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Abstract: We study a noisy tensor completion problem of broad practical interest, namely,
the reconstruction of a low-rank tensor from highly incomplete and randomly corrupted
observations of its entries. Whereas a variety of prior work has been dedicated to this prob-
lem, prior algorithms either are computationally too expensive for large-scale applications
or come with suboptimal statistical guarantees. Focusing on “incoherent” and well-condi-
tioned tensors of a constant canonical polyadic rank, we propose a two-stage nonconvex al-
gorithm—(vanilla) gradient descent following a rough initialization—that achieves the
best of both worlds. Specifically, the proposed nonconvex algorithm faithfully completes
the tensor and retrieves all individual tensor factors within nearly linear time, while at the
same time enjoying near-optimal statistical guarantees (i.e., minimal sample complexity
and optimal estimation accuracy). The estimation errors are evenly spread out across all
entries, thus achieving optimal ℓ∞ statistical accuracy. We also discuss how to extend our
approach to accommodate asymmetric tensors. The insight conveyed through our analysis
of nonconvex optimization might have implications for other tensor estimation problems.

Open Access Statement: This work is licensed under a Creative Commons Attribution 4.0 International
License. You are free to copy, distribute, transmit and adapt this work, but you must attribute this
work as “Operations Research. Copyright © 2021 The Author(s). https://doi.org/10.1287/opre.2021.
2106, used under a Creative Commons Attribution License: https://creativecommons.org/licenses/
by/4.0/.”

Funding: Y. Chen is supported in part by the Air Force Office of Scientific Research [Grant FA9550-19-
1-0030], by the Office of Naval Research [Grant N00014-19-1-2120], by the Army Research Office
[Grants W911NF-18-1-0303 and W911NF-20-1-0097], by the National Science Foundation (NSF)
[Grants CCF-1907661, IIS-1900140, and IIS-2100158], and by a Princeton SEAS Innovation Award.
H. V. Poor is supported in part by the NSF [Grant DMS-1736417]. C. Cai is supported in part by a
Gordon Y. S. Wu Fellowship in Engineering. This work was done in part while Y. Chen was visit-
ing the Kavli Institute for Theoretical Physics, supported in part by the NSF [Grant PHY-1748958].

Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2021.2106.

Keywords: tensor completion • nonconvex optimization • gradient descent • spectral methods • entrywise statistical guarantees • minimaxity

1. Introduction and Motivation
1.1. Tensor Completion from Noisy Entries
Estimation of low-complexity models from highly in-
complete observations is a fundamental task that
spans a diverse array of science and engineering appli-
cations. Arguably one of the most extensively studied
problems of this kind is matrix completion, where one
wishes to recover a low-rank matrix given only partial
entries (Davenport and Romberg 2016, Chen and Chi
2018). Moving beyond matrix-type data, a natural
higher-order generalization is low-rank tensor comple-
tion, which aims to reconstruct a low-rank tensor
when the vast majority of its entries are unseen. There
is certainly no shortage of applications that motivate
the investigation of tensor completion (e.g., person-
alized medicine (Soroushmehr and Najarian 2016,

Pawlowski 2019), medical imaging (Gandy et al. 2011,
Semerci et al. 2014, Cheng et al. 2017), seismic data
analysis (Kreimer et al. 2013, Ely et al. 2013), and multi-
dimensional harmonic retrieval (Chen and Chi 2014,
Ying et al. 2017)). One concrete example in operations
research arises when learning the preference of individ-
ual customers for a collection of products on the basis
of historical transactions (Farias and Li 2019, Mišić and
Perakis 2020). Given the limited availability of transac-
tion data (e.g., each customer might only have pur-
chased very few products before), it is crucial to exploit
multiway customer-product interactions (e.g., users’
browsing and searching histories) in order to better
predict the likelihood of a customer purchasing a new
product. Clearly, the presence of missing data and the
need of exploiting a multiway structure result in the
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task of tensor completion. Additionally, tensor comple-
tion finds important applications in visual data in-
painting (Liu et al. 2013, Li et al. 2017), where one wish-
es to reconstruct video data (or a sequence of images)
from incomplete measurements. The video data consist
of at least two spatial variables and one temporal vari-
able, whose intrinsic connections are often modeled via
certain low-complexity tensors.

For the sake of clarity, we phrase the problem for-
mally before we proceed, focusing on a simple model
that already captures the intrinsic difficulty of tensor
completion in many aspects.1 Imagine that we are
asked to estimate a symmetric order-3 tensor2 T? ∈
R

d×d×d from a small number of noisy entries
Tj,k,l � T?

j,k,l +Ej,k,l, ∀( j,k, l) ∈Ω, (1)

where Tj,k,l is the observed noisy entry at location ( j,k, l),
Ej,k,l stands for the associated noise, and Ω ⊆ {1, ⋯ ,d}3 is
a symmetric index subset to sample from. For notational
simplicity, we set T � [Tj,k,l]1≤j,k,l≤d and E � [Ej,k,l]1≤j,k,l≤d,
with Tj,k,l � Ej,k,l � 0 for any ( j,k, l) ∉Ω. We adopt a random
sampling model such that each index ( j,k, l) ( j ≤ k ≤ l) is
included inΩ independentlywith probability p. In addition,
we know a priori that the unknown tensor T? ∈ R

d×d×d is a
superposition of r rank-one tensors (often termed canonical
polyadic [CP] decomposition if r is minimal):

T? �∑r
i�1

u?i ⊗ u?i ⊗ u?i , or more concisely;

T? �∑r
i�1

u?⊗3i ,
(2)

where each u?i ∈ R
d represents one of the r low-rank

tensor components/factors. Here and throughout, for
any vectors a,b, c ∈ R

d, the tensor a⊗ b⊗ c is a d × d ×
d array whose ( j,k, l) th entry is given by ajbkcl. The
primary question is this: Can we hope to faithfully
estimate T?, as well as the individual tensor factors
{u?i }1≤i≤r, from the partially revealed entries (1), assum-
ing that r is reasonably small?

1.2. Computational and Statistical Challenges
Even though tensor completion conceptually resembles
matrix completion in various ways, it is considerably
more challenging than the matrix counterpart. This is
perhaps not surprising, given that a plethora of natural
tensor problems (e.g., computing the spectral norm,
finding the best low-rank approximation) are all notori-
ously hard (Hillar and Lim 2013). As a notable example,
whereas matrix completion is often efficiently solvable
under nearly minimal sample complexity (Candès and
Recht 2009, Gross 2011), all polynomial-time algorithms
developed so far for tensor completion—even in the
noise-free case—require a sample size at least exceeding
the order of rd3=2, which is substantially larger than the
degrees of freedom (i.e., rd) underlying the model (2).

In fact, it is widely conjectured that there exists a large
computational barrier away from the information-theo-
retic sampling limits (Barak andMoitra 2016).

With this fundamental gap in mind, the current pa-
per focuses on the regime (in terms of the sample size)
that enables reliable tensor completion in polynomial
time. A variety of algorithms have been proposed that
enjoy some sort of theoretical guarantees in (at least
part of) this regime, including, but not limited to, spec-
tral methods (Montanari and Sun 2018, Cai et al. 2021),
sum-of-squares hierarchy (Barak and Moitra 2016,
Potechin and Steurer 2017), nonconvex algorithms (Jain
and Oh 2014, Xia and Yuan 2017), and also convex re-
laxation (based on proper unfolding) (Gandy et al.
2011, Romera-Paredes and Pontil 2013, Goldfarb and
Qin 2014, Huang et al. 2015). Whereas these are all
polynomial-time algorithms, most of the computational
complexities supported by prior theory remain prohibi-
tively high when dealing with large-scale tensor data—
a point that we shall elaborate on later. The only excep-
tion is the unfolding-based spectral method, which,
however, fails to achieve exact recovery as the noise
vanishes. This leads to the following critical question.

Question 1. Is there any linear-time algorithm that is
guaranteed to work for low-rank tensor completion?

Going beyond such computational concerns, one
might naturally wonder whether it is also possible for
a fast algorithm to achieve a nearly unimprovable sta-
tistical accuracy in the presence of noise. Toward this
end, intriguing stability guarantees have been estab-
lished for sum-of-squares hierarchy in the noisy set-
tings (Barak and Moitra 2016), although this paradigm
is computationally expensive for large-scale data. In a
recent work, Xia et al. (2017) came up with a two-stage
algorithm (i.e., a spectral method followed by tensor
power iterations) for noisy tensor completion. Its esti-
mation accuracy, however, falls short of achieving ex-
act recovery in the absence of noise. This gives rise to
another question of fundamental importance.

Question 2. Can we achieve near-optimal statistical accu-
racy without compromising computational efficiency?

In this paper, we aim to address these two ques-
tions by developing a nonconvex algorithm that
achieves optimal computational efficiency and statisti-
cal accuracy all at once.

2. Algorithm and Main Results
2.1. A Two-Stage Nonconvex Algorithm
To address the aforementioned challenges, a first im-
pulse is to resort to the following least-squares problem:

minimize
u1,⋯, ur∈Rd

∑
j, k, l∈Ω

∑r
i�1u

⊗3
i

[ ]
j,k,l

− Tj,k,l

( )2
, (3)
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or, more concisely (up to proper rescaling),

minimize
U∈Rd×r

f (U) :� 1
6p

∣∣∣∣∣∣PΩ

(∑r
i�1

u⊗3i − T
)∣∣∣∣∣∣2

F
, (4)

if we take U :� [u1, : : : ,ur] ∈ R
d×r. Here, we denote by

PΩ(T) the orthogonal projection of any tensor T onto
the subspace of tensors that vanish outside of the in-
dex set Ω. This optimization problem, however, is
highly nonconvex (which involves minimizing a de-
gree-6 polynomial), thus resulting in computational
intractability in general.

