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Abstract
Identifying the nature of dark matter (DM) has long been a pressing question for particle
physics. In the face of ever-more-powerful exclusions and null results from large-exposure
searches for TeV-scale DM interacting with nuclei, a significant amount of attention has
shifted to lighter (sub-GeV) DM candidates. Direct detection of the light DM in our galaxy by
observing DM scattering off a target system requires new approaches compared to prior
searches. Lighter DM particles have less available kinetic energy, and achieving a kinematic
match between DM and the target mandates the proper treatment of collective excitations in
condensed matter systems, such as charged quasiparticles or phonons. In this context, the
condensed matter physics of the target material is crucial, necessitating an interdisciplinary
approach. In this review, we provide a self-contained introduction to direct detection of
keV-GeV DM with condensed matter systems. We give a brief survey of DM models and
basics of condensed matter, while the bulk of the review deals with the theoretical treatment of
DM-nucleon and DM-electron interactions. We also review recent experimental developments
in detector technology, and conclude with an outlook for the field of sub-GeV DM detection
over the next decade.
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1. Introduction

The past several decades have featured an immense accumu-
lation of gravitational evidence for dark matter (DM): to our
knowledge, 23% of our Universe feels the force of gravity
but not the strong nuclear force or electromagnetism to any
measurable extent. This fact explains myriad astronomical and
cosmological observations across widely varying distance and
time scales. The early observations of Rubin er al [1], who
noted that stars on the outskirts of galaxies rotated faster than
would be inferred based on the Newtonian gravitational poten-
tial of the visible stars and gas, imply that galaxies host ‘halos’
of DM which extend far beyond the visible matter. This DM
comprises the majority of the mass of the galaxy. The beau-
tiful precision of fits to data on the fluctuations of the cos-
mic microwave background (CMB) [2], photons which take
a snapshot of the Universe 380000 years after the Big Bang,
requires a ‘dark’ component of the Universe which gravi-
tates but does not interact strongly with photons [3, 4]. Fur-
thermore, numerical simulations show that DM provides the
‘gravitational scaffolding’ for galaxies to form [S]—without
DM, we might not be here at all!

Given that DM exists in the Universe, how do we find it in
the laboratory? The range of possible DM masses is extremely
broad. At the high end, DM could be as heavy as the Planck
scale (10" GeV/c?) if it is an elementary particle, or even
heavier if DM were a composite particle or comprised of small
black holes formed shortly after the big bang. At the low end,
DM could be as light as ~10722 eV /c?, the scale at which the
de Broglie wavelength of DM exceeds the sizes of the small-
est dwarf galaxies; the uncertainty principle implies that lighter
DM cannot be meaningfully considered as bound to the galaxy.
At both extremes of mass, and for much of the intervening
50 orders of magnitude, it is possible that DM has no appre-
ciable non-gravitational interactions. While there exist several
creative proposals for detecting the gravitational signatures of
such DM, from pulsar-timing array probes of ultra-light DM
[6] to networked quantum sensors for Planck-scale DM [7], the
experimental and observational prospects of this ‘nightmare
scenario’ can be overall quite grim.

However, early-universe thermodynamics provides a hope-
ful clue: the fundamental interactions of particles in the stan-
dard model (SM) of particle physics—electrons, protons, neu-
trinos, and so on—in the fractions of a second after the Big
Bang can predict with great accuracy the abundances of light
elements billions of years later [8]. The spectacular success of
this paradigm suggests that a plausible scenario is one where
DM is a new fundamental particle, which we will denote Y,
with some non-gravitational interactions between the DM and
the SM. If these interactions let DM establish thermal contact
with the SM at some point during the evolution of the Uni-
verse, equilibrium thermodynamics could easily explain the
fact that the ratio of the DM and ordinary matter abundance
is an order-1 number today. Indeed, in many models of purely
gravitationally-coupled DM, the problem is an overabundance
of DM which would have driven the curvature of the Uni-
verse positive and resulted in a Big Crunch [9]. The hypothesis
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of thermal contact provides an elegant mechanism for safely
depleting the primordial DM abundance through annihilations
into a thermal plasma, and moreover, provides sharp corre-
lations among the DM—SM coupling, the DM mass, and the
observed late-time DM abundance.

The hypothesis of thermal contact restricts the allowed DM
mass range considerably: DM cannot be too light or it would
have been too fast to clump and form structures, and it cannot
be too weakly-coupled or it could never have made thermal
contact. The allowed parameter space is

myc* € ~ [keV, 100 TeV] (D)

where the upper end of the mass range is a constraint from
quantum-mechanical unitarity on the DM annihilation ampli-
tude [10]. For DM masses ranging from the upper limit down
to about 1 GeV, a well-motivated candidate with connec-
tions to other fundamental physics such as supersymmetry has
existed for decades: the WIMP, or ‘weakly-interacting massive
particle’. A vigorous international experimental program has
searched for WIMP DM in the laboratory, but so far to no avail:
for more than 20 years, all searches have turned up null*.

To see where DM might be hiding, consider a typical search
strategy for direct detection: an experiment looks for kinetic
energy deposited by DM scattering on atomic nuclei. The
source of DM in such an experiment is the DM that per-
vades our galaxy, where the DM mass density and velocity
in our solar neighborhood can be inferred from gravitational
measurements>:

py =nymy, ~0.3-0.5GeVem™, v, ~107°.  (2)
Assuming a DM mass of m, = 100 GeV and a DM-nucleus
interaction cross section of oy = A%ag,/m3 where aw ~
0.03 is the coupling constant of the weak nuclear force and
A is atomic mass number, we may estimate the scattering rate
per nucleus as

R, = nyonwv, ~3 x 1072 57! 3)

for a heavy nucleus of A = 100. Immediately we see the
need for condensed matter (CM) detectors: Avogadro’s num-
ber of scattering targets must be present in an experimentally-
manageable volume to have any hope of seeing a statistically-
significant number of events. Even so, there may only be a
handful events in a year, and the targets must also be highly
radiopure and well-shielded to search for extremely rare DM
interactions. This is the approach taken by collaborations such
as XENON [13] and LZ [14], which are building larger and
larger detectors containing multiple tons of liquid xenon, in
order to probe DM that may be hiding with a smaller-than-
expected cross section.

4 The only persistent positive claim, from the DAMA Collaboration [11], was
recently conclusively refuted by another experiment using identical detectors
[12].

3 For the remainder of this review we will use the natural unit conventions
common in particle physics and set 7 = ¢ = 1.

Despite the need for CM targets, for DM with mass of
m, = 100 GeV the scattering can be modeled as elastic scatter-
ing off free nuclear targets. To see why, note that since the DM
is non-relativistic, its typical momentum and kinetic energy are

m

py ~ myv, ~ 100 MeV (m) ,
E, ~ %mxvi ~ 50 keV (lo(;”ﬁ) , &)
which are much larger than any of the scales where many-body
effects become important. Furthermore, DM of this mass does
not have enough kinetic energy to excite internal nuclear states,
so the scattering kinematics are those of classical elastic scat-
tering. Typical nuclear recoil detectors like XENON and LZ
exploit the ionization and scintillation signals created by a fast
struck nucleus, resulting in a detector energy threshold at the
few hundred eV scale.

That said, DM may also be hiding ‘in plain sight’ with
a large cross section at the low end of the ‘thermal contact’
mass range, below 1-10 GeV [15-17]. It is this light DM
(‘light’ here referring to mass, not any kind of electromagnetic
interactions) on which we focus in this review. Because of the
low kinetic energy, sub-GeV DM may be invisible to ton-scale
nuclear recoil detectors, no matter how strong its interactions
[18]. However, as m, decreases, n, increases, so even exper-
iments with relatively small targets (gram-scale rather than
ton-scale) can have comparable discovery prospects for the
same thermally-motivated cross sections, if the energy thresh-
old can be reduced. Furthermore, from the point of view of
maximizing the DM signal, it is optimal to have systems with
available excitations that match the low energies and momen-
tum transfers associated with DM masses in the keV-GeV
range. Since the DM mass is much lower than a nucleus mass
in this regime, nuclear recoils are a poor kinematic match, but
the wide range of available excitations in CM systems offers a
promising way forward. In particular, we will see the relevance
of the following degrees of freedom:

e DM-nuclear scattering <+ phonons

e DM-electron scattering <+ electron quasiparticles and
plasmons

Bringing atoms closer together generically lowers the exci-
tation energy, so solid-state systems are also beneficial from
both energy threshold and target density considerations com-
pared to atomic or molecular targets. Importantly, for sub-GeV
DM, a full CM treatment of any solid or liquid target is manda-
tory, because the DM momentum and energy scales are no
longer the largest scales in the problem and the targets (elec-
trons or nuclei) may not be approximated as free particles. See
table 1 for a comparison of DM and CM scales. The myriad
tools of CM, along with the plethora of novel materials with
unusual or exotic properties, may then be brought to bear on
the problem of DM detection, and indeed such pursuits have
already engendered a fruitful and creative cross-disciplinary
collaboration over the past decade.

This review endeavors to provide a self-contained intro-
duction to searches for light (sub-GeV) DM using CM sys-
tems. In particular, no background in quantum field theory, CM
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Table 1. Energy and momentum scales relevant for DM scattering in CM

systems.

DM mass DM energy or momentum

CM scale

50 MeV Py ~ 50keV
20 MeV E,~10eV
2 MeV E,~1eV
100 keV E, ~ 50 meV

Zero-point ion momentum in lattice
Atomic ionization energy
Semiconductor band gap

Optical phonon energy

physics, or particle physics will be assumed: the fortuitous fact
that DM is non-relativistic means that the main results of the
subject can be understood completely at a technical level using
only quantum mechanics. This review is structured as follows.
In section 2, we lay out the essential properties of sub-GeV DM
(namely, its kinematics and dynamics) which govern its inter-
actions with generic detectors. In section 3, we survey the key
objects and tools of CM physics which describe the behavior
of quasiparticles and collective modes in solid-state systems.
We hope that section 2 can provide a lightning introduction to
DM to students or researchers unfamiliar with particle physics,
and likewise for section 3 for students or researchers unfamil-
iar with CM physics; both should be accessible to beginning
graduate students. Section 4 provides the theoretical back-
bone for DM-nuclear scattering, including the transition from
scattering off single nuclei to excitation of collective modes
like phonons; section 5 provides the analogous material for
DM-electron scattering, moving from single-electron scatter-
ing in atoms to a many-body treatment using the dielectric
function relevant for solid-state detectors. In section 6 we dis-
cuss the Migdal effect, where DM-nuclear scattering can lead
to electronic excitations in atoms or solids, the calculation of
which combines the tools developed in the previous sections.
In section 7, we provide our theorists’ perspective on the exper-
imental techniques used to detect sub-GeV DM. We conclude
in section 8 with an outlook on the next decade in the field.

