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Abstract
We treat low-energy 3He–α elastic scattering in an effective field theory (EFT)
that exploits the separation of scales in this reaction.We compute the amplitude
up to next-to-next-to-leading order, developing a hierarchy of the effective-
range parameters (ERPs) that contribute at various orders. We use the resulting
formalism to analyse data for recent measurements at center-of-mass energies
of 0.38–3.12 MeVusing the scattering of nuclei in inverse kinematics (SONIK)
gas target at TRIUMF as well as older data in this energy regime. We employ
a likelihood function that incorporates the theoretical uncertainty due to trun-
cation of the EFT and use Markov chain Monte Carlo sampling to obtain the
resulting posterior probability distribution. We find that the inclusion of a small
amount of data on the analysing power Ay is crucial to determine the sign of the
p-wave splitting in such an analysis. The combination of Ay and SONIK data
constrains all ERPs up to O(p4) in both s- and p-waves quite well. The asymp-
totic normalisation coefficients and s-wave scattering length are consistent with
a recent EFT analysis of the capture reaction 3He(α, γ)7Be.

Keywords: effective field theory, 3He-alpha scattering, solar fusion, halo nuclei,
uncertainty quantification, Bayesian, scattering amplitude

(Some figures may appear in colour only in the online journal)

1. Introduction

The 3He–α elastic scattering and radiative capture reactions have received a significant amount
of recent attention in a number of different theoretical approaches. Cluster models, such as
the ones developed in references [1, 2], and optical models (see, e.g., reference [3]) describe
the low-energy 3He–α scattering data quite well and reproduce capture data with moderate
accuracy. Successful R-matrix fits of both scattering and capture data have been obtained
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[4, 5]. And ab initiomethods nowmake quantitative statements about the low-energy behavior
of the 3He(α, γ)7Be reaction [6, 7].

An effective field theory (EFT) suitable for halo or clustered systems has also been applied
to these reactions. An EFT is a controlled expansion in a ratio Q ≡ ptyp/Λ, where ptyp is the
low-momentum scale that typifies the scattering and Λ is the momentum scale at which the
theory breaks down—see, e.g., reference [8] for an introduction. In this system the EFT, which
we shall refer to here as halo EFT, is built on the scale separation between the large de Broglie
wavelength of the quantum-mechanical scattering or capture process and the small size of the
3He and α nuclei. In this treatment 7Be is a bound state of 3He and α nuclei. Such a description
is accurate because the 7Be nucleus’ ground-state binding energy (EGS) of 1.6 MeV [9] and
excited state energy (EXS) of 1.2 MeV [9] are small compared to scales associated with the
structure of these 7Be constituents. The proton separation energy Sp of 3He is 5.5 MeV [10] and
the first excitation energy of the α particle is approximately 20 MeV [10]. These energy scales,
as well as the sizes of the two helium isotopes, suggest the EFT breaks down for momentum
Λ ≈ 150–200 MeV. Therefore as long as we use it for 3He–α scattering at center-of-mass
energies (Ecm) less than about, 2.5 MeV, the EFT should have good convergence. This halo
EFT has been applied to the 3He(α, γ)7Be reaction in references [11–13] and was used to fit
the scattering phase shifts in references [11, 13]. Readers desiring a more detailed introduction
to halo EFT are referred to the reviews in references [14, 15].

Part of the recent theory interest in these processes is because the capture reaction occurs
at center-of-mass energies around 20 keV as part of the solar pp chain that fuels the Sun and
Sun-like stars. This reaction has a branching fraction of 16.7% in the pp chain and leads to
subsequent decays of 7Be and 8B that produce neutrinos [16]. This information is used to
construct solar models. The 3He(α, γ)7Be reaction rate cannot be directly measured at the
energies of relevance for the solar interior. The uncertainties in this reaction rate and in the
reaction rate 7Be(p, γ)8B produce, respectively, uncertainties of 3.9% and 4.8% in the flux
of 8B solar neutrinos [17]. These nuclear-reaction-rate uncertainties thus limit our ability to
precisely test solar models using neutrino data. The 3He(α, γ)7Be reaction also plays a role in
Big Bang nucleosynthesis, although it can be measured directly at the 100–300 keV energies
that are relevant in that environment.

Data on the elastic scattering of 3He and α nuclei does not directly affect input quanti-
ties to solar models, but it definitely helps us understand the capture reaction 3He(α, γ)7Be
phenomenologically. In particular, the experimentallymeasured cross sections must be extrap-
olated to lower energies for use in solar models. The energy dependence of that extrapolation
is strongly constrained by information from the elastic scattering reaction.

Halo EFT treatments of elastic 3He–α scattering data are therefore timely, especially
because an elastic scattering experiment was recently performed at center-of-mass energies
between 0.38 and 3.13 MeV using the scattering of nuclei in inverse kinematics (SONIK)
detector and a 4He gas target at the TRIUMF facility, Canada. These SONIK data have been
published and analysed using the phenomenological R-matrix theory [18] in reference [19].
They join quite a few previous measurements of the elastic scattering [3, 20–26]. However,
some of these data sets do not quantify their errors well [3, 20] and others have little low-
energy data [24]. References [25, 26] consider elastic scattering only at higher energies (Elab >
10 MeV1) which is well beyond our region of interest. Similarly, all of the data in reference
[23] are beyond the highest energy we want to study—and errors are not provided for these

1 The lab energy is the energy of the projectile nuclei 3He in the rest frame of the target α. All energies are in this
frame in the paper unless otherwise mentioned.
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data. Reference [21] primarily focuses on studying the level structure and resonances in 7Be
from the elastic scattering and not on differential-cross-section measurements. For these rea-
sons, out of all these older data sets, in the end we just analyse those published in references
[24] and [22]. The latter provides the only substantial data set we fit other than the SONIK
data. We call it the ‘Barnard data’; it covers a laboratory energy range of 2.5–5.7 MeV.

We have constructed an EFT to describe 3He–α elastic scattering data for Elab =
0.5–4.5 MeV. This is the first attempt at describing 3He–α elastic scattering data (as compared
to phase shifts) in EFT. To describe the higher-energy portion of these data at the accuracy we
desire the 7

2
−
partial wave must be included in the analysis. But our EFT does not incorporate

the 7
2
− 7Be resonance at Elab = 5.22 MeV [27]. Instead, we employ a phenomenological treat-

ment of that resonance, based on R-matrix theory [18], in order to account for the impact of
the 7

2
−
partial wave on observables in the energy range of interest.

Because the scattering amplitude is computed at a fixed order in the EFT it is accurate
up to a given order in the expansion in powers of Q. In the halo EFT used here, an order ν
calculationmeans that the effective-range function is accurate up to terms ofO(pQν). Assessing
how accurate the effective-range function is requires input information about the size of the
different effective-range parameters (ERPs). We take ERPs that carry m positive powers of
distance, i.e., that are in units fmm, to have a size of order ∼1/Λm, but we find that ERPs with
negative distance dimension are generally associated with momentum scales much smaller
than Λ.

This development of an EFT expansion for the 3He–α scattering amplitude means we can
also assign an error of O(pQν+1) to the order-ν calculation. A novel feature of our analysis
is that we incorporate this theory uncertainty into our likelihood, combining it with the data
uncertainties, so that the likelihood accounts for both imperfections in the experimental data
and the theoretical model thereof [28, 29].

We then use Bayesian statistics togetherwithMarkovchainMonteCarlo (MCMC) sampling
to construct the posterior probability distribution function (pdf) for the relevant low energy
parameters from the SONIK and Barnard data. In order to resolve a bimodality in the resulting
pdf we also include a few analysing-power (Ay) data in our fit. The construction of this pdf
helps us extract credibility intervals for the ERPs and facilitates propagation of those parameter
uncertainties to relevant observables. Bayesian MCMC sampling is also sometimes done for
model comparison, i.e., to determine the preference of a particular data set for one over another
(see, e.g., reference [13], where the method is used to compare different EFT power countings)
but we have not done such a comparison in this paper.

We have organized the paper in the following way. In section 2 we will setup 3He–α scat-
tering in the EFT framework and introduce the low-energy constants (LECs) of our EFT. In
section 3 we will discuss how the LECs are determined by matching the EFT to the effective-
range expansion. This results in a mapping from the LECs to the effective range parameters
(ERPs). In section 4, we propose and check a power counting that organizes contributions to the
scattering amplitude into leading-order (ν = 0, LO), next-to-leading order (ν = 1, NLO), and
next-to-next-leading order (ν = 2, NNLO) contributions. In section 5 we introduce the model
for EFT truncation errors and estimate the parameters crms and Q that define that error model.
We also show that the error model describes the shifts from LO to NLO and NLO to NNLO
reasonably well. In section 6 we give details on the data set used in our Bayesian inference
and in section 7 we describe how we phenomenologically include the effects of L = 3 partial
waves in the analysis. In section 8 we briefly describe our Bayesian methods and MCMC sam-
pling technique and define the priors on the parameters we are estimating, before presenting
our results in section 9 and giving a summary and outlook in section 10.
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2. EFT formalism for 3He–α scattering

In this section we discuss the EFT formalism for 3He–α scattering. The EFT of this reaction
has already been laid out in references [11, 12]. The presentation below follows the one in
those papers closely, although there are some minor differences that we will point out along
the way.

