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Theory of mind enables an observer to interpret others’ behavior in terms of unobservable
beliefs, desires, intentions, feelings, and expectations about the world. This also empowers
the person whose behavior is being observed: By intelligently modifying her actions, she can
influence the mental representations that an observer ascribes to her, and by extension, what the
observer comes to believe about the world. That is, she can engage in intentionally communica-
tive demonstrations. Here, we develop a computational account of generating and interpreting
communicative demonstrations by explicitly distinguishing between two interacting types of
planning. Typically, instrumental planning aims to control states of the environment, whereas
belief-directed planning aims to influence an observer’s mental representations. Our framework
extends existing formal models of pragmatics and pedagogy to the setting of value-guided
decision-making, captures how people modify their intentional behavior to show what they
know about the reward or causal structure of an environment, and helps explain data on infant
and child imitation in terms of literal versus pragmatic interpretation of adult demonstrators’
actions. Additionally, our analysis of belief-directed intentionality and mentalizing sheds light
on the socio-cognitive mechanisms that underlie distinctly human forms of communication,
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culture, and sociality.
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Introduction

Communicating often requires demonstration. Imagine
teaching a child to tie her shoes with words alone, or by
simply showing her the finished product—this is unlikely to
work. Instead, we must show her.

Because communicative demonstrations are essential for
humans, they are also routine. They occur when we coor-
dinate (Clark, 2005), cooperate (Jordan, Hoffman, Bloom,
& Rand, 2016), create novel signs (Scott-Phillips, Kirby, &
Ritchie, 2009), and control low-level motor behaviors dur-
ing interaction (Wolpert, Doya, & Kawato, 2003; Pezzulo
et al., 2019). Developmental psychologists, especially, em-
phasize the importance of communicative demonstrations.
This is because such social interactions enable infants and
children to learn a range of useful behaviors and representa-
tions, including action types, subgoals, tool functions, causal
structure, and normative concepts (Brand, Baldwin, & Ash-
burn, 2002; Brugger, Lariviere, Mumme, & Bushnell, 2007;
Southgate, Chevallier, & Csibra, 2009; Kirdly, Csibra, &
Gergely, 2013; Hernik & Csibra, 2015; Buchsbaum, Gop-
nik, Griffiths, & Shafto, 2011; Butler, Schmidt, Biirgel, &
Tomasello, 2015; Sage & Baldwin, 2011; Hoehl, Zettersten,

Schleihauf, Gritz, & Pauen, 2014).

How do communicative demonstrations work? What cog-
nitive processes support generating and interpreting demon-
strations, as well as related communicative actions such as
gestures (Cartmill, Beilock, & Goldin-Meadow, 2012) and
depictions (Clark, 2016)? Intuitively, demonstrative shoe-
tying is very similar to ordinary shoe-tying, but also impor-
tantly distinct. When demonstrating we tie our shoes slowly,
with exaggerated motions, pausing at and repeating certain
key actions. When watching a communicative demonstration
these distinctive features serve as important clues, revealing
which parts of a sequence of actions are essential and which
are merely incidental.

Communicative demonstration takes an ordinary act with
its ordinary purpose and builds something richer on top of
it. It depends upon a shared understanding between the ac-
tor and the observer: That the actor intends not just perform
the ordinary action, but also to convey something about it.
This shared understanding allows each pause, repetition and
exaggeration to carry special significance.

Our goal is to explain how this works and why it is so im-
portant. Following others who have studied how we commu-
nicate with our actions (Sperber & Wilson, 1986; Tomasello,
Carpenter, Call, Behne, & Moll, 2005; Csibra & Gergely,
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2009; Tomasello, 2010; Clark, 2016), we draw inspiration
from a different medium of human communication: lan-
guage. Just as demonstration layers communication on top
of simple goal-directed action, language layers pragmatic in-
ference on top of simple literal meaning. This analogy is
central to our approach.

More specifically, contemporary accounts of language
emphasize that speakers’ words are not only chosen accord-
ing to their conventional semantic meaning, but also accord-
ing to a model of how they will be interpreted by the lis-
tener. Listeners, in turn, often reason about utterances in
light of these goals. For example, consider scalar impli-
cature (Spector, 2007; Frank & Goodman, 2012): When a
friend says to you, “I ate some of the pizza in the refriger-
ator,” how does this change your beliefs about the leftover
pizza? Although the literal meaning of the statement is con-
sistent with them having eaten all of the pizza, in an every-
day context the statement implies that not all of the pizza
was eaten; there is some left over. This is because you both
know that your partner has an intention to inform you and
that if they had wanted to inform you that was no pizza left,
they would have said they had eaten all of the pizza. These
pragmatic aspects of language use and comprehension have
been extensively studied (Grice, 1957; Horn, 1984; Sperber
& Wilson, 1986; Clark, 1996; Levinson, 2000).

We aim to show that communicative demonstration oper-
ates by similar logic. When demonstrating an action, we do
not just orient our behavior around its ordinary goal (anal-
ogous to a “literal” semantics), but also around an under-
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standing of the actor’s communicative intent (analogous to
“figurative”, or pragmatic meaning). This general theme has
been been examined by researchers in a number of disci-
plines, including linguistics (Clark, 2005, 2016), compara-
tive psychology (Tomasello, 2010), and developmental psy-
chology (Csibra & Gergely, 2009). Here, we precisely char-
acterize the cognitive mechanisms underlying communica-
tive demonstrations within a general mathematical frame-
work of probabilistic inference and decision-making. In par-
ticular, we build on the general ideas developed for coop-
erative communication (Shafto, Goodman, & Frank, 2012;
Shafto, Goodman, & Griffiths, 2014), game-theoretic exper-
imental pragmatics (Franke, 2009), and rational speech-act
theory (Goodman & Frank, 2016) and adapt them to the
domain of actions. To accomplish this, we integrate them
with a distinct set of ideas developed to model communica-
tion in the context of goal-directed planning and decision-
making (Newell & Simon, 1972; Sutton & Barto, 1998;
Dayan & Niv, 2008). This marriage of formal tools for mod-
eling decision-making and pragmatic inference is at the heart
of our proposal.

By drawing on ideas from pedagogy and pragmatics,
our computational approach helps answer two key questions
about how communicative demonstrations work. First, what
allows non-linguistic actions to have meaning? The literal
semantics of words are essential to creating their additional
pragmatic meaning, but actions (e.g., tying one’s shoes) must
derive their meaning differently. Second, how can actions
literally do things as well as figuratively show things? A
demonstrator must be able to anticipate and reason about the
literal effects of their actions (e.g., how they attain a secure
bow) as well as their communicative effects (e.g., how they
convey how to attain a secure bow). Meanwhile, an observer
must be able to determine whether actions are merely literal
or also communicative, and if so, what they are communi-
cating. Our aim is to answer these questions within a sin-
gle computational framework and test their empirical predic-
tions.

Two kinds of action and action interpretation

To characterize communicative demonstrations, we draw
on a distinction between two types of action (Shafto, Good-
man, & Frank, 2012): instrumental and belief-directed. In-
strumental actions are prototypically aimed at solving physi-
cal problems or accomplishing physical goals in an environ-
ment. For example, when someone is riding a bicycle, they
pedal with their legs, causing the wheels to turn. These ac-
tions are taken instrumentally to achieve a desired outcome,
such as quickly reaching a destination.

An agent’s actions can be interpreted as instrumental. In-
deed, this is the ordinary manner of interpreting actions.
It includes reasoning about a range of mental states about
the environment including others’ goals (Gergely, Nadasdy,
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Figure 1. Example predictions. Our account makes predictions about how instrumental actions (e.g., riding a bicycle) relate to communica-
tive demonstrations (e.g., showing someone you can ride a bicycle without holding onto the handlebars). (A) An example domain in which
one must navigate from the start location to the goal (+10 points) while avoiding tiles that are dangerous. Orange and pink tiles could be
dangerous (-1 point) or safe (0 points), but in this particular case both colors are safe. (B) Examples of instrumental versus belief-directed
action predicted by our models. Top: The optimal instrumental sequence of actions is to head straight towards the goal. Note that this is the
case regardless of which tiles are safe or dangerous. Bottom: Optimal belief-directed action sequences (i.e., communicative demonstrations)
involve visiting extra orange and pink tiles in order to show that they are safe. (C) Inverse planning inferences drawn by three types of model
observers when presented with the example demonstrations. A literal observer reasons about actions in terms of instrumental planning. A
pragmatic observer reasons about actions in terms of both instrumental planning and an intention to convey information about the world.
An uncertain pragmatic observer reasons jointly about the target (e.g., that orange and pink tiles are safe in this case) and whether the actor
has communicative intent. Top: Mean final beliefs of simulated observer models given instrumental action sequences (blue; n = 50; error
bars are standard errors). All three observer models draw relatively weak inferences about the target, and the uncertain pragmatic observer
correctly infers that demonstrators do not have communicative (belief-directed) goals. Bottom: Mean final inferences for observer models
given belief-directed action sequences (green; n = 50). All three observers infer the target with high probability and the uncertain pragmatic
observer correctly infers that the demonstrations are communicative.
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Csibra, & Birg, 1995; Baker, Saxe, & Tenenbaum, 2009),
action costs (Jara-Ettinger, Gweon, Tenenbaum, & Schulz,
2015), and false beliefs about the world (Southgate, Senju,
& Csibra, 2007). In these typical applications of “theory of
mind”(Premack & Woodruff, 1978) an actor’s behavior is in-
terpreted as instrumental.

In principle, human social learning could depend exclu-
sively on actors performing instrumental actions and ob-
servers interpreting them as such. And, these are certainly
necessary features of any account of human social learning.
In practice, however, they cannot be sufficient.

First, true communicative demonstration involves more
than mere instrumental action. Like linguistic utter-
ances (Grice, 1957) but unlike typical, instrumental actions,
communicative demonstrations are taken in order to affect
another’s cognitive state—for instance, to teach them. A fa-
ther demonstrating how to tie shoes does not organize his
action around the sole goal of shoe-tying. Rather, he has the
additional goal of conveying various aspects of this general
skill. His actions are directed not just towards an object, but
also towards her thoughts and beliefs. In short, his actions
are both instrumental and belief-directed.

Second, demonstrations are often interpreted differently
that ordinary actions. For instance, research on observational

learning has shown that infants and children are highly sensi-
tive to “ostensive cues”, which are cues generated by an adult
that make it clear that they want their actions to be observed.
The presence or absence of ostensive cues can have a radical
effect on how learners interpret the very same sequence of
actions (Kiraly et al., 2013; Butler et al., 2015; Hernik &
Csibra, 2015). How does interpreting an actor that clearly
“wants to be seen” differ from one that does not care whether
they are seen? Intuitively, wanting to be seen does not inher-
ently change the space of possible instrumental intentions.
Rather, it announces the presence of possible belief-directed
intentions (e.g., “I want you to see this so that you can in-
fer something”), which a learner may then reason about. In
other words, whereas intentional actions are interpreted as
“literally” instrumental, ostensive cues nudge an observer
towards also pragmatically interpreting actions as resulting
from belief-directed goals.

Our goal is to capture the mechanics of these differ-
ent types of action and interpretation. We start by for-
malizing the distinction between instrumental action and
belief-directed action and their interaction in communicative
demonstrations. We then report two sets of new experiments
designed to test the key features of this formal account. Next,
we show how the formal account also captures key elements
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of prior studies on infant social learning. Finally, we show
how our account extends existing computational approaches
to language pragmatics and pedagogy, how it connects with
a number of active topics in social cognition, and what it
suggests for future research on the cognitive processes un-
derlying human communication.

General Methods

Our goal is to understand how people produce, and others
learn from, communicative demonstrations. In particular, our
aim is to provide a normative, computational-level account of
these processes in the sense of predicting how communica-
tive demonstrations should be performed and interpreted by
rational agents (Marr, 1982; Anderson, 1990). In this sec-
tion, we describe the computational framework that spells
out these assumptions and structures our investigation.

It is organized around two key ideas, which together com-
prise this work’s main contributions. The first idea is that
demonstrators and observers are engaged in pragmatic rea-
soning that is grounded in interpreting actions as instrumen-
tal. In other words, each explicitly models the problem of
sending and receiving maximally informative signals. To for-
malize this, we borrow from prior models of pedagogical and
pragmatic reasoning (Shafto et al., 2014; Frank & Goodman,
2012; Rafferty, Brunskill, Griffiths, & Shafto, 2016; Sperber
& Wilson, 1986; Grice, 1957).

Specifically, we analyze pragmatic meaning as emerging
from recursive social reasoning (Camerer, Ho, & Chong,
2004). In this approach, a model begins by specifying a “lit-
eral” instrumental actor who chooses an action without mod-
eling the mental state reasoning of an observer; the observer
then models this choice by reasoning about the actor’s men-
tal states; the actor then chooses an action that maximizes the
probability of the observer drawing the correct inference; the
observer then models the actor as such; and so on. In the-
ory such “cognitive hierarchies” could proceed ad infinitum.
In practice, they attain their predictive power within a few
layers of recursive mentalizing (Camerer et al., 2004).

The second idea is that communicative demonstrations
involve reasoning about actions as both instrumental and
belief-directed. For example, a father showing his daugh-
ter how to tie shoes both wants her shoes to be tied (an in-
strumental goal) and also wants his daughter to learn how to
tie shoes (a belief-directed goal). Not only does this require
balancing two types of (potentially competing) goals, but it
requires reasoning about two distinct types of causal effects:
how actions influence the environment as well as how they
also influence an observer’s mental state. Meanwhile, an
observer must be able to interpret actions in terms of these
different levels. To characterize these planning and inference
processes, our approach marries insights from the study of
goal-directed planning (Dayan & Niv, 2008; Newell & Si-
mon, 1972; Puterman, 1994) and theory of mind (Dennett,

1987; Malle, 2008; Gergely & Csibra, 2003; Baker et al.,
2009).

These two key ideas—grounding the pragmatics of com-
municative action in instrumental action, and planning ac-
tions over a model of instrumental and belief-directed
effects—can be combined in a straightforward and produc-
tive manner. Specifically, we begin by defining a form of
instrumental action production and observation. We then al-
low belief-directed goals to structure pragmatic reasoning
that arises as the next level up of cognitive hierarchy. In
this manner a relatively simple and traditional planning prob-
lem of attaining an instrumental goal (e.g., catching a fish)
“grounds” the pragmatic inferences that structure the addi-
tional and more complex planning problem of attaining a
belief-directed goal (e.g., teaching a person to fish).