2. Introduction to light DM

In an arbitrary detector of volume V and density p,, Fermi’s
Golden rule gives the scattering rate for DM per unit target
mass [19]:

3
Vd'p,
@)y

i&/d%fx(v)
Pr My

x> (f P\ |AH 7]i,p,) *276(Ef — Ei + E\ — E})
f

R, =

(&)

where f,(v) is the lab-frame DM velocity distribution, AH, 7
is the non-relativistic Hamiltonian governing the interactions
between DM and the target constituents, and |i), |f) are the
initial and final detector states with energies E; and E ; respec-
tively. At this point, the only assumption we have made about
the target system is that it can be treated with non-relativistic
quantum mechanics, and we make no assumptions about the
DM spin. We also generally work with systems in the ground
state at zero temperature, so that we do not have to sum

over an ensemble of initial states, and we will use |7) and |0)
interchangeably to refer to the initial (ground) state.

We assume that the DM interactions with the target AH ,r
may be treated as a perturbation on the free-particle DM
Hamiltonian, such that unperturbed eigenstates are plane
waves |p), and that there is no entanglement between the DM
and the target so that |i,p,) = [i) ® [p,) and similarly for
|f,p). To simplify the expression further, we assume a sin-
gle operator dominates in AH, 7 such that the matrix element
factorizes into Fourier components q as:

_ [ dq
:/ @23
1 [mo(q) )

where the O, and Or operators only act on the DM and target
system states, respectively. In the second line, we have inserted
plane wave states for the DM, e.g., elPT / \/V, and used the fact
that the matrix element (p/ |O,(q)|p,) will lead to momentum

(6)

@)

conservation with q = p, — p'. The quantity (7o(q)/ ,ui)l/ 2
(where g = |q|) corresponds to the strength of the interaction
potential in terms of a cross section 7(g) and mass parameter
f» and we will give examples later for particular models. With
this convention, Oy is a dimensionless operator and while it
only acts on the target system, it could still depend on the DM
model, such as the strength of DM coupling to the electron,
proton, and neutron constituents of the system.

To continue our factorization of the DM and target sys-
tem portions of the above rate, we can introduce an auxil-
iary variable w and integrate over w with a delta function
d(w + E}, — E,). This gives the rate as

_Lp_x/g /d3q , . wo(g)
R, = oy, d'vfy(v) )3 dwi(w + E\ — Ey) Mi
2
% T2 IUF1Or@IPO(ES - E — w). ®)
f

S(q.w)

Note that we can swap between q and p;( using momentum
conservation for the DM, but that we have not assumed the tar-
get eigenstates have definite momentum. In fact, for the major-
ity of the examples discussed here, the relevant final states
in the target will not be momentum eigenstates. Equation (8)
gives a factorized form of the rate, where all of the dynamics of
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the target system are contained in the final terms of the expres-
sion. This target response piece is called the dynamic structure
factor, and denoted S(q,w). The factor of 1/V is included in
the normalization to indicate that we are dealing with an intrin-
sic quantity (since the sum over final states also scales as V)
rather than an extrinsic quantity. As noted above, the target
response does still depend on details of the DM model. To
obtain the rate, the target response is weighted by the DM
potential strength, and integrated over the phase space in terms
of momentum transferred q and energy deposited w by the
DM, as well as the DM velocity distribution. We will use the
form of the rate in equation (8) throughout the review.

We will next explore the kinematics of DM scattering, spec-
ified by f\(v) and E, — E|, and then the dynamics that give
rise to the interaction strengths o(g). The treatment of the
target-dependent piece will be taken up in section 3.

2.1. Kinematics

Suppose incoming DM with momentump, = m, v scatters off
a detector target and exits with momentum p' . Using that for
nonrelativistic DM, the energy eigenstates of the DM Hamil-
tonian are E\ = p?/2m, and E| = p?/2m,, we may write
the energy deposited in the target in terms of the momentum
transfer q:

2

2m,
©))

Equation (9) defines the kinematically-allowed region in w, q
for DM scattering as a function of DM mass and velocity®.
As shown in figure 1, for fixed v, this region is bounded by
an inverted parabola in the w—q plane; as v increases, the
parabola moves up in w since the DM has more kinetic energy.
The upper boundary of the parabola corresponds to forward
scattering, q - v = gv, which gives the largest possible energy
depositw for a given g. The apex of the parabola corresponds to
q = myv and w = fm,v?, where the target absorbs all of the
kinetic energy of the incoming DM and pg( = 0. The right
boundary of the parabola corresponds to maximum momen-
tum transfer for a given energy deposit, which reduces to
elastic ‘brick-wall’ scattering when p; = —p, and wq — 0.

Of course, incoming DM does not have a single velocity
v, but a range of velocities given by the probability distribu-
tion f,(v), the DM velocity distribution, which is normalized
by [ d*vf,(v) = 1. Equation (9) implies that for a given w, ¢
in the scattering phase space, there is a minimum DM initial
velocity required:

1, (myv—q)? q
wq:EX—E;:EmX’U—XzT:q'V—

4

oy (10)

w,
Umin(CIa LU) - ;q +

We can see this restriction explicitly in the rate by taking

an isotropic approximation, in which we assume the target-
dependent piece of equation (9) depends only on ¢ and not on

% For bosonic DM, there is the additional possibility of absorption, where the
entire mass-energy of the DM is transferred to the target, yielding q = m, v
and w =~ m,. Condensed matter systems then provide sensitivity to eV-mass
DM and below. While we focus exclusively on the scattering process in this
review, see [20—29] for a dedicated treatment of absorption in various targets.

Review
keV A

3

=
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=

wn

2

) i

g eV

e

o0

—
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my = 100 MeV
meV - my =1 MeV
my = 10 keV
T T T
eV keV MeV

Momentum transfer ¢

Figure 1. Kinematically-allowed regions for DM scattering with
v = 1073 for various DM masses. Reproduced from [19]. CC BY
4.0.

q. (Including the full q dependence can be important, how-
ever, for anisotropic target systems.) Using the delta function
0(w — wq) to integrate equation (8) over the angle q - v, we
obtain the isotropic rate:

is L p gdg 7o (q)
R®° = — X d i s X X S s
Y prmy, | @n)? W 1)(Umin(g, w)) Ui (g,w)

(1)

where we have introduced a function for the mean inverse DM

speed:
n(vmin) = /

Umin

d*v M. (12)
v
Accurately determining the DM velocity distribution is a
challenging problem which is an active area of research; here
we will be content with some simple models which set the
relevant scales, and refer the reader to the recent literature on
this topic for a more in-depth study. In general, models of the
DM velocity distribution come from a combination of sim-
ple analytical arguments, simulations which model the many-
body gravitational dynamics of forming and merging galaxies,
and astrometry data on nearby stars such as the Gaia cata-
logue [30]. Non-gravitational DM self-interactions can qual-
itatively and quantitatively change the velocity distribution,
but these are model-dependent. A complementary approach,
which exploits the positivity and normalization properties of
f(v) to derive consistency conditions on observed spectra and
rates in a halo-independent fashion [31, 32], was developed
for WIMP-nuclear scattering but has recently been applied to
sub-GeV DM-electron scattering [33].
A good starting point for the DM velocity distribution is
the standard Halo model (SHM) [35], a Maxwellian in the rest
frame of the Milky Way:

b2
€ 20% @(Uesc - ‘V‘),

Jr(v) = (13)

(27r012;)3/2NR,esc

where o, is the velocity dispersion and ves is the Galac-
tic escape velocity. Note that the distribution has been trun-
cated with a hard cutoff at the escape velocity, leading to a
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Table 2. Approximate parameters for the DM phase space
distribution, from [34].

Local DM density p, 0.55 GeV cm 3
Mean DM speed vg 233 kms~!
Galactic escape velocity vese 528 km s~!
Solar velocity in galactic frame 246 km s~
Earth velocity with respect to the sun 30 km s~!

normalization constant

Vesc

2 Vese v2
Ni.ese = erf = _ Jese
Rese =€ <\/§oy> V/;_UU 202

A Maxwellian velocity distribution with no cutoff is a self-
consistent solution to the collisionless Boltzmann equation
for a spherical isotropic DM density distribution p(r) oc 1/r%
(known in the literature as the ‘isothermal sphere’ model),
which yields the observed flat rotation curves; the escape
velocity cutoff renders the total DM mass finite within the
galaxy. The mean DM speed is vy = v/20,. By the virial
theorem, any test particle at the location of the solar radius
re (~8 kpc from the center of the Milky Way) which has had
sufficient time to gravitationally equilibrate will have average
velocity equal to /GM/r., where M is the mass enclosed

(14)

within a radius 7. Indeed, the Sun itself is one such test par-
ticle, so one may infer the mean DM speed (and hence the
velocity dispersion) by setting vy equal to the ‘local standard of
rest,” which is the circular velocity of the Sun around the cen-
ter of the Milky Way, corrected for the small random ‘peculiar
velocity’ of the Sun with respect to its neighboring stars. Sim-
ilarly, the escape velocity may be bounded from below by
the maximum velocity of the fastest stars in the galaxy. Some
representative values for vy and ves. are given in table 2; see
[34, 36] for discussions of the associated uncertainties.

In the arguments above, the Milky Way DM halo is ideal-
ized as a self-gravitating spherical distribution in equilibrium,
but in our cosmological history, the Milky Way formed through
a rich history of mergers of smaller halos. A wealth of data,
both from simulations and observations, have persuasively
shown that the true DM velocity distribution in the Milky
Way is not a perfect Maxwellian. Simulations of halo forma-
tion give access to the DM phase space distribution directly
and suggest that the bulk of the distribution near v, differs
from a Maxwellian at the ~20% level [37], which is tied to
the fact that the density distribution is not exactly 1/r%. The
high-velocity tail is the most uncertain, as it relies critically
on the merger history of the Milky Way, which is a stochas-
tic process and requires careful observational reconstruction.
In general, mergers lead to imprints in both the DM distribu-
tion and stellar distribution, such that observations of the stellar
phase space distribution can be used to infer the Milky Way’s
history. In some cases, the result is small-dispersion remnants
called streams; one striking example is the Sagittarius stel-
lar stream [38, 39], which may have a DM component that
comprises ~5% of the local DM density with a local velocity
Vsag =~ 400 km s~ and dispersion g, >~ 10 km s~ 1. Other
mergers may leave more diffuse remnants, like the radially-
anisotropic stellar substructure observed by Gaia (dubbed the

‘Gaia Enceladus’ or ‘Gaia sausage’), implying corresponding
DM substructure that may be ~20% of the local DM den-
sity [34, 40]. It is an open question to what extent the smooth
component of the DM distribution may be correlated with
stars, but the consequences for light DM phenomenology are
largely driven by the quasi-Maxwellian bulk of the distribu-
tion, though important effects at experimental thresholds do
arise from the high-velocity tail [41, 42].