We denote the spin- 12 field of the 3He-nuclei as ψ and the spin-0 field of the α nuclei as
φ. The invariant amplitude of elastic scattering between 3He and α nuclei consists of pure
Coulomb scattering at larger distancewhile at short distance the Coulomb scatteringmixeswith
the scattering from strong interaction. The Lagrangian that describes the Coulomb interaction
between the ψ and φ fields is:

LC = −4παemZψZφ
|→q|2

∫
d3y e−i

→
q ·(→x−→

y )φ†(x)φ(x)ψ†(y)ψ(y)

∣∣∣∣
y0=x0

, (1)

whereαem = 1
137.04 is the electromagnetic fine-structure constant, Zψ = Zφ = 2 are the number

of protons in 3He and α nuclei respectively and�q is the momentum transfer. Meanwhile, since
the strong force between 3He and the α particle has a range comparable to the short-distance
scale in the problem we treat it as a string of contact interactions. To write the Lagrangian
for this force we adopt the dimer formalism introduced and described in reference [30]. We
introduce one dimer field for each of the two channels J = L± 1

2 . These will be subscripted
as L+ for the J = L+ 1

2 channel dimer and L− for the other one. Of course, there is only one
dimer in the L = 0 channel, where we do not need the± designation because J = 1

2 is the only
possibility. We write the dimer for L± channel as D±

L . The Lagrangian density then is simply
the sum of free LagrangianLfree, s-wave interaction LagrangianLS that couples the fields to the
s-wave dimer, p-wave interaction Lagrangians LP

1+
and LP1−

, and the Coulomb Lagrangian
LC.

Up to the order to which we work the free Lagrangian is given by

Lfree =φ†
(
i
∂

∂t
+

∇2

2mφ

)
φ+ ψ†a

(
i
∂

∂t
+

∇2

2mψ

)
ψa

+

1∑
L=0

(D±
L )

†ℵ±L

[
ω±
L

(
i
∂

∂t
+

∇2

2M

)
+ Ξ±

L

(
i
∂

∂t
+

∇2

2M

)2

+ · · ·+Δ±
L

]
(D±

L )ℵ±L .

(2)

We sum over repeated indices in equation (2) and the following equations. The index a
runs over ± 1

2 , the allowed spins of the free 3He field. The masses that appear here are
mψ = 2809.43 MeV, mφ = 3728.42 MeV, the rest masses of ψ and φ fields respectively, and
M = mψ + mφ. For each channel,Δ

±
L is the bare dimer binding energy, ω±

L is a dimensionless
constant that takes value ±1 depending upon the sign of effective range, and the constant Ξ±

L

has dimensions of inverse energy. These three LECs are adjusted to reproduce the terms of
order 1, p2, and p4 in the effective-range expansion. We will discuss this matching in detail
in section 3. While references [11, 12] considered the impact of the p4 term in the effective-
range expansion on observables, neither included an operator in the Lagrangian that generated
them. Our presentation here goes beyond previous work in this regard. The dots . . . represent
higher-order terms that carry higher mass dimension than the three terms written explicitly in
the dimer piece of Lfree.

The index ℵ±
L enumerates the different components of the dimer field. For

example, the s-wave dimer with (J = 1
2 , MJΘ ≡ ℵ0 = ± 1

2 ) couples to the ψ field with
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Figure 1. Dyson equation for the full dimer propagator, represented by the thick gray
line. It consists of the bare dimer propagator part (the first term) and the dressing (second
term). The bare dimer propagator is represented as the two closed lines; one dashed line
representing the φ field and the other black solid line representing the ψ field. The thick
black vertical box in the second figure is the four-point Coulomb amplitude between
these fields.

( jψ = 1
2 , mjψ = ℵ0 = ± 1

2 ) and φ field with ( jφ = 0, mjφ = 0). The respective Lagrangian is
given by

LS = g0
∑
ℵ0

D0
†ℵ0ψℵ0φ+ h.c., (3)

where g0 gives the strength of the s-wave interaction.
Regarding p-wave dimers, the piece of the Lagrangian that describes p-wave interactions

is:

LP1±
= g±1

∑
ℵ1,λ,σ

D±
1
†ℵ±1 〈1

2
λ; 1σ|1±ℵ±

1 〉
(
2mψ

M
ψλ(i∇σφ)−

2mφ

M
(i∇σψλ)φ

)
+ h.c. (4)

The interaction strength is given by g±1 and 〈 12λ; 1σ|1±ℵ
±
1 〉 is the Clebsch–Gordan coefficient

of the coupling that produces the P1± final state where, for the 1+ (1−) channel we replace
1+ (1−) by 3

2 (
1
2 ). The fields D±

1 have components labeled by ℵ+
1 = ± 3

2 ,±
1
2 and ℵ−

1 = ± 1
2

respectively. In equation (4), the mass terms in front of the derivatives ensure the Galilean
invariance of the Lagrangian i.e., they produce the combination of derivatives corresponding
to the relative momentum between the two particles.

Theψ andφ fields interact via infinite range Coulomb interaction and the short-range strong
interactions induced by the dimers. The combined effect of strong and Coulomb interactions
is obtained by computing the dressed dimer propagator. If we denote the dimer self energy by
ΣL then the fully dressed scalar dimer propagator for s-wave and p-wave dimers is given by

D±
L (E,

→
P) =

[
Δ±
L + ω±

L

(
E − |

→
P|2
2M

)
+ Ξ±

L

(
E − |

→
P|2
2M

)
+ iε− Σ±

L (E)

]−1

,

(5)

where �P is the momentum of the dimer, and so is equal to the center-of-mass momentum of
the 3He–α pair that couples to it. The fully dressed dimer propagator is depicted in figure 1.

To ease calculating the irreducible self energy in our EFT, we introduce the Coulomb
Green’s function. We write this propagator in momentum representation as G̃C(E;�p2,�p1):

G̃C(E;�p2,�p1) ≡ −G0(E,�p2)F (�p2,�p1;E)G0(E,�p1), (6)

whereF is the Coulomb four-point function, and�p1 and �p2 are, respectively, the incoming and
outgoing relative momenta of the 3He and α particle. The integral equation for this Coulomb

5
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Figure 2. The full Coulomb Green’s function: the first term on the right-hand side repre-
sents the free Green’s functionG0. The wavy line is the single photon exchange between
the ψ and φ fields. The black box is the four-point Coulomb amplitude between these
fields.

Green’s function is shown in figure 2. The free propagatorG0 is given by

G0(E + iε;
→
p) =

1

E − |→p|2
2μ + iε

, (7)

where μ = mψmφ/M is the reduced mass of the dimer and we have explicitly pointed out that
we will evaluate the free Green’s function at E + iε if E is a real positive number, with ε→ 0+.
In co-ordinate representation the CoulombGreen’s functionGC(E;�x,�x′) satisfies the following
equation:

−∇2
x

2μ
GC(E;�x,�x′)+

(
ZψZφαem

x
− E

)
GC(E;�x,�x′) = δ(3)(�x − �x′). (8)

It has the spectral representation [31, 32]

G(+)
C (E;

→
x,

→
x ’) =

∫
d3q
(2π)3

(
χ(+)

→
q

(
→
x)
)∗
χ(+)

→
q

(
→
x ’)

E − |→q |2
2μ + iε

, (9)

where χ(+)
�q (�x) corresponds to outgoing spherical-wave boundary conditions, and so is given

by [31, 32]:

χ(+)
→
q

(
→
x) = e−

πη
2 Γ(1+ iη)M(−iη, 1; iqx − i

→
q · →x)ei

→
q ·→x . (10)

In equation (10) η = kc/pwith kc = ZψZφαemμ, while M(a, b; z) is a confluent hypergeo-
metric function that is also called the Kummer function [33]. For further details on χ(±)

�q (�x) and
M(a, b; z) we refer the reader to references [31–33].

Using equation (9), the scalar one-loop self energies for s- and p-wave dimers can be
expressed as integrals over the variable�q, since they are proportional toGC(E; 0, 0) and deriva-
tives of GC at the origin. The renormalized self energies, to which we assign a superscript R,
are then found to be:

Σ±
L
R
=

(g±L )
2

(2L+ 1)

∫
d3p1 d3p2
(2π)6

G̃C(E;�p2,�p1)(�p2 · �p1)L − Σ±
L
div (11)

= −(2L+ 1)
μ(g±L )

2

2π

(
1

ALΓ(L+ 1)

)2

ΘL(η;E). (12)

In equation (12) AL and ΘL(η;E) are given respectively as

6
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AL =
Γ(2L+ 2)
2LΓ(L+ 1)

(13)

and

ΘL(η;E) = 2kcp
2LΓ(1+ L+ iη)Γ(1+ L− iη)

Γ(1+ iη)Γ(1− iη)
H(η), (14)

where H(η) is

H(η) = Ψ(iη)+
1
2iη

− log iη, (15)

whereΨ(iη) is digamma function in η defined as in reference [33].
Strictly speaking, these condensed forms of the renormalized self energy are only valid for

L � 1. For higher L the particle-dimer vertices must be constructed out of irreducible tensors
of the rotation group of the appropriate rank [34–36]. The self energy for L � 2 also requires
additional renormalisation [35, 36].

TheΣdiv are the divergent part of the integral in equation (11).When evaluated using dimen-
sional regularization and the power-law divergence subtraction (PDS) scheme we have, for s-
and p-waves separately:

Σdiv
0 = − (g0)2μξ

2π
+
kcμ(g0)2

π

[
1
ε
− 3

2
CE + 1+ log

(√
πξ

2kc

)]
(16)

and

Σ±
1
div

= Σ0±
1

div
+ p2Σ1±

1
div
, (17)

with

Σ0±
1

div
= −μ(g±1 )

2k2cξ
4π

(
1+

π2

3

)
+

μ(g±1 )
2k3c

3π

[
1
ε
− 3

2
CE +

4
3
+ log

(√
πξ

2kc

)]
(18)

and

Σ1±
1

div
= −μ(g±1 )

2ξ

4π
+

μ(g±1 )
2kc

3π

[
1
ε
− 3

2
CE +

4
3
+ log

(√
πξ

2kc

)]
. (19)

Note that the linear divergence in the p-wave self energy is proportional to the energy. In
equations (16), (18) and (19), ξ is the scale introduced by PDS2, which also preserves the
dimensionality of the integrals when generalised to D = 4− ε dimensions where ε is a very
small number. The quantity CE is the Euler–Mascheroni constant.