Instrumental planning and literal action interpretation

At the first level of a cognitive hierarchy we model an ac-
tor attempting to accomplish an instrumental goal—i.e., to
perform a task without regard for an observer. In order to do
this she must engage in planning, which involves reasoning
about what actions and associated consequences best achieve
her goals (Figure 2A). We suppose an actor has a model of
how her actions will affect the environment, W, and instru-
mental goals expressed in terms of utilities, G;. We denote
an instrumental plan as ;. This can be thought of as com-
puting the steps of a procedure (e.g., “First bring the flour
down from the shelf. Then get a spoon. Take out 2 cups.”
etc.). When an instrumental demonstrator acts out a plan, this
produces a sequence of events, which includes her physical
actions and their consequences (e.g., reaching for the flour,
moving it from the shelf to the counter, picking up a spoon,
etc.). Given a model and goals, an intentional agent plans and
then acts. We can express the probability of a demonstration
D (i.e., a particular sequence of actions and consequences):

P(D | W,G)) = Z pD |7, WP(; | W,Gp) - (D)

In Equation 1, P(nr; | W, G/) expresses the output of a ra-
tional planning process, while p(D | 7r;, W) expresses how an
actor’s planned actions interact with the environment. This
kind of model-based action selection is widely explored in
the literature on value-guided decision-making (Dayan &
Niv, 2008). An agent who plans and acts in this manner is
oblivious to the fact that anyone may be observing her. We
describe this model not because it describes an agent engaged
in communicative demonstration—it does not!—but rather
because it grounds successive levels of hierarchical mental
state inference that we are interested in. The next step is to
model an observer who attempts to learn from an actor’s be-
havior by assuming that the actor is purely instrumental (i.e.,
by assuming the model summarized in Equation 1).
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Figure 2. Bayesian Network Diagrams (Pearl, 1988) of the relationships between instrumental and belief-directed planning and inference.
Nodes represent variables in the model, edges indicate causal influence, and highlighted nodes are directly observed or assumed by either
the demonstrator (blue) or observer (red). (A) During instrumental action, an actor generates a plan, &, given instrumental goals, G,, and
the world, W. Enacting the plan in the world results in a demonstration, D. (B) A literal observer inverts the model of instrumental
planning (Baker et al., 2009). This allows them to observe a demonstration D and draw inferences about instrumental goals G, and the
world W by reasoning about instrumental planning 7. (C) During a communicative demonstration, an actor’s plan r is further determined
by belief-directed goals G and their model of a literal observer’s inference process O,. Note that Oy, is derived directly from the inferences
represented in panel B (see main text for details). (D) Given an observed demonstration D and knowledge of how a literal observer would
interpret it (i.e., Oy), a pragmatic observer reasons about the world W via inferences about belief-directed planning . Together, panels C
and D illustrate a key aspect of the model: Shared understanding of instrumental action and its interpretation (i.e., the literal observer model)
provides a way for a communicative demonstrator and pragmatic observer to coordinate the meaning of demonstrations.

Specifically, to an observer, a demonstrator’s knowledge Bayesian belief-updating:

of the world W and her instrumental goals G; are hidden.

However, by reasoning about the relationship between a

demonstrator’s plans and actions, he can infer her beliefs, b'(W,G; | D) < P(D | W,G)b(W,Gy). 2)
desires and intentions (Figure 2B). For example, when you
observe your neighbor pull her bicycle out of their garage
and then ride it towards work for the first time, you might
infer that a new bike route has just opened up. This process
of action interpretation can be cast as inference about the
world having observed the agent’s interactions with the envi-
ronment (Baker et al., 2009). Formally, this corresponds to

We can then define an observer model O (b’ | D, b) that
represents an agent observing D and updating their beliefs
from b to b’ according to Equation 2. To highlight the con-
nection to the interpretation of linguistic utterances, we call
this a literal observer engaged in literal action interpretation.
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Belief-directed planning and pragmatic action interpre-
tation

In a communicative demonstration, the demonstrator has
not only instrumental intentions, but also belief-directed
ones. To return to our example, the fisherman wants not
only to catch a fish (an instrumental intention) but to show
an observer how to fish (a belief-directed intention).

Just as instrumental planning involves evaluating and
choosing plans over a model of the environment, we propose
that belief-directed planning involves doing so over a model
of the other person’s inferences. This means that rather than
just planning a sequence of possible actions and instrumen-
tal consequences, a demonstrator also plans over how her ac-
tions affect observer beliefs.

Specifically, we posit that it involves planning over the
rational inferences that an observer would draw by imputing
instrumental goals—those specified by Equation 2. In other
words, a demonstrator evaluates whether her actions would
accomplish her belief-directed goals by asking what infer-
ences an observer would draw from her actions. She mod-
els those inferences by assuming that the observer applies
Equation 2, modeling her as an instrumental agent. In this
way belief-directed actions are “grounded” in the semantics
of instrumental goals. (Later we discuss the possibility of
more complex planning over still higher-order inferences).

In order to capture this idea formally we distinguish be-
tween instrumental and belief-directed goals and planning
(Figure 2C). Recall that G; denotes instrumental goals ex-
pressed as utilities; we denote belief-directed goals as Gp.
Given a planning model that includes both the environ-
ment (W) and the observer (O, ) as well as instrumental and
belief-directed goals (G, Gp), belief-directed plans, mp, that
“solve” this planning problem are well defined (although we
consider the question of computational tractability in the dis-
cussion). When a demonstrator enacts this belief-directed
plan in the environment, they produce a demonstration D:

P(D|W,0.,G;,Gp) =
> P(D | 75, WOLP(s | W,01,G1,Gg) O

]

Again, we emphasize that belief-directed planning de-
pends on reasoning about both the world (W) and a literal
observer’s belief dynamics (Op). This is because whereas
instrumental planning aims to influence aspects of the envi-
ronment, belief-directed planning aims to cause both envi-
ronmental and mental effects. In particular, a belief-directed
demonstrator plans and acts by reasoning about how her ac-
tions influence observer beliefs via their capacity for action
interpretation.

Finally, just as an observer can interpret actions in terms
of instrumental intentions, he can also interpret them in terms
of belief-directed intentions (Figure 2D). For instance, an ob-
server might assume that the demonstrator is attempting to

choose maximally informative actions (in order to accom-
plish her belief-directed goals) and interpret actions in light
of this fact. Formally, we can define pragmatic action in-
terpretation as recursive reasoning about the world W, literal
observer Oy, instrumental goals Gy, and belief-directed goals
GBI

b'(W,G;,Gg | D,Oy)

P(D | W,0L,G,Gp)b(W, Gy, Gp) @

Analogously with the literal observer, O, we can define

a pragmatic observer, Op(b’ | D, b), who updates their be-

liefs according to Equation 4. Figure 2 visualizes the func-

tional relationships between the different model components

as Bayesian Network Diagrams (Pearl, 1988) from the per-
spective of the different demonstrators and observers.

Higher-order and mixed-order planning and action inter-
pretation

Equations 1-4 define a sequence of recursive planning and
inference processes. In theory, one could have observers who
reason about qualitatively different demonstrators as well
as demonstrators who reason about more sophisticated ob-
servers. For instance, an observer could be uncertain about
whether they should interpret actions pragmatically: They
could be reasoning jointly about a demonstrator’s instrumen-
tal beliefs (e.g., where do they think the cookies are?) as well
as whether they have belief-directed intentions (e.g., are they
trying to show me where the cookies are?). Similar situations
have been studied in the context of epistemic trust (Mascaro
& Sperber, 2009; Shafto, Eaves, Navarro, & Perfors, 2012),
where knowledge and helpfulness are uncertain. We could
also consider a demonstrator who wants to show an uncertain
but pragmatic reasoner that they have a belief-directed inten-
tion (e.g., signal that they are signaling; Scott-Phillips et al.,
2009). These forms of inference and planning can be formal-
ized in terms of higher-order and mixed-order observers and
demonstrators.

In this paper, our primary goal is to understand the first
step of the process that relates goal-directed action to com-
municative action, so we largely focus on straightforward in-
stances of belief-directed planning and pragmatic action in-
terpretation. Nonetheless, we touch on questions about more
complex reasoning throughout the paper and return to them
in more detail in the general discussion.

Implementations of belief-space planning

Recursive mentalizing and model-based planning are both
computationally intensive, as is their combination. The work
presented here is not committed to a specific cognitive strat-
egy that people use to compute near-optimal solutions to
belief-state planning problems. Rather, our aim is to present
a computational-level account (Marr, 1982; Anderson, 1990)
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that characterizes the problem that people are solving when
generating and interpreting communicative demonstrations.

Nonetheless, to generate predictions and evaluate human
data requires a specific implementation of belief-space plan-
ning (and inference). Briefly, for our Gridworld simulations
and analyses, our approach involves first constructing an ap-
proximate, discrete belief-space dynamics model that is in-
dependent of the particular rewards on a task or trial. This
approximate belief-dynamics model is designed to only cap-
ture parts of the belief-space that are likely to be visited given
an initial belief and environmental dynamics. For a specific
trial, this approximate model is combined with an instrumen-
tal and/or belief-directed utility function and solved exactly
using dynamic programming (Bellman, 1957). We note that
in contrast to approaches that use sampling to do approxi-
mate planning (e.g., Hula, Montague, & Dayan, 2015), this
implementation allows us to straightforwardly compute ex-
pected rewards and action probabilities that can be used for
analysing human responses as well as defining higher-order
observers.

Further details about our implementation are reported in
the appendix and code itself is available at https: //github
. com/markkho/comdem-data-code. Finally, although we
largely sidestep issues of computational cost here, we will
return to these questions in our discussion of future work.

Experimental Studies of Communicative Demonstration

Our account provides both quantitative and qualitative
predictions about demonstrator actions and observer infer-
ences. We test these in a Gridworld paradigm in which par-
ticipants played the role of demonstrator that could move a
circle on a grid of colored tiles, or observer who was shown
a demonstrator’s behavior. Experiments 1a and 1b focus on
communication of reward structure, while Experiments 2a
and 2b focus on learning relevant causal knowledge. Both
sets of studies use goal-directed behavior (i.e., doing an ac-
tivity) as a baseline to compare communicative behavior (i.e.,
showing an aspect of an activity). Using a combination of
behavioral measures, simulations, and model-fitting, we find
that belief-directed planning captures key aspects of people’s
communicative demonstrations.

Experiment 1: Communicating Reward Structure

Communicative demonstrations can be used to convey
several kinds of useful information. One important kind con-
cerns the “reward function”—i.e., information about what
is desirable and undesirable in the world. This is often ex-
pressed as a relationship between object features and re-
wards. For example, eating red tomatoes might keep you
healthy, while eating green tomatoes makes you sick. Thus, a
knowledgeable demonstrator will eat red tomatoes and avoid
green ones, and an uninformed observer can infer the true
reward structure by observing this.

Do Show

Condition Condition

Show your partner that
and . . the safe colors are and .

yf
1 I
Figure 3. Experiment 1 - Participants were either placed in a condi-
tion where they were simply told the reward function (left) or also

told to show the reward function to a partner (right). The red lines
are representative examples of behavior in the two conditions.

The safe colors are

Experiment 1 uses this case study of teaching a reward
function to test our account of communicative demonstra-
tion. Critically, we note the methodological importance of
using feature-based rewards: Distinguishing between “do-
ing” an activity and “showing” relies on the possibility of
information that generalizes beyond the immediate activity.
This is because if a demonstrator is only showing how to
do the immediate activity, the best strategy is to simply do
the activity and have the learner copy those exact actions.
Moreover, as we explore in the discussion, this experimen-
tal consideration is closely related to theoretical claims that
relate communicative demonstrations to the transmission of
generalizable knowledge (Csibra & Gergely, 2009).

Thus, in Experiment la, we focus on how people in
the role of demonstrator convey feature-based—that is,
generalizable—information about rewards. Using a combi-
nation of behavioral and model-based analyses, we show that
people motivated to demonstrate task information uniquely
engage in strategies that reflect a combination of instrumental
and belief-directed planning. For example, we expect people
to engage in “targeted variability” where they strategically
visit tiles that have high diagnostic value. We first look for
these types of behavioral signatures predicted by the model
before reporting the results of model-fitting and parameter
estimation. Experiment 1b then focuses on observer judg-
ments. We find that people make more accurate and confi-
dent inferences when demonstrations are known to be com-
municatively generated, consistent with our model of prag-
matic action interpretation.

Method

Task. Participants were asked to navigate the Gridworld
shown in Figure 3 by moving the blue circle up, down, left,
or right on each time step. Yellow tiles were always “goal”
states, meaning that whenever it was entered, the participant
received +10 points and the trial ended. White tiles always
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reward O points. The remaining tile colors—orange, purple,
and blue—each were randomly assigned to be either safe or
dangerous, meaning that their reward values could either be
0 or -2 points respectively. Thus, the set of possible reward
structures formed by all combinations of safe or dangerous
yields a space of eight possible distinct reward structures.

Procedure. Sixty participants recruited from Amazon
Mechanical Turk performed the feature-based reward teach-
ing task; two were excluded due to missing data due to
recording error, leaving a total of 58 participants for analysis
(29 in each condition). They received a base pay of $1.00 and
received a bonus based on points received across the whole
experiment, with each point worth +/- 2 cents. The exper-
iment was organized into a training phase and test phase.
The training phase was designed to familiarize participants
with the domain by alternating between learning a reward
function and then applying it. On the learning trials, they
were not told the underlying reward structure (i.e. which
colors were safe/dangerous), but received immediate feed-
back on how many points were won or lost when stepping
on tiles. On the applying trials immediately following each
learning trial, they were given a new grid configuration that
required knowledge of tile color type, and applied what they
just learned about the tiles without receiving feedback. They
repeated this procedure 8 times for each of the 8 possible
combination of “safe” and “dangerous” colors. The order of
the reward functions was randomized between participants.

Following the training phase participants were split into
two conditions: One that only motivated completing the task
(the “Do” condition) and another that additionally motivated
demonstrating the task to an observer (the “Show” condi-
tion). Both Do and Show participants were told which col-
ors were safe and won or lost points based on which tiles
were safe or dangerous. Only Show participants were ad-
ditionally told that their behavior would be shown to an-
other person, that this person could not see the points they
received, that they would apply what they learned to a new
grid, and that the points won by their partner would be added
to their bonus. When bonuses were calculated, participants
each received what they would have had their partner done
as well as possible. Participants did not receive feedback
on the reward for each action, although this could be eas-
ily inferred from the information provided. Procedures were
approved by Brown University’s Research Protection Office
(protocol #1505001248, title: “Exploring human and ma-
chine decision-making in multi-agent environments”).

Simulated Demonstrators

We generated simulated behaviors of instrumental and
belief-directed demonstrators from our model for each of the
eight reward structures. Specifically, for each of the eight tri-
als, 200 sequences of states and actions were generated. Half
of these were from the instrumental demonstrator, which

correspond to the Do condition, while the other half were
from the belief-directed demonstrator, which correspond to
the Show condition. Details for how we formalized the task
and models are described in the supplementary materials.

Results

The open-ended nature of the task led to a range of par-
ticipant demonstrations, visualized in Figure 4a. These data
largely matched the qualitative and quantitative predictions
of the model simulations: Do participants selected routes
based exclusively on efficiency, whereas Show participants
took routes that additionally signaled feature reward val-
ues. To understand people’s behavior in light of the model,
we performed three sets of analyses. First, we examined
task-specific behavioral predictions based on our simulated
demonstrations. Specifically, we examined the number of
color tiles and the variability of color tiles visited as a signa-
ture of belief-directed planning. Second, we examined how
the sequences of actions people took in each condition led
to transitions in the belief-space of several observer models.
Finally, we performed a model comparison analysis to con-
firm that the behavior in Show is explained by belief-directed
planning and not a particular parameterization of pure instru-
mental planning.