Since direct detection experiments are done in terrestrial
laboratories, what we actually need is the lab-frame DM dis-
tribution f,(v), which may be obtained from the rest-frame
distribution fR(v) by a Galilean boost along the velocity of the
Earth vg:

[y (Vi 1) = fr(V + Ve (D).

Here, v, represents the velocity of the Earth with respect to the
Galactic rest frame, which contains both the solar velocity with
respect to the Galactic rest frame and the relative Earth—Sun
motion. Note that even though the rest-frame distribution is
stationary, the lab-frame distribution acquires a time depen-
dence due to the yearly motion of the Earth around the Sun
(annual modulation) and the rotation of the Earth over 24 h
(daily modulation). The velocity of the Earth with respect to
the Sun is about 30 km s, so the dominant effect of annual
modulation is a ~10% change in both the DM flux and the
high-velocity cutoff of the distribution depending on the time
of year. By contrast, the linear velocity of the Earth’s sur-
face at the equator is only ~0.5 km s, so the effect of daily
modulation is an order-1 change in the direction of the mean
DM velocity, but not the speed or the flux. Experiments which
are sensitive to the direction of the DM ‘wind’ thus have an
important handle on the DM distribution, and as we will see,
light DM experiments are particularly suited to this observ-
able. Over the course of a day, during which |v| can be taken
as a constant, a convenient parameterization of the direction of
v (?) relevant for daily modulation is

5)

sinf, sin ¢
sinf, cosf,(cost — 1) |,
cos? 0, + sin® 0, cosV

Ve (D) = |Ve (16)

where 9 = 27 x (ﬁ) , 0, ~ 42° is the inclination of the
Earth’s rotation axis, and at time ¢ = O in these coordinates
the (x,y) plane of a DM detector is perpendicular to the DM
wind’.

Accounting for the daily variation of the DM velocity distri-
bution in the lab frame then leads to a daily modulation of the
event rate. To calculate the time-dependent rate per unit mass,
it is useful to absorb the energy-conserving delta function into
the velocity distribution, yielding

g(q w1 = /dSVfR(V + Vo (0))o(w — wq) a7

as the anisotropic analogue to 7(vmi,) With time dependence
through v (7). Rearranging the factors in equation (8), we

7 Note that the time dependence of |v; | leads to annual modulation, which can
also have important effects on light DM scattering [43].
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The local DM density p, normalizes the overall rate of any
DM direct detection experiment. Historically, measurements
of this quantity have relied on vertical accelerations of stars
outside of the plane of the Galactic disk [44], leading to a
~50% uncertainty®. This method uses the Jeans equations and
assumes the disk stars are in equilibrium, which is already in
conflict with some Gaia observations; new techniques may
use angular stellar accelerations from Gaia to determine p,
directly from the Poisson equation with a minimum of assump-
tions [45]. The density at Earth may also acquire a time depen-
dence through the ‘gravitational focusing’ effect [46], where
slower DM particles are bent towards Earth when the Earth is
behind the Sun, increasing the density of slow DM particles in
March. This may compete with the annual modulation signal
from the speed distribution, where the DM flux peaks in June.
Indeed, a study of the full kinematics of DM requires treat-
ment of the entire six-dimensional phase space distribution

Fx(x,v; ).
2.2. Dynamics

We now turn to the dynamics of DM, namely its interactions
with SM particles and with itself. For sub-GeV DM in partic-
ular, the interactions are strongly constrained by the related
requirements of a consistent thermal history of DM (lead-
ing to a late-time abundance of DM, the relic abundance,
which matches CMB observations) and the suppression of any
additional sources of energy injection after the time of the
CMB, which could reionize the Universe and distort the CMB
anisotropies. Therefore, to understand the interactions of DM
in the laboratory, we first briefly review DM interactions in the
early Universe.

2.2.1. Early Universe. As a starting point, consider the
hypothesis that DM was once in thermal equilibrium with the
SM. At temperatures well above m,, annihilation processes
such as xY — e*e™ occur at equal rates to the reverse reac-
tion ete™ — Y. As the temperature T of the Universe drops
below the DM mass, the reverse reaction becomes Boltzmann-
suppressed and the DM number density drops exponentially.
However, all of these processes are taking place in an expand-
ing Universe, and once the annihilation rate I'yy drops below
the expansion rate, the annihilation shuts off and the DM abun-
dance becomes fixed. This sequence of events is known as ther-
mal freeze-out [47], and directly relates the annihilation cross
section to the relic abundance; the larger the cross section, the
less DM left in the Universe today. The existence of an anni-
hilation channel which couples DM to the SM, for example
XX — eTe, implies that there must be a related scattering

8 The light DM community has traditionally used both p = 0.3 GeV cm or
py =04 GeV cm~ for most experimental limits, though both of these values
are likely outdated; some care is therefore required to translate between limits
from different experiments.

process xe~ — xe~ which permits direct detection. There
is an important caveat to this story, which is that at late
times where T < m,, the annihilation rate is never exactly
zero. Even if I is small enough to not meaningfully affect
the overall DM density, residual annihilations can still inject
enough ionizing particles into the CMB to distort the observed
anisotropies. The upshot is that DM lighter than 10 GeV is
ruled out if its thermally-averaged annihilation cross section is
independent of velocity [48]. This does not rule out all sub-
GeV DM candidates, but it does place important restrictions
on the spin and interactions of light DM from the freeze-out
mechanism—for example, Dirac fermion DM is ruled out but
scalar DM is allowed [49].

It is also possible for light DM to be in thermal contact with
the SM without being in thermal equilibrium. A well-studied
example of this is the freeze-in mechanism [18, 50-52], where
the initial abundance of DM is zero, but very weak interac-
tions in the SM plasma populate the DM with ete™ — Y.
The DM abundance is always small enough that the reverse
reaction does not occur with an appreciable rate, and the DM
never equilibrates. The production shuts off at late times when
the temperature drops below m,, or for m, < m,, when the
temperature drops below m, and positrons drop out of equi-
librium. This model avoids the CMB energy injection con-
straints because DM annihilation never occurs. If we allow for
the possibility of number-changing DM interactions, such as
XX — XXX, there are several other scenarios for generating
the correct relic abundance, including strongly-interacting DM
[53, 54] and elastically decoupling relics [55, 56]. The possi-
bilities expand further if we allow a dark sector, containing
the DM and possibly other particles, that is thermalized with
its own temperature 7',.. For our purposes it suffices to note that
there are multiple examples of viable models for light DM.

There are many other important bounds from cosmolog-
ical observations on the parameter space of light DM. The
most important (and least model-dependent) is the warm DM
bound: DM which was in thermal equilibrium with the SM
must have mass greater than ~1 keV, or it would have been too
relativistic to gravitationally clump. More precisely, requiring
that DM not damp the observed matter power spectrum con-
strains rm, = 12 keV, and the additional interaction of DM with
baryons would produce a drag force which would affect CMB
anisotropies, strengthening the bound to m, 2 20 keV [52]. In
fact, a similar bound applies for freeze-in DM: despite the fact
that it was never in thermal equilibrium, its phase space distri-
bution inherits some of the properties of the SM plasma. There
are also upper bounds on the DM-proton and DM-electron
cross sections for the massive mediator limit, though at values
well above those required for thermal freeze-out or freeze-in
[57, 58]. In addition, there are constraints on the DM self-
interaction cross section, o, /m, <1 cm? g~!' [59]. These
bounds are somewhat subtle because simulations typically
assume contact interactions between DM, while exchange of a
light mediator would lead to a long-range force. Even with all
of these constraints, though, light DM remains a viable pos-
sibility, and indeed some of the strongest constraints on the
DM-CM interaction strength in the mass range of MeV-GeV
are now coming from direct detection experiments.
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2.2.2. Laboratory interactions. The thermal histories for sub-
GeV DM described above require, at a minimum, one addi-
tional ingredient: a new force which mediates the thermal con-
tact between the DM and SM. Indeed, DM cannot interact with
the SM through the strong force (otherwise DM would not be
‘dark’ with respect to baryons), and neither can it be the weak
force, which has too small of an annihilation cross section to
generate the correct relic abundance of sub-GeV DM. In prin-
ciple, it could be the photon if DM had a small enough electric
charge to be cosmologically ‘dark’, but the CMB excludes this
possibility for freeze-out because such a small charge would
not lead to sufficient annihilation and would yield an overabun-
dance of DM unless other annihilation channels are introduced
[60].

A benchmark model of such a new force is a dark pho-
ton [61-64], denoted A’. In this model, DM has a charge g,
under a ‘dark’ version of electromagnetism, but unlike elec-
tromagnetism, the dark photon may be massive with mass m,.
In addition, because the quantum numbers of the dark pho-
ton are the same as the ordinary photon, the two states may
mix, which is usually introduced as a kinetic mixing parameter
€ < 1. This mixing implies that particles with electromagnetic
charge Qe also have a dark photon charge, which is given by
€Qe. Combined, the dark photon couplings with the DM and
charged particles allows for thermal contact between the DM
and SM. In certain regions of parameter space, the require-
ment of obtaining the correct relic abundance fixes the size of
the couplings [65, 66]:

4
_ m,,
10 l4ﬁ, freeze-out (m, < m, < my)
2 m? MeV
ape” ~ X
—24 e .
10 o freeze-in (my < my, m, < m,).
X

(19)
For a given m, and m, then, these thermal histories predict
the DM scattering rate at direct detection experiments, leading
to concrete thermal targets in parameter space which are the
goals of a number of experimental programs.