It is then straightforward to calculate the piece of the amplitude to which strong forces
contribute (i.e. the piece of t other than the pure Coulomb part). It is found by dressing the
vertices produced by Equations (3) and (4) with Coulomb Green’s functions and attaching
those vertices to the full dimer propagator, see figure 3. We call the resulting Coulomb-strong
interference amplitude, often denoted tCS in the literature, ‘the invariant amplitude’ henceforth.
The Feynman graph in figure 3 evaluates to

t±L (E) = (2L+ 1)2 (g±L )
2 e2iσLC2

L(η)D
±
L (E)p

2LPL( p̂ · p̂′). (20)

2 In this work we use μ to denote the 3He–α reduced mass.
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Figure 3. Invariant amplitude, t, given by equation (20) often denoted tCS in other
literature.

In equation (20) �p(�p′) is the relative momentum of the incoming (outgoing) particles in the
center of mass frame s.t. |�p| = |�p′| = p, PL is the Legendre polynomial, the quantity σL is the
Coulomb phase shift which is given by

e2iσL =
Γ(1+ L+ iη)
Γ(1+ L− iη)

(21)

and the quantity CL(η) is given by

CL(η) =
2L

Γ(2L+ 2)
exp(−πη/2)|Γ(1+ L+ iη)|. (22)

The parameters of the invariant amplitude are the LECs ΔL, gL, and ΞL. The task is now to
relate these parameters to quantities that can be extracted from experiment.

3. Determination of low-energy constants by matching to the effective-range
expansion

The alert reader will already have observed that equation (20) has the same form as is obtained
when the Coulomb-modified effective-range expansion (CM-ERE) given by equation (24) is
plugged into the scattering T-matrix given by equation (23). We followed the procedures out-
lined in reference [31] for our case. The EFT contains only minimal assumptions about the
3He–α dynamics: rotational invariance, unitarity, analyticity of the amplitude, and the pres-
ence of a short-range strong interaction. Since the effective-range expansion is based on the
same set of assumptions, it is not surprising that the EFT reproduces it. The EFT Lagrangian
is expressed as an expansion in powers of p2, so, at a given order in the EFT, the ERE is repro-
duced up to the corresponding order of p2. In this section we perform the matching between the
EFT amplitudes obtained in the previous section and the amplitudes of effective-range theory,
thereby deriving relationships between the LECs of the EFT and the parameters of the ERE.

In effective-range theory the amplitude associated with 3He–α scattering in the
(L, J = L± 1

2 )
th channel, T±

L , takes the form [37, 38]:

T±
L (E + iε) = −(2L+ 1)

2π
μ

A2
LC

2
L e

2iσL p2LPL( p̂ · p̂′)
A2
LC

2
Lp2L+1(cot δ±L − i)

, (23)

where the quantities δ±L are the phase shifts for the channels L±. The phase shift for the ±
channels in the Lth partial wave are, in turn, given by

A2
LC

2
Lp

2L+1(cot δ±L − i) = 2k2L+1
c K±

L (E)−
ΘL

(Γ(L+ 1))2
, (24)

8
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where

K±
L =

1

2k2L+1
c

(
− 1
a±L

+
1
2
r±L p

2 +
1
4
P±
L p

4 + O((p2)3)

)
(25)

is the effective-range function. Equations (24) and (25) relate the phase shifts to the coefficients
of powers of p2 in the expansion of the functionK.K(E) is analytic in p2 for |�p|< 1/R, whereR
is the range of the strong interaction. The coefficients of K’s Taylor series in p2 are (apart from
numerical factors) the effective range parameters (ERPs). To obtain phase shifts from ERPs,
the polynomial K-function is truncated at a suitable order. We will investigate this truncation
further in section 4.

With the phase shifts in hand the differential cross section—which is the main physical
observable in 3He–α scattering—can be obtained. This is done using the formula [23, 39]:

dσ
dΩ

= | fc(θ)|2 + | f i(θ)|2, (26)

where

f c(θ) =− η

2p
csc2(θ/2) exp[iη log(csc2(θ/2))]

+
1
p

∞∑
L=0

exp(2i(σL − σ0))PL(cos θ)

×
[
(L+ 1) exp(iδ+L ) sin δ+L + L exp(iδ−L ) sin δ−L

]
, (27)

and

f i(θ) =
1
p

∞∑
L=1

exp(2i(σL − σ0)) sin θ
dPL(cos θ)
d cos θ

[
exp(iδ−L ) sin δ−L − exp(iδ+L ) sin δ+L

]
.

(28)

In equations (26)–(28), θ is the scattering angle in the centre-of-mass frame and PL is the Lth
Legendre polynomial. The difference of Coulomb phase shifts that appears here is computed
using the formula [33, 40]:

σL − σ0 =

L∑
m=1

arctan
( η

m

)
. (29)

In addition to the differential cross section we also consider the analysing power Ay(θ).
Measurement of this observable requires the ability to polarize the 3He nuclei perpendicular
to the scattering plane, i.e., along the ŷ axis. After measuring the differential cross section for
two polarisations in the +ŷ and −ŷ directions we then construct:

Ay(θ) ≡
dσ
dΩ ↑ −

dσ
dΩ ↓

dσ
dΩ ↑ +

dσ
dΩ ↓

. (30)

In terms of the amplitudes fc and fi, Ay is given by [41]:

Ay(θ) =
−2�( fc f ∗i )
| fc|2 + | f i|2

. (31)
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We now match the CM-ERE amplitudes T±
L to the EFT amplitudes t±L for the cases L = 0

and 1, i.e., demand

t0 = T0; t±1 = T±
1 . (32)

This is done by choosing the LECs such that particular ERPs are obtained. The values of the
LECs that accomplish this in the s-wave are

− 1
a0

= − 2π
μ(g0)2

(Δ0 − Σdiv
0 ) (33)

r0 = − 2πω0

μ2(g0)2
, (34)

P0 = − 2πΞ0

μ3(g0)2
. (35)

In the p-wave the LECs responsible for ensuring t±1 = T±
1 are

− 1
a±1

= − 6π
μ(g±1 )

2
(Δ±

1 − Σ0
1
div
) (36)

r±1 = − 6π
μ2(g±1 )

2
(ω±

1 − 2μΣ1
1
div
), (37)

P±
1 = − 6πΞ±

1

μ3(g±1 )
2
. (38)

The resulting amplitudes T±
1 have poles at momentum p= iγ±

1 (equivalently η±B = kc/γ±
1 )

corresponding to the bound state energy B± = −E± = −(γ±
1 )

2/2μ. Here γ±
1 are the binding

momenta corresponding of the shallow p-wave bound states in, respectively, the 3
2
−
and 1

2
−

channels. The 3
2
−
is the ground state and lies 1.5866 MeV [9] below the 3He–α threshold,

while the first excited state 1
2
−
is 0.43 MeV [9] above the ground state and is boundwith respect

to the two-particle threshold by 1.1575 MeV [9]. Setting the denominator of equation (23) to
zero for the correspondingmomenta so that there are poles at the empirical bound state energies
gives:

1
a±1

= −1
2
r±1 (γ

±
1 )

2 + P±
1 (γ

±
1 )

4 + 2kc((γ±
1 )

2 − k2c )H(−iη±B ). (39)

In addition to the physical poles that are the solutions of equation (39) the p-wave amplitude can
have unphysical poles. These are solutions of equation (39) that occur at values of γ±

1 which
are large enough that they are outside the radius of convergence of the EFT/effective-range
expansion. Consequently, such poles cannot be regarded as real consequences of the the theory.
Because they only occur at energies outside the energy range where we apply our EFT, they do
not produce structures in the cross section in the region where we examine data. Unphysical
poles that do not affect the EFT’s predictions can also occur in the s-wave amplitude.

We also have a useful relationship between two other constants associated with each bound
state: the asymptotic normalisation coefficient (ANC) and the wavefunction renormalisation
coefficient (WRC). The product of the ANC, C±

L , and the Whitaker function,W−iηB ,L+
1
2
(2γr),

gives the asymptotic form of the bound-state solutions, w±
L (r), to the radial Schrödinger

equation:

w±
L (r)

r→∞→ C±
L W−iηB,L+

1
2
(2γ± r). (40)

10
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Meanwhile, the WRC Z±
L is the residue of the renormalized dimer propagator which is given

by

1
Z±
L

=
∂(1/D±

L (E))
∂E

∣∣∣∣
E=−B±

. (41)

For p-waves we have the relationship between the ANC and the WRC as [11, 42]:

(C±
1 )

2 =
(g±1 )

2

3π
(γ±

1 )
2μ2(Γ(2+ η±B ))

2Z±
1 . (42)

But, because of thematching and equation (20), the derivative in equation (41) can be expressed
as a derivative of the CM-ERE amplitude. So that derivative, evaluated at the bound-state pole
is, in turn, related to the ANC. This allows us to write the p-wave effective ranges r±1 in terms
of the corresponding ANCs:

r±1 = −2(γ±
1 )

2(Γ(1+ η±B ))
2

C±
1
2 + P±

1 (γ
±
1 )

2 + 4kcH(−iη±B )+ i2kcη±B
(
1− (η±B )

2
) dH(η)

dη

∣∣∣∣
η=−iη±B

.

(43)

It is preferable to express the r1± in terms of ANCs rather than WRCs, because ANCs are
directly related to the bound-state solution of the Schrödinger equation.