Behavioral Analysis. Our model predicts that instru-
mental action and communicative demonstrations will differ
from one another in systematic ways. For instance, on tri-
als where multiple colors are safe (e.g., orange and blue in
Figure 3, it may be worthwhile for belief-directed planning
to engage in “targeted variability” where multiple tiles types
are visited, whereas pure instrumental planning would lead
to visiting only one or the other if it is maximally efficient
for reaching the goal. We quantified these types of predicted
differences by calculating the proportion of orange, blue, or
purple tiles visited in a trajectory (color visitation propor-
tion) and the entropy of the frequency distribution over or-
ange, blue, and purple tiles in a trajectory (color visitation
entropy). As shown in Figure SA (top row), both color vis-
itation proportion and entropy was generally higher for the
belief-directed model, although this varied by the particular
reward function.

We then calculated color visitation proportion and entropy
for the empirical trajectories and performed two sets of anal-
yses. First, we analyzed the trajectories independently of the
planning models using a mixed-effects logistic regression for
color visitation proportion and a mixed-effects linear regres-
sion for color visitation entropy. For both of these models,
condition was included as a fixed effect while by-participant
and by-item (i.e., reward function) random intercepts were
fit. Show condition trajectories had a greater color visitation
proportion (8 = 2.59, SE = 047, Z = 5.46, p < .0001
[Wald Z test]) as well as color visitation entropy (8 = 0.16,
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(2016).

SE = 0.05, #(57.04) = 3.30, p < .01 [Satterthwaite’s ap-
proximation]).

Second, we regressed the color visitation measures from
participant trajectories onto the mean simulated trajectory
values using logistic and linear mixed-effects models, re-
spectively. For these models, we included the simulation
predictions as a fixed effect and by-participant and by-item
intercepts as random effects. We found that the measures
produced by the instrumental and belief-directed model sim-
ulations were predictive of both color visitation proportion
(B =259, SE=047,Z =546, p < .0001 [Wald Z test])
and entropy (8 = 0.92, SE = 0.06, #(9.41) = 14.37, p < .001
[Satterthwaite’s approximation]).

Collectively, these sets of analyses indicate that qualita-
tive differences related to targeted variability between the Do
and Show conditions matched those of the instrumental and
belief-directed planning models.

Belief-Space Analysis. The behavioral analyses pro-
vide insight into people’s demonstrations in terms of features
of the ground task itself (e.g., what colors were visited). To
gain initial insight into the effects of people’s demonstrations
on belief-dynamics, we analyzed belief-space transitions for
three types of observer models. To be clear, our goal is not
to compare observer models, but to characterize the inferen-
tial effects of people’s behavior on several rational observer
models.

First, we examined the effect on a literal observer. For

each participant trajectory, the model’s final belief in the true
trial parameters was used as a predictor in a mixed-effects
linear model that included by-participant and by-reward
function random intercepts as well as condition (Do/Show)
as a fixed effect. Condition was found to be significant
(B =0.19, SE = 0.03, #(56.00) = 5.54, p < .001 [Satterth-
waite’s approximation]), indicating that trajectories in Show
led the observer model to have a higher belief on the target.

Second, we compared how a pragmatic observer who rea-
sons about the demonstrator’s actions as intentionally in-
formative would learn. Using the same analysis with fi-
nal beliefs as the predictor in a mixed-effects linear model,
we found Condition was similarly significant (8 = 0.23,
SE = 0.04, 1(56.00) = 5.74, p < .001 [Satterthwaite’s ap-
proximation]), confirming that a pragmatic observer would
also learn better from these trajectories.

A literal observer assumes the demonstrator definitely
does not have an intention to inform, while the pragmatic
observer assumes the complete opposite. But what if the ob-
server is uncertain about the demonstrator’s communicative
intent? Analogous situations have been studied in the con-
text of epistemic trust (Mascaro & Sperber, 2009) and can
be modeled as joint inference over another’s knowledge and
helpfulness (Eaves Jr & Shafto, 2012; Eaves & Shafto, 2017;
Shafto, Eaves, et al., 2012). To test how such an observer
would respond to people’s demonstrations, we implemented
an uncertain pragmatic observer, who reasons jointly about
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the task parameters and whether the demonstrator has infor-
mative intentions. Using the same analysis over final belief
in the trial parameters as before, we find that condition was
significant (8 = 0.23, SE = 0.03, #56.00) = 6.45, p < .001
[Satterthwaite’s approximation]). Additionally, we used a
similarly structured analysis to determine if the uncertain
pragmatic observer tracks whether the demonstrator was at-
tempting to be informative. We found a significant effect of
condition (8 = 0.09, SE = 0.03, #(56.00) = 3.51, p < .001
[Satterthwaite’s approximation]), which confirms that peo-
ple’s actions in Show are not only more informative, but in-
terpreted as more intentionally informative by an uncertain
model.

In summary, we examined how people’s behaviors in Do
and Show affected the beliefs of three types of observer mod-
els (literal, pragmatic, and uncertain pragmatic). People’s
behavior in Show better conveyed the underlying structure
of the task for all three observer models. Additionally, we
found that Show demonstrations are themselves interpretable
as intentionally informative to an observer who is unsure.

Model-fitting Analysis. As a final, stronger test of the
distinction between doing an activity and showing an activ-
ity, we employ model fitting. This approach ensures that the
effectiveness of Show trajectories is due to belief-directed
planning and not a particular parameterization of instrumen-
tal planning. For example, people could simply act more
randomly in the Show condition rather than engage in tar-
geted variability. Additionally, model-fitting allows us to un-
derstand people’s low-level actions—e.g., movements in the
cardinal directions—in terms of high-level psychological and
computational constructs—e.g., communicative utilities and
recursive models of an observer. Here, we describe our gen-
eral results and report details related to implementation and
parameter estimates in the supplementary materials.

Our main question is whether including belief transitions
and utilities in a demonstrator’s planning model explains
behavior in Show but not in Do. To assess this, we fit
maximum-likelihood parameters for the instrumental planner
and for the belief-directed planner to each participant. Since
instrumental planning is a nested version of belief-directed
planning (i.e., where belief transitions and utilities are ig-
nored), we compared model-fits in each condition using a
log-likelihood ratio test with three degrees of freedom differ-
ence per participant. For Do, the instrumental model was not
rejected (X2(87) = 100.78, p = .15), whereas for Show, it
was (y*(87) = 391.60, p < 107%%), indicating that the belief-
directed planning model provides a better explanation of be-
havior for the Show but not Do. Additionally, we can com-
pare models for individual participants. Figure Sc shows the
likelihood-ratio test statistic associated with each participant.
We used a permutation test (Hesterberg, Moore, Monaghan,
Clipson, & Epstein, 2005) with 10, 000 random permutations
to determine whether the difference in mean test statistics

between Do and Show was significant (Do LR mean = 3.47,
S.D. = 4.63; Show LR mean = 13.50, S.D. = 8.78). None
of the permutations exceeded the true difference in mean test
statistic (p = 1gi57 < 107*) indicating that more participants
in Show are explained by belief-directed planning.

Given belief-directed planning models fit to each individ-
ual participant’s collection of demonstrations, we can also
examine the parameters corresponding to planning goals and
representations. In particular, we examined two parameters
corresponding to the strength of the demonstrator’s com-
municative goal (Gg) and the informativeness of instrumen-
tal actions for a literal observer (Op) in light of the Do
and Show conditions. As expected, we find that estimated
communicative goal strength was higher for Show than Do
(Wilcoxon Signed-Ranks test: Z = —-2.11,p < .05). Sim-
ilarly, we find that instrumental action informativeness to
be higher for Show than Do (Wilcoxon Signed-Ranks test:
Z =1.98, p < .05). Moreover, these two parameter estimates
are correlated in Show but not in Do, indicating a coupling
between the representational and motivational dimensions
of communicative demonstrations (Do: r = .27,p = 0.16;
Show: r = .50, p < .01). These analyses of individually fit
parameters provide further confirmation that the behavior in
Show results from a planning process informed by literal ac-
tion interpretation. For complete details on how these param-
eters were specified, please see the supplementary materials.

To summarize, we find that belief-directed planning pro-
vides a better model of behavior in Show than in Do.

Experiment 1b:
Demonstrations

Learning Reward Structure from

We next turn to observer behavior. Specifically, we evalu-
ated whether communicative demonstrations are effective for
teaching human observers the true reward function, and also
whether observers’ expectations of communicative (“show-
ing”) or non-communicative (“doing”’) behavior matter. Par-
ticipants were either placed in a Communicative or Non-
Communicative interpretation condition, corresponding to
the literal and pragmatic observer models, respectively. They
were then given the trajectories from either the Show or Do
conditions in Experiment la. Overall, we find a large posi-
tive effect on observer accuracy and confidence when given
demonstrations from Show versus Do, and a small positive
effect of observer interpretation consistent with the model
predictions.

Materials and Procedure. The stimuli were the
state/action/next-state sequences produced by participants in
Experiment la. These were generated from the eight criti-
cal trials from the 29 participants the Do/Show demonstrator
conditions, for a total of 464 demonstrations. Each partic-
ipant was told they would observe a single demonstration
from a partner. They were also assigned to a Communica-
tive or Non-Communicative interpretation condition. The in-
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We provided participant-generated trajectories from the Do and Show

conditions to three different observer models and measured final beliefs. A literal observer updates his beliefs about the world assuming

an instrumental demonstrator, while a pragmatic observer updates
to be informative. The uncertain pragmatic observer has probabil
is belief-directed. Empirical Show trajectories are consistently bet

his beliefs assuming the demonstrator is belief-directed and attempting
istic beliefs about both the world as well as whether the demonstrator
ter at conveying task structure across all three observer models and are

interpreted by the uncertain pragmatic observer model as being more intentionally informative. (C) By-participant model fitting results.
Each point represents the log-likelihood ratio test statistic comparing the instrumental planning model to the belief-directed planning model.

Belief-directed planning better accounts for demonstrator behavior
supplementary materials for details).

structions were the same except participants in the Commu-
nicative condition were also told that their partner “knows
that you are watching and is trying to show you which colors
are safe and dangerous”. Next, they were shown a page with
the animated demonstration and answered, for each of the
three colors (orange, purple, and blue), whether they thought
it was safe or dangerous and their confidence on a continuous
scale (0 to 100). Each participant received a starting payment
of 25¢ and won/lost 5¢ for each correct/incorrect answer
(minimum payment was 10¢). Two MTurkers were assigned
to each demonstration and observer instruction combination
using psiTurk (Gureckis et al., 2016). Procedures were ap-

more in Show than in Do (permutation test, p < 107*; see main text and

proved by University of Wisconsin-Madison ED/SBS IRB
(Study #2017-0830, title: “Studying human and machine in-
teractions”).

Simulated Observers. In order to compare model pre-
dictions with human performance, we simulated observer be-
liefs using the literal and pragmatic observer models reported
in the belief-space analysis in Experiment la. Since partic-
ipants gave judgments for each color separately, we com-
pared the marginalized probabilities for each color to judg-
ments. Mean correct belief probabilities by observer model
and demonstrator condition are shown in Figure 6.
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or pragmatic observers, and were given Experiment 1la trajectories from the Do or Show condition. Left panel shows the correct probability
that a color is safe (not the probability of the task) in order to facilitate comparison with Experiment 1b. Participants in Experiment 1b were
either told the demonstrator was intentionally communicating (Communicative condition) or nothing (Non-Communicative condition), were
given Do or Show trajectories, and gave safe/dangerous judgments for each color that were coded as correct or incorrect. Error bars are
bootstrapped 95% confidence intervals.

Results. Participants exposed to Show trajectories were
more accurate and confident in their beliefs, compared with
participants exposed to Do trajectories. To analyze accu-
racy, we used a mixed-effects logistic regression with cor-
rect/incorrect judgments as the outcome variable. By-trial
(reward function), by-demonstrator, and by-observer inter-
cepts were used as random effects, and both sets of instruc-
tions and their interaction were set as fixed effects using
contrast coding. The effect of whether the trajectories were
from Do or Show (demonstrator instructions) was significant
(B =040, SE = 0.11, Z = 3.64, p < .001 [Wald Z test])
as was the effect of the Communicative/Non-Communicative
interpretation (observer instructions) (8 = 0.13, SE = 0.07,
Z =202, p < .05 [Wald Z test]). Demonstrator Show in-
structions had a larger effect size, corresponding to an in-
crease in observer accuracy by 1.5 times, as compared to
observer Communicative instructions, which corresponds to
an increase in observer accuracy by 1.14 times. There was
no significant interaction (8 = 0.09, SE = 0.14, Z = 0.64,
p = .52 [Wald Z test]). This general pattern parallels the
simulation results (Figure 6).

Confidence judgments were analyzed by mixed-effects
linear regression. Reported confidence was the outcome
variable; trial, demonstrator, and observer were random ef-
fects; and demonstrator instructions, observer instructions,
and their interaction were fixed effects. Observers receiv-
ing Show demonstrations were more confident (8 = 3.34,
SE =0.93, 1(57.20) = 3.59, p < 0.001 [Satterthwaite’s ap-
proximation]), as were those receiving Communicative in-
structions (8 = 3.57, SE = 0.87, #(1790.85) = 4.08, p <
0.0001 [Satterthwaite’s approximation]). There was no sig-
nificant interaction (8 = 1.16, SE = 1.75, #(1790.85) = 0.67,
p = .51 [Satterthwaite’s approximation]). In short, the gener-

ation and interpretation of demonstrations as communicative
increased both accuracy and confidence.

Discussion

Are people’s communicative demonstrations reflective of
belief-directed planning? Experiment 1 addressed this ques-
tion in the context of communicating information about re-
ward structure. To test this, in Experiment la participants
performed a series of tasks that differed by reward structure
and were motivated to merely “Do” or additionally “Show”
the task. In Experiment 1b, these demonstrations were ob-
served by a separate set of participants, who were either told
that the demonstrations were produced communicatively or
not told this. These participants were then asked for their
beliefs about the reward structure.

Our analyses of demonstrators’ behavior as well as ob-
servers’ judgments provide evidence for belief-directed plan-
ning and pragmatic action interpretation described by our ac-
count. First, we show that the belief-directed demonstrator
model predicts how people will modify their goal-directed
behavior by increasing the variability of color tiles visited on
specific trials. Second, using three different observer model
variants, we find that Show demonstrations more effectively
convey the underlying task structure and that they are more
likely to be interpreted as intentionally informative by a ratio-
nal model. Additionally, the qualitative pattern of judgments
provided by two of these models (the literal and pragmatic
observer) match those of participants in Experiment 1b. Fi-
nally, the model-comparison analysis of Do/Show demon-
strations allows us to conclude that the variability in actions
taken in communicative demonstrations are not simply due
to undirected noise, but rather belief-directed planning.
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In short, Experiment 1 tests the predictions of our demon-
strator and observer models in the context of conveying in-
formation about reward structure. Overall, we find that the
differences between planning and interpreting instrumental
actions versus communicative demonstrations can be under-
stood in terms of our account of recursive planning and in-
ference.

Experiment 2: Communicating Causal Structure by
Demonstration

Actions can convey more than just the reward structure
of the world; they can also convey its causal structure. For
instance, consider showing someone else how to use a can
opener. You would want to make sure that they learn the
key causal dependencies between squeezing the handles and
puncturing the lid, and between rotating the handle and cut-
ting the lid free. Exaggerating certain motions involved in
using a can opener can provide clear evidence of the underly-
ing causal mechanism and would directly result from belief-
directed planning, even though these exaggerations may not
be the most efficient way to actually open the can.