In the non-relativistic limit, the dark photon model
yields the following interaction Hamiltonian between DM
and charged particles, to leading order in the relative
velocity:

&q e €0e
AHXQ:/#C‘]“Q r,) €8 (20)

612 + mi/

where r, is the DM position operator, ry is the position oper-
ator of a particle of electric charge Qe, e = /47« is the elec-
tron charge with « ~ 1/137 the fine structure constant, and
gp is the dark charge’. Because the potential is translation-
invariant and depends only on the relative coordinate r, — rg,
the matrix element of equation (20) may be evaluated between

9 Note that we are using Heaviside—Lorentz conventions for the electric charge
as is common in high-energy physics, where o = ¢?/(4). This differs by
factors of 47 from cgs-Gaussian units where @ = €?.

plane-wave DM states:
3 3
d q d Ty ei(pX—p&)TX eiq~(rQ—rX)
@2r)y} Vv

€Qegp
q* + m?,

(P, |AH,olp,)

1 ¢ ;

1 0esp iar, @1)
Vg +m3,

where in the last equality the integration over the DM coor-
dinate enforces momentum conservation, q = p, — p;. The
matrix element of AH,, thus has the factorized form of
equation (7), with

1 e£Qegp

<f’p;(|AHXQ‘l’px> - qu +m§/

(fle'rreli)

1 iqro (s
JY@(flereli) (22)
where we identify the cross section 6(g) as proportional to the
scattering potential V(gq),

2 2 2
5(q) = x <€Q%’D) ="y )

T \g*+m

and pir, = ——22 is the DM-target reduced mass; for a target
T+my
proton or electron, for instance, my = m,, or m, respectively.
It is common in the DM literature to rewrite o(q) =

orF3\(q), where &7 is a fiducial cross section at fixed momen-

tum g,
2 2
Gy = Hix ( %) (24)
T\ gy +my
and Fpy(g) is a momentum-dependent DM form factor
2 2
_ Qo+ my
F = 25
pm(q) o mﬁ/ (25)

which parameterizes the momentum dependence of the scat-
tering potential. For T = e, o1 can be interpreted as a cross
section for DM scattering off a free electron at a reference
momentum ¢g,, which is typically taken to be the inverse
Bohr radius, g, = 1/ap = am, ~ 3.7 keV. For T = p, 7, is
the DM-proton cross section and ¢, is an arbitrary reference
momentum which is often taken to be g, = m,vo. The two lim-
its Fpy — 1 and Fpy — (go/q)? correspond to a heavy media-
tor, my — o0, or light mediator, m, — 0, respectively. Since
the mass of the dark photon is unknown, these two limiting
cases span the range of possibilities for the scattering ampli-
tude. In position space, the heavy mediator limit corresponds
to a contact interaction, V(r, — ro) o 6 (r, — rp).

Plugging in some numerical values, we find that for the
freeze-out scenario with m, > m,, the typical electron cross
section is

(26)

2
G, ~3x107% cm2<I()Mev> ,

my

independent of my/, gp, and e. This is a feature, not a bug,
because the same DM—-SM interaction (with the same my/
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dependence) fixed the relic abundance in the early Universe.
Assuming a typical electron density of n, = 10** cm ™2 in a
generic material, the mean free path of a 10 MeV DM particle
in a generic detector is

A= n.5,) "' ~4x 10" m. 27)
Unlike ordinary Coulomb scattering between charged SM par-
ticles, then, there is no possibility of multiple scattering in any
detector (or even of correlating scattering events between two
nearby detectors on an event-by-eventbasis); thermal relic DM
experiments are truly rare-event searches.

The dark photon model illustrates the ‘top-down’ approach,
where we began with a particular model of DM dynamics in
the early Universe to derive DM interactions in the laboratory.
That approach predicted a particular coupling strength of DM
to electron and proton number density in the nonrelativistic
limit. Another approach one might take is to start with a gen-
eral scalar or vector mediator coupling to electron, proton, or
neutron number density. Motivated by the search for WIMP-
nucleus scattering, the other case we will consider in this
review is DM that couples to protons and neutrons only, medi-
ated by a Yukawa interaction. The DM-nucleon Hamiltonian
is given by

3
dq eiq~(r,,—r>() YnYD

AH,, =
X Qn) g+ M?

(28)

for a mediator of mass M, where n denotes either a proton or
a neutron. The coupling y, now plays the role of the charge of
a nucleon with respect to this new mediator, and yy, is the DM
coupling. We will assume equal proton and neutron coupling
for simplicity. As before, we can define a DM-nucleon fiducial

Cross section ,
2
5 = :U’Xﬂ YYD
o \@+M

where g, = m, 0, as before. Again, there is also a DM form
factor Fpm(q), which is identical to equation (25) but with the
replacement m, — M.

For this benchmark, the cosmology is quite different from
the previous dark photon model. For sub-GeV DM, the anni-
hilation process xx — nn is clearly not possible when the
temperature of the Universe is well below T ~ GeV, while
at higher temperatures, one needs to specify a microscopic
coupling of DM to quarks or gluons, which can be model-
dependent. In addition, there are strong constraints on medi-
ators coupling to quarks or gluons from observations of rare
meson decays. The upshot is that thermal freeze-out scenarios
with sharp benchmark values of y,y, are excluded for sub-
GeV DM [67]. One can also consider enlarging the dark sector,
which does lead to viable thermal relic possibilities. Com-
bining cosmological and laboratory constraints then lead to
upper bounds on y,yp, as a function of M, and therefore on
0,,. For MeV-GeV mass DM and the massless mediator limit
(M < q), the bounds on &, are the weakest, with the poten-
tial for large signals in direct detection experiments. However,
there are more stringent limits on sub-MeV DM and the mas-
sive mediator limit [67—69]. Despite these caveats, for the sake

(29)

of uniformity we will primarily consider this type of interac-
tion throughout our discussion of DM-nucleus interactions in
section 4.

Finally, to generalize the interactions even further, we can
take a completely ‘bottom-up’ approach where all possible
DM-SM interactions consistent with Galilean and translation
invariance are enumerated. As discussed in [70, 71], in the
non-relativistic limit there are 14 operators associated with
exchange of a new bosonic mediator of mass M, all of which
contribute to the Hamiltonian as

43 . 1
AHXT = / (27:;3 e 4 rXFX(q, pX’SX) X m

X T Fr(g, py,Sy) (30)

where ) = e, p,n is a SM fermion. F, is a function only of
momentum transfer q and properties of x such as p, and S,,
while Fr similarly depends only on q, p,, and S,;. This again
gives the same factorized matrix elements as in equation (7).
M is the mass of the mediator which may be a scalar, pseu-
doscalar, vector, or axial vector. In all cases, the potential still
only depends on the relative coordinate between y and .
As before, the DM part of the matrix element may be fac-
tored out, with the remaining piece defining a target response
function. Without a top-down model to rely on, there are no
a priori target values for the coefficients of these operators
(though non-renormalizable operators should be suppressed
by a sufficiently high energy scale that they would not have
already been probed in high-energy collider experiments), but
some combinations arise from top-down models in the non-
relativistic limit. For example, in addition to the €'97¢ oper-
ator in equation (20), a light dark photon mediator will let
the DM source a dark magnetic field proportional to the DM
velocity, which will couple to the electron spin analogous to
the spin—orbit coupling which contributes to the fine structure
of hydrogen. As illustrated by this example, spin-dependent
interactions which arise from top-down models are typically
suppressed compared to spin-independent interactions by the
small DM velocity, v, < 1, and/or involve low-mass parity-
odd mediators such as axial vectors which are highly con-
strained by cosmological, astrophysical, or low-energy observ-
ables (see for example [72]). For these reasons, we focus on
the spin-independent interaction as a benchmark model in this
review.

3. Introduction to condensed matter systems

In contrast to the panoply of possible DM masses and inter-
actions, the non-relativistic Hamiltonian of any CM system is
universal:

Pi P Z
Hey = _
oM sze + 2M1 CYZ |I'k — 1‘1‘
k 1 Lk
& 1 (&% Z[ZJ
= 31
2Z\rk—rl|+2z|r r| (31

Here, lowercase letters index electrons and uppercase letters
index ions of charge Z; with masses M;, and the sums run
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over all the electrons and ions in the material. Despite the fact
that the only interactions are through the Coulomb potential
(and its relativistic generalization, which includes for example
spin—orbit coupling), it is obviously impossible to exactly
solve the associated many-body Schrodinger equation when
there are Avogadro’s number of terms.

In the first part of this section, which largely follows [73],
we review some of the techniques to determine two of the
elementary excitations that appear in any solid state sys-
tem—electrons and phonons—and give a basic description of
their properties. This provides the groundwork, with which we
can focus on the problem of most interest for DM detection:
computing the CM part of the matrix element which appears
in the DM scattering rate, equation (5):

S(q,w>2§Z|<f| Do fee Y e i)
f k I

X 6(Ef—E,~—w)

2

(32)

where f, is a (normalized) DM coupling with electrons and
f1 is the DM coupling to ions, and we have summed over
all constituents of the system. Here we take f, and f; to be
q-independent constants because we have factored out all of
the g dependence into the DM cross section in equation (7).
The function S(q, w) is known as the dynamic structure fac-
tor. Note that different conventions exist in the literature for
the overall normalization of S(q,w) in terms of factors of 27
and volume, and the couplings f,; are typically normalized
relative to an overall interaction strength. For example, for the
dark photon model, we would be interested in the operator

E :elq‘rk + E :Zz el
k i

Typically the prefactor in front is absorbed into a fiducial DM
cross section and form factor, leading to the natural definition
fe=—1 and f; = Z; in this work. Note also that we will
focus on the particular choice of structure factor above, which
depends only on the position operators for electrons r; and
ions ry, as this is the structure factor relevant for the most
commonly-studied models in the literature. In other mod-
els, the leading nonrelativistic coupling could have additional
dependence on the target momenta and spins, and requires
defining additional structure factors.

In equation (32), it is important to note that the initial
and final states |i), | f) are states of the interacting many-body
system, not states for noninteracting particles. This is obvi-
ous for the case where the final state consists of phonons,
which are collective excitations of the ions, but it is also true
for the case where DM couples to electrons. The systems
we focus on in this review are those for which the internal
interactions among microscopic constituents may be strong,
but where the response at low energy and momentum trans-
fer may be described by long-lived elementary excitations,
such as phonons and electron quasiparticles. A key quantity
which determines the importance of including these many-
body states is the momentum transfer q from the DM to the

gegp

O(q) = m - (33)

CM system. For sufficiently large q, the cross terms between
different electrons or nuclei will have large relative phases
and average out to zero, and the scattering can be effectively
treated as if DM interacted incoherently with an individual
electron or nucleus. As a very rough estimate, the scale at
which many-body effects become crucial is

2mh
eon < 2 ~ 5 keV /e,
a

(34)
where a is the nearest-neighbor spacing of lattice sites in
typical solids and we have temporarily restored % and ¢ for
clarity. Of course, this is only an estimate and for accurate
rates, many-body effects also need to be accounted for at
larger momentum transfers. This is particularly true if scatter-
ing is restricted to low energy transfers w, comparable to the
energy thresholds of the elementary excitations. In any case,
the point is that this kinematic regime can be accessed by DM
in non-mutually-exclusive ways:

e Sub-MeV DM carries a maximum momentum of m,v <
1 keV, so g <2mv < g, for any interaction. Thus,
many-body effects are crucial for the lightest DM
candidates.

e DM of any mass interacting through a light mediator. As
my — 0 in equation (33), the prefactor scales as 1/¢*
and thus the rate integral is weighted toward the smallest
kinematically-allowed momentum transfers.

