b′, b′

D
), where NN(s′, s′

D
) is an indicator func-

tion for whether out of the points in BD, b′
D

is the near-

est neighbor of b′. This then serves as a tabular belief-

space MDP that approximates the dynamics of the true MDP

that we solve exactly using dynamic programming (Bellman,

1957). We note that the set BD itself was constructed by ex-

ploring the belief-space from an initial state (uniform belief)

using a ε-softmax policy associated with each w ∈ W for

a given Gridworld or the entire dataset generated by par-

ticipants on an experiment. This ensured that although the

belief-space dynamics were approximated, this approxima-

tion was independent of the particular task or trial that was

being communicated.

Pragmatic Action Interpretation

To model pragmatic action interpretation, we can extend

the inverse planning process described by Equation 8 to in-

volve inference over planning that is directed towards a literal

observer’s beliefs:

P(w | D,GI ,OL,GB) ∝
∑

π

P(D | π,w)P(π | w,GI ,OL,GB)P(w) (12)
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Experiment 1: Modeling Details

Task Model

We model each trial as its own configuration of feature

values with the same set of states, actions, transition dynam-

ics, and discount rate, but a different environment rewards

formally expressed as a utility function. To make the role

of reward-based features explicit, we define a state feature

function, φ, that maps each location state s ∈ S to a binary

5-dimensional vector where each entry corresponds to one of

the colors (in order: white, yellow, orange, purple, or blue).

The reward function is determined by a reward weight vec-

tor θw. For example, when purple and blue are dangerous,

θw = [0, 10, 0,−2,−2]. The reward for ending up in a blue

state s′ after taking action a in state s is determined by the

feature function applied to s′, φ(s′) = [0, 0, 0, 0, 1], and the

reward weight vector, yielding GI(s′) = θ>wφ(s′). The ob-

server starts with a uniform distribution over eight possible

worlds w ∈ W and reward weights, θw. This corresponds

to uncertainty about whether each of the orange, purple, and

blue rewards are zero or -2.

Simulations

Using the task model described above, we simulated how

an agent who only has instrumental utilities would act ver-

sus one who also has belief-directed utilities. For each pos-

sible world w, we calculated an instrumental demonstrator,

πI(a | s; w), that serves as a model of a person who is sim-

ply doing the task. Parameter values were chosen to capture

behavior that performs the task effectively with only minor

deviations ( 1
α
= .05, ε = .05, and γ = .95). Additionally,

we use these demonstrator models to define the generative

model used to update a literal observer’s beliefs.

For each possible world w we calculated a belief-directed

demonstrator, πB(a |, s, b; w), who plans over a composite

model of the task and literal observer. The model we cal-

culated used an informativeness multiplier β = 10, and the

remaining parameters were set to be the same as those of

the instrumental demonstrator ( 1
αB
= .05, εB = .05, and

γB = .95).

For the instrumental agent, πI(a | s; w), we generated sim-

ulated trajectories by initializing it at the starting tile and then

repeatedly sampling actions and transitioning to next states

until it reached the goal. The same was done for the belief-

directed agent, πB(a |, s, b; w), except we also initialized the

observer’s belief state as a uniform distribution over the eight

possible reward structures and recorded the new belief state

at each timestep. Each agent was simulated on each task 100

times.

Demonstrator Model-fitting

We focused on fitting belief-directed demonstrator mod-

els to each participant. To fit belief-directed demonstrators,

πB, to individual participants, we consider a space of mod-

els parameterized by seven values: The discount rate and

ε-softmax values of the demonstrator’s model of the ob-

server’s model of instrumental planners (γ̃, α̃, ε̃); the show-

ing discount rate and ε-softmax values of the belief-directed

demonstrator (γ, α, ε); and the belief-directed reward weight

(β). Since literal belief transitions are determined by how

well an action distinguishes one possible world w from an-

other, the parameters of the generative model of the in-

verse planner (γ̃, α̃, ε̃) control how informative actions are

expected to be for the observer. Meanwhile, the parame-

ters involved in belief-directed planning (γ, αB, ε, β) reflect a

communicative demonstrator’s general motivation and strat-

egy for conveying information. We searched the parameters

shown in Table 1, and maximum likelihood parameter esti-

mates are shown in Table 2.