In Experiment 2, we examine how people modify their in-
strumental actions to convey information about hidden causal
structure. We used a variation on the Gridworld task in which
certain tiles have different probabilistic outcomes (Figure 7),
allowing us to examine how people exploit complex dynam-
ics of an environment when acting communicatively. In par-
ticular, having probabilistic causal affordances enables us to
directly test whether communicative demonstrators are lever-
aging observers’ capacity for theory of mind when planning
over beliefs. This is because such situations allow demon-
strators to show that they are trying to do something, even
if it is potentially costly or may not succeed. For instance,
suppose you want to show someone how to use a can opener,
but it fails on some cans and breaks them because it is of
poor quality. You may still be able to convey how can open-
ers work by using properly exaggerated motions to indicate
how you expect it to work, even if it does not actually work
the way it is supposed to. In this experiment, we intro-
duce “jumper tiles” that allow agents to jump over dangerous
tiles. This provides opportunities for participants to show ob-
servers when certain tiles are jumpers by taking extra jump-
ing actions as well as showing them that they can be used to
avoid dangerous tiles by taking risky jumps that sometimes
do not work.

As we discuss, our framework for planning and interpreta-
tion of communicative demonstrations allows us to compare
belief-directed planning not only to instrumental planning,
but also to variants that make weaker assumptions about ob-
servers. For instance, whether an observer engages in in-
verse planning or simple causal reasoning will affect whether
a demonstrator engages in risky jumping. Overall, we find
that the full belief-directed planning model uniquely predicts

how people will act to convey causal structure through their
actions.

Method

Task. We used the layout shown in Figure 7a to test how
people convey causal structure. Each trial, people start at the
bottom center of the grid and must reach the yellow goal tile
(worth 50 points) in as few steps as possible (each step was
penalized -1 point). Dangerous tiles (red) are always worth
-10 points. “Jumper tiles” (green) are worth zero points, but
stochastically cause the agent to jump over the immediate
tile, thus avoiding losing points if it is dangerous. Within
a trial, all of the jumper tiles are either “strong”, meaning
that 3/4ths of the time the tile moved the agent two steps
and 1/4th of the time moved it only one step, or “weak”, in
which the probabilities were reversed. As a result, the value
of actions from a particular jumper tile depends on both the
layout of the dangerous and jumper tiles, as well as whether
the jumper tiles are strong or weak.

Procedure. 80 Amazon Mechanical Turk participants
participated for payment. The overall design of this exper-
iment was similar to that of Experiment 1 with a few modifi-
cations. Participants were trained on the basic experimental
interface and interacted with a set of 16 exploration grids in
which they had to figure out whether the jumper tiles were
strong or weak. The grids were designed such that there was
no way to try a jumper tile without some risk of entering a
dangerous tile. After each of these exploration rounds, they
had to answer whether they thought the jumper tiles on that
trial were strong or weak and won or lost 50 points based
on their answer. They were then split into two conditions:
Do and Show. Forty-one participants were assigned to Show
while 39 were assigned to Do. In Do, participants were al-
ways told whether the jumper tiles were strong or weak; in
Show, they were also told this information but were addition-
ally told that their behavior would be shown to a partner who
would have to answer whether the jumper tiles were strong
or weak. They would then win or lose 50 points based on
their partner’s answer.

Both conditions were given the same set of 8 grids twice.
We designed the grids to favor certain trajectories when
jumper tiles were weak (weak affording), others when jumper
tiles strong (strong affording), and others whether the jumper
tiles were weak or strong (Figure 7b). We arranged these
variations to distinguish between doing and showing, be-
cause sometimes the most effective way to communicate
task structure would be to incur the risk of jumping onto
a dangerous tile. Each grid was then presented where the
jumper tiles were strong and weak, for a total of 16 distinct
rounds per person. Procedures were approved by University
of Wisconsin-Madison ED/SBS IRB (Study #2017-0830, ti-
tle: “Studying human and machine interactions”).
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Figure 7. Experiment 2 paradigm. Each trial had a particular configuration of dangerous tiles (red) and jumper tiles (green). (a) Example
trajectories showing whether the jumper tiles are strong (the agent is usually moved two tiles after stepping off it) or weak (agent is only
sometimes moved two tiles). Dotted line indicates a successful jump of two tiles. Within a trial, jumper tiles are either all strong or all weak.
(b) Example of regions of grid with different affordances based on whether the jumper tiles are strong or weak.

Simulated Demonstrators

Similar to Experiment 1, we simulated both instrumental
and belief-directed demonstrators for both strong and weak
variants of the Gridworld trials. However, we also generated
two types of belief-directed demonstrator. The first was a
demonstrator who planned over a literal observer who per-
formed inverse planning—i.e., it assumes that the observer
reasons about instrumental intentions. The second was a
demonstrator who planned over a lesioned literal observer
that does not perform inverse planning and can only do causal
reasoning. Fifty sequences of states and actions were gener-
ated for each of these three models for each transition func-
tion and Gridworld.

Results

As in Experiment la, we performed three sets of anal-
yses to understand participants’ behavior (Figure 8): task-
specific behavioral predictions, performance in model ob-
servers’ belief-space, and by-participant model-fitting. For
the behavioral analyses, we focused on jumping rate and
risky jumping rate, as these are key signatures of belief-
directed planning. Risky jumping in particular allows us to
contrast demonstrations designed for observers engaging in
inverse planning versus one that only does causal reasoning.
Overall, these analyses allow us to evaluate whether peo-
ple’s communicative behavior is explained by planning over
a model of observers’ beliefs from several different perspec-
tives.

Jumping and Risky Jumping. Jumpers allow people
to take inconvenient or risky actions to convey information
about the task. For example, repeatedly jumping off of green
tiles can provide evidence of the underlying causal mecha-
nism by providing observers the opportunity to directly ob-
serve the relevant statistics. However, our set up also pro-
vides demonstrators with an opportunity to convey their ex-
pectation that a particular outcome is likely by taking risky
jumps, where possible outcomes have a large influence on
rewards. For instance, if green jumper tiles were strong, an

agent could try to use it to jump over a red tile, whereas if it
were weak, they would not. If the observer can reason about
an actor’s intention to use jumpers to skip over red tiles—that
is, if they can engage in literal action interpretation—, then
a communicative demonstrator could use risky jumping to
signal their expectations. In contrast, a rational communica-
tive agent who does not think the observer can reason about
intentions would not take risky jumps if they did not have
to. These two possible communicative agents correspond di-
rectly to belief-directed planning over a full literal observer
and planning over a lesioned observer that we simulated. As
shown in Figure 8 A (top row), although both types of agents
engage in more jumping than the instrumental agent baseline,
only planning over a full literal observer predicts more risky
jumping.

We analyzed participants’ jumping and risky jumping in-
dependent of the models and then with the model predic-
tions. For our first set of analyses, we fit a linear mixed-
effects model to the number of jumps per round and a lo-
gistic mixed-effects model to whether jumps were risky. A
jump was defined as any action that had a non-zero prob-
ability of moving two tiles, while a risky jump was coded
as any jump that had a non-zero probability of landing on
a red tile. Both models included condition (Do/Show) as a
fixed effect as well as by-participant and by-item random in-
tercepts. The Show condition had significantly more jumps
per round (8 = 0.71, SE = 0.14, #(79.71) = 5.22, p < .0001
[Satterthwaite’s approximation]) and jumps that were risky
(B =098, SE =0.24,Z = 4.16, p < .0001 [Wald Z test]),
matching the qualitative patterns of belief-directed planning.

To assess whether belief-directed planning over the full
literal observer predicted risky jumping over and above plan-
ning over the lesioned literal observer, we compared two
nested logistic regression mixed-effects models. Both mod-
els set whether a jump was risky as the dependent variable,
included by-participant and by-item random eftects, and used
data from both Do and Show conditions. The first model con-
tained only the lesioned planning risky-jump proportions as a
fixed effect for each grid, transition strucutre (strong/weak),
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Figure 8. Experiment 2a results. (a) Comparison of simulated (top) and experimental jumping (bottom). We simulated instrumental plan-

ning actions (blue bars) as well as two types of belief-directed planning demonstrations (dark and light green bars). The first belief-directed
planner calculated a plan over a full literal observer model capable of reasoning about instrumental intentions (e.g., whether the agent
was trying to jump). The second belief-directed planner was provided with a lesioned literal observer model that could not reason about
instrumental intentions and could only draw inferences based on observed outcomes (e.g., whether the agent actually jumped). In particular,
note that because inference about risky jumping requires that the observer reason about planning (an action is only risky with respect to
the agent’s intention not to lose points), only the first belief-directed planner will engage in additional risky jumping. (b) Belief-space
analysis. Participant trajectories were provided to three different observer models: a literal observer; a pragmatic observer; and an uncertain
pragmatic observer. We examined how the trajectories from each participant condition influenced the beliefs of each observer model. (c)
Model-fitting Analysis: Each point represents the log-likelihood ratio test statistic comparing the instrumental planning model to the belief-
directed planning model. Belief-directed planning better accounts for demonstrator behavior more in Show than in Do (permutation test,
p < 107#; see text for details of analysis).

and condition, while the second additionally included the
proportions from belief-directed planning over the full literal
observer. Note that the predictors for Do condition jumps
were always those of a planner for whom the observer be-
lief model is irrelevant, that is, the pure instrumental plan-
ner. Using log-likelihood ratio tests, we found that including
the full planning predictions produced a significantly better
fit (y*(1) = 12.42, p < .001), indicating that people’s risky
jumping is explained by belief-directed planning over a full
literal observer performing inverse planning.

In sum, if people are engaging in belief-directed planning
over a literal observer model in Experiment 2b, they will be
more likely to use jumpers, especially when they are risky,
if it effectively signals the underlying causal structure of a
task. We find that people do engage in these behaviors in the
manner predicted by the full belief-directed planning model.

Belief-space Analysis. We next ask whether actor be-
havior in the Show condition conveys more information
about state transitions than actor behavior in the Do condi-
tion. To do this, we assessed changes in the belief space of
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three types of model observers as in Experiment la: a lit-
eral observer, a pragmatic observer, and an uncertain prag-
matic observer. The observer models were generated using
the same procedure as in Experiment 1a.

We used the same mixed-effects model as in the previous
analyses to determine whether Show and Do demonstrations
resulted in different final beliefs. All three observer mod-
els learned the target better from the Show than Do demon-
strations (Show/Do fixed effect for Literal Observer belief
in strong/weak: § = 0.08, SE = 0.02, #78.00) = 5.03,
p < .001; Pragmatic Observer: § = 0.11, SE = 0.02,
1(78.00) = 5.82, p < .001; Uncertain Pragmatic Observer:
B = 0.09, SE = 0.02, #78.00) = 5.21, p < .001 [Sat-
terthwaite’s approximation]). Additionally, for the uncer-
tain pragmatic observer, we found that the model interpreted
Show demonstrations as being more likely to be commu-
nicative (Show/Do fixed effect: 8 = 0.17, SE = 0.02,
1(78.00) = 7.20 [Satterthwaite’s approximation], p < 0.001).
Figure 8b plots mean beliefs by condition for each observer
model. Collectively, these analyses indicate that participants
in Show chose action sequences that are consistently success-
ful in modifying the belief state of an observer towards the
target belief.

Model-fitting Analyses. For our final set of analyses,
we used by-participant model fitting and model comparison
to determine whether belief-directed planning explains be-
havior in the Show condition but not the Do condition. We
performed the same analyses as in Experiment la. Likeli-
hood ratio tests at the condition level revealed that both Do
and Show behavior was explained better by belief-directed
planning (Do: x*(117) = 17427, p < .0001; Show:
¥2(123) = 1328.24, p < 10729), However, a comparison
of participant-level likelihood-ratio test statistics revealed a
clear difference in how well the models account for behavior
in each condition (Figure 8C). Specifically, we used a per-
mutation test to compare means of the likelihood ratio test
statistic in each condition (10, 000 random permutations) and
found none of the permutations exceeded the true difference
in mean test statistic (p = W < 107*). This indicates that
belief-directed planning captures variability in Show behav-
ior that is distinct from Do.

Additionally, the participant-level fits allow us to assess
individual parameter estimates and whether they reflect the
belief-directed planning goals and representations in our
model. As in Experiment 1a, we examined parameters as-
sociated with communicative goal strength and instrumen-
tal action informativeness (full details on how these param-
eters are specified are available in the supplementary mate-
rials). As expected, we found that estimated communica-
tive goal strength was higher in Show than in Do (Wilcoxon
Signed-Ranks test: Z = —5.04,p < .0001). However, we
did not find a difference in instrumental action informative-
ness (Wilcoxon Signed-Ranks test: Z = —0.98,p = .33).

These analyses provide further confirmation that our model
of belief-directed planning captures the qualitative dimen-
sions of people’s communicative demonstrations.

Experiment 2b: Learning Causal Structure from Demon-
strations

Following the same structure as Experiment 1b, we tested
whether Show demonstrations better conveyed information
than Do demonstrations, as well as whether Communicative
or Non-Communicative instructions influenced learning. We
found that Show demonstrations were more effective at con-
veying the correct causal structure, but we found no effect
of observer interpretation, consistent with the simulation re-
sults.

Materials, Procedure, Simulations. Three-hundred
and twenty participants (150 female, 168 male, 2 neither)
were recruited via Amazon Mechanical Turk to participate
in our study. Two participants were assigned to each of
the 80 demonstrators from Experiment 2a in two condi-
tions (Communicative and Non-Communicative) using psi-
Turk (Gureckis et al., 2016). After completing a consent
form, participants were shown instructions explaining that
they would watch their partner play a game, that their goal
was to reach the yellow square on each round and win 50
points, that red squares caused them to lose 10 points, and
that green tiles were jumper tiles.

Participants observed their partner play 16 rounds of the
game and had to determine whether the jumpers on that
round were strong or weak. Each correct/incorrect answer
was worth +/- 5¢. In only the Communicative condition they
were told “Your partner knows that you are watching and is
trying to show you whether the jumpers on that round are
strong or weak.”

Participants viewed a video of each demonstration as
many times as they wanted (but at least once) and provided
two judgments: whether the jumpers on that trial were strong
or weak, and their confidence on a continuous slider rang-
ing from “No Confidence” to “Extremely Confident”. After
completing all 16 trials, participants were asked several post-
task questions. Procedures were approved by University of
Wisconsin-Madison ED/SBS IRB (Study #2017-0830, title:
“Studying human and machine interactions”).

Using the same parameters as in the Experiment 2a simu-
lations, we calculated both literal observer and pragmatic ob-
server beliefs for Do or Show trajectories from Experiment
2a. Aggregated results are shown in Figure 9.

Results. We analyzed participants’ strong/weak judg-
ments and confidence ratings using mixed-effects models.
We coded strong/weak judgments as correct or incorrect. A
mixed-effects logistic regression was fit with correctness as
the predictor variable; item (i.e. transition function and grid
configuration), participant, and trial number intercepts as
random effects; and demonstrator condition (Do/Show), ob-
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Figure 9. Experiment 2b model and human observers learning from human demonstrations. Observer models are either literal or pragmatic.

Error bars are bootstrapped 95% confidence intervals.

server condition (Communicative/Non-Communicative), and
their interaction as fixed effects. We found a significant effect
of demonstrator condition corresponding to Show demon-
strations increasing correctness by 2.31 times (8 = 0.90,
SE =0.18,Z = 5.11, p < .0001 [Wald Z test]). However,
there was no effect of observer interpretation (8 = —0.01,
SE = 0.10, Z = -0.13, p = .90 [Wald Z test]) and no in-
teraction (8 = 0.08, SE = 0.21, Z = 0.38, p = .70 [Wald Z
test]).