Fortunately, not all nonconvex problems are as
daunting to solve as they may seem. For example,
recent years have seen a flurry of activity in low-
rank matrix factorization via nonconvex optimiza-
tion, which provably achieves optimal statistical ac-
curacy and computational efficiency at once (see Chi
et al. 2019 for an overview of recent advances). Moti-
vated by this strand of work, we propose to solve (4)
via a two-stage nonconvex paradigm, which we pre-
sent in reverse order. The whole procedure is sum-
marized in Algorithms 1–3.

2.1.1. Gradient Descent (GD). Arguably one of the
simplest optimization algorithms is gradient descent,
which adopts a gradient update rule

Ut+1 � Ut − ηt�f (Ut), t � 0, 1, ⋯ , (5)

where ηt is the learning rate or the step size and Ut ∈
R

d×r is the estimate in the t th iteration. The main com-
putational burden in each iteration lies in gradient
evaluation, which, in this case, can be performed in
time proportional to that taken to read the data.

Despite the simplicity of this algorithm, two critical
issues stand out and might significantly affect its effi-
ciency, which we shall bear in mind throughout the
algorithmic and theoretical development.

i. Local stationary points and initialization. As is well
known, GD is guaranteed to find an approximate local
stationary point, provided that the learning rates do not
exceed the inverse Lipschitz constant of the gradient
(Bubeck 2015). There exist, however, local stationary
points (e.g., saddle points or spurious local minima) that
might fall short of the desired statistical properties. This
requires us to properly avoid such undesired points,
while retaining computational efficiency. To address
this issue, one strategy is to first identify a rough initial
guess within a local region surrounding the global solu-
tion (which often helps rule out bad local minima), in or-
der to guarantee proper convergence of subsequent opti-
mization procedures (Jain and Oh 2014, Li and Tang
2017). As a side remark, although careful initialization
might not be crucial for several matrix recovery cases
(Gilboa et al. 2018, Chen et al. 2019c, Tan and Vershynin
2019), it does seem to be critical in various tensor prob-
lems (Richard and Montanari 2014). We shall elucidate
this point in Section EC.1 in the e-companion.

ii. Learning rates and regularization. Learning rates play
a pivotal role in determining the convergence properties
of GD. The challenge, however, is that the loss function
(4) is overall not sufficiently smooth (i.e., its gradient of-
ten has an exceedingly large Lipschitz constant), and
hence generic optimization theory recommends a pessi-
mistically slow update rule (i.e., an extremely small
learning rate) so as to guard against overshooting. This,
however, slows down the algorithm significantly, thus
destroying the main computational advantage of GD
(i.e., low per-iteration cost). With this issue in mind, pri-
or literature suggests carefully designed regularization
steps (e.g., proper projection, regularized loss functions)
in order to improve the geometry of the optimization
landscape (Xia and Yuan 2017). In contrast, we argue
that one is allowed to take a constant learning rate—
which is as aggressive as it can possibly be—even with-
out enforcing any regularization procedures.

Algorithm 1 (Gradient Descent for Nonconvex Tensor
Completion)

1: Generate an initial estimate U0 ∈ R
d×r via

Algorithm 2.
2: for t � 0, 1, : : : , t0 − 1 do
3: Ut+1 �Ut − ηt�f (Ut) �Ut − ηt

p PΩ(
∑r

i�1(uti)⊗3 −T)
×seq
1 Ut ×seq

2 Ut, where ×seq
1 and ×seq

2 are defined in
Section 2.4.

2.1.2. Initialization. Motivated by the aforementioned
issue (i), we develop a procedure that guarantees a
reasonable initial estimate. In a nutshell, the proposed
procedure consists of two steps:

a. estimate the subspace spanned by the r low-rank
tensor factors {u?i }1≤i≤r via a spectral method;

b. disentangle individual low-rank tensor factors
from this subspace estimate.

As we shall see momentarily, the total computational
complexity of the proposed initialization is O(pd3) when
r �O(1), κ �O(1), and p ≥ 1=d2 (where κ is a sort of
“condition number” defined later), which is a linear-time
algorithm. Note, however, that these two steps in the ini-
tialization procedure are relatively more complicated to
describe. To improve the flow of the current paper, we
postpone the details to Section 3. The readers can catch a
glimpse of these procedures inAlgorithms 2–3.

Algorithm 2 (Spectral Initialization for Nonconvex Ten-
sor Completion)

1: LetUΛU
 be the rank-r eigen-decomposition of

B :� Poff−diag(AA
), (6)

where A � unfold (p−1T) is the mode-1 matricization of
p−1T and Poff-diag(Z) extracts out the off-diagonal en-
tries of Z.

2:Output: an initial estimateU0 ∈ R
d×r on the basis of

U ∈ R
d×r using Algorithm 3.

Cai et al.: Nonconvex Low-Rank Tensor Completion from Noisy Data
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Algorithm 3 (Retrieval of Low-Rank Tensor Factors
from a Given Subspace Estimate)

1: Input: number of restarts L, pruning threshold εth,
subspace estimateU ∈ R

d×r given by Algorithm 2.
2: for τ � 1, : : : ,L do
3: Generate an independent Gaussian vector gτ ~

N (0, Id).
4: (ντ,λτ,spec-gapτ) ← RETRIEVE-ONE-TENSOR-FACTOR

(T,p,U,gτ).
5: Generate tensor factor estimates {(w1,λ1), : : : , (wr,

λr)} ← PRUNE({(ντ,λτ,spec-gapτ)}Lτ�1,εth).
6:Output: initial estimateU0 � [λ1=3

1 w1, : : : ,λ1=3
r wr].

1: function RETRIEVE-ONE-TENSOR-FACTOR(T,p,U,g)
2: Compute

θ � UU
g �: PU( g), (7a)

M � p−1T×3θ, (7b)

where ×3 is defined in Section 2.4.
3: Let ν be the leading singular vector of M obeying

〈T,ν⊗3〉 ≥ 0, and set λ � 〈p−1T,ν⊗3〉.
4: return (ν,λ,σ1(M) − σ2(M)).
1: function PRUNE({(ντ,λτ,spec−gapτ)}Lτ�1,εth)
2: SetΘ � {(ντ,λτ,spec−gapτ)}Lτ�1.
3: for i � 1, : : : , r do
4: Choose (ντ,λτ,spec−gapτ) from Θ with the larg-

est spec−gapτ; setwi � ντ and λi � λτ.
5: Update Θ←Θ \ {(ντ,λτ,spec-gapτ) ∈Θ : |〈ντ,wi〉| >

1− εth}.
6: return {(w1,λ1), : : : , (wr,λr)}.

2.2. Main Results
Encouragingly, the proposed nonconvex algorithm
provably achieves the best of both worlds—in terms
of statistical accuracy and computational efficiency—
for a class of low-rank, well-conditioned, and “inco-
herent” problem instances. This subsection summa-
rizes our main findings.

Before continuing, we note that one cannot hope to re-
cover an arbitrary tensor from highly subsampled and
arbitrarily corrupted entries. In order to enable provably
valid recovery, the present paper focuses on a tractable
model by imposing the following assumptions.

Definition 1 (Incoherence and Well-Conditionedness).
Define the incoherence parameters and the condition
number of T? as follows:

μ0 :�
d3||T?||2∞
||T?||2F

, (8a)

μ1 :�
d||u?i ||2∞
||u?i ||22

, (8b)

μ2 :�
d〈u?i ,u?j 〉2
||u?i ||22||u?j ||22

, (8c)

κ :�maxi ||u?i ||2
mini ||u?i ||2

: (8d)

Remark 1. Here, μ0, μ1, and μ2 are termed the incoher-
ence parameters. Definitions (8a)–(8c) can be viewed as
some sort of incoherence conditions for the tensor. For
instance, when μ0,μ1, and μ2 are small, these condi-
tions say that (1) the energy of tensor T? is (nearly)
evenly spread across all entries; (2) each factor u?i is
delocalized; (3) the factors {u?i } are nearly orthogonal
to each other. Definition (8d) is concerned with the
“well-conditionedness” of the tensor, meaning that
each rank-1 component is of roughly the same size. In
particular, we note that an assumption on pairwise
correlation (i.e., a constraint on μ2) is often assumed
in the literature of tensor decomposition/factorization
(e.g., Anandkumar et al. 2014b, Sun et al. 2017, Hao
et al. 2020).

For notational simplicity, we shall set

μ :� max{μ0,μ1,μ2}: (9)

Note that our theory allows μ to grow with the
problem dimension d (in fact, μ can be as large as
d=polylog(d)).
Assumption 1 (Random Noise). Suppose that E is a
symmetric random tensor, where {Ej,k,l}1≤j≤k≤l≤d (see (1))
are independently generated sub-Gaussian random varia-
bles with mean zero and variance Var(Ej,k,l) ≤ σ2.