4. Power counting

Power counting is an indispensable part of EFT. The EFT expansion of an observable y in a
small parameter Q is [28, 43, 44]

y(p, θ) = yref(p, θ)
∑
ν

cν(p, θ)Qν. (44)

The counting index ν in general depends on the fields in the effective theory, the number of
derivatives, and the number of loops. The index ν is bounded from below and the contribution
corresponding to this lowest value is called LO. The immediate correction corresponding to
the next largest value of ν is called NLO and so on and so forth.

The expansion parameterQ is one key ingredient in equation (44). It is the ratio of the typical
momentum (ptyp) of the collision to the breakdown scale (Λ) of the EFT i.e. Q = ptyp/Λ. We
consider the typical momentum of the collision to be ptyp = max{q, p}, where q = 2psin(θ/2)
is the momentum transfer of the scattering reaction. The bulk of SONIK data is above the lab
momentum 60 MeV. At a lab momentum of approximately 90 MeV there is a resonance effect
in the 7

2
−
channel. We include this effect but do so only phenomenologically (see section 7).

Thus in our work we have p between 60 MeV to 90 MeV, so p is above the Coulomb momen-
tum scale kc = 47MeV.We have built an EFT that is valid in this region and call it the ‘validity
region’ henceforth. The first excitation momentum of α nuclei is ≈200 MeV and is taken as
the hard momentum/breakdown scale. This is also the scale set by the range of the 3He–α
interaction [12]. It may be surprising that the momentum scale associated with the breakup
of 3He into a proton and a deuteron does not set Λ. We will show in the next section that the
choice Λ = 200 MeV produces a regular EFT convergence pattern for observables, and so,
empirically, this is the correct breakdown scale for the EFT description of 3He–α scattering.

11
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Table 1. NNLO extraction of parameters for a combination of SONIK dataset (S) and
Boykin Ay dataset, which we write as SAy, truncated at 4.34 MeV. This sampling uses
407 data points to estimate 16 parameters. The MAP values of the parameters yield a
χ2/Nd.o.f. of 0.86.

Data a0 (fm) r0 (fm) a1+ (fm3) r1+ (fm−1) P1+ (fm) a1− (fm
3) r1− (fm

−1) P1− (fm) Γ 7
2
− (keV)

SAy 60(6) 0.78(2) 172(5) 0.082(4) 1.50(4) 288(15) 0.044(6) 1.65(6) 159(7)

Figure 4. Comparison of scales of various terms in CM-ERE to determine the hierarchy
of power counting: the term ζ0 = 2kcR(H(η)) and ζ1 = 2kcp2(1+ η2)R(H(η)). The left
panel is for s-waves, the middle panel for the 3

2
−
channel, and the right panel for the 1

2
−

channel.

Our EFT therefore has an expansion parameter ranging between ≈0.30–0.45 in the validity
region.

Our power counting scheme is based on the observed sizes of ERPs fit to data, viz:
1
a0
, r0, 1

a±1
, r±1 ,P

±
1 , and the Coulomb characteristic pieces of the denominator of T: ζ0 =

2kcR(H(η)) and ζ1 = 2kcp2(1+ η2)R(H(η)). To facilitate understanding these scales we
already provide the maximum a posteriori (MAP) values at NNLO for each parameter in
table 1.

In the validity region the Sommerfeld parameter η ranges between about 0.5 and 1. At these
values the pure-Coulomb amplitude and CM-ERE amplitude are both important; neither can
be treated perturbatively. In figure 4 we consider the different contributions to the denominator
of the CM-ERE amplitude. The comparison of the Coulomb characteristic quantity ζ0 and ζ1
with other terms in the CM-ERE (see figure 4) suggests they are markedly bigger than all
the terms in K that are proportional to ERPs. Hence at LO we introduce only the contributions
proportional to theH-function for both s-and p-wave channels.We say that ζ0 is of order {kc, p}
and ζ1 ∼ p3. This is the analog of the unitarity limit in the neutral-particle case since all ERPs
disappear from the amplitude. Although, in this case, the limit does not yield a scale-invariant
amplitude, since the scale kc persists.

The terms in the effective-range expansion are corrections to this limit. But to organize them
we need to discuss the sizes of the various ERPs. We categorize the ERPs into two categories:
momentum-scale ERPs (that carry positive powers of momentum) and length-scale ERPs (that
carry positive powers of length). Table 1 shows that all the momentum-scale ERPs ( 1

a0
, 1
a±1
, r±1 )

are unnaturally small compared to naive dimensional analysis based on powers of Λ, while
length-scaleERPs (r0,P±

1 ) tend to be naturalwhen expressed in powers of 1/Λ. We now discuss
the scales of these parameters separately for s- and p-waves.

12
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Table 2. Hierarchy of power counting in our EFT.

Order s-wave p-wave ν

LO — — 0
NLO r0 r+1 , P

±
1 1

NNLO 1
a0

1
a±1

, r−1 2

Regarding s-waves, the term 1/a0 is a very small momentum. We take it as Q3Λ. The s-
wave effective range r0 scales naturally as 1

Λ . Since ptyp/Λ ≡ Q, for s-waves, we consider the
contribution from r0 at NLO and from 1/a0 at NNLO.

Regarding p-waves, we will rely on the relative importance of each term as suggested from
the second and third panels of figure 4. We consider both p-wave shape-parameter terms,
1
4P

±
1 p

4, at the same order, even though 1
4P

+
1 p

4 is a bit smaller than its J = 1/2 counterpart.
In the validity region all other terms in K1(E) are significantly suppressed which corroborates
taking only 1

4P
±
1 p

4 at NLO. We note that all other p-wave terms behave opposite in sign to
these NLO effects. For both channels, the terms involving 1/a1 and r1 change their relative
importance, intersecting in the vicinity of 75 MeV. However, the negative contribution of the
term 1

2r
+
1 p

2 as compared to 1/a+1 is steadier and on average larger. Thus in the J = 3
2
−
chan-

nel, we take the contribution from the term 1
2 r

+
1 p

2 at NLO and consider that of 1/a+1 only at
NNLO. Both 1/a−1 and 1

2 r
−
1 p

2 are considered to be NNLO contributions. Note that although
1/a±1 appear larger-than-NNLO at momenta of order 60 MeV, in this region the cross section
is still dominated by the Coulomb amplitude. The hierarchy of terms in the CM-ERE matters
most at the upper end of the validity region.

We have summarized this hierarchy of parameters in table 2. There are other hierarchies
which could be deemed suitable. For example, we demoted r1+ from NLO to NNLO and got
very similar overall results.

In obtaining the cross sections in figure 6we have included f-waves in each result. Removing
the f-waves only alters the cross section beyond 120◦ in the last panel corresponding to Elab =
4.3 MeV.

We also emphasize that relations equations (39) and (43) are not obeyed at LO andNLO, i.e.,
bound-state properties are not reproduced at those orders in this organization of the problem.
Thus, while the NNLO amplitude used here is equivalent to that employed at NLO in reference
[12], the organization at lower orders differs from the one employed for capture in that work.

5. Error model

We now follow references [28, 29, 45] and use the expansion of equation (44) to build an
error model that accounts for the impact that N3LO terms can be expected to have on the cross
section. Organizing the differential cross section according to equation (44) implies that the
first omitted term in the series, whose order we denote by ν = νmax + 1, will induce an error

Δy(p, θ) = yref(p, θ)crmsQνmax+1. (45)

Our main results are EFT differential-cross-section calculations which are at NNLO where
νmax = 2. But we also use equation (45) to estimate the error at LO (νmax = 0) and NLO
(νmax = 1).

In equation (45) crms is the root-mean-square (rms) value of the coefficients c1, . . . , cνmax .
We reconstruct cν from predictions of y at orders νmax = 0, 1, 2. When we do this we expect

13
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Figure 5. The rms coefficients for the EFT expansion of the 3He–α cross section. Note
that these coefficients are generated using the MAP ERP values obtained in the NNLO
fit and given in table 1. crms

1 is then the NLO-to-LO shift (appropriately rescaled) at
those parameter values and crms

2 is the corresponding NNLO shift. Our EFT is valid in
the momentum region between 60–90 MeV, so that is the region shown here. Note the
suppressed zero scale.

to find expansion coefficients cν in equation (44) that are of order unity and roughly similar in
size across the different orders ν.

For our work, we have chosen the cross section at LO as yref . This renders c0 = 1 trivially,
so we do not use c0 any further in our analysis. For the kinematic point (pγ , θη) we then have

cν(pγ , θη) =
(y(pγ , θη))ν − (y(pγ , θη))ν−1

(yref(pγ , θη))Qν
γη

. (46)

The rms coefficients in the validity region are shown in figure 5. Here the rms is computed
over angles: the crms

ν (p)s shown in figure 5 are:

crms
ν (pγ) =

√
1
Nη

∑
η

c2ν(pγ , θη), (47)

where Nη is the total number of scattering angle points. Figure 5 shows that organizing the
importance of the ERPs according to the hierarchy in table 2 produces differential-cross-section
EFT coefficients cν that are of order unity.

A more sophisticated version of this analysis would involve fitting Gaussian processes to
describe the coefficients c1(p, θ) and c2(p, θ) [46]. Such an analysis would have the advantage
that we learn about the way that EFT errors are correlated in momentum and angle. However,
since this is a simple EFT with only two low-energy scales, here we expect crms

ν (p) to be fairly
constant throughout the validity region, and this is indeed what we observe in figure 5 (note the
suppressed-zero scale in the figure). This justifies the error model (45), with the error assigned
there correlated across different kinematic points (cf equation (61) below).

Figure 5 also shows that the choiceΛ = 200 MeV results in c1 and c2 being of similar size.
Lower choices of Λ produce coefficients that get smaller as ν increases, while higher ones
result in coefficients that grow with ν [47].