For confidence judgments, we fit a mixed-effects linear
model with confidence as the predictor variable; item, par-
ticipant, and trial number intercepts as random effects; and
observer condition, demonstrator condition, and their inter-
action as fixed effects. We found no effect of either demon-
strator condition, observer condition, or their interaction.

Discussion

People can intentionally communicate causal knowledge
through their actions. Experiment 2 tested whether people
did this consistent with belief-directed planning using a Grid-
world paradigm with strong or weak jumper tiles. We find
that people are willing to use jumping and risky jumping as a
signal for causal structure, and that belief-directed planning
explains the behavior of Show participants more than Do par-
ticipants. Risky jumping, in particular, provides strong evi-
dence for belief-directed planning since it relies on the ob-
server’s beliefs about a demonstrator’s aversion to risk and
their causal knowledge. Finally, we find that observers more
successfully learn causal structure from Show rather than Do
participants, consistent with our model.

The current results further illustrate the generality of
our framework for modeling communicative demonstrations.
Similar to Experiment 1, we find that the model explains dif-
ferences between doing and showing behaviors and their in-
terpretation. We note that unlike in Experiment 1, we did
not find that the framing of the trajectories as communica-

tive or not influenced observer inferences. This may be due
to the fact that the space of possible causal structures was
smaller (two versus eight) and that the relative effectiveness
of Do versus Show demonstrations left little room for ob-
server interpretation to have an effect. In the next section, we
analyze previous developmental studies in which infant ob-
servers were given experimentally controlled demonstrations
in communicative or non-communicative contexts. There we
find cases in which observer interpretation has a large influ-
ence on inferences.

Infant and Child Observer Studies

The previous adult experiments illustrate how belief-
directed planning and pragmatic interpretation facilitate
powerful forms of teaching and social learning. At the
same time, the developmental literature documents a range of
findings on the interpretation of communicative demonstra-
tion and their relation to learning action-guiding representa-
tions (Brugger et al., 2007; Southgate et al., 2009; Kirdly et
al., 2013; Hernik & Csibra, 2015; Buchsbaum et al., 2011;
Butler et al., 2015; Sage & Baldwin, 2011; Hoehl et al.,
2014). Having formalized the actor and observer roles in
communicative demonstrations, we next compare the major
qualitative predictions of our model against previous devel-
opmental findings.

Specifically, we revisit three studies in which an infant
or child observed experimentally controlled demonstrations.
Each set of studies focused on a different type of action-
guiding representation that could be conveyed demonstra-
tively: Kirdly et al. (2013) focus on differential imitation
of subgoals, Butler and Markman (2012) focus on learning
generic causal properties, while Hernik and Csibra (2015)
focus on inferring novel functional properties of tools. In
each case, what is being conveyed is a decision-making rep-
resentation that can be directly reflected in intentional action
and thus demonstration.
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Figure 10. Comparison of general model with three developmental studies on interpreting communicative demonstrations. (A) Bayesian
network diagram of pragmatic action interpretation (reproduced from Figure 1D) illustrating how inference from an observed demonstration
is mediated by communicative planning. Shaded nodes indicate variables that are assumed or observed by the observer; open nodes indicate
variables with uncertain values; edges indicate functional dependencies. (B, C, D) Diagrams illustrating how the variables in our general
model map onto the specific experiments by Butler and Markman (2012), Kirdly et al. (2013), and Hernik and Csibra (2015).

Additionally, the studies all compare learning between at
least two observer conditions: A Communicative condition
where demonstrations were performed following an osten-
sive cue, and an Intentional condition where there was no
such cue. These conditions map directly onto our formaliza-
tion of literal versus pragmatic action interpretation. By for-
mulating participants as one or the other type of observer, we
can can generate distinctive patterns of inferences and attri-
butions. In general, we find that the pragmatic observer mod-
els tend to differ from literal observer models in two qualita-
tive ways. First, we find inferential amplification, in which
actions that are mildly diagnostic of instrumental goals be-
come highly diagnostic of belief-directed goals. Second, we
observe deviation attribution, in which actions that would
have been attributed to irrationality or noise when interpreted
as purely instrumental become attributable to belief-directed
goals. These patterns are readily characterized in the frame-
work of probabilistic inference and planning we have articu-
lated, underscoring the value of our approach for understand-
ing previous results.

Our primary goal is to test whether our account is com-
patible with the basic qualitative dimensions of existing find-
ings and show how our model can be applied to interpret-

ing studies of social learning of action-guiding representa-
tions. Previous work has used Bayesian models of coopera-
tive communication to integrate results across studies and un-
derstand developmental changes in phenomena such as epis-
temic trust (Eaves & Shafto, 2017). Much of this work has
focused on social learning in the context of labeling, and an
important challenge is extending such analyses to settings
that involve action-guiding representations (e.g., subgoals,
object affordances, and tool functions). Although we do not
address questions of developmental changes, the application
of our model illustrates how constructs from the planning and
reinforcement learning literature (Dayan & Niv, 2008; Sut-
ton & Barto, 1998) can be used to define linking functions
that connect model constructs to measures used to assess the
learning of action-guiding representations. In the next few
sections, we discuss how our model explains the qualitative
findings of several studies. The full details of our formaliza-
tion are included in the supplementary materials and imple-
mented as probabilistic programs'.

Throughout, we are required to make formally explicit
several elements of the original experiments: the environ-
mental context, the communicative context, and the demon-
strations themselves. In deciding what aspects of a study
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are theoretically relevant, we have attempted to stay true to
the original interpretations of the researchers. This illustrates
how our approach can formally describe the key qualitative
findings from the literature.

Learning Causal Structure from Demonstrations

Summary of Findings. Butler and Markman (2012)
(Experiment 3) investigated how 3- and 4-year-olds learned
about a novel causal property by observation, and how this
depends on the communicative context. In their paradigm,
participants observe an experimenter clean up a set of ob-
jects (these had been made messy in a prior distractor tasks,
ostensibly the main task). The objects included many paper-
clips as well as a novel object (a wooden block with tape on
it) that, earlier, had been labeled a “blicket”. At the critical
point of the experiment, the experimenter moves the blicket
on top of the paperclips and they adhere to it by magnetic
force.

The “demonstration” occurred in one of three experimen-
tal conditions: Accidental, in which the blicket was appar-
ently dropped on the paperclips while being put away and the
experimenter exclaimed “Oops!”; Intentional, in which the
experimenter appeared to purposefully place the blicket on
the paperclips without engaging the child; and Communica-
tive, in which he addressed the child (“Look, watch this”) be-
fore placing the blicket on the paperclips (Figure 11a). The
children were then given a set of inert (i.e., non-magnetic)
blickets and paperclips to play with.

Their main analyses revealed two important patterns of
results for the 4-year-olds (but not 3-year-olds). First, those
in the Communicative condition showed greater exploration
and pickup-attempts than those in the Intentional and Ac-
cidental conditions. Second, there was no detectable dif-
ference in exploration or pickup-attempts between the Ac-
cidental and Intentional conditions (Figure 11D). These re-
sults indicate an influence of communicative context on how
observers draw inferences.

Model Results and Discussion. The model captures the
relationships between exploration/pickup-attempts in the Ac-
cidental, Intentional, and Communicative conditions in terms
of literal and pragmatic interpretation. As illustrated in Fig-
ures 11A-C, we model observers as reasoning about whether
or not blickets are magnetic (i.e., whether paperclips tend to
attach to them) while also assuming that the observer ini-
tially understands the event as one in which the demonstrator
has goal of putting the blicket away. We model observer in-
ferences in the Accidental and Intentional conditions both as
literal action interpretation, but model the Accidental demon-
strator as “slipping” while attempting to put the blicket away.
Inferences in the Communicative condition are then modeled
as resulting from pragmatic interpretation. Figure 11C shows
the results for a single parameterization of the model, but we
found that the overall pattern of results was robust. Complete

details on the formalization and alternative parameterizations
can be found in the supplementary materials.

To understand the model, first consider the Intentional and
Communicative conditions. Leading up to the critical part of
the experiment, the participants can infer that the demonstra-
tor has the goal of putting the blicket away since they had
just put all the other objects away. Then at the critical part,
the demonstrator places the blicket on the paperclips, caus-
ing them to stick together. Interpreted literally, the action
appears as unexplained noise since it is irrelevant to putting
the blicket away. However, the resulting observation that the
paperclips stick to the blicket is informative: It provides ev-
idence that blickets are magnetic. This is important because
when the same demonstration is interpreted pragmatically,
the act of placing the blicket on the paperclips and the obser-
vation that they stick together can be explained in terms of
belief-directed intentions. In particular, the formerly unex-
plained action can be attributed to informative goals, while
the possibility that the evidence for blicket-magnetism is in-
tentional strengthens the inferences drawn from that very
evidence. In other words, pragmatic interpretation leads to
stronger inferences about blicket-magnetism due to deviation
attribution and inferential amplification.

Our model can also explain why the Intentional and Acci-
dental conditions did not differ. Specifically, in both condi-
tions, the blicket landing on the paperclips is not relevant to
the instrumental intention to clean the table—in both cases,
this event is interpreted as noise. A difference is the source
of the noise: In the Intentional condition, the noise is inter-
nal to the demonstrator’s decision process, while in the Acci-
dental condition the noise is “external’’; for whatever reason,
the demonstrator’s hand slipped. Nonetheless, in both cases,
the resulting observation itself provides only unintended ev-
idence for blicket-magnetism.

Inferring Novel Tool Functions from Demonstration

Summary of Findings. Hernik and Csibra (2015) ex-
amined how infants could learn about novel tools and their
functions. In a series of studies infants observed familiariza-
tion training videos in which a demonstrator manually used
novel tools (e.g., a pink or blue flower pot turned upside
down) on objects (e.g., a peeled or unpeeled banana). Their
first study has two key features. First, these training demon-
strations were marked as communicative by the demonstra-
tor. Second, the objects were apparently transformed by a
tool (e.g. an unpeeled banana, placed briefly under a blue
tool, became peeled; a peeled banana, placed briefly under
a pink tool, became unpeeled—healed). During the test tri-
als they attempted to diagnose what the children had learned

'All models in this section were implemented using WebPPL
(Goodman & Stuhlmiiller, 2014) and can be found at https://
github.com/markkho/comdem-data-code.
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Figure 11. Summary and model of Butler and Markman (2012), Experiment 3. (a) Participants were shown a demonstration of the blicket
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explored blickets more and attempted to elicit magnetism more in

the Communicative condition. (e) The pragmatic action interpretation

model (green) reasons about the demonstrator’s informative goals, which leads to an amplification of the inferences produced by the literal

observer model (blue).

about what the tools do. In order to do this, they showed
infants videos of each tool while it was in use, such that the
initial condition of the object was not observed. This was
done without any communicative marking. On congruent
trials, the final state of an object was congruent with that of
the training trials for a tool (e.g., a peeled banana for a blue
tool). On incongruent trials, the resulting state was the same

as the initial state typically observed in the training phase for
a tool (e.g., an unpeeled banana for a blue tool). Critically,
they found significantly greater looking times on incongruent
test trials, indicating that infants’ expectations were violated
when the result state of the tool differed from those of the
training trials (Figure 12A, first row).

The authors also reported two additional comparison stud-
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ies2. In the first of these, demonstrations were still commu-
nicative and child-directed, however, tools did not transform
objects in the training trials. Unlike in the original study, they
found no detectable difference between congruent and incon-
gruent test trials. In the second comparison study, demon-
strations were no longer child-directed and the tools trans-
formed the objects in the training trials (as in the first study).
Here, although they found a difference in congruent and in-
congruent looking times for initial test trials, this difference
did not persist past the first set of test trials, unlike in the orig-
inal study. Collectively, these three studies (summarized in
Figure 12A) suggest that communicative marking and state
changes interact when encoding novel tool functions, leading
to especially robust, context-sensitive learning.

Model Results and Discussion. We model the observer
in a single experimental trial as reasoning about whether the
novel tool has the function of being a “banana peeler” or
not (Figure 12B). Overall, we find a close correspondence
between experimental looking times reported by Hernik and
Csibra (2015) and the surprisal (negative log-likelihood) val-
ues for the literal/pragmatic observers with different training
sequences (Figures 12C-D). In particular, the modeling ac-
counts for two central features of the results: The difference
in sustained violation of expectation between Studies 1 and
3, and the absence of a violation of expectation in Study 2.
According to our account, these are explained by the ampli-
fication of inferences that result from pragmatic action inter-
pretation.

First, consider the difference between Studies 1 and 3:
The transformation demonstrations in Study 1 are performed
in a child-directed communicative context, while those of
Study 3 are not. (In other words, they correspond to the
Communicative and Intentional conditions, respectively, of
Kiraly et al., 2013 and Butler & Markman, 2012). Thus,
we model Study 3 participants as engaging in literal action
interpretation when observing the transformation sequence.
Although this allows them to draw a weak inference that the
novel object is a banana peeler, it is easily defeated given
contrary evidence, and so fails to drive robust violation of
expectation in the test phase. In contrast, in Study 1, the com-
municative context makes the demonstrator’s belief-directed
intentions apparent, and so we model the participants as rea-
soning pragmatically. A pragmatic observer recognizes that
evidence for the tool being a banana peeler has been inten-
tionally presented to them, which leads to an amplification
of the literal inference. In short, compared to participants in
Study 3, those in Study 1 would reason that not only does
the novel tool coincide with the change in the object, but
the demonstrator wants the observer to know that this is a
reliable feature of the world.

Meanwhile, our treatment of Study 2 uniquely draws out

an important aspect of our model of pragmatic action inter-
pretation: Although a communicative context is established,

the demonstrator does not perform an action with any clear
instrumental purpose. Put simply, the tool does not do any-
thing (alternatively, one might say, the child fully expects
that a random novel tool will not peel a banana, and thus no
information is conveyed). In principle, the communicative
context would allow for inferences to be amplified, but in
this case it fails because there is nothing obvious to amplify.

Notably, our model actually identifies Study 2 congruent
trials as more surprising than incongruent trials because the
demonstrator’s attempts to use the tool suggests that they ex-
pect it to change, even though it does not. (In other words
they are surprised not by the state of the banana, but by the
persistence of the demonstrator). Indeed, although Hernik
and Csibra (2015) found no significant difference between
congruent/incongruent looking times, they report that more
than half of the infants tended to look at the congruent events
more than the incongruent events.

Imitating Subgoals based on Communicative Demonstra-
tions

Summary of Findings. Experiment 1 of Kiraly et al.
(2013) examined children’s imitation of goal-directed behav-
ior. In the modeling phase, infants observed an experimenter
sit down and then bend over to use their head to touch a
novel object, causing it to light up. This demonstration was
performed in a 2 X 2 design. The first factor was whether
the context was communicatively cued or not. In the Com-
municative conditions, the experimenter looked at the infant,
called their name, and made sure they were paying atten-
tion before the demonstration. In the Intentional® conditions,
the demonstrator did not interact with the infant, but waited
until a signal was given from another experimenter that the
infant was paying attention before performing the demon-
stration. The second factor manipulated whether the demon-
strator’s hands were occupied or free (Figure 13A). In the
Hands-Occupied conditions, the demonstrator was wearing a
blanket and clutching it with their hands. In the Hands-Free
conditions, they were wearing a blanket but their hands were
placed on the table next to the novel object.