In addition, recognizing that there is a global per-
mutational ambiguity issue (i.e., one cannot distin-
guish u?1, ⋯ ,u?r from an arbitrary permutation of
them), we introduce the following loss metrics to ac-
count for this ambiguity:

distF(U,U?) :� min
Π∈permr

||UΠ−U?||F, (10a)

dist∞(U,U?) :� min
Π∈permr

||UΠ−U?||∞, (10b)

dist2,∞(U,U?) :� min
Π∈permr

||UΠ−U?||2,∞, (10c)

where permr stands for the set of r × r permutation
matrices. For notational simplicity, we also take

λ?
min :�min

1≤i≤r ‖ u
?
i ‖32 and λ?

max :�max
1≤i≤r

‖ u?i ‖32 : (11)

With these notations in place, we are ready to present
our main results. For simplicity of presentation, we
shall start with the setting where r,μ,κ � 1.

Theorem 1. Fix an arbitrary small constant δ > 0. Sup-
pose that r,κ,μ �O(1),

p ≥ c0
log4d
d3=2

,
σ

λ?
min

≤ c1

��
p

√
d3=4log2d

,

L � c2 and εth� c3
logd
d

��
p

√ + σ

λ?
min

����������
d log2 d

p

√
+

�������
logd
d

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

for some sufficiently large constants c0, c2 > 0 and some suffi-
ciently small constants c1, c3 > 0. The learning rate ηt ≡ η is
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taken to be a constant obeying 0 < η ≤ λ
?4=3
min =(32λ?8=3

max ).
Then with probability at least 1− δ,

distF(Ut,U?) ≤ C1ρ
t +C2

σ

λ?
min

���������
d log d

p

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ ‖U? ‖ F, (12a)

dist∞(Ut,U?)≤dist2,∞(Ut,U?)

≤ C3ρ
t+C4

σ

λ?
min

��������
dlogd
p

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠‖U?‖2,∞ (12b)

hold simultaneously for all 0 ≤ t ≤ t0 � d5. Here, 0 <
C1,C3,ρ < 1 and C2,C4 > 0 are some absolute constants.

Remark 2. The theorem holds unchanged if d5 is re-
placed by dc for an arbitrarily large constant c > 0.

Remark 3. The upper bound t0 on the iteration count
arises from the leave-one-out analysis when handling
noisy observations. In short, the leave-one-out argument
can only provide high-probability bounds for each itera-
tion, thus requiring an upper bound on the iteration
count if we desire a uniform bound across iterations.
Note that in the noiseless case, our results and analysis
hold for an arbitrarily large number of iterations.

As an immediate consequence of Theorem 1, we ob-
tain appealing ℓ∞ statistical guarantees for estimating
tensor entries, which are previously rarely available
(see Table 1). Specifically, let our tensor estimate in
the t th iteration be

Tt :�∑r
i�1

uti ⊗ uti ⊗ uti , where Ut � [ut1, ⋯ ,utr] ∈ R
d×r:

(13)

Then our result is the following.

Corollary 1. Fix an arbitrarily small constant δ > 0. In-
state the assumptions of Theorem 1. Then with probability
at least 1− δ,

‖ Tt −T?‖F � C1ρ
t +C2

σ

λ?
min

���������
d log d

p

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ ‖ T? ‖ F, (14a)

‖ Tt −T?‖∞ � C3ρ
t +C4

σ

λ?
min

���������
d log d

p

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ ‖ T? ‖ ∞ (14b)

hold simultaneously for all 0 ≤ t ≤ t0 � d5. Here, 0 < C1,
C3,ρ < 1 and C2,C4 > 0 are some absolute constants.

Several important implications are provided as fol-
lows. The following discussion assumes that λ?

max �
λ?
min � 1 for notational simplicity.
1. Linear convergence. In the absence of noise, the pro-

posed algorithm converges linearly; namely, it prov-
ably attains ε accuracy within O(log(1=ε)) iterations.
Given the inexpensiveness of each gradient iteration,
this algorithm can be viewed as a linear-time algorithm,
which can almost be implemented as long as we can

read the data. In the noisy setting, the algorithm reaches
an appealing statistical accuracy within a logarithmic
number of iterations.

2. Near-optimal sample complexity. The fast conver-
gence is guaranteed as soon as the sample size exceeds
the order of d3=2poly log d. This matches the minimal
sample complexity—modulo some logarithmic fac-
tor—known so far for any polynomial-time algorithm.

3.Near-optimal statistical accuracy. The proposed algo-
rithm converges geometrically fast to a point with Eu-
clidean error O(σ ��������������(d log d)=p√ ). This matches the lower
bound established in (Xia et al. 2017, theorem 5) up to
some logarithmic factor, thus justifying the statistical
optimality of the proposed nonconvex algorithm.

4. Entrywise estimation accuracy. In addition to the Eu-
clidean statistical guarantees, we have also established
an entrywise error bound, which, to the best of our
knowledge, has not been established in any of the prior
work. When t is sufficiently large, the iterates reach an
entrywise error bound O(σ ������������(logd)=p√ ). This entrywise
error bound is about an order of

��
d

√
times smaller than

the above ℓ2 error bound, thereby implying that the es-
timation errors are evenly spread out across all entries.

5. Noise size. The aforementioned theory operates in

the regime where σ�
����
p

d3=2

√
(modulo some log factor).

Given that we have ||T?||∞ � d−3=2 in this case, our noise
size constraint can be equivalently written as (up to
some log factor)

σ

||T?||∞ �
�������
pd3=2

√
: (15)

Since the sampling rate needs to satisfy p� d−3=2, this
condition essentially allows the typical size of each
noise component to be considerably larger than the
size of the corresponding entry of the truth, which
covers a broad range of practical scenarios.

6. Implicit regularization.One appealing feature of our
finding is the simplicity of the iterative refinement
stage of the algorithm. All of the aforementioned statis-
tical and computational benefits hold for vanilla gradi-
ent descent (when properly initialized). This should be
contrasted with prior work (e.g., Xia and Yuan 2017)
that relies on extra regularization terms to stabilize the
optimization landscape. In principle, vanilla gradient
descent implicitly constrains itself within a region of
well-conditioned landscape, thus enabling fast conver-
gence without explicit regularization.

7. No need of sample splitting. The theory developed
herein does not require fresh samples in each iteration.
We note that sample splitting has been frequently
adopted in other context primarily to simplify mathe-
matical analysis. Nevertheless, it typically does not ex-
ploit the data in an efficient manner (i.e., each data
sample is used only once), thus resulting in the need of
a much larger sample size in practice.
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We shall take a moment to discuss the merits of our
approach in comparison with prior work. One of the
best-known polynomial-time algorithms is the degree-
6 level of the sum-of-squares (SoS) hierarchy, which
seems to match the computationally feasible limit in
terms of the sample complexity (Barak and Moitra
2016). However, this approach has a well-documented
limitation in that it involves solving a semidefinite pro-
gram of dimensions d3 × d3, which requires enormous
storage and computation power. The work of Monta-
nari and Sun (2018) alleviates this computational bur-
den by resorting to a clever unfolding-based spectral
algorithm; it is a nearly linear-time procedure that ena-
bles near-minimal sample complexity (among polyno-
mial-time algorithms), although it does not achieve ex-
act recovery even in the absence of noise. The two-
stage algorithm developed by Xia et al. (2017)—which
is based on spectral initialization followed by tensor
power methods—shares similar advantages and draw-
backs as the method developed by Montanari and Sun
(2018). Further, the recent work of Xia and Yuan (2017)
proposes a polynomial-time nonconvex algorithm
based on gradient descent over a Grassmann manifold
(with a properly regularized objective function), which
is an extension of the nonconvex matrix completion al-
gorithm proposed by (Keshavan et al. 2010a,b) to ten-
sor data. The theory provided by Xia and Yuan (2017),
however, does not provide explicit computational
complexities. The recent work of Shah and Yu (2019)
attempts tensor estimation via an interesting algorithm
adapted from collaborative filtering and investigates
both ℓ2 and ℓ∞ estimation accuracy. This approach,
however, does not guarantee exact recovery in the

absence of noise. We summarize and compare several
prior results in Table 1 (omitting logarithmic factors).

Thus far, we have concentrated on the low-rank,
well-conditioned, and incoherent case. Our main theory
can be extended to cover a broader class of scenarios.

Theorem 2. Fix an arbitrary small constant δ > 0. Sup-
pose that κ � 1,

p ≥ c0
μ4r4log4d

d3=2
,

σ

λ?
min

≤ c1

��
p

√
μr3=2d3=4log2d

,

r ≤ c2 d
μ6log6d

( )1=6
,

L � c3r2κ
2
log3=2r and

εth � c4
μr log d
d

��
p

√ + σ

λ?
min

�����������
rd log2d

p

√
+

�����������
μr log d

d

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

for some sufficiently large constants c0, c3 > 0 and some suf-
ficiently small constants c1, c2, c4 > 0. The learning rate
ηt ≡ η is taken to be a constant obeying 0 < η ≤
λ
?4=3
min =(32λ?8=3

max ). Then with probability at least 1− δ,

distF(Ut,U?) ≤ C1ρ
t+C2

σ

λ?
min

���������
d log d

p

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ ‖U? ‖ F, (16a)

dist∞(Ut,U?)≤ dist2,∞(Ut,U?)
≤ C3ρ

t+C4
σ

λ?
min

��������
dlogd

p

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠‖U? ‖ 2,∞ (16b)

hold simultaneously for all 0 ≤ t ≤ t0 � d5. Here, 0 < C1,
C3,ρ < 1 and C2,C4 > 0 are some absolute constants.