Taking the rms of crms
ν (p) over ν and over the validity region yields crms = 0.7 for our anal-

ysis. In figure 6 we plot the LO, NLO, and NNLO EFT predictions and the associated error

14



J. Phys. G: Nucl. Part. Phys. 49 (2022) 045102 M Poudel and D R Phillips

Figure 6. Bands representing the halo EFT result for and truncation uncertainty in the
differential cross section (divided by the Rutherford cross section) at different orders:
LO (gray), NLO (pink) and NNLO (cyan) for nine different energies. The SONIK data
is also shown in each energy bin. Blue triangles are from IR1, green squares from IR2,
and red diamonds from IR3. At a given beam energy there is a slight difference in the
scattering energy for the three different interaction regions, but they are binned together
here.

of equation (45) at each order for the different energy bins measured in the SONIK experi-
ment. We also include the SONIK data in the plot. The LO error bars constructed according to
equation (45) typically encompass the NLO result, and the NLO error bars cover the NNLO
curves too. Since the NNLO result is fitted to these data it is not entirely surprising that it is
consistent with the SONIK data within the EFT uncertainty, but the good agreement within the
(small) NNLOuncertainty is reassuring. This validates the hierarchy of our power counting and
the errormodelwe have adopted.We point out explicitly that the assignmentQ = max{q, p}/Λ
is key to these good results. The EFT uncertainty becomes larger as the momentum transfer
increases, i.e., at backward angles, as is most easily seen in the 4.3 MeV panel in figure 6. In
particular, in that panel the NLO band and NNLO band become of comparable size at back-
ward angles. This justifies the truncation of SONIK data at Elab = 4.3 MeV and the choice of
Λ = 200 MeV as breakdown momentum. Above this scale, the EFT fails to converge.

6. Data

The SONIK dataset is a collection of measurements of the 3He–α elastic scattering differential
cross section for 3He beam energies between 0.7 and 5.5 MeV performed at the TRIUMF
facility, and denoted as experiment SN1687. The experiment is discussed in detail in reference
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[19]. The SN1687 experiment used the SONIK apparatus to measure the 3He–α collision in
three interaction regions: interaction region 1 (IR1), interaction region 2 (IR2) and interaction
region 3 (IR3). These interaction regions differed slightly in the energy of the collision. The
experiment was conducted using nine beam (3He) energies, with each containing data points
corresponding to three slightly different energies in IR1, IR2, and IR3 respectively. In MeV the
differential cross section measurements are at [(0.706, 0.691, 0.676)], [(0.868, 0.854, 0.840)],
[(1.292, 1.280, 1.269)], [(1.759, 1.750, 1.741)], [(2.137, 2.129, 2.120)], [(2.624, 2.616, 2.609)],
[(3.598, 3.592, 3.586)], [(4.342, 4.337, 4.332)] and [(5.484, 5.480, 5.475)].Each square bracket
is one beam energy bin with the energies in IR1, IR2 and IR3 from left to right. Note that there
were two different runs (of different beam intensities) at the sixth beam energy. Reference [19]
reported measurements in nine energy bins, labeled in keV/u as 239, 291, 432, 586, 711, 873,
1196, 1441 and 1820. In each energy bin we have added an extra 1.8% [48] to the common-
mode error provided in reference [19]. We will plot results at these energies, i.e., we do not
separate results according to the small energy differences for the different interaction regions.
However, when constructing the likelihood the correct energy for data taken in each interaction
region was used.

Apart from the SONIK dataset, we will also be using an analysing power dataset which
we will call ‘Boykin Ay’ from reference [49]. The reference provides analysing power data
for elastic 3He–α scattering for three different angles in the centre-of-mass frame, viz: 71.6◦,
87.0◦, and 120.0◦. Results are given at lab energies between 3.30 MeV and 6.86 MeV. The
data at 71.6◦ and 120.0◦ are actual experimentally measured values while the data at 87.0◦ are
extrapolated values from reference [50]. The Boykin Ay data however do not include possible
systematic uncertainties at all.

There is an older (1964) scattering data by Barnard et al that covers the energy range
between 2.439–5.741 MeV, and was published in reference [22]. We will perform analyses
in which this data set is also used to determine ERPs and predict cross sections. When we
do that we introduce a (single) additional sampling parameter fb, in order to account for the
common-mode error in the Barnard data. The prior3 on fb is:

fb ∼ N(1, σb, [0.1, 2.0]), (48)

where we take the value σb = 0.05. We note that details of the uncertainties in this experiment
are not well documented in reference [22].

Another scattering data set (1971) was published by Chuang [24]. It provides differential
cross section data at three different lab energies 1.72, 2.46, and 2.98 MeVover an angular range
from 34.9◦ to 136.9◦ in the center-of-mass frame. This data set has only 31 points, so on its
own it would not yield strong inference on the ERPs. We include it below in concert with other
data sets. When we do so we introduce additional sampling parameters f172, f246, and f298, in
order to account for possible common-mode errors in the Chuang data. Since reference [24]
provides no information on common-mode errors we take the same, essentially uninformative,
prior as equation (48) for each of these parameters.

Apart from these data we did not use another 1993 data set of Mohr et al from
reference [3]. This reference provides differential cross section data at energies in the range
Elab = 1.2–3.0 MeV. Even though the energy range of these data is very favorable for a halo
EFT analysis like ours, they are very inconsistent at the lower energy range, particularly at

3We will discuss priors in section 8. Meanwhile we write a Gaussian prior on a parameter θ as N(μθ ,σθ , [a, b]). Here,
the notation simply means that the parameter is distributed normally centered at μθ with a width of σθ but truncated
at lower end a and upper end b.
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1.2 and 1.7 MeV. It is almost impossible to get a reasonable fit (reasonable χ2) because the
very small errors quoted in the data are less than the point-to-point fluctuations in angle. The
reference lacks proper discussion of experimental uncertainties and their propagation to the
cross sections quoted.

There is also differential cross section data taken by Miller and Phillips [20]. These data
cover two different energies at 2.974 and 3.877 MeV. But reference [20] does not quote any
point-to-point and systematic uncertainties. We do not include these data in our analysis.

7. Including the effect of the 7
2
−
resonance

The validity region p ∈ (60, 90)MeV corresponds to lab energy (2.0, 4.5)MeV where the bulk
of the SONIK dataset lies. This region avoids the resonance peak associated with the 7Be 7

2
−

level at 5.22 MeV. The 7
2
−
phase shift is known to be small in the validity region, from previous

measurements (see top panel of figure 7). Nevertheless, the 7
2
−
resonance has a noticeable effect

on both the cross section and Ay in the validity region. Omitting this channel altogether takes a
significant toll on the cross section. This is seen in the bottom panel of figure 7, where omitting
the f-waves leads to a significant decrease in the cross section at 3.6 MeV (solid line to dotted
line). There is also a smaller, but still noticeable effect in the differential cross section at this
energy from the tail of the 5

2
−
resonance at 9.02 MeV (width 1.9 MeV) [9] (solid line vs dashed

line).
The results of figure 7 imply that for a precision description we need to at least account

for the low-energy tail of the 7
2
−
resonance in the cross section. In references [34] and [51]

narrow resonances near a two-body threshold have been discussed for 3
2
−
and 3

2
+
channels

respectively in the formalism of EFT. In the future, we look to include the f-wave resonance
in our EFT in an analogous way. But, for our purposes here, we found that it is enough to take
into consideration the f-wave resonance effects by modeling the two f-wave phase shifts using
the phenomenological R-matrix formula [18, 52]

δL + φL = tan−1

[
−ΔL(E, ρ)
SL(E, ρ)

PL(E, ρ)
EL +ΔL(E, ρ)− E

]
, (49)

where

φL = −tan−1 FL(η, ρ)
GL(η, ρ)

(50)

PL(E, ρ) =
ρ

F2
L + G2

L

(51)

SL(E, ρ) = PL

[
FL

dFL
dρ

+ GL
dGL

dρ

]
(52)

ΔL(E, ρ) = − ΓLSL
2PL(ER, ρ)− ΓL

dSL(E,ρ)
dE |E=ER

, (53)

and

EL = ER −ΔL(E, ρ), (54)

where all quantities are evaluated at ρ = pRch. Rch denotes the channel radius and we choose
a fixed channel radius of 4.3 fm. This choice is enough for our purposes since it produces
consistent f-wave phase shifts.
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Figure 7. Effects of f-waves in the validity region. Top panel: the δ±3 phase shift from
reference [49] demonstrates that the f-wave phase shifts are small but non-zero in the
validity region (brown solid dots: 7

2
−
channel and pink stars: 5

2
−
channel). The solid lines

show the phenomenological R-matrix calculation using the resonance parameters and
channel radiusRch = 4.3 fm. The zoomed plot shows the upper end of the validity region.
Bottom panel: the resonance peak at 5.22 MeV associated with the 7Be 7

2
−
level has a

significant effect on the cross section at Elab = 3.6 MeV, even though this is well below
the resonance energy of 5.22 MeV. The dotted line omits both f-wave channels, and
the solid line includes them both. The blue triangles, green squares, and red diamonds
are SONIK data in each interaction region corresponding to Elab = 3.6 MeV. The 5

2
−

resonance has a smaller, but still noticeable effect: omitting the 5
2
−
partial wave produces

the dash-dotted line.