During the test phase children had the opportunity to in-
teract with the novel object. The main analysis examines
whether the infants imitated the demonstrator by attempting
to turn the light on with their head based on the two factors.
Neither main effect was significant, but the interaction was
significant. Specifically, in the Communicative condition,
there was more imitation of the head action in the Hands-
Free condition than the Hands-Occupied condition, whereas

2Hernik and Csibra (2015) report a fourth study that conceptu-
ally replicates the results of Studies 1 and 3. The analysis of Study
4 in terms of our framework is identical to that of Studies 1 and 3.

3Kiraly et al. (2013) use the term “Incidental” to describe this
condition.
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Figure 12. Summary and model of Hernik and Csibra (2015) Experiments 1, 2, and 3. (a) Participants viewed video trials where novel tools
(blue or pink flower pots) were used on bananas (peeled or unpeeled). The banana either changed or not when the tool was used. Note that
the event sequence for a single tool here. Violation of expectation (VOE) measures were used to assess whether a novel functional concept
(e.g. the tool is a banana peeler) was learned. VOE was sustained across multiple test trials only when training occurred with communicative
marking and target transformation. (b) Possible causal structures in our model of a single trial. It is possible that the banana changes from a
state UNPEELED, to a new state, PEELED, regardless of what action is taken for some (unspecified) reason unrelated to the flower pot. If the tool
is a banana peeler (top), then using it makes a transformation more likely. If it is not (bottom), then tool use has no additional effect. Note
that although the participants never see the banana change without the tool, the model considers the possibility that the tool has no effect.
(c) Looking-time results from studies 1-3. (d) Model posterior surprisals for congruent/incongruent test trial observations. A pragmatic
observer trained on a tool-transformation sequence (left) has a high surprisal on an incongruent trial. The same observer model trained on a
non-transformation sequence (middle) expects both sequences nearly equally. A literal observer trained on a tool-transformation sequence
(right) has a higher surprisal on the incongruent observation, but lower than the first pragmatic observer.

there was no detected difference in the Intentional condition
(Figure 13D).

Intuitively, a person who turns on a light with their head in
the Hands-Occupied condition uses their head only because
their hands are occupied, whereas a person who turns on a
light with their head in the Hands-Free condition uses their
head because it is necessary or preferable. Moreover, a per-
son who communicatively demonstrates turning on a light
with their head in the Hands-Free condition is choosing a
highly diagnostic signal that head-use is important or prefer-

able. Our model naturally captures these intuitive principles.

Model Results and Discussion. The modeling captures
two key patterns in the results: (1) In Hands-Free, head-use
imitation increases from the Intentional to Communicative
conditions, and (2) in Hands-Occupied, head-use imitation
decreases from the Intentional to Communicative conditions.
Our model explains how these effects arise naturally when
an observer engages in pragmatic action interpretation in the
Communicative conditions.

Figures 13B-C illustrate our formalization of the task.
A key aspect of the experiment we model is the difference
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Figure 13. Summary and model of Kirdly et al. (2013), Experiment 1 results. (a) Participants observed an experimenter use their head to
light up a novel object in one of two conditions: Wearing a blanket (Hands-Free) versus holding a blanket (Hands-Occupied)—and in a
Communicative or Intentional condition (not shown). (b) A minimal model of the environmental constraints - The demonstrator can start in
the HanDs FRrEE state and deterministically transition to the Licat ON state by taking either Use Head or Use Hand, or Do Nothing. Alterna-
tively, they can start in Hanps Occupiep and take Use Head or Do Nothing. (c) Space of possible utility functions in model, corresponding to
subgoal/goals of the demonstrator. Plus signs indicate actions with a stronger bias (e.g., lower cost for achieving the goal). Checks indicate a
+1 reward. (d) Empirical results in Kirdly et al. (2013). Infants differentially attempt to use their head in the Communicative conditions but
not the Intentional conditions. Error bars are 95% binomial confidence intervals. (e) Model results. After observing either the Hands-Free
or Hands-Occupied demonstration, each observer model has a belief over the three possible utility functions, which induces an expected
reward function. This plots the observer’s softmax probability (ﬁ = 2.5) of taking Use Head from Hanps FrREe under the expected rewards.
In particular, our models capture the exaggerated difference in the communicative conditions.

between the available actions in Hands-Free versus Hands-
Occupied. In Hands-Free, both Use Hand and Use Head
are available, whereas in Hands-Occupied, only Use Head
is available. The differential structure of available actions
directly affects what evidence is provided about what actions
are optimal. This evidence, in turn, interacts with whether
the observer interprets actions literally or pragmatically. We
discuss this process in the Hands-Free conditions and then
the Hands-Occupied conditions.

In the Hands-Free conditions, the demonstrator can use
either his hands or his head. When a literal observer sees the
demonstrator use his head to turn on the light, she will as-
sume that this is either because using one’s head is optimal,
or because the demonstrator acted suboptimally (which can
always occur with some low probability). This only causes a
slight increase in her belief that head-use is optimal since her
prior belief was low and there remains the possibility that
the demonstrator acted suboptimally. Notably, however, a
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pragmatic observer will draw stronger inferences. This is
because she assumes that the demonstrator used his head not
only for instrumental reasons (e.g., to efficiently turn on the
light), but also belief-directed reasons (e.g., to provide diag-
nostic information). Put informally, the communicative con-
text leads to amplification of existing inferences: The prag-
matic observer knows that the demonstrator wants the literal
observer to have certain inferences, which strengthens those
inferences. (It is as if the pragmatic observer reasons: “He
wants me to think that head-use is optimal, so head-use really
must be optimal”). The communicative context also offers
an explanation for seemingly suboptimal behavior: The lit-
eral observer only attributes head-use to suboptimality or the
low-probability case of head-use being optimal. In contrast,
the pragmatic observer can attribute head-use to the belief-
directed goal to inform her that head-use is optimal.

In contrast to the Hands-Free conditions, in the Hands-
Occupied conditions, the demonstrator can only use his head.
(This is known to the observer, who can see that the demon-
strator’s hands are occupied). To a literal observer, head-use
provides evidence that turning the light on is a goal, but it
does not imply that head-use is optimal in general. Rather,
it provides evidence that one should turn on the light, even
if it requires using one’s head. Interpreted pragmatically, the
overt evidence for this becomes stronger evidence that turn-
ing on the light is a goal (i.e., inferential amplification), lead-
ing to the strong inference that one should turn on the light
(which is typically done with one’s hands).

Given the resulting observer inferences about goals and
subgoals, we simulate imitation by calculating how they
would act in Hands-Free. Figure 13E plots the probability
of the literal and pragmatic observers taking Use Head af-
ter observing the demonstrator actions in Hands-Free versus
Hands-Occupied for a particular set of parameters. In the
supplementary materials, we describe the formalization of
the task in more detail and provide an analysis across a range
of parameterizations. Overall, we find that the pragmatic
action interpretation model is able to capture the qualitative
pattern of results reported in the original experiments.

General Discussion

How do people communicate with their actions? To ad-
dress this question we combine ideas from work on inverse
planning and linguistic pragmatics. Specifically, we develop
and test an account of communicating with one’s actions in
terms of belief-directed planning and pragmatic action inter-
pretation. Our account formalizes two ideas: First, commu-
nicative demonstrations are grounded in shared assumptions
about the interpretation of instrumental action. That is, both
demonstrator and observer understand instrumental planning
and inverse planning. Second, communicative demonstra-
tors rationally plan their actions based on their model of
the environment and an observer’s inverse planning. Prag-

matic action interpretation then involves reasoning about the
instrumental and belief-directed intentions underlying such
demonstrations. We have shown how this model facilitates
powerful forms of teaching and observational learning in the-
ory and captures data from novel and existing experiments in
practice.

In Experiments 1 and 2, we used our models to predict
how people teach about novel tasks by engaging in belief-
directed planning as well as how they learn via pragmatic
action interpretation. Using a combination of simulations
and model-fitting, we show a close correspondence between
our account and human behavior and judgments. Addition-
ally, we examined three previously reported developmental
studies of learning from communicative demonstrations in
order to assess the theoretical import of our models. Each
set of studies focus on learning a different decision-making
representation: Kirdly et al. (2013) examine imitation of
subgoals; Butler and Markman (2012) test learning about
generic causal properties; and Hernik and Csibra (2015)
study inferring novel tool functions. We show how these
previously reported findings can be understood in terms of
belief-directed planning and pragmatic action interpretation
given particular contexts and environmental constraints.

In short, we have developed and tested a model for charac-
terizing communicative demonstrations that combines ideas
from work on language pragmatics and pedagogy (Frank &
Goodman, 2012; Shafto et al., 2014) with work on value-
guided decision-making and planning (Dayan & Niv, 2008;
Newell & Simon, 1972). This adds to a growing body
of computational work that characterizes the communica-
tive aspects of non-verbal social interactions (Ho, Cushman,
Littman, & Austerweil, 2019; Ho, MacGlashan, Littman, &
Cushman, 2017). Additionally, our formal approach pro-
vides a complementary perspective to existing accounts of
the evolution and development of cognitive abilities support-
ing human social learning (Tomasello et al., 2005; Csibra &
Gergely, 2009). In the remainder of this section, we discuss
the implications of our work for formal models of social cog-
nition as well as our understanding of the cognitive mecha-
nisms underlying human sociality.

Summary of Model Contributions

We have developed a framework for characterizing com-
municative demonstrations that combines ideas from instru-
mental planning with those from pragmatic reasoning. Our
approach extends existing accounts in several ways by pro-
viding an account of how the meaning of communicative ac-
tions are grounded as well as how agents can reason about
both the instrumental and belief-directed effects of actions.

Grounding Communication in Instrumental Action.
Our model reveals connections between communicative
demonstrations and other forms of communication, such as
language and teaching by example. For instance, in Ra-
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tional Speech Act (Frank & Goodman, 2012; Goodman &
Frank, 2016; Yoon, Tessler, Goodman, & Frank, 2017) and
Bayesian Pedagogy (Shafto et al., 2014) models, a transmit-
ter (e.g. a speaker or teacher) provides a signal (e.g. an
utterance or an example) to a receiver (e.g. a listener or
learner) who must infer an underlying message (e.g. a lin-
guistic meaning or novel concept). In these settings, candi-
date signals have a default interpretation, which communica-
tive partners can use to recursively anticipate each others’ se-
lection of a particular signal and interpretation of that signal.
In models of linguistic pragmatics, this default interpretation
is the semantics of words, while in models of concept teach-
ing, it is a probabilistic concept class. One way to identify
such interpretations is to estimate them empirically, for in-
stance, by asking people what the expected semantics are in
non-pragmatic contexts (Frank & Goodman, 2012; Kao, Wu,
Bergen, & Goodman, 2014). Alternatively, one can derive
constraints on default interpretations assuming the cooper-
ative interpretation is optimal (Yang et al., 2017). From a
theoretical perspective, the default interpretation of signals
plays a critical role in determining how interactants can co-
ordinate on the meaning of a communicative act.

Our model illustrates a new and powerful form of default
interpretation: instrumental action and inverse planning. In
our model, the default interpretations are determined by re-
lating possible environments that an agent occupies to a the-
ory of instrumental action within that environment. That is,
it is derived from value-guided decision-making, a general
framework for describing the behavior of any adaptive sys-
tem or organism (Sutton & Barto, 1998; Newell, 1982; An-
derson, 1990). Prior work has established that the capacity
to recognize intentional behavior is present in humans from a
young age (Gergely & Csibra, 2003; Malle, 2008). In recent
years, various aspects of mindreading, including reasoning
about beliefs, desires, intentions, uncertainty, appraisal, and
emotions, have been cast as probabilistic inference (Baker,
Jara-Ettinger, Saxe, & Tenenbaum, 2017; Kiley Hamlin, UlI-
man, Tenenbaum, Goodman, & Baker, 2013; Ong, Zaki, &
Goodman, 2015). Put simply, we propose that people can
ground inferences about what a person is trying to commu-
nicate in inferences about what she is trying to do.

Reasoning about the instrumental and belief-directed
effects of actions. Instrumental actions are not inherently
communicative, but people can nonetheless use them com-
municatively. For example, consider a cyclist who takes her
hands off of the handlebars as she is riding. In itself, this is
a meaningless physical action. But, in the right context, it
acquires communicative meaning: Suppose that the cyclist is
riding beside her friend in the park and, while her friend is
watching, takes her hands off the handlebars without falling
over. In doing so, she is effectively saying, “I don’t need my
hands to stay balanced!”

Our model explains what kind of context allows inher-

ently “meaningless” actions to become “meaningful” via a
process of recursive planning and inference. Specifically,
demonstrators plan over the instrumental and belief-directed
effects of their actions, while observers infer the instrumen-
tal and/or belief-directed intentions behind a demonstrator’s
actions. We characterize these processes by merging a for-
malization of sequential decision-making (Newell & Simon,
1972; Puterman, 1994) with a formalization of recursive the-
ory of mind (Camerer et al., 2004; Baker et al., 2009).

By focusing on the interplay of instrumental and belief-
directed planning, this work builds on several existing mod-
els and suggests new directions for research. In particular, by
introducing inverse planning as a component of a learner’s
inference model, we extend work by Shafto et al., 2014
(Experiment 3) that modeled how people teach causal con-
cepts, as well as work by Buchsbaum et al., 2011 that mod-
eled teaching action sequences. Related work by Rafferty
et al., 2016 models the role of planning over learner beliefs
to teach concepts and considers how different models of a
learner’s belief dynamics affect teaching strategies. Here, we
briefly explored observer uncertainty about the demonstrator
(e.g., the uncertain pragmatic observer who reasons about
whether demonstrators are communicative), but characteriz-
ing demonstrator uncertainty about the observer in instru-
mental planning settings is a promising direction for future
work.

Connections and Future Directions

Communicative demonstrations play a key role in teach-
ing and social learning as well as a range of human so-
cial interactions. Moreover, as we have argued, the mecha-
nisms underlying communicative demonstration can be un-
derstood in terms of familiar ideas from probabilistic in-
ference (Tenenbaum & Griffiths, 2001), model-based plan-
ning (Dayan & Niv, 2008), and cooperative communica-
tion (Shafto et al., 2014; Goodman & Frank, 2016). Here,
we discuss how our account and findings connect to other
active areas of research.

First, while there is extensive research into the mech-
anisms of standard instrumental planning, belief-directed
planning has been less systematically explored. In our dis-
cussion of the model, we noted how recursive reasoning and
planning are both computationally demanding processes. A
promising approach will be to ask whether, and how, the
key features that enable efficient and powerful instrumental
planning in physical domains might also extend to the case
of belief-directed planning. These include hierarchical ac-
tion representations (Botvinick, Niv, & Barto, 2009; Barto
& Mahadevan, 2003), state abstractions (Ho, Abel, Grif-
fiths, & Littman, 2019), and function approximation (Sutton,
McAllester, Singh, & Mansour, 2000). Additionally, by bet-
ter understanding the computational processes involved in
belief-directed planning, we can ask whether it relies on the



26 HO, CUSHMAN, LITTMAN & AUSTERWEIL

same cognitive and neural substrates as instrumental plan-
ning, or instead on analogous but distinct mechanisms and
representations.