Table 1. Comparison with Prior Theory for Existing Methods When r,μ,κ � 1 (Neglecting Logarithmic Factors)

Algorithm
Sample

complexity
Computational
complexity

l2 error
(noisy)

l∞ error
(noisy)

Recovery type
(noiseless)

Our theory Spectral method +
(vanilla) GD

d1:5 pd3 σ
��
d
p

√
σ

��
1
p

√
Exact

Xia et al. (2017) Spectral
initialization +
tensor power
method

d1:5 pd3 (||T? ||∞ + σ)
��
d
p

√
N/A Approximate

Xia and Yuan (2017) Spectral method +
GD on manifold

d1:5 poly(d) N/A N/A Exact

Montanari and Sun
(2018)

Spectral method d1:5 d3 N/A N/A Approximate

Barak and Moitra
(2016)

Sum-of-squares d1:5 d15 ||T? ||F�����
pd1:5

√ + σd1:5 N/A Approximate

Potechin and Steurer
(2017)

Sum-of-squares d1:5 d10 N/A N/A Exact

Yuan and Zhang (2016) Tensor nuclear
norm

d NP-hard N/A N/A Exact

Yuan and Zhang (2017) Minimization

Note. N/A, not applicable.
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Corollary 2. Fix an arbitrarily small constant δ > 0. In-
state the assumptions of Theorem 2. Then with probability
at least 1− δ,

‖ Tt −T? ‖ F � C1ρ
t +C2

σ

λ?
min

���������
d log d

p

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ ‖ T? ‖ F, (17a)

‖Tt−T? ‖∞� C3ρ
t+C4

σ

λ?
min

�������������
μ3rdlogd

p

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠‖T? ‖∞ (17b)

hold simultaneously for all 0 ≤ t ≤ t0 � d5. Here, 0 < C1,
C3,ρ < 1 and C2,C4 > 0 are some absolute constants.

Remark 4. Clearly, Theorem 2 and Corollary 2 sub-
sume Theorem 1 and Corollary 1, respectively, as spe-
cial cases.

Remark 5. Our theorems require the rank r to not ex-
ceed o(d1=6), which, we believe, is an artifact of the cur-
rent nonconvex analysis (particularly for the initializa-
tion stage). For instance, our local convergence
analysis is built upon strong convexity and smooth-
ness, which holds only within a sufficiently small
neighborhood surrounding the truth; given that the
diameter of this neighborhood is no more than o(1=r),
our analysis requires an initial guess with higher accu-
racy than expected, thus leading to our rank con-
straint. It might be possible to improve the rank de-
pendency via more refined analysis, and we leave it to
future investigation.

In a nutshell, this theorem reveals intriguing theo-
retical support (including both ℓF and ℓ2,∞ bounds) for
more general settings. Assuming that the condition
number κ � 1, the nonconvex algorithm that we pro-
pose is guaranteed to succeed in polynomial time.
Note, however, that our theoretical dependency (in-
cluding both sample and computational complexities)
on the rank r and the incoherence parameter μ are
likely loose and suboptimal. In addition, if κ is al-
lowed to grow with d, then the current theory requires
a large number of restart attempts during the initiali-
zation stage, resulting in a very high computational
burden. Improving these aspects, however, calls for a
much more refined analysis framework, which we
leave for future investigation.

2.3. Numerical Experiments
We carry out a series of numerical experiments to cor-
roborate our theoretical findings. Before proceeding,
recall that Theorem 2 only guarantees successful re-
covery with probability 1− δ for some small constant
δ; this means that we shall not anticipate a very high
success rate (e.g., 1−O(d−5)), as in the matrix recovery
case. As we shall make clear shortly, this happens
mainly because the initialization stage works only
with probability 1− δ, where the uncertainty largely

depends on the random vectors {gτ}1≤τ≤L. With this
observation in mind, we recommend the following
modification to improve the empirical success rate:

• Run Algorithm 2 independently for tinit � 5 times to
obtain multiple initial estimates (denoted by
U0

[1], ⋯ ,U0
[tinit]); select the one achieving the smallest

empirical loss, namely,

U0
best � arg min

U∈{U0
[i]}1≤i≤tinit

f (U): (18)

• Run Algorithm 1 with the initial point U0 set to be
U0

best.
The final estimates for the low-rank factor and the

whole tensor are denoted, respectively, by

Û � Ut0 and T̂ � ∑r
i�1

ut0i ⊗ ut0i ⊗ ut0i , (19)

where Ut0 � [ut01 , ⋯ ,ut0r ] ∈ R
d×r is the iterate returned

by Algorithm 1, with t0 the total number of gradient
iterations. In the sequel, we generate the true tensor

T? �∑
1≤i≤ru

?⊗3
i randomly in such a way that u?i ~i:i:d:

N (0, Id). The learning rates are taken to be ηt ≡ 0:2 un-
less otherwise noted.

We start with numerical convergence rates of our al-
gorithm in the absence of noise. Set d � 100, r � 4,
p � 0:1, L � 16, and εth � 0:4. Figure 1(a) shows the nu-
merical estimation errors versus iteration count t in a
typical Monte Carlo trial. Here, four kinds of estima-
tion errors are reported: (1) the relative Frobenius norm

error distF(Ut,U?)
||U? ||F ; (2) the relative || · ||2,∞ error dist2,∞(Ut,U?)

||U? ||2,∞ ;

(3) the relative Frobenius norm error ||Tt−T? ||F||T? ||F ; and (4)

the relative ℓ∞ error ||Tt−T? ||∞||T? ||∞ . Here, Tt �∑r
i�1u

t
i ⊗ uti ⊗

uti with Ut � [ut1, ⋯ ,utr]. For all these metrics, the nu-
merical estimation errors decay geometrically fast.

Next, we study the phase transition (in terms of the
success rates for exact recovery) in the noise-free set-
tings. Set d � 100, r � 4, L � 16, and εth � 0:4. For the
sake of comparisons, we also report the numerical per-
formance of the tensor power method (TPM) followed
by gradient descent. When running the tensor power
method, we set both the number of iterations and the
restart number to be 16. Each trial is claimed to succeed
if the relative ℓ2 error obeys

distF(Û ,U?)
||U? ||F ≤ 0:01. Figure 1(b)

plots the empirical success rates over 100 independent
Monte Carlo trials. As can be seen, our initialization al-
gorithm outperforms the tensor power method.

The third series of experiments is concerned with
the dependence of the success rate on the rank r. Let
us set p � rd−3=2log2d, L � r2, and εth � 0:4, and the suc-
cess recovery criterion is the same as mentioned earli-
er. Figure 1(c) depicts the empirical success rates (over
100 independent Monte Carlo trials) as the rank r
varies. As can be seen from the plots, the proposed
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algorithm is able to achieve exact reconstruction as
long as the rank r is sufficiently small compared with
d. The plausible range of r, however, seems to be larger
than our theoretic requirement r � o(d1=6). This, once
again, suggests the need of future investigation to pin
down the best possible dependency on r.

Finally, we consider the numerical estimation accu-
racy of our algorithm. Take t0 � 100, d � 100, r � 4,
p � 0:1, L � 16, and εth � 0:4. Define the signal-to-noise

ratio (SNR) to be SNR � ‖T?‖2F=d3
σ2

. We report in
Figure 1(d) three types of squared relative errors (i.e.,
dist2F(Û ,U?)

||U? ||2F
,

dist22,∞(Û ,U?)
||U? ||22,∞

, and ||T̂−T? ||2∞
||T? ||2∞

) versus SNR.

Figure 1(d) illustrates that all three types of relative
squared errors scale inversely proportional to the SNR
(since the slope in the figure is roughly −1), which is
consistent with our statistical guarantees.

2.4. Notation
Before proceeding, we gather a few notations that will
be used throughout this paper. First of all, for any ma-
trix M ∈ R

d×d, we let ‖M ‖ and ‖M ‖F denote the oper-
ator norm (or the spectral norm) and the Frobenius
norm of M, respectively, and we let Mi,: and M:,i de-
note the i th row and i th column, respectively. In ad-
dition, we let λ1(M) ≥ λ2(M) ≥⋯≥ λd(M) denote the
eigenvalues of M and σ1(M) ≥ σ2(M) ≥⋯≥ σd(M) de-
note the singular values ofM.