In equation (54), ER is the resonance peak. ΓL is the resonance width in equation (53). For
the 7

2
−
level, we fix the resonance peak at 5.22 MeV while taking the width of the peak as a

parameter to be determined from sampling. We have used a Gaussian prior for the width:

Γ 7
2
− ∼ N(160, 10, [80, 240]). (55)

We also include the effect of the 5
2
−

level, for which we fix ER = 9.02 MeV and
Γ 5

2
− = 1.9 MeV.
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8. Parameter space, Bayesian formulation and MCMC sampling

The ERPs a0, r0, a
+
1 , r

+
1 ,P

+
1 , a

−
1 , r

−
1 and P−

1 span an eight-dimensional parameter space. Using
equation (43), we reparameterize the space in terms of the ANCs, replacing r±1 by C±

1 . We also
determine a±1 from equation (39), thereby reducing the eight-dimensional parameter space to
six-dimensions. Lastly, we sample 1/a0, not a0, since the correlation structure of the parameter
space is simpler when it is parameterized in this way.

Apart from the ERPs, we introduce additional parameters fγ which are normalisation
parameters for the differential cross section in the γth energy bin of the SONIK dataset. These
fγ account for the common-mode error discussed in section 4.4 of reference [19].

Now consider the set of ERPs and normalisation scales, as well as Γ 7
2
− , together as param-

eter set θ. Then, we want to construct a credible/confidence interval (CI) from a probability
distribution

p({θi}|D, I) (56)

which we call the posterior pdf for the parameters θi (i = 1, . . .Np). The posterior pdf is simply
a function that measures the probability density that the parameters take a certain value. Such
a probability density can be determined using Bayes theorem [53]:

p({θi}|D, I) =
p(D|{θi}, I)p({θi}|I)

p(D|I) . (57)

The quantity p({θi}|I) is called the prior pdf; it is a distribution function based on our intel-
ligence/ignorance/information I on the parameter set {θi} prior to any analysis of the given
data set D. The other quantity p(D|{θi}, I) is called the likelihood; we denote it by L below.
The likelihood drives the prior pdf toward the credible posterior pdf. p(D|I) is the probabil-
ity that the given data set D is true for the given information I; in this work it acts only as a
normalisation constant.

Often in practice we take the logarithm of (57) and so a pragmatic equation is

log(p({θi}|D, I)) = log(p({θi}|I))+ log(L)+ constant. (58)

The results for each parameter, θ j are quoted as a 68%CI θ̄ j ± σ j. Here θ̄ jwill be themedian
of the pdf, and the 68% interval is determined by numerical integration. For a Gaussian/normal
distribution this θ̄ j corresponds to the value of θ j that maximizes the posterior pdf (MAPvalue).
The standard deviation σ j for that parameter is then given by

σ2
j = −[(∇∇ log p({θi}|D, I)|{θi}={θ̄i})

−1] j j, (59)

where the quantity denoted by the square brackets [. . .] j j is the jth diagonal element of the
inverse of the Hessian matrix. Figures A1 and B1 show that a Gaussian is an excellent approx-
imation for our final pdf.We choose the likelihood pdf to be a Gaussian distribution with a
correlated chi-squared χ2, which we write as

p(D|θ, I) ≡ L =
1√

(2π)N det(Σexpt +Σth)
e−χ2/2, (60)

where N is the number of data points and det means the matrix determinant. In equation (60),
Σexpt

αβ = σ2
αδαβ where σα is the measure of the point-to-point error in the measurement yα at
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the αth kinematic point. Meanwhile Σth
αβ is the theory covariance matrix, defined in our case

as [28]

Σth
αβ =

(yref)α(yref)β(crms)2Qν+1
α Qν+1

β

1− QαQβ
, (61)

with (yref)α the LO halo EFT cross section at kinematic point α, and χ2 is defined as

χ2 = �rT(Σexpt +Σth)−1�r, (62)

where�r is the residual vector. For the αth kinematic point the residual is given by

rα = fγyα − Yα, (63)

where yα is the predicted value from theory, Yα is the measured value and fγ is the afore-
mentioned normalisation factor. (Note that fγ is fixed for a fixed energy, and so it is not an
independent variable for each kinematic point.)

For the ERPs we choose informative priors. In the EFT context we expect the ERPs to have
certain sizes. Length-scale ERPs obey naive dimensional analysis with respect to Λ, although
the situation is more complicated for the s-wavemomentum-scaleERP, 1/a0.We chooseGaus-
sian distribution for these informative priors (numbers are in the appropriate power of fm for
the parameter):

1/a0 ∼ N(0.02, 0.01 [−0.02, 0.06]) (64)

r0 ∼ N(0.0, 0.9, [−3.0, 3.0]) (65)

P±
1 ∼ N(0.0, 1.6, [−6.0, 6.0]). (66)

The priors for ANCs were taken from reference [12] which is an EFT study of the capture
reaction 3He(α, γ)7Be that primarily focused on extracting the S-factor for that reaction. The
reference worked in terms of the sum and ratio of the squared ANCs and its analysis of capture
data determined C2

T = C+
1

2
+ C−

1
2
= 27± 3 fm−1 and R = C−

1
2
/C2

T = 0.48+0.06
−0.05 . The EFT cal-

culation in reference [12] used the same description of s-wave and p-wave scattering as this
study, so we build in this information on the ANCs from the reaction 3He(α, γ)7Be by taking
[54]:

C+
1

2 ∼ N(13.84, 1.63, [5.0, 25.0])

C−
1
2 ∼ N(12.59, 1.85, [5.0, 25.0]).

(67)

We also choose Gaussian priors for the data normalisation parameters:

fγ ∼ N(1, σ fγ , [0.1, 2.0]), (68)

where the quantities σ fγ are taken to be the common-mode error provided for each energy bin
in reference [19].

We use affine invariant Markov chain Monte Carlo (aiMCMC), described in detail in refer-
ences [55, 56], to collect/generate posterior samples distributed according to equation (58). A
python implementation of aiMCMC is in the open source package emcee [57].
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Figure 8. Bimodal solutions to truncated Paneru dataset: The twomodes have significant
overlap in χ2 values, as seen in the top panels. These two panels show the distribution
of χ2 as a function of P−

1 , with the left (right) panel for the lower (higher) region. The
samples were divided into two groups based on a reference value of P−

1 = 1.25. The
bottom two figures are the resulting bands of EFT predicted phase shifts compared to
the Boykin phase shifts [49], which are represented as circles (blue) for the 1

2
−
channel

and triangles (red) for the 3
2
−
channel. The brown (magenta) band is the EFT prediction

for the 3
2
−
( 12

−
) phase shift (68% credibility interval).

Table 3. Bimodal solution of truncated SONIK data: the posterior samples were divided
into two regions ‘lower’ where P−

1 � 1.25 fm and ‘higher’ where P−
1 > 1.25 fm. Note

that the χ2 values reported are the minimum χ2 value in the respective regions; they do
not necessarily correspond to MAP values.

Region a0 (fm) r0 (fm) a+1 (fm
3) r+1 (fm

−1) P+
1 (fm) a−1 (fm

3) r−1 (fm
−1) P−

1 (fm) χ2 χ2/Nd.o.f.

Lower 67 0.78 243 0.030 1.89 163 0.153 0.52 310 0.81
Higher 59 0.80 163 0.092 1.42 335 0.025 1.83 317 0.83

9. Results and analysis

9.1. Bimodality of the posterior samples in the analysis of truncated SONIK data

After sampling the posterior we found two modes that differed in the p-wave parameters (see
figure 8).We have tabulated the parameters corresponding to theMAPvalues for the twomodes
in table 3. Based on the location of these modes, we divided the posterior samples into two
regions; ‘lower’ and ‘higher’ based on the value of P−

1 . We chose P−
1 to make the cut because

the posterior samples were distinctly distributed into two P−
1 regions. The bottom two panels

in figure 8 show that the p-wave phase shifts for the two modes are comparable in magnitude,
but result in opposite signs for the p-wave phase-shift splitting.

The failure of this analysis to determine the sign of the p-wave spin–orbit splitting occurs
because that splitting is not directly probed in the cross section. Figure 9 shows that the lower-
P−
1 and higher-P−

1 solutions produce essentially identical cross sections, with both giving a
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Figure 9. Representative plots of cross sections predicted from the lower (brown) and
higher (cyan) region samples (68% intervals). The plots correspond to three different
beam energies, with data obtained in different interaction regions for that beam energy
combined. It is clear from the plots that the solutions corresponding to the lower-P−

1
region and the higher-P−

1 region produce essentially identical cross sections.

good representation of data. They have very similar χ2 values for the N = 398 SONIK data
points (see last column of table 3). The difference in minimum χ2s of 7, while not particularly
large, does result in only 2% of our samples lying in the higher-P−

1 region. Reference [22] also
found two p-wave phase-shift solutions that produce comparable cross sections while having
different signs for their splitting. Reference [49] then obtained a single phase-shift solution
when they added their own analysing power data to the phase-shift analysis.

Therefore, in order to resolve this ambiguity in the sign of the p-wave phase-shift splitting,
we introduce data on the analysing power, Ay(θ) (see equation (31)) into the likelihood. We
add the χ2 for these data,

χ2
pol = �rT pol(Σ

expt
pol )

−1�rpol, (69)

to equation (62) and collect posterior samples. (Note that theory errors are not included here, as
we have not developed a model of order-by-order theory uncertainties for Ay.) In equation (69)
�rpol is the residual vector for the for αth analysing power measurement:

rpolα = ypolα − Ypolα, (70)

i.e., ypolα is the prediction via equation (31) and Ypolα is the experimental measurement of Ay,
for which we use the Boykin Ay dataset. Since common-mode errors mostly cancel when Ay is
computed we do not include a normalisation parameter in equation (70).

As expected, upon adding the available analysing power data to the truncated SONIK
dataset, we observed that the bimodality is clearly removedand the posteriors settle in the vicin-
ity of higher-P−

1 values. We then obtain the same sign of the spin–orbit splitting as reference
[49] does for p-wave phase shifts.