In contrast, for GeV-scale WIMPs, the momentum transfers
which lead to detectable energy deposits are large enough that
the DM scattering can be treated as single-particle scattering.

In the remainder of this section, we will give an overview
of theoretical tools used to describe many-body excitations
in section 3.1 and then elaborate on how these tools are
used to compute the dynamic structure factor in section 3.2.
We will then apply this to calculate DM scattering rates in
sections 4—6. Aside from this theoretical treatment, one can
also use direct measurements of the dynamic structure factor,
as determined by SM probes of the material. In the case of DM-
electron scattering, the appropriate dynamic structure factor is
related to the complex dielectric response, which measures the
linear response of a given material to spatially- and temporally-
varying electromagnetic perturbations. In the case of DM-
nucleus scattering, a similar dynamic structure factor also
governs neutron scattering. We also briefly comment on the
possibility of using experimental measurements to determine
S(q, w) in this section.

3.1. Elementary excitations: band structures and
quasiparticle excitations

Given that equation (31) is impossible to solve exactly, the
key to CM theory is that we can describe systems with
emergent weakly-interacting many-body states, also known
as quasiparticles in the case of electrons. Electron quasipar-
ticles have the same charge and spin as electrons, but are
truly many-body states and can have a different spectrum of
excitations. Nevertheless, we will see a useful approximation
is to treat the electron quasiparticles with a ‘single-particle’
wavefunction. As is common, we will also simply refer to these
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excitations as electrons. In the case of the ions, the emergent
modes are the phonons, which can be directly obtained by a
change of basis into collective coordinates; as these modes
do not have a direct particle counterpart, they are more often
called ‘collective excitations’. The interactions of the elec-
trons also lead to a collective excitation, called the plasmon,
which we will touch on in section 3.2. There are also many
other emergent modes beyond what we will discuss here, for
instance spin waves, which are called magnons.

For the majority of this review, we will consider crys-
talline solid-state systems, where the constituent atoms are
arranged in periodic lattices. (Superfluid helium, discussed in
section 4.3, will require a different treatment.) The minimal
repeating structure in such a lattice is called the primitive unit
cell, and in three dimensions can be defined by three basis vec-
tors called the primitive lattice vectors, a;, a5, a3. Any point in
the crystal may be reached by translating a point in the unit
cell centered at the origin by a lattice vector R which is a
linear combination of the primitive lattice vectors with inte-
ger coefficients. The discrete translational invariance imposed
by the lattice yields a discrete Fourier transform: any function
periodic on the lattice, f(r) = f(r + R), may be written as

elGR _

f) = &4 f(G); 1, (35)
G

where the vectors G are reciprocal lattice vectors. In Fourier
space (conventionally referred to as reciprocal space), the ana-
logue to the unit cell are the reciprocal space primitive lattice
vectors by, by, by where a; - b; = 274;;, and G is any linear
combination of b; with integer coefficients. The reciprocal
space primitive lattice vectors can be defined as the inverse
of the matrix of lattice vectors, with an explicit expression

b - Z Eijkdj X Ak

36
(ay X a) - a3’ (36)

3.1.1. Electronic band structure. A first approximation can
be made on the basis of the fact that ions are heavy and
slow and electrons are light and fast. The Born—Oppenheimer
approximation postulates that the energy eigenstates of the
ion—electron system can be factorized into a piece depend-
ing explicitly on the ionic coordinates, and an electronic
wavefunction which depends only parametrically on the ionic
coordinates. In addition, we will typically consider the core
electrons of each atom to be tightly bound to each nucleus,
such that the only electrons whose dynamics we are interested
in are the outer-shell valence electrons. For example, silicon
atoms (atomic number 14) in a lattice can be treated as ions of
charge Z = +4 consisting of the nucleus and its 10 core elec-
trons. Since the ions are much heavier than the electrons, the
ion positions can be treated as approximately fixed when deter-
mining the electron wavefunctions. If we further ignore the
electron—electron repulsion term, the Hamiltonian separates
into single-particle Hamiltonians for each electron,

P

H;
2m,

= + Vi(r) (37)

1

where V,(r) is an effective potential experienced by the valence
electrons due to the ions, which are located at fixed positions
R1'10

The attractive Coulomb potential V,(r) is periodic, because
the ion positions themselves determine the geometric structure
of the lattice. Using the fact that the operator for translation
by a lattice vector R commutes with H;, we may write the
single-particle wavefunctions as a phase factor e times a cell
function ux which has the periodicity of the lattice:
uk(r + R) = uy(r),

e T (), (38)

1

7/’k(1‘) - \/V
where V is the total volume of the crystal. This result is known
as Bloch’s theorem, and has the important implication that
valence electrons are delocalized: their wavefunctions have
support throughout the entire crystal, thanks to the constant
modulus of the phase factor and the periodicity of the cell func-
tion. Solving the single-particle Schrodinger equation with the
ansatz (38) for the wavefunction will yield a discrete set of
quantized energy eigenvalues and eigenfunctions for each k,
which may be labeled with an integer 7, called the band index,
and restricting to inequivalent solutions restricts k to a region
of the reciprocal lattice space known as the first Brillouin zone
(1BZ). As the number of atoms in the crystal goes to infin-
ity, k becomes a continuous parameter in the first BZ, and for
fixed n, the energies Ef(") trace out curves called energy bands.
A diagram of such a band structure, along with the associated
real-space crystal lattice and BZ diagram is shown in figure 2.
The vector k is called a crystal momentum"!

The electron—electron Coulomb repulsion term cannot, of
course, be ignored forever. Moreover, electrons are fermions,
and thus the Pauli exclusion principle requires antisymmetry
of the true wavefunction, which cannot simply be a product
of single-electron wavefunctions. For systems with a small
number N of electrons (atoms or molecules, for example),
an approximate wavefunction may be constructed to obey the
exclusion principle as a fully antisymmetric linear combina-
tion of N-orbital products (the Hartree—Fock approximation)
where the spin degrees of freedom are treated separately; this
construction is known as a Slater determinant. By using the
variational principle, minimization of the total ground-state
energy with respect to the basis of single-particle states leads
to an effective single-particle Schrodinger equation for each

state ¢, i = 1,...,N:
v2
— 5 Vi) + v‘*(r)] Vi) + [ VX ) dr’

= ¢;9;i(r) (Hartree—Fock) (39)

where the total potential V! and the exchange potential VX
are defined in terms of the single-particle number densities

10 Note that in this effective description, both m, and V;(r) must be renormal-
ized, but the important point is that the one-body Hamiltonian will always
contain a kinetic energy operator and a periodic potential.

"'While it is tempting to interpret k as a physical momentum which is con-
served, this is often not correct: crystal momentum is only conserved up to the
addition of an arbitrary reciprocal lattice vector G.
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Figure 2. (a) Real-space face-centered cubic (fcc) lattice structure for Si. (b) First Brillouin zone for fcc crystal. (c) Electron band structure
for Si. (d) Phonon band structure for Si. The reciprocal space primitive vectors are given by by = 27 /a(—1,1, 1), by = 27 /a(1, —1, 1), and
b; = 27 /a(1,1, —1). T labels the origin of the reciprocal space while the capital Roman letters indicate standard high-symmetry points in
the BZ. Graphics reproduced from [74], which also gives examples of additional crystals and target materials.

ni(r) = |¢,(r))? as

VH —a |rn(_r/1)'/| / (40)
VX = —azf]/;f(_rif/)’(r). (41)

Note that these potentials are functions not just of v, but
also of all the other single-particle wavefunctions 1/ j» SO these
equations must be solved with an iterative trial-and-error pro-
cess, adjusting the wavefunctions to achieve self-consistency.
A key limitation of the Hartree—Fock approximation is that it
cannot account for electron correlations.

Rather than dealing with single-particle orbitals directly,
one can also dispense with the wavefunction and frame the
entire problem in terms of the total electron density n(r),
which may be expressed in terms of the exact many-body
wavefunction W as

n(r) = N/ \If*(l', Ir,..., I'N)\I/(I', ry,..., I'N)dl‘z - dI‘N.
(42)
The Hohenberg—Kohn—Sham theorem states that an external
potential for the electrons (here taken to be the ionic poten-
tial V;(r)) uniquely determines the ground state density n(r).

Since the potential also determines the many-body wavefunc-
tion through the many-body Schrodinger equation, the expec-
tation value of the many-body Hamiltonian in the ground state
must also be a functional of the density,

(V|H|V) = Fln(r)] + /V,(r)n(r) dr (43)
which by variational arguments is minimized when n(r) is the
true density corresponding to the potential V(r).

This approach to the problem is called density functional
theory, and is the primary tool used by practitioners to deter-
mine the band structure of real solids theoretically, from first
principles. To do this, one can work backwards from the
density and construct fictitious non-interacting single-particle
states ¢; which satisfy n(r) = 3", |¢;(r)|*>. The functional F
then takes the form

o [ nrn@)

Fln(r)] = 3 drdr’

v —r|

+Z<¢i

The difficulty is that there is no known exact expression for
the last term £XC, known as the exchange—correlation func-
tional, so while we have reformulated the problem, we have

—_V?
2m,

¢i> +E€ ()], (44)
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not evaded the issue of interacting electrons. With suitable
approximations for this term, one can solve the single-particle
equations for ¢,(r). Despite their fictitious nature, these wave-
functions can serve as a decent model for the band structure
wavefunctions )y, since the single-particle DFT equations
obey the conditions of Bloch’s theorem due to the periodic
potential V(r).

3.1.2. Phonons. Finally, we consider coherent motion of the
ions in the crystal, the quantized oscillations of which are
known as phonons. Unlike electrons, ions are highly localized
in the ground state of the crystal at positions r,; = R,, + R(J)»,
which we write as the sum of a lattice vector labeling the unit
cell n and R?, the equilibrium position of ion j within the unit
cell. We consider the amplitudes of small displacements u,,;
about the equilibrium positions and begin with the classical
equations of motion for u. Since the potential energy U(u,;) is
minimized at u,,; = 0 when the crystal is in its ground state, a
Taylor expansion of U begins with the quadratic term, and thus
we obtain a coupled system of harmonic oscillator equations

§ Fn] mi Wi

where M; is the mass of ion j and F is a matrix of spring
constants with indices running over ion labels nj, mi as well
in spatial components x,y, z. Of course, since the ion labels
run over all of the Avogadro’s number of ions N in the crys-
tal, this matrix is enormous and we can solve this eigenvalue
problem by Fourier transformation, similar to what is done for
the electron band structure.