For any tensor T ∈ R
d×d×d, let T i,:,: ∈ R

d×d denote the
mode-1 i-slice with entries (T i,:,:)j,k � Ti,j,k; T :,i,: and T :,:,i

are defined in a similar way. For any tensors T,R ∈
R

d×d×d, the inner product is defined as 〈T,R〉 :�∑
j,k,l

Tj,k,lRj,k,l. The Frobenius norm of T is defined as
‖ T ‖F :�

��������〈T,T〉√
. For any vectors u,v ∈ R

d, we define

Figure 1. (Color online) (a) Relative Errors of the EstimatesUt and Tt vs. Iteration Count t for Noiseless Tensor Completion,
Where d � 100, r � 4, and p � 0:1; (b) Empirical Success Rate vs. Sampling Rate, Where d � 100 and r � 4; (c) Empirical Success
Rate vs. Rank,Where p � rd−3=2log2d; (d) Squared Relative Errors vs. SNR for Noisy Settings, Where d � 100, r � 4, and p � 0:1

(a) (b)

(c)
(d)

Note. Each point in (b), (c) and (d) is averaged over 100 independentMonte Carlo trials.
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the vector products of a tensor T ∈ R
d×d×d—denoted by

T× 3u ∈ R
d×d and T× 1u× 2v ∈ R

d—such that

[T× 3u]ij :� ∑
1≤k≤dTi,j,kuk, 1 ≤ i, j ≤ d; (20a)

[T× 1u× 2v]k :� ∑
1≤i,j≤dTi,j,kuivj, 1 ≤ k ≤ d: (20b)

The products T× 2u ∈ R
d×d, T× 3u ∈ R

d×d, T× 1u× 3

v ∈ R
d, and T× 2u× 3v ∈ R

d are defined in a similar
manner. For any U � [u1, ⋯ ,ur] ∈ R

d×r and V � [v1,
⋯ ,vr] ∈ R

d×r, we further define

T × seq
1 U × seq

2 V :� [T× 1ui× 2vi]1≤i≤r ∈ R
d×r: (21)

In addition, the operator norm of T is defined as

‖ T ‖:� sup
u,v,w∈Sd−1

〈T,u⊗ v⊗w〉, (22)

where S
d−1 :� {u ∈ R

d| ||u||2 � 1} indicates the unit
sphere in R

d.
Further, f (n)�g(n) or f (n) �O(g(n)) means that

| f (n)=g(n)| ≤ C1 for some constant C1 > 0; f (n) � g(n)
means that | f (n)=g(n)| ≥ C2 for some constant C2 > 0;
f (n) � g(n) means that C1 ≤ | f (n)=g(n)| ≤ C2 for some
constants C1,C2 > 0; and f (n) � o(g(n)) means that
limn→∞ f (n)=g(n) � 0. In addition, f (n) � g(n) means
that f (n) ≤ c1g(n) for some sufficiently small cons-
tant c1 > 0, and f (n) � g(n) means that f (n) ≥ c2g(n)
for some sufficiently large constant c2 > 0.

3. Initialization
This section presents formal details of the proposed
two-step initialization, accompanied by some intui-
tion. We defer the discussion about alternative ap-
proaches to the supplementray materials. Recall that
the proposed initialization procedure consists of two
steps, which we discuss separately.

3.1. Step 1: Subspace Estimation via a
Spectral Method

The spectral algorithm is often applied in conjunc-
tion with simple “unfolding” (or “matricization”) to
estimate the subspace spanned by the r factors
{u?i }1≤i≤r. This strategy is partly motivated by prior
approaches developed for covariance estimation
with missing data (Lounici 2014, Montanari and
Sun 2018, Cai et al. 2021). We next provide a brief
introduction.

Let

A � unfold1×2
1
p
T

( )
∈ R

d×d2 , or more concisely

A � unfold
1
p
T

( )
∈ R

d×d2
(23)

be the mode-1 matricization of p−1T (i.e., 1
pTi,j,k �

Ai,( j−1)d+k for any 1 ≤ i, j, k ≤ d) (Kolda and Bader 2009).

The rationale of this step is that, under our model, the
unfolded matrix A obeys

E[A] � unfold(T?) �∑r
i�1

u?i (u?i ⊗ u?i )
 �: A?, (24)

whose column space is precisely the span of {u?}1≤i≤r.
This motivates one to estimate the r-dimensional col-
umn space of E[A] from A. Toward this, a natural
strategy is to look at the principal subspace of AA
.
However, the diagonal entries of AA
 bear too much
influence on the principal directions and need to be
properly down-weighed. The current paper chooses
to work with the principal subspace of the following
matrix that zeros out all diagonal components:

B :� Poff−diag(AA
), (25)

where Poff−diag(Z) extracts out the off-diagonal entries
of a squared matrix Z. If we let U ∈ R

d×r be an ortho-
normal matrix whose columns are the top-r eigenvec-
tors of B, then U serves as our subspace estimate. See
Algorithm 2 for a summary of the procedure.

3.2. Step 2: Retrieval of Low-Rank Tensor
Factors from the Subspace Estimate

3.2.1. Procedure. As it turns out, it is possible to obtain
rough (but reasonable) estimates of all individual low-
rank tensor factors {u?i }1≤i≤r—up to global permutation—
given a reliable subspace estimate U. This is in stark
contrast to the low-rank matrix recovery case, where
there exists some global rotational ambiguity that pre-
vents us from disentangling the r factors of interest.

We begin by describing how to retrieve one tensor
factor from the subspace estimate—a procedure sum-
marized in RETRIEVE-ONE-TENSOR-FACTOR(). Let us gener-
ate a random vector from the provided subspace U
(which has orthonormal columns), that is,

θ � UU
g︸�︷︷�︸ ,
projection of g onto U

g ~N (0, Id): (26)

The rescaled tensor data p−1T is then transformed
into a matrix via proper “projection” along this ran-
dom direction θ, namely,

M � 1
p
T×3θ ∈ R

d×d: (27)

Our estimate for a tensor factor is then given by λ1=3ν,
where ν is the leading singular vector of M obeying
〈T,ν⊗3〉 ≥ 0, and λ is taken as λ � 〈p−1T,ν⊗3〉. Informally,
ν reflects the direction of the component u?i that exhibits
the largest correlation with the random direction θ, and λ
forms an estimate of the corresponding size ||u?i ||2.

A challenge remains, however, as there are often-
times more than one tensor factor to estimate. To ad-
dress this issue, we propose to rerun the aforemen-
tioned procedure multiple times, so as to ensure that
we get to retrieve each tensor factor of interest at least
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once. We will then apply a careful pruning procedure
(i.e., PRUNE()) to remove redundancy.

3.2.2. Intuition. To develop some intuition about the
aforementioned procedure, consider the “heuristic”
case where θ �U?(U?
U?)−1U?
g, namely, the ideal-
istic scenario where the subspace estimate U is accu-
rate. Averaging out the randomness in the sampling
pattern and the noise, we see that the expected pro-
jected matrix (27) takes the following form:

E[M |θ] � T?×3θ �∑r
i�1

〈θ,u?i 〉u?i u?
i :

As a result, in the incoherent case where {u?j } are near-
ly orthogonal to each other, the leading singular vec-
tor of E[M|θ]—and hence that of M (i.e., w)—is ex-
pected to be reasonably close to the factor u?i that
enjoys the largest projected coefficient. In other words,
we expect

ν ≈ 1
‖ u?i ‖2

u?i , where i � arg max
1≤j≤r

|〈θ,u?j 〉|: (28)

In the mean time, armed with (28) and the incoher-
ence assumption (such that u?i and u?j are nearly or-
thogonal for i≠ j), one might have

λ � 〈T?,ν⊗3〉 ≈ 1
‖ u?i ‖32

〈T?,u?⊗3i 〉

≈ 1
‖ u?i ‖32

〈u?⊗3i ,u?⊗3i 〉 �‖ u?i ‖32 ,
(29)

thus explaining our choice of λ in the proposed proce-
dure. These arguments hint at the ability of our proce-
dure in retrieving one tensor factor in each round.

This intuitive argument, however, does not explain
why we need to first project a random vector g onto
the (approximate) column space of U?. Although we
will not go into detailed calculations here, we remark
in passing a crucial high variability issue: without
proper projection, the perturbation incurred by both
the missing data and the noise might far exceed the
strength of the true signal. As a result, it is advised to
first project the data onto the desired subspace, in the
hope of amplifying the signal-to-noise ratio.

4. Related Work
One of the most natural ideas for solving tensor com-
pletion is to first unfold the tensor data into matrices,
followed by proper convex relaxation commonly
adopted for low-rank matrix completion. Given that
there is more than one way to matricize a tensor, sev-
eral prior works have explored the design of matrix
norms that can exploit the tensor structure more effec-
tively (Tomioka et al. 2010, Gandy et al. 2011, Liu et al.
2013, Romera-Paredes and Pontil 2013, Mu et al. 2014,
Lu et al. 2016). Such algorithms have been robustified

to enable reliable recovery against sparse outliers as
well (Goldfarb and Qin 2014). For the most part, how-
ever, such unfolding-based convex relaxation neces-
sarily incurs loss of structural information, which is
particularly severe when handling odd-order tensors.
The sample complexity developed for this paradigm is
often suboptimal vis-à-vis the computational limits
(i.e., minimal sample complexity achievable by poly-
nomial-time algorithms).

Motivated by the aforementioned suboptimality is-
sue, Yuan and Zhang (2016, 2017) proposed to mini-
mize instead the tensor nuclear norm subject to data
constraints, which provably allows for reduced sample
complexity. The issue, however, is that computing the
tensor nuclear norm itself is already computationally
intractable, thus limiting its applicability to even mod-
erate-dimensional problems. Similar findings have
also been discovered for tensor atomic norm minimi-
zation (Driggs et al. 2019). When restricted to polyno-
mial-time algorithms, the best statistical guarantees
are often attained via convex relaxation tailored to the
sum-of-squares hierarchy (Barak and Moitra 2016); the
resulting computational cost, however, remains pro-
hibitively high for practical large-scale problems. An-
other matrix nuclear normminimization algorithm has
been proposed based on promoting certain structures
on certain factor matrices (Liu et al. 2014). Developing
statistical guarantees is, however, not the focal point of
this work.