Second, our planning and inference models underscore
the flexibility of human social learning mechanisms, which
can help us understand the distinctive scale and scope of hu-
man sociality and culture. For example, there is an emerg-
ing consensus that both human children and certain non-
human primates can imitate in the strong sense of copying
intentions (Whiten, McGuigan, Marshall-Pescini, & Hop-
per, 2009). Nonetheless, only humans appear to engage in
“overimitation” whereby seemingly causally irrelevant ac-
tions are still copied by an observer with high fidelity (Lyons,
Damrosch, Lin, Macris, & Keil, 2011). Thus, precisely char-
acterizing the mechanisms underlying overimitation will be
key for understanding human cultural transmission (Keupp,
Behne, & Rakoczy, 2018; Clay & Tennie, 2018). Our
account extends previous computational proposals that at-
tempt to provide a rational interpretation of overimitation
(e.g., Buchsbaum et al., 2011). Specifically, because our
framework allows for reasoning about whether an actor has
communicative intentions, what their content might be, and
how they plan to convey this information, it can capture dif-
ferent pragmatic inferences than those of previous accounts.
For instance, interpreting an action as an ostensive cue re-
quires recognizing that the demonstrator is first establish-
ing they have an intention to communicate something and
then taking actions to communicate it. Put another way, our
framework could be used to derive ostensive cues as com-
ponents of a larger plan whose ultimate goal is to convey
information.

Additionally, our account naturally raises the question,
“What kinds of belief-directed goals do people tend to have”,
and the complementary question, “What kinds of belief-
directed goals do we tend to expect of others?” Put dif-
ferently, what are the actual and subjective priors on com-
municative intentions? Some existing theories take a strong
stand on these questions. For instance, the theory of natu-
ral pedagogy (Csibra & Gergely, 2009) proposes that child
observers treat communicative demonstrations as conveying
relevant, generalizable information (e.g. “blickets are mag-
netic”), and a number of findings support this view (Butler &
Tomasello, 2016; Butler & Markman, 2012). Our approach
suggests a way to understand why this might be the case:
Relevant, generalizable knowledge is useful, adults have lots
of it, and infants and children have much less. If an adult
initiates communication with a child, the theory of natural
pedagogy embodies a very natural prior on the adult’s com-
municative intentions. But different settings and social rela-
tionships might imply very different distributions over com-
municative intentions, as we consider next.

We have focused on communicative demonstrations
aimed at teaching skills, but this model applies to a much

larger array of human behaviors. Often, for instance, we use
communicative demonstrations in arbitrary contexts to con-
vey our feelings (e.g., giving roses on Valentine’s Day), in-
tellect (e.g., asking a very technical question during a depart-
ment colloquium) or income (e.g., driving a Maserati). Such
demonstrations are a form of costly signaling (Gintis, Smith,
& Bowles, 2001) and have been studied in situations ranging
from information search (Hoffman, Yoeli, & Nowak, 2015)
to time-consuming deliberation (Jordan, Hoffman, Nowak,
& Rand, 2016; Levine, Barasch, Rand, Berman, & Small,
2018) to third-party punishment (Millet & Dewitte, 2007;
Fehrler & Przepiorka, 2013; Jordan, Hoffman, Bloom, &
Rand, 2016). We would expect that many of the benefits of
communicative demonstrations for teaching skills carry over
into these other settings. For instance, the capacity to adap-
tively generate and interpret costly signals in novel contexts
may play a key role in supporting complex forms of coop-
eration, coordination, and politics, much like how flexible
teaching supports enhanced cultural accumulation (Tennie,
Call, & Tomasello, 2009). Future research should explore the
connections between the mechanisms we explore here, sig-
naling behaviors in other domains, and the distinctive scale
and scope of human sociality.

Conclusion

We have formulated and tested a computational account
of communicative demonstrations based on rational, belief-
directed planning and pragmatic action interpretation. The
models we develop build on existing theoretical work and
are supported by the results of novel experiments and previ-
ously reported findings. This account provides insight into
the mechanism of human communication, imitation, and in-
teraction while also suggesting future directions for examin-
ing the relationship between communicative demonstrations
and other dimensions of human sociality.
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Supplementary Materials

Details of Formalism

In this section, we describe the details of our modeling
framework and implementation. The presentation is intended
to be self-contained but builds on formal models of sequen-
tial decision-making and reinforcement learning in Markov
Decision Processes (MDPs), reviewed in Puterman, 1994,
Sutton & Barto, 1998. Code for the models and analyses
are available at https://github.com/markkho/comdem
-data-code.

Instrumental Planning and Acting

People can take intentional actions in order to achieve
their goals. For instance, when riding a bicycle to work, one
has the goal of reaching a destination while also minimizing
the amount of pedaling one has to do. This requires having a
model of the world (e.g., of how pedaling affects the wheels
and which streets lead to work) as well as a goals (e.g., being
at work, pedaling as little as possible). Planning involves us-
ing a world model to reason about what actions best realize
one’s goals and then enacting a plan.

Formally, planning and intentional action relies on a world
model that captures causal knowledge about the world and
utilities for different states of affairs. For a particular possi-
ble world w € ‘W, a transition model P(s’ | s, a; w) is defined
over an object-level state space S and describes how the en-
vironment probabilistically updates to a new state s’ given
a previous state s and an action a. An agent’s instrumental
goal maps states to utilities, G; : S — R. An agent’s instru-
mental goals can have multiple components such as the goal
to minimize action costs or use subgoals (e.g., reaching work
while pedaling as little as possible).

Planning involves computing how well a sequence of ac-
tions realizes goals, given a model of the world. This can
be represented by the value of an action, which is how much
future expected utility one gains from an action, given that
afterwards, one takes all the best actions. In general, this
quantity is difficult to compute (Bellman, 1957), but we as-
sume that in these relatively simple settings people can com-
pute this quantity near optimally.

Formally, the Q-value of an action a taken from a state s
in world w given instrumental goal Gy is represented by the
following recursive equations:

O(a,s;w) =

ZP(S’ | 's,a;w) [Gz(s, a,s') +ymax Q(a’, s"sw)|, )

where y € [0, 1] is a discount rate that controls the relative
weighting of temporally close and distant utilities.

Q-values express the goodness of actions, but a linking
function is required to translate them into action probabil-
ities. To allow for systematic deviations from perfect op-
timality, we use an g-softmax decision rule that has been
successfuly applied to modeling human decision-making in
psychology and reinforcement learning (Luce, 1959; Nas-
sar & Frank, 2016; Collins & Frank, 2018). The &-softmax
decision-rule has two parameters: a random choice proba-
bility € and a softmax inverse temperature parameter @. In-
tuitively, the decision rule expresses randomly selecting any
available action with probability € or choosing an action that
soft-maximizes the Q-value with inverse temperature param-
eter @. The action probabilities associated with a plan r are
then:

eaQ(s,a;w) &

Zew Taer @

n(als;w)=(1-eg)
where Z(s;w) = 3, e*2%W is a normalizing constant and
[A(s)| is the number of actions available at a state s.
Enacting a plan involves both the agent’s plan and the
actual dynamics of the world. In this work, we fo-
cus on how enacted plans lead to demonstrations that
both the actor and observer are aware of. Formally, a
demonstration is a sequence of states and actions, D =
(80, ao, S1, ..., ST—1,ar-1, ST) that results from executing a
plan 7 in the world w. The probability of a demonstration
starting from a state s is then:

T

PD | m,w) = [ | @ | s w)P(siar | siasw) (7
t=0

Inverse planning and literal observer models

We are interested in how observers interpret demonstra-
tions, and what consequences this has for communication.
The interpretation of intentional action has been successfully
modeled as inverse planning (Baker et al., 2009), in which
a generative model of planning is “inverted” to allow for in-
ferences about what intentions gave rise to an observed se-
quence of actions. In our case, we are interested in how
observers can draw inferences about the world by assuming
actions are generated by a plan. Formally, this corresponds
to doing Bayesian inference over the demonstration model
expressed in Equation 7:

Pw | D,Gy) o< P(D | w,Gp)P(w)
= > PO WP | w.GHPw) &)

As we discuss in the main text, this process of inverse
planning can be used to define a literal observer model O
by associating beliefs b with probability distributions that are
updated according to Equation 8. Specifically, the one-step
literal observer belief state updates upon observing a state,
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action, and next-state are given by:

oL’ | s,b,a,s")

| if for all w, )
= b'(w) < m(a | s;w)P(s" | s, a; wb(w)
0 otherwise

We note that this formulation of belief-state transitions is
analogous to techniques for transforming partially observ-
able Markov decision processes (POMDPs) into fully ob-
servable belief-state Markov decision processes (Kaelbling,
Littman, & Cassandra, 1998). The key difference is that we
consider belief dynamics in another agent rather than in one’s
own belief space. Additionally, here we assume that observer
belief dynamics are deterministic and known, but it would be
straightforward to extend these ideas to richer observer infer-
ence models (e.g., see work by Rafferty et al., 2016).

Planning and Acting in Belief Space

Instrumental plans determine the optimal actions given a
world model w and instrumental goals G;. We can extend
this logic to planning and acting in belief space by having
Q-values additionally incorporate observer belief dynamics,
Oy, and belief-directed goals, Gg. Formally, the Q-values for
a belief-directed agent are:

O(a, s, b;w) =
DU | 5,0 w0 | 5,b,0)|
o Gi(s.a,s'sw) (10)
+BGp(b’, by w)

+ymax Q(d’, s',b’; w)]
p

where 8 € R* is a belief-directed goal weighting parameter.
Note that when 8 = 0, the belief-directed Q-values are equal
to the instrumental Q-values.

This formulation is general enough to express arbitrary
belief-directed goals (e.g., wanting to hide one’s intentions
rather than show them). Here, we focus on belief-directed
goals that involve increasing an observer’s belief in the true
state of the world:

Gp(b',b;w) = b'(w) — b(w). an

Given the Q-values over joint ground and belief states
(Equation 10), we can use the &-softmax decision rule to
determine the belief-directed plan, n(a | s,b;w). Note that
belief-directed plans, unlike instrumental plans, are deter-
mined by both the current state of the world s, as well as
the observer’s current beliefs, b.

Approximating Belief-directed planning. Here we de-
scribe the algorithmic details of our approximation proce-
dure for solving a belief-directed plan for the Gridworld tasks

(Experiments 1 and 2). To model planning in belief space,
it is necessary to approximate the value function. We did
this by constructing a discretized, point-based MDP with
an approximate ground and belief-state transition function
P(s’,b" | s,b,a) (Munos & Moore, 2002). We discretized
the original belief-state space to a set Bp and constructed
a transition function where, for each a € A, s € S, and
bp € Bp, P(s',b}, | a,s,bp) = Xy P(s" | s,a;w)OL(b" |
bp, s,a, s")NN(b', by,), where NN(s', s7,) is an indicator func-
tion for whether out of the points in Bp, b}, is the near-
est neighbor of »’. This then serves as a tabular belief-
space MDP that approximates the dynamics of the true MDP
that we solve exactly using dynamic programming (Bellman,
1957). We note that the set Bp itself was constructed by ex-
ploring the belief-space from an initial state (uniform belief)
using a g-softmax policy associated with each w € ‘W for
a given Gridworld or the entire dataset generated by par-
ticipants on an experiment. This ensured that although the
belief-space dynamics were approximated, this approxima-
tion was independent of the particular task or trial that was
being communicated.

Pragmatic Action Interpretation

To model pragmatic action interpretation, we can extend
the inverse planning process described by Equation 8 to in-
volve inference over planning that is directed towards a literal
observer’s beliefs:

P(W | D’G1a0L7GB) &

> P(D | 7.w)P(x | w,Gr.01. G5)P(w) (12)
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Experiment 1: Modeling Details
Task Model

We model each trial as its own configuration of feature
values with the same set of states, actions, transition dynam-
ics, and discount rate, but a different environment rewards
formally expressed as a utility function. To make the role
of reward-based features explicit, we define a state feature
function, ¢, that maps each location state s € S to a binary
5-dimensional vector where each entry corresponds to one of
the colors (in order: white, yellow, orange, purple, or blue).
The reward function is determined by a reward weight vec-
tor 6,,. For example, when purple and blue are dangerous,
6, = [0,10,0,-2,-2]. The reward for ending up in a blue
state s” after taking action a in state s is determined by the
feature function applied to s’, ¢(s") = [0,0,0,0, 1], and the
reward weight vector, yielding G;(s") = 6]¢(s"). The ob-
server starts with a uniform distribution over eight possible
worlds w € ‘W and reward weights, 6,,. This corresponds
to uncertainty about whether each of the orange, purple, and
blue rewards are zero or -2.

Simulations

Using the task model described above, we simulated how
an agent who only has instrumental utilities would act ver-
sus one who also has belief-directed utilities. For each pos-
sible world w, we calculated an instrumental demonstrator,
ni(a | s;w), that serves as a model of a person who is sim-
ply doing the task. Parameter values were chosen to capture
behavior that performs the task effectively with only minor
deviations (é = .05, ¢ = .05, and y = .95). Additionally,
we use these demonstrator models to define the generative
model used to update a literal observer’s beliefs.

For each possible world w we calculated a belief-directed
demonstrator, mz(a |, s,b;w), who plans over a composite
model of the task and literal observer. The model we cal-
culated used an informativeness multiplier 8 = 10, and the
remaining parameters were set to be the same as those of
the instrumental demonstrator (i = .05, gg = .05, and
YB = 95)

For the instrumental agent, 7r;(a | s; w), we generated sim-
ulated trajectories by initializing it at the starting tile and then
repeatedly sampling actions and transitioning to next states
until it reached the goal. The same was done for the belief-
directed agent, ng(a |, s, b; w), except we also initialized the
observer’s belief state as a uniform distribution over the eight
possible reward structures and recorded the new belief state
at each timestep. Each agent was simulated on each task 100
times.

Demonstrator Model-fitting

We focused on fitting belief-directed demonstrator mod-
els to each participant. To fit belief-directed demonstrators,

np, to individual participants, we consider a space of mod-
els parameterized by seven values: The discount rate and
g-softmax values of the demonstrator’s model of the ob-
server’s model of instrumental planners (¥, &, £); the show-
ing discount rate and e-softmax values of the belief-directed
demonstrator (y, @, €); and the belief-directed reward weight
(B). Since literal belief transitions are determined by how
well an action distinguishes one possible world w from an-
other, the parameters of the generative model of the in-
verse planner (¥, &, &) control how informative actions are
expected to be for the observer. Meanwhile, the parame-
ters involved in belief-directed planning (y, ag, &, B) reflect a
communicative demonstrator’s general motivation and strat-
egy for conveying information. We searched the parameters
shown in Table 1, and maximum likelihood parameter esti-
mates are shown in Table 2.

Instrumental planning is a special case of belief-directed
planning (8 = O or & = 1.0 or & — oo0). Thus, to assess
whether belief-directed planning explains behavior in Show
better than instrumental planning, we conducted likelihood-
ratio tests with @ = 1000, € = 1, and 8 = 0 as the null
model. This makes the total difference in degrees of freedom
four per model. As reported in the main text, we compared
fitted instrumental planners with belief-directed planners and
found that the latter better accounted for the data in Show.
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.8, .85, .9, .95, .99, .9999
0.0, .025, .05, .075, .1, .125, .15, .175, .2
0.1,0.2,04,0.6,08, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0
.8,.85,.9,.95, .99
.01, .02, .03, .04, .05, .06, .07, .08, .09, .1, .2, .3
0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0
0,1,2,3,4,5,6,7,8,9, 10, 15, 20, 25

Table 1
Experiment 1: Model-parameters evaluated using grid search.