Using the periodicity of the system, we can index the dis-
placements in terms of a crystal momentum k restricted to the
first BZ, analogous to the application of Bloch’s theorem with
electron states above. We similarly write the displacement as

M,; = (45)

—iwygt

(k) ik-R;,+ik- R ie

u,j(k) = (46)

\/_ Y
where the function u;(k) does not depend on the unit cell; the
factor of /M is convenient to include here in order to account

2. R0
for the masses in the force equations. The phase factor of ek
is included here to match a convention commonly used in the
literature. The periodicity of the system also implies that the
force matrix F depends only on differences in unit cell posi-
tion, such that solving equation (45) with n = 0 is sufficient.
Then the equations of motion can be rewritten as

FO j,mi

—wiiij(k) = —Z (Z N
= D;k)ui(k)

ik»(R,ﬁR?R?)) ii,(Kk)
l

(47)

where in the last line we have defined the dynamical matrix
D ;(k), which is now a 3n. x 3n. Hermitian matrix, with n is
the number of ions per unit cell (typically O(1-20)). For each
k, there are therefore 3n, real normal mode frequencies, which
we label as w, x and v runs over all 3n, phonon branches. The

equilibrium positions and dynamical matrix can again be com-
puted using density functional theory methods, see [75—77] for
more details. This allows for a numerical determination of the
mode frequencies and polarization vectors e, ; describing a
displacement of each ion in the unit cell. The eigenmodes are
generally normalized as | iek ek = 0, and also satisfy
the property that

(48)

X
k=€, kj

since the displacement vector u,; is real.

The most general classical solution would then be a lin-
ear combination of all k,» modes with arbitrary complex
amplitudes ¢, satisfying equation (48). Treating phonons
quantum mechanically involves a replacement of the classical
amplitudes with creation and annihilation operators, giving

ik-(R,,+RY)
u, () = E [e Kjdvk € i
" 2N611Mjwl/k R

- P iR, +RY) i
X e lw”’kt%_e;,kjalke ik-(R,+ ]) elw,,_ktj| . (49)

Here the operators a, x, alyk satisfy the commutation relation

[ay xs aL,q] = Ok.qOvu- Neen is the number of unit cells, and
the overall normalization of the operator in equation (49)
was selected to obtain the usual form of the Hamiltonian for
harmonic oscillators, H = Zk’,,(a;kay,k +1/2).

The eigenvalues wy , describes a band structure for phonons
in close analogy to those for electrons, and as N — 00, the
index k takes continuous values in the 1BZ. An example band
structure is shown in figure 2. The difference with electrons
is that for phonon modes, the tower of excitations for each k,
E = nw,x, just amounts to larger occupation numbers n > 1
for a given mode, with classical phonon waves corresponding
to coherent states of phonon modes. Thus the phonon bands in
figure 2 have a maximum energy, while the electron bands in
principle continue up to infinite energy. In a three-dimensional
solid, the three lowest-energy phonon branches extends to arbi-
trarily low energy as k — 0, with a linear dispersion relation
w = ¢, k| for small k. This can be understood since the ground
state of an infinite crystal spontaneously breaks continuous
translation invariance to a discrete subgroup (in other words,
the order parameter is the lattice spacing), and thus there must
be massless Goldstone bosons, which in the CM context are
known as acoustic phonons. The propagation speed c; is the
sound speed with typical values are ~3—10 km s~', yielding

typical energies
) ( ) (50)

again for small |k| < ¢,,. The physical interpretation is that
all N ions in the crystal are oscillating in phase with the
same amplitude as k — 0, which must have zero energy. In
an anisotropic material ¢, may differ along different lattice
directions, leading to distinct dispersion relations for the three
acoustic modes.

If n. > 1, there are additional sets of normal modes gener-
ically corresponding to out-of-phase oscillations within a unit

k
500 eV

Cs
5kms!

Wacoustic = Csk >~ 8 meV (
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cell. These are known as optical phonons, with typical ener-
gies woptical = 10—100 meV. These modes do not correspond
to a broken symmetry and are gapped, with approximately
constant energy across the entire BZ (or equivalently, approx-
imately constant in k). We can understand the energy scale of
optical phonons from dimensional analysis: the normal mode
frequencies will be proportional to y/x/M; where £ is a spring
constant and M; an ion mass. In addition the acoustic branch
has a linear dispersion as k — 0, SO Wycousiic ~ \/K/M(ka)

where « is the lattice spacing. Identifying a+/k/M; with ¢,

we have
) (0.5 nm) 5D
a

We can also estimate optical phonon frequencies based on
the electrostatic interactions of ions within the unit cell [78],
yielding similar values of

14 GeV /(0.5 nm)’
20 mev, /12 5eY JO2 )7 - o)
M[ a3

The fact that this energy scale corresponds to the kinetic
energy of DM with keV-MeV scale masses, and that they can
be excited with a wide range of momentum transfers <keV,
makes the optical phonon branch particularly useful for DM
detection.

Cq Cs
oot 1:—:10meV(
T g 5 km s!

2
M]Cl

~

Woptical =~ 3

3.2. Dynamic structure factor

Having now determined the spectrum of elementary excita-
tions, we might assume that the states i), | f) in equation (32)
are states with definite numbers of those excitations. This is a
good approximation for phonons, which have sufficiently neg-
ligible interactions, but it is not so for electrons. Although elec-
tron quasiparticles are weakly interacting, the interactions are
large enough that they can give rise to collective modes such
as the plasmon. Furthermore, it is not entirely obvious how the
operator coupling to all electrons in equation (33) acts on the
single-particle electron quasiparticle wavefunctions computed
with DFT methods.

To simplify the discussion, here we focus our discussion to
the cases when (i) the DM couples only to electrons and (ii)
the DM couples only to the nucleus, and on the leading excita-
tions being created. As such, there are various subtleties which
we will gloss over, and which will be discussed in detail in
the section to follow, where we elaborate on the structure fac-
tor for the dark photon model when both electron and nucleus
couplings are present. In addition, electrons and ions are not
truly decoupled, so that phonons can be created from DM-
electron scattering. Electronic excitations may also arise from
nuclear scattering (as opposed to electron scattering) via the
CM analogue of the Migdal effect, which we discuss further in
section 6.

3.2.1. Electronic excitations. Assuming DM only interacts
with electrons, and taking the target system to be at zero

temperature, the relevant dynamic structure factor is

2 .
S@.w) =T |<f|Z i)
f k

where k sums over all electrons and the initial and final states
are generic many-body states. The first calculations of DM-
electron scattering assumed that |i), | f) are single-excitation
Bloch states and that the sum over all electrons could be
replaced by the operator e acting only on a single electron;
however, as commented on at the beginning of this section,
for low g < g, it 18 not clearly justified to assume that only
interactions with a single electron dominate. Related to that, it
is also not obvious that only Fock states are relevant and elec-
tron—electron interactions can be neglected. Indeed, while an
important step forward, this single particle approach turns out
to miss some important many-body effects.

A more general approach can be taken, where we do not
make any assumptions about the many-body states. The dis-
cussion here is largely based off of [79-81]. We instead rewrite
the dynamic structure factor in terms of the electron number
density operator,

N
ma= Yo = [ ey i0w-n)  sh
k k=1

and focus on understanding the quantity

2
S(Ef—E—w) (53)

2
S(q,w) = 7”2|<f|nq\i>\25(Ef “E—w). (55
f

The structure factor is related to the rate to produce charge
excitations in the medium, which can be rewritten in terms of
the imaginary part of a correlation function:

S(@.w) = —2Im <_; / " are [y, nq<0)]>) . (56)
0

This is a special case of the fluctuation—dissipation theorem
(which is slightly more general, applying to finite-temperature
systems as well), but can be understood simply as a conse-
quence of unitarity or an application of the optical theorem.
This correlation function determines the linear response of
the charge density in a medium to any external perturbation,
whether it is DM or a SM probe. Indeed, consider subjecting
the material to some other external potential ®¢,, which also
couples linearly to electron density. A suitable candidate is an
electromagnetic potential, and we can think of the potential
as being sourced by a weak external charge p(q,w), with
Dexy = 47 Pey(q, w)/q*. Gauss’s law in a medium tells us the
response of the electric fields in Fourier space:

pexl(qa w)

Ui et 57
e(q, w) ©D

where E(q,w) is the total field in the medium and the right-
hand side of the equation is the total charge density. The total
charge density is the sum of the external charge density and
the induced charge density in the medium, and is related to the
external charge density by 1/e(q, w). The fact that e(q, w) # 1
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generically is a manifestation of charge screening, since the 4000
external field is scaled down by € to generate the in-medium —_ /A jne1 = -39
field which a test charge in the material would feel. Meanwhile, a2
because the induced charge density is due to the response of the g 3000+
medium, it is determined by the correlation function appearing 8
in equation (56). This gives a relationship between S(q, w) and ~ 2000-
. . -
the dielectric response [82]: =
0
s S 1000
S(@w)=-—Im(— , 58 i
(@) =5 ( G(q’w)> SN -
which will be investigated in much more detail in section 5.3. 0 ™ T T ' r=
-10 (1] 10 20 30 40 50

Note that we have made the approximation of a homoge-
neous medium, and ignored some subtleties here regarding
the fact that we are in a periodic medium. We also implic-
itly work with the longitudinal dielectric function everywhere
here, since only the longitudinal fields appear in Gauss’s law.

The advantage of this point of view is that we have made no
assumptions about the nature of the exact eigenstates | f) of the
target. At this point, however, we must find some way to calcu-
late or determine e(q, w). We first proceed by close analogy to
the calculation of the photon polarization in field theory. The
dielectric function e(q, w) is by definition related to the longitu-
dinal photon polarization II , with the exact relationship given
by e(q,w) = 1 — I .(q,w)/|q|*. This suggests an approach to
calculating the polarization in terms of single-particle Bloch
states as derived above. In section 3.3, we will describe a num-
ber of analytic models for the dynamic structure factor, as well
as explicit numerical calculations using Bloch wavefunctions.
The result from including the full many-body states (or equiv-
alently of including screening in the single-particle picture)
leads to matrix elements with qualitatively different behavior.