Moving beyond convex relaxation, a number of pri-
or papers have developed nonconvex algorithms for
tensor completion, examples including iterative hard
thresholding (Rauhut et al. 2017), alternating minimi-
zation (Jain and Oh 2014, Xu et al. 2015, Wang et al.
2016), tensor SVD (Zhang and Aeron 2017), optimiza-
tion on manifold (Kasai and Mishra 2016, Steinlechner
2016, Xia and Yuan 2017), proximal average algorithm
with nonconvex regularizer (Yao 2018), and block co-
ordinate decent (Xu and Yin 2013, Ji et al. 2016). When
it comes to the model considered herein, these algo-
rithms either lack optimal statistical guarantees or
come with a computational cost that is significantly
higher than a linear-time algorithm.

The algorithm and theory that we develop are large-
ly inspired by the recent advances of nonconvex opti-
mization algorithms for low-rank matrix recovery
problems (Keshavan et al. 2010a,b; Candès et al. 2015;
Chen and Wainwright 2015; Sun and Luo 2016; Yi et al.
2016; Chen and Candès 2017). The main theoretical
tool—the leave-one-out analysis—is a powerful tech-
nique that has proved successful in various other statis-
tical problems (El Karoui 2015, Abbe et al. 2017, Ding
and Chen 2018, Zhong and Boumal 2018, Chen et al.
2019c, Chen et al. 2019d, Chen et al. 2019e, Li et al.
2019, Pananjady and Wainwright 2019, Ma et al. 2020,
Chen et al. 2021). There are several major differences
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between the analysis of nonconvex tensor completion
and that of nonconvex matrix recovery. For instance,
our initialization scheme is substantially more compli-
cated than the matrix recovery counterpart, thus re-
quiring much more sophisticated analysis; in addition,
the local convergence stage of tensor completion does
not suffer from rotational ambiguity (which often ap-
pears in nonconvex matrix completion), and hence we
only need to handle permutational ambiguity.

In addition, the current paper focuses on nonadap-
tive uniform random sampling. If there is freedom in
designing the sampling mechanism, then one can often
expect improved performance (see, e.g., Krishnamur-
thy and Singh 2013, Zhang 2019). Fundamental criteria
that enable perfect low-CP-rank tensor completion
have been studied by Ashraphijuo and Wang (2017).

Tensor completion is simply a special example of
the tensor recovery literature. There is a large body of
results tackling various other tensor recovery and esti-
mation problems, including, but not limited to, tensor
decomposition (Kolda 2001; Kolda and Bader 2009;
Kim et al. 2013; Anandkumar et al. 2014a, b; Ge et al.
2015; Tang and Shah 2015; Hopkins et al. 2016; Ge and
Ma 2017; Sidiropoulos et al. 2017; Sun et al. 2017; Zou-
bir et al. 2018), tensor SVD and factorization (Kilmer
et al. 2013, Zhang and Aeron 2017, Zhang and Xia
2018), and tensor regression and sketching (Rauhut
et al. 2017, Chen et al. 2019b, Hao et al. 2019, Hao et al.
2020). The algorithmic ideas explored in this paper
might have implications for these tensor-related prob-
lems as well.

Finally, we remark that, compared with the confer-
ence version (Cai et al. 2019), the current paper (1) ex-
tends the results presented therein to a more general
case, where both the rank r and the incoherence pa-
rameter μ are allowed to grow with d; (2) discusses
how to handle asymmetric tensors; and (3) explains in
detail the inadequacy of other initialization schemes
(including both random initialization and tensor pow-
er methods). More numerical experiments have also
been carried out and reported.

5. Analysis
In this section, we outline the proof of Theorem 2 and
defer the detailed proof to the e-companion. The anal-
ysis is divided into three parts:

• In Section 5.1, we show that, given an initial esti-
mate sufficiently close to the ground truth, vanilla gra-
dient descent converges linearly. These are formalized
in Lemmas 3 and 6.

• Sections 5.2–5.3 provide statistical guarantees for the
two steps of the initialization procedure (see Theorem 3).

• Under the assumptions of Theorem 2, one can see
that the initialization satisfies the requirement of linear
convergence of vanilla gradient descent. Therefore,

Theorem 2 immediately follows from the results in
Sections 5.1–5.3.

5.1. Analysis for Local Convergence of GD
In this section, we demonstrate that if the initializa-
tion is reasonably good, then vanilla gradient de-
scent converges linearly to a solution with the de-
sired statistical accuracy. We postpone the analysis
for initialization to Sections 5.2–5.3 for convenience
of presentation.

5.1.1. Preliminaries: Gradient and Hessian Calculation.
First of all, using our notation ×seq defined in (21), we
can write

�f (U) � 1
p
PΩ

∑
1≤i≤r

u⊗3i −T? −E
( )

×seq
1 U ×seq

2 U: (30)

Next, we find it convenient to define an auxiliary loss
function fclean(U) : Rd×r → R+ that corresponds to the
noiseless case:

fclean(U) � 1
6p

∣∣∣∣∣∣PΩ

∑
1≤i≤r

u⊗3i −T?
( )∣∣∣∣∣∣2

F
: (31)

The gradient of fclean with respect to (w.r.t.) us
(1 ≤ s ≤ r) is thus given by

�us fclean(U) � 1
p
PΩ

∑
1≤i≤r

u⊗3i −T?
( )

×1us×2us, 1≤ s≤ r,

(32)

and hence one can write

�fclean(U) � 1
p
PΩ

∑
1≤i≤r

u⊗3i −T?
( )

×seq
1 U ×seq

2 U: (33)

This clearly satisfies

�f (U) ��fclean(U)−1
p
PΩ(E) ×seq

1 U ×seq
2 U: (34)

Moreover, direct algebraic manipulations give that,
for any matrix V � [v1, : : : ,vr] ∈ R

d×r,
vec(V)
�2fclean(U)vec(V)

� 1
3p

∣∣∣∣∣∣PΩ

( ∑
1≤s≤r

us ⊗ us ⊗ vs + us ⊗ vs ⊗ us

+ vs ⊗ us ⊗ us
)∣∣∣∣∣∣2

F
+ 2
p
〈PΩ

(∑
s∈[r]

u⊗3s −T?
)
,

× ∑
s∈[r]

vs ⊗ vs ⊗ us〉,
(35)

where vec(V) denotes the vectorization of V.

5.1.2. Local Strong Convexity and Smoothness. At
the heart of our analysis is a crucial geometric proper-
ty of the objective function; that is, the noiseless loss
function fclean behaves like a locally strongly convex
and smooth function. This fact, which is formally
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stated in the following lemma, is the key enabler of
fast local convergence of vanilla GD.

Lemma 1 (Local Strong Convexity and Smoothness).

p ≥ c0max
log3d
d3=2

,
μ2r2log d

d2

{ }
r ≤ c1

��
d
μ

√
(36)

for some sufficiently large (respectively, small) constant
c0 > 0 (respectively, c1 > 0). Then with probability greater
than 1−O(d−10),
1
2
λ
?4=3
min ‖V ‖2F ≤ vec(V)
�2fclean(U)vec(V) ≤ 4λ?4=3

max ‖V ‖2F
(37)

holds simultaneously for all V ∈ R
d×r and all U ∈ R

d×r
obeying

||U −U?||F ≤ δ‖U? ‖F and ‖U −U? ‖2,∞ ≤ δ‖U? ‖2,∞:
(38)

Here, δ ≤ c2=(μ3=2r) for some sufficiently small constant
c2 > 0.

In order to invoke Lemma 1, one needs to make
sure that the decision matrix U of interest (e.g., Ut

in the GD sequence) satisfies the condition (38).
This, however, is a fairly stringent condition, as it
requires U to be close to the truth in every single
row.

5.1.3. Leave-One-Out Gradient Descent Sequences.
Motivated by the analytical framework developed for
low-rank matrix recovery (Ma et al. 2017, Chen et al.
2019a), we introduce the following leave-one-out se-
quences, which play a crucial role in guaranteeing
that the entire trajectory {Ut}t≥0 satisfies the condition
(38), as required in Lemma 1.

Specifically, we define for each 1 ≤m ≤ d the follow-
ing auxiliary loss function:

f (m)(U)¢ 1
6p

∣∣∣∣∣∣PΩ−m

( ∑
1≤s≤r

u⊗3s −T? −E
)∣∣∣∣∣∣2

F

+ 1
6

∣∣∣∣∣∣Pm

( ∑
1≤s≤r

u⊗3s −T?
)∣∣∣∣∣∣2

F
,

(39)

where
• PΩm is the projection onto the subspace of tensors

supported on {(i, j,k) ∈Ω : i �m or j �m or k �m};
• PΩ−m is the projection onto the subspace of tensors

supported on {(i, j,k) ∈Ω : i≠m and j≠m and k≠m};
• Pm is the projection onto the subspace of tensors

supported on {(i, j,k) ∈ [d]3 : i �m or j �m or k �m}.
In words, this function is obtained by replacing

all data at locations {(i, j, k) ∈ [d]3 : i �m or j �
m or k �m} by their expected values, thus remov-
ing all randomness associated with this location

subset. The gradient of f (m)(U) w.r.t. us (1 ≤ s ≤ r)
can be computed as

�us f
(m)(U) � 1

p
PΩ−m

(∑
1≤s≤r

u⊗3s −T? −E
)

× 1us× 2us +Pm

( ∑
1≤s≤r

u⊗3s −T?
)

× 1us× 2us:

(40)

We then denote by {Ut,(m)}t≥0 the iterative sequence
obtained by running gradient descent w.r.t. the leave-
one-out loss f (m)(·) (see Algorithm 4). By construction,
as long as U0,(m) is independent of the sampling loca-
tions and the noise associated with the locations
{(i, j,k) ∈Ω : i �m or j �m or k �m} (which holds
true as detailed momentarily), then the entire trajecto-
ry {Ut,(m)}t≥0 becomes statistically independent of such
randomness. This is a crucial property that allows us
to decouple the complicated statistical dependency.