9.2. Analysis of the truncated SONIK data with truncated analysing power data included

In this subsection, we present our analysis of a combination of SONIK dataset and the
Boykin Ay data. Both data sets are truncated at Elab = 4.3 MeV. We include the f-wave
effects using the phenomenological approach described in section 7. In the appendices
the correlation plot between all the EFT parameters constrained in our pdf is shown in figureA1
and the posterior pdf of the normalisation parameters is displayed in figure B1. We found that
the posteriors for all the parameters are well within the priors that we have set. The MAP
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Figure 10. Predicted band of cross sections at LO, NLO and NNLO: the y-axes in each
energy bins are dimensionless cross section, where we have divided by dσ

dΩR
, the dif-

ferential cross section for Rutherford scattering. The discrete points are SONIK data in
three different interaction regions, viz blue triangles (IR1), green squares (IR2), and red
diamonds (IR3). The cross sections are over predicted if we omit the NNLO effects from
the calculation and so produce an NLO (magenta band) result from our NNLO samples
(cyan band). The cyan band is the full NNLO result. The gray line is the LO result which
does not have any parametric uncertainties.

values of parameters were already provided above in table 1; this information is repeated in
table 4. In this analysis we used 407 data (398 points from SONIK dataset and 9 points from
Boykin Ay data) and there were 16 parameters. The minimum χ2 we obtain corresponds to
χ2/Nd.o.f. = 0.86. Note that this is the result for the χ2 defined in equation (62). For the more
usual χ2, computed without theory uncertainties, we get χ2

expt/Nd.o.f. = 0.87 at the optimum
parameter values. The small difference between the two indicates that including the theory
uncertainties does not significantly alter the parameter estimation.

In figure 10 we show bands for the cross section from our posterior samples at each order of
the power counting. These 68% bands only include the parameter uncertainties at each order,
they do not show the truncation uncertainty (cf figure 6). The parameter uncertainty in the cross
section is quite small at both NLO and NNLO, while the LO band is just a line since it has
no parameter uncertainty. Note that in figure 10 in a single energy bin (one panel), we have
constructed separate bands for the three different energies corresponding to IR1, IR2 and IR3.
The bands overlap almost completely, so we have plotted all three of those bands using the
same color, and labeled each energy bin by a single energy rounded off to one decimal figure.
Evaluating the NLO cross section with the samples obtained from maximizing the posterior
at NNLO (i.e. switching off the NNLO effects) leads to a result that is too large, although
the agreement with data is better than at LO. However the addition of parameters at NNLO
counter-balances the NLO effects and brings the results into good agreement with the data.
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Table 4. NNLO extraction of parameters for a combination of Barnard dataset (B), SONIK dataset (S) and Chuang dataset (C) with analysing
power dataset (Ay) truncated at 4.34 MeV. χ2

red is χ
2/Nd.o.f..

Data a0 (fm) r0 (fm) a+1 (fm
3) r+1 (fm

−1) P+
1 (fm) a−1 (fm

3) r−1 (fm
−1) P−

1 (fm) Γ 7
2
− (keV) N Np χ2

red

B 42(6) 0.85(4) 174(18) 0.072(15) 1.64(13) 214(35) 0.087(27) 1.27(30) 165(8) 312 8 0.35
SAy 60(6) 0.78(2) 172(5) 0.082(4) 1.50(4) 288(15) 0.044(6) 1.65(6) 159(7) 407 16 0.86
BAy 42(5) 0.84(4) 162(7) 0.086(5) 1.52(5) 249(16) 0.060(6) 1.56(9) 166(8) 321 8 0.36
CAy 25(4) 0.09(2) 177(17) 0.071(16) 1.63(13) 268(25) 0.049(13) 1.65(14) 159(10) 40 10 2.45
BSAy 52(4) 0.79(2) 167(5) 0.085(3) 1.50(4) 276(16) 0.047(5) 1.64(7) 165(6) 719 17 0.67
CSAy 68(7) 0.77(2) 172(5) 0.081(4) 1.51(4) 291(15) 0.042(6) 1.66(6) 160(7) 438 19 1.27
BCSAy 56(4) 0.78(2) 167(5) 0.085(3) 1.50(4) 279(16) 0.046(5) 1.66(7) 167(6) 750 20 0.93
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Figure 11. Predicted analysing power: the dark vertical line is the truncation point (E =
4.3 MeV) of the SONIK dataset. The band (LO = gray, NLO = pink, NNLO = cyan)
represents the predicted values of analysing power at different orders obtained from the
NNLO analysis of truncated SAy dataset.

We also plot the EFT result for the analysing power and compare it with the available Boykin
Ay data (see figure 11). Note that herewe used only nine of the available 39 data points (the first
three at each available angle). It is already impressive that even only a few analysing power
data are sufficient to fix the sign of phase-shift splitting (see subsection 9.1 and figure 8).
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Figure 12. Prediction of s-wave (top) and p-wave (bottom two) phase shifts at different
orders: the dark vertical line is the truncation point (Elab = 4.3 MeV) of the SONIK
dataset. The band (LO = gray, NLO = pink, NNLO = cyan) represents the predicted
values of phase shifts in degrees at different orders obtained from the EFT analysis of
SAy dataset.

We used the NNLO analysis to extract the phase shifts for s- and p-waves (see figure 12). Up
to the maximum energy (Elab = 4.3 MeV) considered in this analysis (vertical black line) our
extracted phase shifts for s- and p-waves are consistent with the Boykin phase shifts within the
uncertainties. Especially for s-waves, above Elab = 4.3 MeV the Boykin phase shifts contain
sizable fluctuations and have sizable error bars. We suggest only a qualitative comparison with
our phase shifts there, and at this level the agreement is good.
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We found that the parameters a0 and r0 are anti-correlated. a0 comes out somewhat larger
than our scale assignment Λ2/p3typ and r0 come out smaller than the NDA estimate 1/Λ. Nev-
ertheless, the a0–r0 posterior is well within the prior chosen. Our central value for a0 (r0) is
larger (smaller) than previous values (cf subsection 9.5).

Apart from the s-wave ERPs, the way we have performed our sampling facilitated the
calculation of p-wave ANCs and the resonance width of the 7

2
−
level. We found:

C+
1

2
= 15.5± 1.5 fm−1 (71)

C−
1
2
= 14.1± 1.7 fm−1. (72)

Our analysis only included data up to 4.3 MeV and so could not tightly constrain the resonance
width of 7

2
−
level.We foundΓ 7

2
− = 159± 7 keV,which is only a bit narrower than the prior, but

emphasizes the lack of adequate resonance information in the truncated data. Because of this
limitation in the truncated data, the phenomenological inclusion of the resonance is sufficient
for our purposes.

Lastly, we find that the normalisation factors for each SONIK energy bin were well inside
the common-modeerrors quoted in reference [19] although the normalisation factors for energy
bins above 2.2 MeV push toward the upper limit. This is depicted in figure B1, shown in the
supplemental material.

9.3. Adding Barnard data to analysis

We next include the data of reference [22] which we call Barnard data (B) in our analysis,
truncating this data set also at 4.342 MeV. In doing so we introduced an additional sampling
parameter fb which accounts for the common-mode error in the Barnard data.

The values of ERPs extracted from this analysis are tabulated in table 4. Surprisingly, we
find that the posterior pdf when sampling the truncated Barnard data is unimodal even though
both Barnard et al’s original paper [22] and the phase-shift analysis by Boykin [49] found two
modes that correspond to the two modes that we found when sampling the truncated SONIK
data.

Analysing the Barnard data alone yields a smaller scattering length (a0), larger effective
range (r0) and broader uncertainties in other parameters compared to an analysis of the SONIK
data. The halo EFT fit has a smaller χ2 to the Barnard data compared to the fit to the SONIK
data. Indeed theχ2/Nd.o.f. once the Barnard data is included is essentially too small, suggesting
that the larger point-to-point uncertainties reported for each of the data points in the Barnard
set may be too large.

9.4. Adding Chuang data to analysis

We also analysed the Chuang data (C) of reference [24] together with the truncated (at Elab =
4.3 MeV) Ay data and SONIK data. In contrast to other analyses, the Chuang and Ay data,
yield negative MAP values for parameters a0 and r0 (see table 4). The uncertainties in a0 and
r0 from this analysis are of similar size to other cases, but the uncertainties in other parameters
are much larger. The χ2/Nd.o.f. is also markedly bigger than the χ2/Nd.o.f. in other analyses.
The small number of Chuang data and the relatively small energy range mean that the ERPs
come out much more correlated with one another in the CAy- analysis than once the SONIK
data is included. The results of the CSAy analysis are dominated by the SONIK dataset, and
yield ERPs that are very similar to the SAy analysis.
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9.5. Comparison to previous halo EFT analyses

In reference [11] Higa et al analysed data on the radiative capture reaction 3He(α, γ)7Be
- as well as the phase shifts of Boykin et al [49]. The NLO result of Higa et al has the same
parameters as our NNLO analysis: a0 and r0 in the s-wave and terms through order p4 in the
effective-range expansion of both p-wave amplitudes. But, in addition, they include a shape
parameter in the s-wave. Higa et al find that the Boykin phase shifts giveP+

1 = 1.59± 0.03 fm
and P−

1 = 1.74± 0.05 fm. The former overlaps with our result at 1.5σ and the latter is consis-
tent with ours within the 1σ error bar. The s-wave scattering length a0 found in this analysis is
much smaller than ours, at 21.6± 3.4 fm, and the effective range is larger: reference [11] quotes
r0 = 1.2± 0.1 fm. A subsequent Bayesian analysis by Premarathna and Rupak gives revised
numbers, including, for the s-wave parameters, a0 = 40+5

−6 fm and r0 = 1.09+0.09
−0.1 fm [13]. We

reiterate that these s-wave ERPs are extracted from Boykin phase shifts that are obtained from
data which only extends down to Elab = 3.3 MeV. In contrast, our numbers for a0 and r0 are
based on directly analysing SONIK data that extends down to Elab = 676 keV.