For example, in generic solid-state systems (including both
semiconductors like silicon and metals like aluminum), there
is aresonance for g < py called the plasmon, which appears in
the dynamic structure factor as

2
w,l'p
(W2 — w?)? + Wl

S(q, w) X g*w (59)

with I', a finite width which regulates the resonance. The
appearance of the plasma frequency

4mran,

(60)

wp = -
suggests an interpretation of this resonance as the collective
oscillation of the entire valence electron density 7., which is
not visible in a picture of single-particle wavefunctions. The
quantized mode corresponding to the collective excitation is
also known as a plasmon, where we can interpret this result
as this structure factor for producing a single plasmon. Since
the ground state is an eigenfunction of the density operator for
q = 0 (with eigenvalue equal to the total number of particles in
the system), the factor of ¢* in equation (59) can be understood
as enforcing that the overlap of the initial ground state and the
final state with an excited plasmon should vanish as ¢ — 0.
We may also express the DM scattering rate directly in
terms of the experimentally-measured loss function or energy

Energy Loss (eV)

Figure 3. The measured ELF in silicon at ¢ < pg, obtained from
electron energy-loss spectroscopy (EELS), shows a pronounced
plasmon resonance of the form equation (59) at w, ~ 16 eV.
Reproduced with permission from [83]. A contour plot of the
dynamic structure factor in Si for g up to 8 keV is provided later in
figure 18.

loss function (ELF),

W(q,w) = Im < (61)

without ever using explicit electron wavefunctions. (This also
only applies as long as the DM-electron interactions are spin-
independent and couple to electron density.) Indeed, the same
loss function describes energy loss of electrons in materials
and x-ray scattering, providing a way to determine the loss
function from experimental data in a way that automatically
accounts for all many-body and screening effects. These mea-
surements are exactly analogous to how deep inelastic scat-
tering experiments can probe the degrees of freedom in the
proton, in particular the non-perturbative proton form factors
at low momentum transfer, by exploiting the electron coupling
to quarks. Figure 3 shows the measured ELF in silicon with a
clear plasmon resonance. One can also use phenomenologi-
cal models of the dielectric function satisfying various prop-
erties with parameters fit to the data; for instance, this is done
with the Mermin oscillator model fit to optical data or electron
energy loss [84—86], as well we also discuss in section 5.3. The
disadvantage of the latter approaches is that the connection
to individual quantized excitations, like the number of elec-
tron/hole pairs produced in a given scattering event, is less
transparent. In addition, it can be difficult to experimentally
determine some regimes in energy and momentum transfer that
are relevant for DM scattering.

e(q,w)

3.2.2. Phonons. The dynamic structure factor for nuclear
scattering is given by

2
S(q,w) = VWZ
f

2

S(Ef—E —w) (62)

(F1>frelvm i)
1

where f; are again the normalized interaction strengths with
the ions. The relative scattering strength will depend on the
type of ion, and the factors f; do not factorize out of the
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structure factor if the system is composed of different types
of ions. Thus, in contrast to the electron-excitation dynamic
structure factor, for multi-atom target materials there is not a
single dynamic structure, but a continuous class of structure
factors depending on how the external probe couples to the
individual atoms. As will be discussed further later, this allows
for additional interesting effects in the material-dependence
of DM scattering, as a way to distinguish different DM cou-
pling scenarios. Note that in this work we will restrict to spin-
independent DM interaction strengths f;; if there is a spin-
dependent interaction potential, then one must also perform an
average over all possible spin states of the ions. An extensive
review of the dynamic structure factor for phonons, including
such spin-dependent interactions, can be found in [87].

For phonon excitations, the final states can simply be writ-
ten by acting with the phonon creation operators introduced
in equation (49) on the vacuum. For a single phonon being
created, |f) = aiyk|0>, while multiphonon excitations are also
possible. In order to detect the phonon excitations being cre-
ated, the energy deposited is necessarily well above the oper-
ating temperature of the experiment, and it is a good approx-
imation to take 7= 0 and assume |i) = |0) for the initial
state. In order to compute the matrix elements with these
states, we must write the ion positions as r; = r,; + u,;, where
r,, =R, + R(; is the equilibrium position of the ion j in the
unit cell labeled by » and the ion displacement u,,; contains the
phonon creation and annihilation operators. Substituting this
into the exponential appearing in the matrix element gives:

i iqr, . 1
fre' T = fie'i exp | iq - E —
' V/2Neen M jy

X alyke;k, ; e K 4 oa, e, j e‘k‘r”/}

(63)

Expanding this operator will contain a O-phonon contribu-
tion, a one-phonon creation contribution, and so on. (Note
that in equation (49) we gave the time-dependent Heisenberg
or interaction picture operator u,_ ;(f), but the matrix elements
given in equation (62) are computed with the Schrodinger
operators where the time-dependence of the states has already
been taken into account in Fermi’s Golden rule, leading to
the energy-conserving delta function. This is why the time-
dependent phase factors have been removed in substituting in
equation (49).)

To perform the expansion explicitly in terms of phonon
creation and annihilation operators, we can make use of the
Baker—Campbell-Hausdorff formula for generic operators A
and B:

[A,B] + L[A, (A, B]]

1
exp(A) exp(B) = exp (A +B+ - 2

2
1
— E[B’ [A,B]].. > , (64)

which simplifies in the case of the harmonic oscillator alge-
bra because the first commutator [a, a'] = 1 is a c-number and

truncates the series at the third term. Applying this gives

iq e e

S Y E— K
V/2Neen My

fieldT = f el T e—Wj(q)H exp
v,k

iq c€k,j elk‘rﬂj

x vk | > 65
P 2Neen M jwy,ka * )
with | o
_ 1 q-e,;
Wi@=5> (66)

o 2Neen Mjwy
The factor e/ is also known as the Debye—Waller fac-
tor, which roughly speaking accounts for the effect of the
zero-point motion of the ions in the lattice. Taking the matrix
element with the initial vacuum state, the exponential of the
phonon annihilation operators reduces to unity and we can
write the structure factor as

S =23

DY
f n.j

. efik'rnj

T
a,y | 0)
2Neen Mjw, ¥

X 0Ef — E;j —w) (67)
where we have replaced the sum over / with a sum over n, j.
Taking only the zeroth-order term in the exponential of
phonon creation operators aiyk, there are no phonon transi-
tions, and this just corresponds to DM elastically recoiling
off the lattice as a whole. The leading nontrivial contribution
comes from expanding the exponentials to linear order, which
allows for single-phonon creation. Summing over final states

lf) = al7k|0>, this leads to the single-phonon structure factor

27 ;
1—ph i k)r,; .—W;
S( p )(q’( ,) — § § f}e(q ) Tnj e (@)

v,k n,j
2

iq-e, .
4 S(Ef — Ei — wyx).

>< s kA
v/ 2Neen M jw,

(68)

We next use the fact that for q smaller than any reciprocal
lattice vector G, the sum over lattice sites simply enforces
momentum conservation'?:

Zei(qfk)»R,, = Ncelléq,k (69)

since phonon modes are only defined for k within 1BZ. This
implies that we will have excitation of any phonon with the

12 Since reciprocal lattice vectors are defined by the condition ¢C® = 1,

momentum is only conserved up to a reciprocal lattice vector, k = q + G.
For nonzero G, this is called Umklapp scattering.
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same momentum ¢ and energy w. The single-phonon structure
factor then simplifies to

q el/qj

S(l—ph)(q, w) = ZWNCCHZ ij -Wj(q) s
vV v.q

x 5(Ef —Ei—wyq)
|F.(q)
Q e e By — B —w,g)  (70)

where the second line defines a single-phonon form factor
F,(q) and we defined Q2 = V /N as the primitive unit cell
volume. This form factor sums over the coupling of the probe
with the ions f; in the unit cell, multiplied by the normalized
motion of that ion oce},  ; \/ﬁj and is therefore describing an
effective coupling of the probe with a particular phonon mode,
accounting for interference effects. This structure factor there-
fore describes coherent scattering off the ions in the lattice.
However, we explicitly see the one-phonon form factor is an
intrinsic quantity of the material and does not scale with the
size of the system.

Neglecting the details of this (probe-dependent) form fac-
tor, the one-phonon structure factor has an amplitude that can
be estimated as ~ ¢/ (2Mwq,), and we see from equation (67)
that excitations of more phonons will be expected to give a
contribution to the structure factor that roughly scales as

DY . ( )

for a final state with n phonons. Here we have replaced M ; with
some averaged ion mass M, and wy, with a typical phonon
energy wy that will be some average over acoustic and optical
phonons, to give a heuristic scaling'?. This approximate scal-
ing gives an estimate of the importance of higher-order phonon
excitations to the structure factor, depending on the regime of
momentum transfer g. Note that for a harmonic oscillator mode
with energy wy, v/2Mwy corresponds to the momentum spread
of the ground-state wavefunction of a particle of mass M in a
harmonic oscillator potential with frequency w. Taking as typ-
ical parameters M ~ 30m,, and wy ~ 50 meV, the momentum
spread is about 50 keV. We can thus interpret the expansion
in g? /2Mwy as follows: at low g compared to the momentum
spread, the dynamic structure factor will be dominated by the
one-phonon contribution since higher-energy excitations have
a suppressed overlap with the probe potential. As g becomes
comparable to \/2Mwy, higher order phonon contributions are

612
2M. wo

(71)

B of course, to actually obtain the structure factor S(q, w), these matrix ele-
ments must be computed with interference effects and integrated over the
phase space such that the phonon energies match w, which can change the
scaling for specific final states and/or couplings. Another subtlety is that the
single-phonon piece of the operator €™ can also give rise to two (or more
phonon) excitations through anharmonic interactions in the phonon Hamilto-
nian. The next term in the phonon Hamiltonian ~ (u)*, which comes from
expanding the potential to higher order in the displacements. A more detailed
discussion of the various contributions to the two-phonon dynamic structure
factor can be found in [88].

important, and for g > \/2Muwy, the structure factor will tran-
sition to that of free nuclear recoils since the kinetic energy
will dominate over potential energy. In section 4 below, we will
illustrate this more explicitly with simple model of a single ion
in a harmonic oscillator, and follow the transitions down from
the high-g regime of incoherent scattering off a single nucleus,
to the regime of low-¢q coherent scattering which leads to single
or few-phonon production.

Finally, we note that the formalism for phonon produc-
tion through coherent nuclear scattering may apply to systems
other than crystal lattices, including superfluid helium which is
actively being investigated as a potential experimental target.
We will discuss this in section 4.3.

4. Dark matter-nucleon scattering

A microscopic theory of DM interactions with quarks and/or
gluons yields an effective coupling of DM to nucleons, which
may include neutrons as well as protons. This may be param-
eterized by a fiducial DM-nucleon cross section, &,, which by
default is assumed to be a spin-independent scattering cross
section. Traditional direct detection of WIMP DM has exclu-
sively focused on DM-nuclear scattering by treating the nuclei
as free target particles at rest. Here we briefly review the
parametrics and the main results to draw a contrast with the
phenomenology of sub-GeV DM scattering; a more complete
treatment can be found in [89].