Instrumental planning is a special case of belief-directed

planning (β = 0 or ε̃ = 1.0 or α̃ → ∞). Thus, to assess

whether belief-directed planning explains behavior in Show

better than instrumental planning, we conducted likelihood-

ratio tests with α̃ = 1000, ε = 1, and β = 0 as the null

model. This makes the total difference in degrees of freedom

four per model. As reported in the main text, we compared

fitted instrumental planners with belief-directed planners and

found that the latter better accounted for the data in Show.
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Parameter Values

γ̃ .8, .85, .9, .95, .99, .9999

ε̃ 0.0, .025, .05, .075, .1, .125, .15, .175, .2

α̃−1 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0

γ .8, .85, .9, .95, .99

ε .01, .02, .03, .04, .05, .06, .07, .08, .09, .1, .2, .3

α−1 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0

β 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25

Table 1

Experiment 1: Model-parameters evaluated using grid search.

Parameter Description Do Show

Discount Rate (nested) γ̃ 0.96 (0.01) 0.93 (0.01)

Random Choice (nested) ε̃ 0.12 (0.02) 0.09 (0.01)

Softmax Temperature (nested) α̃−1 2.20 (0.25) 1.64 (0.25)

Belief-directed utility weight β 2.55 (0.74) 5.31 (1.35)

Discount Rate γ 0.93 (0.01) 0.93 (0.01)

Random Choice ε 0.04 (0.01) 0.05 (0.01)

Softmax Temperature α−1 0.15 (0.03) 0.22 (0.04)

Table 2

Experiment 1a model parameter estimates. Means and standard errors across participants (n = 29 for each condition).

Experiment 2: Modeling Details

Results

Task Model

Similar to Experiment 1, each trial can be modeled as a

parameterization of the transition function, P(s′ | s, a; w).

We define a state feature function, φ that maps each tile state

s ∈ S to a 6-vector where the first four entries are binary

and correspond to color (white, yellow, red, green), and the

last two entries correspond to the x, y coordinates of the tile.

The distribution over next states given the previous state and

action are defined using transformations over the different

features. For example, on a strong jumper trial, w = Strong,

taking the action ↑ from a green tile increments the value of

the x feature by two with probability 3/4, and by one with

probability 1/4 (assuming that the green tile is at least two

tiles away from the top edge of the grid). On each trial, the

observer starts with a uniform distribution over two transi-

tion functions corresponding to the green tiles being strong

or weak.

Simulations

Using the above task model for each trial, we simulated

an instrumental planner, πI , and a belief-directed planner,

πB. Except for the communicative reward, which was set

to β = 5 to be commensurate with the goal reward, the same

parameters were used as in Experiment 1. For each trial we

generated 100 trajectories, and the procedure for generating

trajectories was the same as in Experiment 1.

Demonstrator Model-Fitting

Separate belief-directed planning models were fit to each

participant in the two conditions, each of which had seven

parameters. These were then compared with a null model in

which 1
α̃
→ ∞, ε̃ = 1, and β = 0, which is equivalent to

an instrumental planning model. Searched values are shown

in Table 3, and maximum likelihood parameter estimates are

shown in Table 4.
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Strong Jumpers Weak Jumpers

Do DoShow Show

Figure 14. Experiment 2a participant trajectories by condition and trial.

Infant Observer Studies Modeling

Butler &Markman, 2012 Model Formulation

For the model, we first specify some assumptions about

the observer’s prior beliefs: (1) She knows the demonstra-

tor has the goal of putting the blicket away; (2) she does not

know whether blickets are magnetic; and (3) she believes that

blickets are more likely to be non-magnetic than magnetic.

Thus, formally, the observer starts with a distribution over

two possibilities, wMag and wInert. When w = wMag, blickets

are magnetic, and when they interact with paperclips they

stick to them with a high probability, pStick. Additionally, we

also assume that it is possible for the paperclips to stick to the

blicket because of some alternative (unspecified) cause that

is entirely independent of magnetism. This is determined

by the alternative sticking probability pAlt. If blickets are

magnetic, then the probability of sticking is calculated with

a noisy-or distribution (Pearl, 1988).