The value of a0 = 60± 6 fm found here from the SONIK data is consistent with the analysis
of 3He(α, γ) data in reference [12], which concluded a0 = 50+7

−6 fm. We note that the analysis
conducted in our work includes only 3He–α scattering data: it does not include any of the
capture data considered in reference [12]. It is gratifying that the results for a0 are consistent.
In contrast, the value obtained for r0 in reference [12] is 0.97± 0.03 fm, markedly larger than
the 0.78± 0.02 fm found here using the scattering data.

In fact, we do effectively include some information on 3He(α, γ), since we take the two-
dimensional posterior on the p-wave ANCs found in reference [12] and use it as a prior for this
analysis. The resulting p-wave ANCs are almost as tightly constrained at the 1σ level as in the
prior, but the central values are shifted slightly larger. The ANC prior and posterior do overlap
at the 1σ level, cf equations (67), (71) and (72), so there is no conflict between the SONIK data
and the ANCs needed to fit the capture data.

10. Conclusion and summary

The need for accurate low-energy data for 3He–α scattering in order to better understand the
3He(α, γ) reaction at solar energies has existed for a long time. In order to meet this need
an experiment on elastic scattering of 3He–α has recently been carried out using SONIK gas
target at TRIUMF, reaching center-of-mass energies as low as 0.3 MeV. This scattering has
been analysed using R-matrix by Paneru and the data (referred to here as the SONIK data) are
presented in reference [19] and the forthcoming reference [58].

In this paper we have constructed an EFT for this scattering process that is consistent in
the momentum (lab) validity region between 60–90 MeV where the bulk of the SONIK data
lies. We have demonstrated that in this region we can expand the differential cross section in
powers of the expansion parameter, Q, that corresponds to the ratio of the typical momentum
(ptyp) of the collision and a breakdown scale Λ = 200 MeV. We organized the ERPs that char-
acterize the s-wave and p-wave amplitudes. All the momentum-scale ERPs (1/a0, 1/a±1 , r

±
1 )

are unnaturally small compared to what is expected on the basis of naive dimensional analysis
with respect to Λ, while all the length-scale ERPs (r0,P±

1 ) tend to be natural when expressed
in units of 1/Λ. Based on this observations, we proposed a power counting scheme in which
the LO contributions come solely from the Coulomb-modified short range interactions and
s- and p-wave ERPs play roles at NLO and NNLO. We demonstrated that this is a consis-
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tent organization of the problem in the validity region. In this hierarchy of mechanisms the
NLO result over-predicts the data, but it is corrected through the proper inclusion of additional
parameters at NNLO. We examined other power-counting schemes that could be deemed suit-
able; however all lead to similar overall results at NNLO. Ultimately, we choose the particular
power counting tabulated in table 2 because this hierarchy of mechanisms leads to EFT expan-
sion coefficients, ci, of the differential cross section that are of similar size at LO, NLO, and
NNLO. This allows us to formulate a statistical model for the N3LO coefficient and generate
uncertainties that account for the error induced by- truncating the EFT expansion at NNLO.

By formulating a likelihood that includes this theory uncertainty and using MCMC sam-
pling, we collected posterior samples of ERPs at NNLO. Table 4 provides the central values
and uncertainties of the ERPs corresponding to our Bayesian posterior. The result we find for
the s-wave scattering length from the SONIK data, a0 = 60± 6 fm, is consistent with that
obtained from analysing 3He(α, γ)7Be- capture data in the same EFT [12], although the values
of r0 are quite different. The disagreement between different analyses regarding the value of
r0 indicates that experimental data which clarifies the energy dependence of the s-wave phase
shift would be very valuable. Including the Barnard data [22] in the analysis yields a slightly
smaller central value for a0, but the results are consistent within error bars. It also leads to
somewhat different ANCs (see figure C1). In contrast, analysing the data of reference [24]
together with the SONIK data yields a slightly higher—but still consistent—a0. The value
a0 = 60± 6 fm we obtain from our analysis of SONIK data is not in conflict with the data
from the two older experiments we examined here.

In some previous works, optical potentials have been used to model this reaction. For
example, in reference [3] Mohr et al fit optical model parameters to the 3He(α, γ)7Be- capture
data along with elastic phase shifts. Direct comparison of Mohr et al’s phase shifts with the
ones we extracted above shows they agree within the errors. This immediately reveals the fact
that our phase shifts are consistent with the spin–orbit splitting inMohr et al’s optical potential.
That optical potential also produces the correct splitting between the 1

2
−
and 3

2
−
bound states.

Furthermore, since the Mohr et al phase shifts and our phase shifts agree within uncertainties
the Mohr et al optical potential should produce similar ERPs to the ones obtained in our study.

Since we have a working and consistent theoretical error model included in this analysis,
we can use it to extrapolate the amplitude tCS =

∑
L TL(E) toward lower energies. However,

one has to be very careful in extending such extrapolation to the cross section. As the collision
energy goes to zero, higher-order electromagnetic effects like relativistic corrections to the
Coulomb potential, magnetic-moment interactions, vacuumpolarization, polarizability effects,
etc will play a role. Including these effects will facilitate consistent and precise extrapolation,
but is beyond the scope of this work.

The inclusion of analysing-power data in the likelihood is a crucial step in obtaining these
results: it is needed to resolve the sign of the p-wave phase-shift splitting at lower energies in
this system. Even though the p-wave contributions to cross sections get smaller as the scattering
energy decreases, analysing-power data plays a vital role in deducing the sign ambiguity. It
would be very useful to have more polarisation data at lower energies: this would aid future
analyses like ours.

In particular,we have included the f-wave resonance in our analysis because of its significant
effect on the cross section at the uppermost energies in our analysis. But one may choose to
omit the f-wave influence at energies less than Elab = 3.0 MeV if more data at such energies
would be available in the future. Such lower-energy data will also help to constrain the s-wave
ERPs better.

This inclusion of the f-wave resonance was done in a purely phenomenological way here,
using the R-matrix formalism of Lane and Thomas [18]. Future work to formulate an EFT of
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Figure A1. Correlation plot of EFT and resonance parameters from sampling SAy data,
truncated at E = 4.3MeV (lab). The values quoted are the median values of the posterior
samples.

f-wave resonances could remove this inconsistency and should allow the EFT to be used to
analyse scattering data all the way from threshold through the 7

2
−
resonance.

The use of both scattering and capture data in an EFT analysis of the 7Be system is also an
important topic for future work. While some information from the capture data was included
here through the use of a prior on the 7Be ANCs, this is only part of the full posterior pdf.

Lastly, we mention that the extension of the EFT worked out here to N3LO is straightfor-
ward: at that order three new ERPs enter, all of dimension fm3, in the 1

2
+
, 1
2
−
, and 3

2
−
channels.

Provided these shape parameters are natural with respect to Λ their impact on the cross section
should be encompassed within the theory error bars shown in figure 6.
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Figure B1. Correlation plot of normalisation parameters from sampling SAy data trun-
cated at E = 4.3 MeV (lab). The values quoted are the median values of the posterior
samples.
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Figure C1. Comparison of the central values and 1σ errors of the parameters extracted
from analyses of different data sets. This is also a pictorial representation of some of the
results listed in table 4 with ANCs added here.
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Table D1. Normalisation parameters obtained from sampling SONIK data with other datasets.

Data f239 f291 f432 f586 f711 f873−1 f873−2 f1196 f1441

S (lower mode) 0.97(0.01) 0.93(0.01) 1.07(0.01) 1.02(0.01) 1.03(0.01) 1.03(0.01) 1.03(0.01) 1.05(0.01) 1.08(0.01)
S (higher mode) 0.97(0.01) 0.93(0.01) 1.07(0.01) 1.02(0.01) 1.04(0.01) 1.03(0.01) 1.03(0.01) 1.06(0.01) 1.08(0.01)
SAy 0.97(0.01) 0.93(0.01) 1.07(0.01) 1.02(0.01) 1.04(0.01) 1.04(0.01) 1.04(0.01) 1.05(0.01) 1.08(0.01)
BSAy 0.97(0.01) 0.93(0.01) 1.07(0.01) 1.02(0.01) 1.04(0.01) 1.03(0.01) 1.03(0.01) 1.06(0.01) 1.08(0.01)
CSAy 0.98(0.01) 0.93(0.01) 1.07(0.01) 1.03(0.01) 1.05(0.01) 1.05(0.01) 1.05(0.01) 1.09(0.01) 1.11(0.01)
BCSAy 0.98(0.01) 0.93(0.01) 1.07(0.01) 1.03(0.01) 1.05(0.01) 1.04(0.01) 1.05(0.01) 1.08(0.01) 1.10(0.01)
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Table D2. Normalisation parameters obtained from sampling Barnard data with other
datasets.

Data fb

B 1.05(0.01)
BAy 1.05(0.01)
BSAy 1.05(0.01)
BCSAy 1.05(0.01)

Table D3. Normalisation parameters obtained from sampling Chuang data with other
datasets.

Data f172 f246 f298

CAy 1.04(0.01) 1.03(0.03) 0.99(0.03)
CSAy 1.04(0.01) 0.97(0.02) 0.82(0.02)
BCSAy 1.04(0.01) 0.97(0.02) 0.81(0.02)

Appendix A. Full parameter correlation plot

See figure A1.

Appendix B. Normalisation correlation plot

See figure B1.

Appendix C. Comparison of central values of the ERPs

See figure C1.

Appendix D. Central values of the normalisation parameters

See tables D1–D3.
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