Algorithm 4 (The m th Leave-One-Out Sequence)
1: Generate an initial estimateU0,(m)

via Algorithm 5.
2: for t � 0, 1, : : : , t0 − 1 do
3:Ut+1,(m) �Ut,(m) −ηt�f (m) (Ut,(m)).

5.1.4. Key Lemmas. The proof for local linear conver-
gence of GD is inductive in nature, which proceeds on
the basis of the following set of inductive hypotheses.
As we shall see in Corollary 3 in Section 5.3, this set of
inductive hypotheses—modulo some global permuta-
tion—is valid with high probability when t � 0. In or-
der to simplify presentation, we remove the consider-
ation of the global permutation factor throughout this
section (i.e., we assume that the following holds for
U0P0 with some permutation matrix P0 ∈ R

r×r obey-
ing P0 � I. Our key inductive hypotheses for the gra-
dient update stage are summarized as follows:

||Ut−U?||F≤ C1ρ
tElocal+C2

σ

λ?
min

��������
dlogd
p

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠‖U?‖F; (41a)

||Ut−U?||2,∞≤ C3ρ
tElocal+C4

σ

λ?
min

��������
dlogd
p

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

×‖U?‖2,∞;
(41b)

||Ut−Ut,(m)||F≤ C5ρ
tElocal+C6

σ

λ?
min

��������
dlogd
p

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

×‖U?‖2,∞;
(41c)

∣∣∣∣∣∣(Ut,(m)−U?
)
m,:

∣∣∣∣∣∣
2
≤ C7ρ

tElocal+C8
σ

λ?
min

��������
dlogd
p

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

×‖U?‖2,∞;
(41d)

for some quantity Elocal > 0 (depending possibly on μ
and r) and some constants C1, ⋯ ,C8 > 0. There exist a
few straightforward consequences of the hypotheses
(41), which we record in the following lemma.
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Lemma 2. Assume that the hypotheses (41) hold. Then we
have

||Ut,(m) −U?||F≤ 2C1ρ
tElocal+2C2

σ

λ?
min

���������
dlog d

p

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠× ||U?||F,

(42)

||Ut,(m) −U?||2,∞≤
(
(C3+C5)ρtElocal+(C4+C6)

× σ

λ?
min

���������
dlog d

p

√ )
||U?||2,∞:

(43)

Our proof for the hypotheses (41) is inductive in na-
ture: we would like to show that if the hypotheses in
(41) hold for the t th iteration, then they continue to be
valid for the (t+ 1) th iteration. We shall justify each
of the aforementioned hypotheses inductively
through the following lemmas.

Lemma 3. Suppose that

p ≥ c0
μ3r2log3d

d3=2
,

σ

λ?
min

≤ c1

��
p

√
μ3=2r

���������
d log d

√ , and

r ≤ c2

��
d
μ

√
for some sufficiently large constant c0 > 0 and some suffi-
ciently small constant c1, c2 > 0. Assume that the hypothe-
ses (41) hold for the tth iteration and Elocal ≤ c3=(μ3=2r) for
some sufficiently small constant c3 > 0. Then with probabil-
ity at least 1−O(d−10),
‖Ut+1 −U? ‖F

≤ C1ρ
t+1Elocal +C2

σ

λ?
min

���������
d log d

p

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ ×‖U? ‖ F,

(44)

provided that 0 < η ≤ λ
?4=3
min =(32λ?8=3

max ), 1− (λ?4=3
min =5)η ≤

ρ < 1, and C2 is sufficiently large.

Lemma 4. Suppose that

p ≥ c0
μ3r2log3d

d3=2
,

σ

λ?
min

≤ c1

��
p

√
μ3=2r

���������
d log d

√ , r ≤ c2

��
d
μ

√

for some sufficiently large constant c0 > 0 and some suffi-
ciently small constant c1, c2 > 0. Assume that the hypothe-
ses (41) hold for the tth iteration and Elocal ≤ c3=(μ3=2r) for
some sufficiently small constant c3 > 0. Then with probabil-
ity at least 1−O(d−10), one has
||Ut+1,(m) −Ut+1||F
≤ C5ρ

t+1Elocal +C6
σ

λ?
min

���������
d log d

p

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ × ‖U? ‖ 2,∞,

(45)

provided that 0 < η ≤ λ
?4=3
min =(32λ?8=3

max ), 1− (λ?4=3
min =5)η ≤

ρ < 1, and C6 is sufficiently large.

Lemma 5. Suppose that

p ≥ c0
μ3r2log3d

d3=2
,

σ

λ?
min

≤ c1

��
p

√
μ3=2r

���������
d log d

√ , r ≤ c2

��
d
μ

√

for some sufficiently large constant c0 > 0 and some suffi-
ciently small constant c1, c2 > 0. Assume that the hypothe-
ses (41) hold for the t th iteration and Elocal ≤ c3=(μ3=2r) for
some sufficiently small constant c3 > 0. Then with probabil-
ity at least 1−O(d−10), one has∣∣∣∣∣∣(Ut+1,(m) −U?

)
m,:

∣∣∣∣∣∣
2

≤ C7ρ
t+1Elocal +C8

σ

λ?
min

���������
d log d

p

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ ||U?||2,∞, (46)

provided that 0 < η ≤ λ
?4=3
min =(32λ?8=3

min ), 1− (λ?4=3
min =5)η ≤

ρ < 1, and C7 and C8 are sufficiently large.

Lemma 6. Suppose that

p≥ c0
μ3r2log3d

d3=2
,

σ

λ?
min

≤ c1

��
p

√
μ3=2r

���������
d log d

√ , and r≤ c2

��
d
μ

√

for some sufficiently large constant c0 > 0 and some suffi-
ciently small constant c1, c2 > 0. Assume that the hypothe-
ses (41) hold for the tth iteration and Elocal ≤ c3=(μ3=2r) for
some sufficiently small constant c3 > 0. Then with probabil-
ity at least 1−O(d−10), one has

‖Ut+1−U? ‖2,∞ ≤ C3ρ
t+1Elocal+C4

σ

λ?
min

��������
dlogd

p

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠‖U?‖2,∞,

(47)

provided that 0 < η ≤ λ
?4=3
min =(32λ?8=3

min ), 1− (λ?4=3
min =5)η ≤

ρ < 1, and C3=(C5 +C7) and C4=(C6 +C8) are both suffi-
ciently large.

5.2. Analysis for Initialization: Part 1
(Subspace Estimation)

5.2.1. Key Results. The aim of this subsection is to
demonstrate that the subspace estimate U computed
by Algorithm 2 is sufficiently close to the space
spanned by the true tensor factors. Given that the col-
umns of U? � [u?1, : : : ,u?r ] are in general not orthogonal
to each other, we shall define U?

orth ∈ R
d×r as follows

(obtained by proper orthonormalization):

U?
orth :�U?(U?
U?)−1

2: (48)

This matrix U?
orth reflects the rank-r principal subspace

of A?A?
 �∑
i||u?i ||42u?i u?
i , where we recall that

A? ∈ R
d×d2 is the mode-1 matricization of T?. In addi-

tion, we define the rotation matrix

R :� arg min
Q∈Or×r

‖UQ−U?
orth‖F, (49)
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where Or×r stands for the set of r × r orthonormal ma-
trices. This can be viewed as the global rotation matrix
that best aligns the two subspaces represented by U
and U?

orth, respectively.
Equipped with the aforementioned notation, we

can invoke (Cai et al. 2021, corollary 1) to arrive at the
following lemma, which upper-bounds the distance
between our subspace estimate U and the ground
truth U?

orth.

Lemma 7. There exist some universal constants c0, c1, c2 > 0
such that if

p ≥ c0
μ2rlog2d

d3=2
,

σ

λ?
min

≤ c1

��
p

√
d3=4

�������
logd

√ , and r ≤ c2

��
d
μ

√
,

then with probability 1−O(d−10), the subspace estimate U
computed by Algorithm 2 obeys

‖UR−U?
orth ‖�Ese, (50a)

‖UR−U?
orth ‖2,∞�Ese

����
μr
d

√
, (50b)

where U?
orth and R are defined, respectively, in (48) and

(49), and

Ese :� μ2r logd
d3=2p

+
�����������
μ2r logd

d2p

√
+ σ2

λ?2
min

d3=2logd
p

+ σ

λ?
min

���������
d log d

p

√
+ μr

d
: (51)

In a nutshell, Lemma 7 asserts that, under our sam-
ple size, noise, and rank conditions, Algorithm 2 pro-
duces reliable estimates of the subspace spanned by
the low-rank tensor factors {u?i }1≤i≤r. The theorem
quantifies the subspace distance in terms of both the
spectral norm and || · ||2,∞, where the latter bound often
reflects a considerably stronger sense of proximity
compared with the former one.

As it turns out, in order to facilitate analysis for the
subsequent stages, we need to introduce a certain
leave-one-out sequences as well, which we detail in
the next subsection.