Parameter Description Do Show

Discount Rate (nested) b% 0.96 (0.01) 0.93 (0.01)
Random Choice (nested) g 0.12 (0.02) 0.09 (0.01)
Softmax Temperature (nested) &'  2.20(0.25) 1.64 (0.25)
Belief-directed utility weight S8 2.55(0.74) 5.31(1.35)
Discount Rate y 0.93 (0.01) 0.93 (0.01)
Random Choice £ 0.04 (0.01) 0.05 (0.01)
Softmax Temperature o' 0.15(0.03) 0.22(0.04)

Table 2

Experiment 1a model parameter estimates. Means and standard errors across participants (n = 29 for each condition,).

Experiment 2: Modeling Details
Results
Task Model

Similar to Experiment 1, each trial can be modeled as a
parameterization of the transition function, P(s" | s,a;w).
We define a state feature function, ¢ that maps each tile state
s € 8§ to a 6-vector where the first four entries are binary
and correspond to color (white, yellow, red, green), and the
last two entries correspond to the x, y coordinates of the tile.
The distribution over next states given the previous state and
action are defined using transformations over the different
features. For example, on a strong jumper trial, w = Strong,
taking the action T from a green tile increments the value of
the x feature by two with probability 3/4, and by one with
probability 1/4 (assuming that the green tile is at least two
tiles away from the top edge of the grid). On each trial, the
observer starts with a uniform distribution over two transi-
tion functions corresponding to the green tiles being strong
or weak.

Simulations

Using the above task model for each trial, we simulated
an instrumental planner, 7;, and a belief-directed planner,
ng. Except for the communicative reward, which was set
to 8 = 5 to be commensurate with the goal reward, the same
parameters were used as in Experiment 1. For each trial we

generated 100 trajectories, and the procedure for generating
trajectories was the same as in Experiment 1.

Demonstrator Model-Fitting

Separate belief-directed planning models were fit to each
participant in the two conditions, each of which had seven
parameters. These were then compared with a null model in
which é — o0, & = 1, and 8 = 0, which is equivalent to
an instrumental planning model. Searched values are shown
in Table 3, and maximum likelihood parameter estimates are
shown in Table 4.
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Figure 14. Experiment 2a participant trajectories by condition and trial.

Infant Observer Studies Modeling
Butler & Markman, 2012 Model Formulation

For the model, we first specify some assumptions about
the observer’s prior beliefs: (1) She knows the demonstra-
tor has the goal of putting the blicket away; (2) she does not
know whether blickets are magnetic; and (3) she believes that
blickets are more likely to be non-magnetic than magnetic.
Thus, formally, the observer starts with a distribution over
two possibilities, Wyag and Wierr. When w = Wy, blickets
are magnetic, and when they interact with paperclips they
stick to them with a high probability, pgick. Additionally, we
also assume that it is possible for the paperclips to stick to the

blicket because of some alternative (unspecified) cause that
is entirely independent of magnetism. This is determined
by the alternative sticking probability pajy. If blickets are
magnetic, then the probability of sticking is calculated with
a noisy-or distribution (Pearl, 1988).

The demonstrator starts in a state where the blicket is on
the table and can either put it away or put it on the paper-
clips. If he chooses Put Away, this will most likely result in
BLicker Putr Away, but there is a small probability of him ac-
cidentally slipping and the blicket landing on the paperclips
(psiip = 0.20) before it is then put away. If he chooses Put on
Paperclips, then it lands on the paperclips with probability 1
before being put away. Whether the paperclips and blicket
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Parameter Values
y 1,.2,.3,.4,.5,.6,.7,.75, .8, .85,.9, .95, .99
g 0.0, .02, .06, .08, .12, .16, .18, .22, .26, .28, .32, .36, .38, .42, .46, .48
51 0.00, 0.05, .1, 0.15, .2, .25, .3, .35, 4, 45, .5, .55,
.6, .65,.7,.75, .8, .85, .9, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0
y 1,.2,.3,4,.5,.6,.7,.75,.8, .85,.9, .95, .99
& 0.0, .02, .06, .08, .12, .16, .18, .22, .26, .28, .32, .36, .38, .42, .46, .48
1 0.00, 0.05, .1, 0.15, .2, .25, .3, .35, .4, 45, .5, .55,
@ .6, .65,.7,.75, .8, .85, .9, 1.0, 2.0, 3.0,4.0, 5.0, 6.0
B 0,1,2,3,4,5,6,7,8,9, 10, 15, 20, 25

Table 3
Experiment 2a: Model-parameters searched in gridsearch.

Do Show
y 0.58 (0.05) 0.78 (0.05)
g 0.25(0.03) 0.24 (0.03)
@' 083(0.27) 1.11(0.28)
B 1.49 (0.33) 5.68 (0.78)
y 0.84 (0.04) 0.76 (0.04)
e 0.03 (0.01) 0.18 (0.02)
o~ 0.05(0.01) 0.08(0.01)

Table 4

Experiment 2a model parameter estimates. Means and standard errors across participants (np, = 39, Hgpow = 41).

stick together depends on whether blickets are magnetic or
inert, as described in the previous paragraph. The instrumen-
tal utilities are +1 for putting the blicket away and -0.1 for
each action taken (e.g., putting it on the paperclips and then
putting it away is 2 steps).

This formulation of the task allows us to distinguish be-
tween the blicket accidentally landing on the paperclips,
which occurs in the Accidental condition, and the blicket in-
tentionally landing on the paperclips, which occurs in both
the Intentional and Communicative conditions (Figure 11a).
The accidental demonstration can be modeled as the se-
quence where the demonstrator first takes the action Put
Away, but then slips and lands on the PAPERCLIPS ATTACHED
state before ending on the BLickeT Pur Away state. In con-
trast, the intentional/communicative demonstrations directly
place the blicket on the paperclips by selecting Put On Pa-
perclips, having them attach, and then putting it away.

All demonstrator models select actions using a softmax
policy with @ = 0.2 (there is no random choice; € = 0.0).

Although Butler and Markman (2012) report two measures
of exploration on a different task, this is primarily in order to
assess the strength of the inference about whether blickets are
magnetic. Thus, we report the probabilities calculated by our
model directly rather than make any assumptions about how
these relate to exploratory behavior. As shown in Figure 15,
the equivalance of the Intentional and Accidental conditions
as well as the higher belief in blicket magnetism in the Com-
municative condition are consistent across a range of param-
eters.

Hernik & Csibra, 2015 Model Formulation

Although the studies in question involve multiple coun-
terbalanced training trials, in order to understand how the
key findings relate to our account it suffices to explore the
inferences our models make after observing a single training
trial. Specifically, we model a trial in which the banana’s
initial state is UNPEELED and its final state is either PEELED or
UnpeeLep. Additionally, we make the following assumptions
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Figure 15. Behavior of observer models for Butler & Markman, 2012 for a range of parameter values. p(wyyq, is the prior probability of
blicket magnetism; p(Wuq, | D) is the posterior belief in blicket magnetism having observed the demonstration; p4y is the alternative cause
probability; ps.ic is the the probability of paperclips sticking given blickets are magnetic; S is the teaching weight bias. The points enclosed
in the dotted line corresponds to the parameters reported in the main text as a point of reference. For a range of teacher weights (top row),
alternative cause probabilities (middle row), and magnetic strength values (bottom row), the Intentional and Accidental conditions are equal
while the Communicative condition is substantially higher, mirroring the general pattern of results found in the study. For all simulations,
the planning model was held constant with random choice, & = 0.0; and softmax choice probability, & = 0.2.

about observer prior beliefs: (1) There is a background prob-
ability that the objects will change independent of tool use
or effectiveness, and (2) arbitrary tools and arbitrary objects
do not usually causally interact. We note that although the
participants never see the banana changed independently of
the tool, they must be able to represent the possibility that
the tool was not the cause of the banana’s transformation.
Thus, although it does not need to be exactly specified, there
must be some alternative cause of the transformation which
is why we assume there is some non-zero probability that
the objects will change independent of tool use. Formally,
we assume that a background probability of objects changing
due to an alternative cause, pay; that there are two relevant
possible worlds w where either the banana is a peeler (Wpeeler)
or not (Wert); and that the initial probability of the tool being
a banana peeler is low (i.e. b(Wpeeler) < .5).

The demonstrator starts in the UNPEELED state and can
choose either Do Nothing or Use Tool. If he chooses Do
Nothing, then regardless of whether the tool is a banana
peeler or not the state transitions to PEELED or UNPEELED ac-
cording to the background probability. On the other hand,
if he chooses Use Tool, then the probability of transitioning
depends on the specific world. If the world is Wpeejer, then
it will transition to UNPEELED based on a combination of the

background transition probability and the tool’s effectiveness
(OE f fectiveness)- Specifically, we assume that these two com-
bine in a “noisy-or” manner where the effect occurs if either
cause (or both) are activated (Pearl, 1988). Additionally, we
assume a small step-cost of using the tool (—.1) and that there
is a reward for peeling the banana (+1). If the tool does not
have the function of being a banana peeler and true world is
Whert> then Use Tool has the same transition probabilities as
Do Nothing. The different transition and utility functions are
visualized in Figure 12b.

A linking function is required to connect the model out-
puts to the measure reported in the experiments. We can
simulate the violation of expectation measure by calculating
the surprisal (the negative log probability) of a congruent or
incongruent trial given a model’s posterior distribution. We
can then use that distribution to calculate how surprised the
model would be to see the congruent or incongruent test tri-
als, where the actions are assumed to be taken instrumentally.

All demonstrator models select actions with a softmax
policy (@ = 0.2). Figure 16 shows the results when param-
eterically varying the background probability (p4y), the tool
efficacy (0 ficacy), and the teaching weight (8). Overall, we
see that the amplification of inferences about the peeler tool
increases in the communicative conditions consistently, but
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Figure 16. Behavior of pragmatic observer model for Hernik & Csibra, 2015 for a range of parameter values. p(Wpeer) is the prior probability
that the tool is a peeler; pyy is the probability of an alternative (unspecified) cause of the banana changing; 0 fficacy 1S the probability that the
banana changes if the tool is in fact a peeler; and (3 is the teaching weight. The points enclosed in the dotted line indicate the set of values that
are plotted in the main text to provide a point of reference. Colors correspond to the study modeled, solid lines are the congruent trials, and
dotted lines are the incongruent trials. Across all parameterizations, the communicative trials in which the banana changed lead to stronger
versions of the inferences made in the non-communicative trials (green versus blue lines). The inferences made in the communicative trial
where the banana did not change is less consistent across parameterizations (yellow lines), indicating that the inferred communicative intent
in such an ambiguous situation is sensitive to background beliefs. For all simulations, the planning model was held constant with random

choice, € = 0.0 and softmax choice probability, @ = 0.2.

that the inferences when the tool is communicatively pre-
sented without any change are more sensitive to prior beliefs
about the peeler and the probability of alternative causes.

Kiraly et al., 2013 Model Formulation

We can formalize the experiment in our modeling frame-
work. Specifically, we begin by specifying the following two
assumptions about the observer’s prior: (1) Whether the box
lights up when touched is initially unknown to observer, and
(2) a demonstrator is more likely to have using their hands
as a subgoal rather than using their head. Formally, beliefs
about the box being a light is represented with a distribution
over a binary variable p(Wpox-is-Light). Subgoals are repre-
sented as action priors (Wingate, Goodman, Roy, Kaelbling,
& Tenenbaum, 2011) that operate as a bias over different ac-
tions in the following manner: The function A assigns a prior
probability to each action, and A(a) = 1. Uncertainty about
subgoals is then represented as a distribution over different
action priors, A. The observer considers two possible ac-

tion priors, Apaug and Apeqq, paramterized by an action bias
strength 84 € [0, 1], where Aacion(a) = 65 if a matches Ac-
tion and A Aion(a) = 1—6j if not. Note that we use a softmax
action rule, so the action prior can be incorporated into the
Q-value as log A(a) (see Equation 13 below). To summa-
rize, the learner’s prior requires specifying three parameters:
the distributions p(Wgox-is-Light) and p(A), and the action bias
strength 6.

The experimental setup itself can be modeled as a demon-
strator who begins in a state s that has variables with
values, sg,, = Unlit and syu.us € {Free,Occupied}.
If sgauas = Free, then they have three actions avail-
able, A(s) = {Do Nothing,Use Hand,Use Head}, but if
SHands = Occupied, then A(s) = {Do Nothing,Use Head}.
That is, they can only use their head if their hands are oc-
cupied. Taking an action potentially modifies the state such
that s == Lit or s, = Unlit depending on the value
of WRox-is-Light-  The demonstrator plans and selects actions
based on the expected utility of an action from a state, taking
into account instrumental goals (Gy), action biases (A), and
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Figure 17. Behavior of pragmatic observer model for Kirdly et al., 2013 for a range of parameter values. p(Wgoy_is-rLighs) 1S the prior
probability that the box lights up; 65 is the subgoal bias strength; m(Use Head) is the probability that the observer model, having observed
a demonstration in a context, imitates the action Use Head; p(Ap..q) is the prior probability that using one’s head and not one’s hand is a
subgoal, given turning on the light is a goal. The points enclosed in the dotted line correspond to the parameters reported in the main text
as a point of reference. The general pattern of results that communicative demonstrations (dotted lines) lead to more extreme imitation of
using one’s head or not holds across a range of parameters as long as the subgoal bias (A) is sufficiently greater than .5, and the novelty of
the head action (i.e. 1 — p(Use Hand Subgoal)) is high. The red lines correspond to the No Effect condition from Experiment 2 reported by
Kirdly et al., 2013 and are consistently lower than all the other conditions. For all simulations, planning decision rule was held constant with
the teaching weight, = 1; random choice, & = 0.0; and softmax choice probability, & = 0.2.

communicative goals (G¢):

O(a, s,b;w,A) =

D UP(s | 5.6 w0 | 5,b,0)|

s,b’

Gi(s";w)
+ log A(a)
+BGc(b', by w)]

In our implementation, the reward associated with turning
the light on was always 1. Additionally, the demonstra-
tor’s action selection rule always had a softmax parameter,
@' = 0.2 and no random choice (& = 0.0).

Since Kirély et al., 2013 operationalized social learning
by measuring the rate of head-action imitation, we need a
linking function from resulting posterior beliefs (i.e., b(w |
s,a, s")) to behavior (i.e., m(a | s,b")). To model how the
infant observers would act after having observed a demon-

(13)
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stration, we calculated the policy that is optimal in expecta-
tion based on the resulting observer belief b, and report the
softmax policy probabilities (é = 2.5) when sygqs = Free
and sp,, = Unlit.

Using this setup, we modeled five of the experimental
conditions reported by Kirdly et al., 2013: the Communica-
tive/Instrumental x Hands Occupied/Hands Free conditions
reported in Experiment 1, and the No Effect condition in Ex-

periment 2, in which the demonstrator ostensively cued the
participant before using their head to fry and turn on the box
without it turning on. Figure 17 shows the outputs of the
model for the different conditions over a range of parameter-
izations of prior beliefs. In general, we find that the model
captures the qualitative patterns reported in the original stud-
ies.