The demonstrator starts in a state where the blicket is on

the table and can either put it away or put it on the paper-

clips. If he chooses Put Away, this will most likely result in

Blicket Put Away, but there is a small probability of him ac-

cidentally slipping and the blicket landing on the paperclips

(pSlip = 0.20) before it is then put away. If he chooses Put on

Paperclips, then it lands on the paperclips with probability 1

before being put away. Whether the paperclips and blicket
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Parameter Values

γ̃ .1, .2, .3, .4, .5, .6, .7, .75, .8, .85, .9, .95, .99

ε̃ 0.0, .02, .06, .08, .12, .16, .18, .22, .26, .28, .32, .36, .38, .42, .46, .48

α̃−1 0.00, 0.05, .1, 0.15, .2, .25, .3, .35, .4, .45, .5, .55,

.6, .65, .7, .75, .8, .85, .9, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0

γ .1, .2, .3, .4, .5, .6, .7, .75, .8, .85, .9, .95, .99

ε 0.0, .02, .06, .08, .12, .16, .18, .22, .26, .28, .32, .36, .38, .42, .46, .48

α−1 0.00, 0.05, .1, 0.15, .2, .25, .3, .35, .4, .45, .5, .55,

.6, .65, .7, .75, .8, .85, .9, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0

β 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25

Table 3

Experiment 2a: Model-parameters searched in gridsearch.

Do Show

γ̃ 0.58 (0.05) 0.78 (0.05)

ε̃ 0.25 (0.03) 0.24 (0.03)

α̃−1 0.83 (0.27) 1.11 (0.28)

β 1.49 (0.33) 5.68 (0.78)

γ 0.84 (0.04) 0.76 (0.04)

ε 0.03 (0.01) 0.18 (0.02)

α−1 0.05 (0.01) 0.08 (0.01)

Table 4

Experiment 2a model parameter estimates. Means and standard errors across participants (nDo = 39, nShow = 41).

stick together depends on whether blickets are magnetic or

inert, as described in the previous paragraph. The instrumen-

tal utilities are +1 for putting the blicket away and -0.1 for

each action taken (e.g., putting it on the paperclips and then

putting it away is 2 steps).

This formulation of the task allows us to distinguish be-

tween the blicket accidentally landing on the paperclips,

which occurs in the Accidental condition, and the blicket in-

tentionally landing on the paperclips, which occurs in both

the Intentional and Communicative conditions (Figure 11a).

The accidental demonstration can be modeled as the se-

quence where the demonstrator first takes the action Put

Away, but then slips and lands on the Paperclips Attached

state before ending on the Blicket Put Away state. In con-

trast, the intentional/communicative demonstrations directly

place the blicket on the paperclips by selecting Put On Pa-

perclips, having them attach, and then putting it away.

All demonstrator models select actions using a softmax

policy with α = 0.2 (there is no random choice; ε = 0.0).

Although Butler and Markman (2012) report two measures

of exploration on a different task, this is primarily in order to

assess the strength of the inference about whether blickets are

magnetic. Thus, we report the probabilities calculated by our

model directly rather than make any assumptions about how

these relate to exploratory behavior. As shown in Figure 15,

the equivalance of the Intentional and Accidental conditions

as well as the higher belief in blicket magnetism in the Com-

municative condition are consistent across a range of param-

eters.

Hernik & Csibra, 2015 Model Formulation

Although the studies in question involve multiple coun-

terbalanced training trials, in order to understand how the

key findings relate to our account it suffices to explore the

inferences our models make after observing a single training

trial. Specifically, we model a trial in which the banana’s

initial state is Unpeeled and its final state is either Peeled or

Unpeeled. Additionally, we make the following assumptions
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stration, we calculated the policy that is optimal in expecta-

tion based on the resulting observer belief b′, and report the

softmax policy probabilities ( 1
α
= 2.5) when sHands = Free

and sBox = Unlit.

Using this setup, we modeled five of the experimental

conditions reported by Király et al., 2013: the Communica-

tive/Instrumental x Hands Occupied/Hands Free conditions

reported in Experiment 1, and the No Effect condition in Ex-

periment 2, in which the demonstrator ostensively cued the

participant before using their head to try and turn on the box

without it turning on. Figure 17 shows the outputs of the

model for the different conditions over a range of parameter-

izations of prior beliefs. In general, we find that the model

captures the qualitative patterns reported in the original stud-

ies.