5.2.2. Leave-One-Out Sequences for Subspace Esti-
mation. The key idea of the leave-one-out analysis is
to create auxiliary leave-one-out sequences that are (1)
independent of a small fraction of the data and (2) suf-
ficiently close to the true estimates. We introduce the
following auxiliary tensor and d × d2-dimensional ma-
trix for each 1 ≤m ≤ d:

T(m) :� PΩ−m(T) + pPm(T?) ∈ R
d×d×d, (52)

A(m) :�mode-1 matricization of
1
p
T(m): (53)

By construction, T(m) and A(m) are independent of
PΩm(E), where we recall that

Ω−m :� {(i, j,k) ∈Ω : i≠m and j≠m and k≠m},
(54)

Ωm :� {(i, j,k) ∈Ω : i �m or j �m or k �m}: (55)
We are now ready to introduce the auxiliary leave-
one-out procedure for subspace estimation. Similar to
the matrix B in Algorithm 2 (whose eigenspace serves
as an estimate of the column space of U?), we define
an auxiliary matrix B(m) ∈ R

d×d as follows:

B(m) � Poff-diag
(
A(m)A(m)


)
, (56)

where Poff-diag(·) (as already defined in Section 3.1) ex-
tracts out off-diagonal entries from a matrix. The ra-
tionale is simple: it can be easily verified that

E[B(m)] � B? −Pdiag(B?), B? :� A?A?
, (57)

where Pdiag(·) extracts out the diagonal entries of the
matrix. This gives hope that the eigenspace of B(m) is
also a reliable estimate of the column space of U?, pro-
vided that the diagonal entries of B? are sufficiently
small. Consequently, we shall compute U0,(m) ∈ R

d×r—
a matrix whose columns are the top-r leading eigen-
vectors of B(m). The procedure is summarized
in Algorithm 5.

Algorithm 5 (The m th Leave-One-Out Sequence for
Spectral Initialization)

1: Let U(m)K(m)U(m)
 be the rank-r eigen-decomposi-
tion of B(m) defined in (56).

2: Generate the initial estimate U0,(m) ∈ R
d×r from

U(m) ∈ R
d×r using Algorithm 6.

The following lemma plays a crucial role in our
analysis, which formalizes the fact that the leave-one-
out version U(m) obtained by Algorithm 5 is extremely
close to U.

Lemma 8. There exist some universal constants c0, c1, c2 > 0
such that if

p≥ c0
μ2r log2 d

d3=2
,

σ

λ?
min

≤ c1

��
p

√
d3=4

�������
logd

√ , and r≤ c2

��
d
μ

√
,

then with probability 1−O(d−10), the subspace estimate
U(m) computed by Algorithm 5 obeys

||UU
 −U(m)U(m)
||F�Eloo

����
μr
d

√
(58)

simultaneously for all 1 ≤m ≤ d, where

Eloo :� μ2r logd
d3=2p

+
�����������
μ2r logd

d2p

√
+ σ2

λ?2
min

d3=2logd
p

+ σ

λ?
min

���������
d log d

p

√
: (59)
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Lemma 8 follows immediately from the analysis of
(Cai et al. 2021, lemma 4). As a remark, the construc-
tion of the leave-one-out sequences herein is slightly
different from the one in (Cai et al. 2021). However, it
is straightforward to adapt the proof of (Cai et al.
2021) to the case considered herein. We therefore omit
the proof for the sake of brevity.

5.3. Analysis for Initialization: Part 2 (Retrieval of
Individual Tensor Factors)

5.3.1. Main Results and Leave-One-Out Sequences.
This section justifies that the procedure presented in
Algorithm 3 allows to disentangle the tensor factors.
For notational simplicity, we let

u?
i :� u?i = ‖ u?i ‖2, λ?

i :� ‖ u?i ‖32 , 1 ≤ i ≤ d: (60)

Our result is the following.

Theorem 3. Fix any arbitrary small constant δ > 0. As-
sume that

p ≥ c0
μ2r4log4d

d3=2
,

σ

λ?
min

≤ c1

��
p

√
r3=2d3=4log2d

,

r ≤ c2
d

μ6log6d

( )1=6
,

L � c3r2κ
2
log3=2r,

εth � c4
μr logd
d

��
p

√ + σ

λ?
min

�����������
rd log2 d

p

√
+

����������
μr logd

d

√⎧⎪⎪⎨⎪⎪⎩ ⎫⎪⎪⎬⎪⎪⎭

(61)

for some sufficiently large universal constant c0, c3 > 0 and
some sufficiently small universal constants c1, c2, c4 > 0.
Then, with probability exceeding 1− δ, there exists a per-
mutation π(·) : [d] �→ [d] such that for all 1 ≤ i ≤ r, the
tensor factors {wi}ri�1 returned by Algorithm 3 satisfy
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In short, this theorem asserts that the estimates re-
turned by Algorithm 3 are—up to global permuta-
tion—reasonably close to the ground truth under our

sample size and noise conditions. In order to establish
this theorem, and in order to provide initial guesses
for the leave-one-out GD sequences, we need to pro-
duce a leave-one-out sequence tailored to this part of
the algorithm. Such auxiliary sequences are generated
in a similar spirit as the previous ones, and we sum-
marize them in Algorithm 6. As usual, the resulting
leave-one-out estimates {λ(m)

i ,wi,(m)}ri�1 are statistically
independent of PΩm(E).

In what follows, we gather a few key properties of
the leave-one-out estimates, which play a crucial role
in the analysis.

Algorithm 6 (The m th Leave-One-Out Sequence for
Retrieving Individual Tensor Components)

1: Input: restart number L, threshold εth, subspace es-
timateU(m) given by Algorithm 5.

2: for τ � 1, : : : ,L do
3: Recall the Gaussian vector gτ ~N (0, Id) generated

in Algorithm 3.
4: (ντ,(m), λ(m)

τ , spec−gap(m)
τ ) ← RETRIEVE-ONE-TENSOR-

FACTOR(T(m),p,U(m),gτ).
5: Generate tensor factor estimates

{(w1,(m),λ(m)
1 ), : : : , (wr,(m),λ(m)

r )}
← PRUNE({(ντ,(m),λ(m)

τ ,spec-gap(m)
τ )}Lτ�1, εth):

6:Output: an initial estimate U0,(m) � [(λ(m)
1 )1=3w1,(m),

: : : , (λ(m)
r )1=3wr,(m)].

Theorem 4. Fix any arbitrarily small constant δ > 0. In-
state the assumptions in Theorem 3. With probability ex-
ceeding 1− δ, the permutation function stated in Theorem 3
obeys that, for all 1 ≤ i ≤ r and all 1 ≤m ≤ d,
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With Theorems 3–4 in place, we can immediately
establish a few desired properties (particularly those
specified in Section 5.1) of our initial estimate, as as-
serted in the following corollary.

Corollary 3. Fix any arbitrarily small constant δ > 0. In-
state the assumptions in Theorem 2. With probability ex-
ceeding 1− δ, the estimates U0 and U0,(m) returned by Al-
gorithm 3 and Algorithm 6, respectively, satisfy the
hypotheses (41) for t � 0.

6. Discussion
The current paper uncovers the possibility of efficient-
ly and stably completing a low-CP-rank tensor from
partial and noisy entries. Perhaps somewhat unexpect-
edly, despite the high degree of nonconvexity, this
problem can be solved to optimal statistical accuracy
within nearly linear time, provided that the tensor of
interest is well conditioned, incoherent, and of cons-
tant rank. To the best of our knowledge, this intriguing
message has not been shown in the prior literature.

Moving forward, one pressing issue is to under-
stand how to improve the algorithmic and theoretical
dependency upon the tensor rank r of the proposed
method. Ideally, one would desire a fast algorithm
whose sample complexity scales as rd1:5, an order that
is provably achievable by the sum-of-squares hierar-
chy. Additionally, in contrast to the matrix counter-
part where the rank is upper bounded by the matrix
dimension, the tensor CP rank is allowed to rise above
d, which is commonly referred to as the over-complete
case. Unfortunately, our current initialization scheme
(i.e., the spectral method) fails to work unless r < d,
and our local analysis for GD falls of accommodating
the scenario with r > d. It would be of great interest to
develop more powerful algorithms—in addition to
more refined analysis—to tackle such an important
over-complete regime.

Another tantalizing research direction is the explo-
ration of landscape design for tensor completion. As
our heuristic discussions as well as other prior work
(e.g., Richard and Montanari 2014) suggest, randomly
initialized gradient descent tailored to (4) seems un-
likely to work, unless the sample size is significantly
larger than the computational limit. This might mean
either that there exist spurious local minima in the
natural nonconvex least-squares formulation (4), or
that the optimization landscape of (4) is too flat
around some saddle points and hence not amenable
to fast computation. It would be interesting to investi-
gate what families of loss functions allow us to rule
out bad local minima and eliminate the need of care-
ful initialization, which might be better suited for ten-
sor recovery problems.

Finally, in statistical inference and decision making,
one might not be simply satisfied with obtaining a

reliable estimate for each missing entry, but would
also like to report a short confidence interval which
is likely to contain the true entry. This boils down
to the fundamental task of uncertainty quantification
for tensor completion, which we leave to future
investigation.
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Endnotes
1 We focus on symmetric order-3 tensors primarily for simplicity of
presentation. Many of our findings naturally extend to the more
general case with asymmetric tensors of possibly higher order. De-
tailed discussions are deferred to Section EC.7 in the e-companion
due to the space limits.
2 Here, a tensor T ∈ R

d×d×d is said to be symmetric if Tj,k,l � Tk,j,l �
Tk,l,j � Tl,k,j � Tj,l,k � Tl,j,k for all 1 ≤ j, k, l ≤ d.
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