DM heavier than about 10 GeV carries kinetic energy
greater than 10 keV, well in excess of any displacement energy,
and likewise carries momentum greater than 10 MeV which
exceeds any zero-point lattice momenta. Thus the nuclear tar-
get may be treated as a free particle, and in particular as a
momentum eigenstate, so that classical two-body scattering
kinematics applies. In addition, the nucleus may be treated as
being at rest initially. We can then use the kinematic relation-
ship in equation (9), setting the energy deposited to w = Eg =
q*/(2my) for a nucleus N, which gives the relationship

7

V=
Z/J,XN

q- (elastic nuclear scattering) (72)

where p1, y is the DM-nucleus reduced mass. For incoming DM
with speed v, the maximum momentum which may be trans-
ferred is Gpax = 244,nv, and so the maximum nuclear recoil
energy is

s _

Zuisz
ZWZN ’

my

ER,max = (73)
The best kinematic match is obtained when m, ~ my, when
the free nucleus dispersion relation passes through the region
of phase space with g ~ m,v and w = ¢*>/(2m,). For m, <
my, as is the case for sub-GeV DM, this energy transfer
becomes very inefficient: not only does the incoming DM
energy scale as m,, but only a fraction ~m, /my is trans-
ferred to the nucleus. Indeed, collective modes like phonons
can provide a much better kinematic match to the DM. From
equation (10), the minimum velocity vy, required to generate



Rep. Prog. Phys. 85 (2022) 066901

Review

a nuclear recoil of energy ER is

mNER
Umin — .
min 2/~LiN

so that a hard upper limit to Ej is obtained by setting v, to the
maximum speed of DM in the local neighborhood, assumed to
be Vese + Vg in the SHM.

Assuming a contact potential between DM and nucleon, the
interaction Hamiltonian is given by

O, d3q
AHyg = |22 [ 29
TN, / @y ©

where @, is the DM-nucleon scattering cross section and (i, ,,
is the DM-nucleon reduced mass. For simplicity, we assume
the same coupling to protons and neutrons. Summing over all
available target nuclei Ny, the dynamic structure factor for
elastic nuclear recoils is given by

) . (76

where A is the mass number and Fy is a nuclear form factor,

(74)

i‘I‘(rn_rx)
9

(75)

27 Npue q2

S(q,w) = VA2|FN(q)|25<w ~

1
F(@) = (N[ > €™ |N).

a=1

(77)

Here |N) is the bound state of nucleons in a nucleus and «
sums over all nucleons in the nucleus. |Fy(g)|* thus captures
the strength of response of the system, similar to what we will
calculate for a CM target, with the difference that the excited
states in a nucleus are usually too high in energy (~MeV) to
be excited by the light DM which is the focus of this review.
In what follows, we will always take the initial and final states
are both the ground state of the nucleus. |Fy(g)|* can be com-
puted in specific nuclear shell models, but for our purposes
we can just model it as the Fourier transform of the nucleon
mass distribution. Fy then parameterizes the loss of coherence
over all of the nucleons in the nucleus as the momentum trans-
fer becomes comparable to the inverse nuclear radius: this is
usually relevant for WIMP DM, but universally irrelevant for
sub-GeV DM, so we will always set Fy = | in what follows.

We can now use the isotropic rate in equation (11) to obtain
the rate for a target with mass number A. Performing the trivial
w integral, this gives the nuclear recoil rate:

On

R=N
my 212,

/ qdgn(vmin(Er)Fa(q)  (78)

where N7 = Nyu/(prV) is the number of target nuclei per
unit detector mass. Usually the ¢ integral can be replaced
with gdq — dErmy to obtain a differential rate per recoil
energy, dR/dER. Apart from 7 and Fy, the spectrum is flat in
Eg: all recoil energies are equally likely. The Er dependence
of the velocity integral is quite important, though: using the
Maxwellian ansatz for f,(v), we have

myER

7)(Umin) OC EXP (— (79)

2
2:“’ XN 0%

so in fact the spectrum is exponentially falling in Eg.

To summarize, the maximum nuclear recoil energy drops
as mf( as the DM mass drops below my, while the spectrum
is exponentially falling with Egr. Traditional direct detection
of WIMP DM uses heavy target nuclei such as Xe and have
thresholds for nuclear recoil detection at ~few keV, severely
limiting sensitivity to GeV-scale DM. Given the exponentially-
falling rate, reducing energy thresholds is key to extending
sensitivity to lower mass DM, and generally results in large
increases in rate. For a given detector energy threshold, lighter
target nuclei are also preferred for lighter DM, although there
are clearly limits to this strategy for sub-GeV DM.

Importantly, this description in terms of free nuclear recoils
will start to break down for DM below the GeV scale, since
we run into the energy and momentum scales relevant for
ions in a CM target. There are several assumptions made in
equation (78) that will no longer hold. One assumption was
that any initial motion of the nucleus in the medium could
be neglected, and that we could treat the nucleus wavefunc-
tion as a plane wave. However, as ¢ approaches the typical
zero point momentum for an ion in a medium, ~30—-100 keV
in solid state materials, then the bound nature of the nucleus
cannot be neglected and we must account for nontrivial ion
wavefunctions. In addition, we assumed that the momentum
transfer was high enough that only individual nuclear recoils
had to be considered. This led to a total elastic recoil rate
which was quadratic in A?, indicative of coherent scattering
off of all the nucleons in a given nucleus, and linear in the
total number of target nuclei, indicative of incoherent scatter-
ing off of all the nuclei in the target. As g drops below the
scale <30 keV, the DM can probe multiple ions and we must
consider final states involving correlated motions of the ions.
This will lead to coherent scattering off the medium, or phonon
production. Figure 4 illustrates these different regimes for the
nuclear response in g, w as compared with the kinematically
allowed region for different sub-GeV DM masses: DM with
my 2, 100 MeV will dominantly excite free elastic recoils, DM
with I0MeV < m, < 100 MeV will probe the bound nature of
a nucleus (leading to the multiphonon regime), and DM with
m,, < 10 MeV will mainly excite single phonons. In the rest
of the section, we will go through these latter two momentum
regimes in detail.

The current limits on DM-nuclear scattering are summa-
rized in figure 5 (left). The reach at low masses is driven
entirely by the detector thresholds, which are currently at
the eV scale for solid-state detectors (see section 7); the curve
labeled ‘Collar 2018’ refers to a liquid scintillator detector
[93], for which the electron scattering reach is discussed fur-
ther in section 5.2. At higher mass the reach is driven by
exposure, which is somewhat limited for the low-threshold
prototype detectors which have gram-scale masses. The pro-
jections for future kg-year exposure experiments with sub-eV
thresholds, sensitive to single phonons produced from a DM-
nucleus contact interaction, are summarized in figure 5 (right).
Searches for DM-nucleus scattering mediated by a dark pho-
ton require a more careful choice of target material, and are
discussed in section 4.2.1, with reach projections summarized
in figure 7.
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Figure 4. For DM-nucleus interactions, the response at high ¢ is
highly peaked about the free-nucleus dispersion w = ¢*/(2my). As
the energy drops below the displacement energy for a nucleus in a
potential, E,, the response about the free-nucleus dispersion
broadens and we enter the multiphonon regime at g ~ 10-100 keV.
For g well below ~10 keV, the dynamic structure is dominated by
resonant response on the acoustic and optical phonon dispersions,
corresponding to single phonon excitations. Kinematically allowed
regions for DM scattering are shown for m, = 10 keV, 1 MeV, and
100 MeV at v = 1073, as in figure 1.

4.1. From nucleons to phonons: a harmonic oscillator model

As the DM mass drops below ~GeV, the free-nucleus recoil
energy ~ (m,v)*/my becomes comparable to the typical
energy to break a molecular bond or displace an ion in a crys-
tal, O(10) eV. Indeed, a possible direct detection signature of
sub-GeV might be chemical bond breaking or production of
defects in crystals [94, 95]. However, for MeV-scale DM and
below, nuclear scattering might not have enough energy to dis-
place a nucleus or break a bond, and we must then consider the
relevant eigenstates and energies of the bound nucleus. For a
crystal, this can become complicated since the nuclei (ions)
are all coupled, which leads to the phonon excitations at low
energies. However, if we restrict to the DM mass range
above O(10) MeV, then the typical momentum transfer
g ~ myv 2, O(10) keV. Then it is still possible to take an inco-
herent approximation where we can model DM scattering as
occurring off of an individual bound nucleus in the crystal, as
long as the deposited energy remains below the displacement
energy.

Thus, in the DM mass range of tens of MeV up to 1 GeV,
a useful toy model for DM-nucleon scattering is provided by
considering a single nucleus subject to a simple harmonic
oscillator potential sourced by its neighboring ions. The toy
model allows us to explicitly see the transition from free
nuclear recoils to single or few-phonon transitions in crystals,
and gives some additional intuition for the phonon dynamic
structure factor discussed in section 3.2.2 without the com-
plicated details of the phonon band structure and eigenstates.
The toy model can also be used to describe a simple system
of a diatomic molecule, as an intermediary system between
free atoms and CM systems, in the limit of small anhar-
monic corrections to the potential. In this section, we will
give a description of the potential DM signal that comes from

exciting bound states of a harmonic potential, as a prelude to
single or few-phonon excitations in CM systems!4.
The harmonic potential we will work with is given by

me(z)rz,

V(r) = (80)

1
2
where we can interpret the harmonic oscillator level n as an n-
phonon state in a crystal (where r is the displacement from the
equilibrium position), or a bound state in molecule (where r
is the interatomic distance). For a diatomic molecular system,
the mass my should be replaced by the reduced mass of the
system. To solidify the interpretation of n-phonon states in a
crystal, note that if we take wy = 60 meV, a typical phonon
energy for silicon, and ryp = 0.235 nm equal to the nearest-
neighbor distance in a Si lattice, we obtain V(ry) = 66 eV,
on the same order as the maximum displacement energy of
47 eV along the [110] direction [97]. The motivation for using
wp = 60 meV is that if a single nucleus is struck with a large
momentum transfer, the motion will have a large overlap with
the phonon modes at the edges of the 1BZ, where the ions have
more random motions and energies ~60 meV.

We will again assume a contact interaction as in
equation (75) for simplicity, with equal proton and neutron
couplings. Because we are still in the incoherent regime, the
form of the rate will be very similar to that of equation (78),
except that we must use the bound states of the nucleus for the
target-dependent form factors. In this regime, the momentum
transfer is too low to probe the nuclear structure, so the nuclear
form factor in equation (77) can be taken to be unity and is not
relevant for this discussion. The rate in this model is given by
Py A%G,

R=Nr—_—
my 24,

T

/ qdq> | f(n, @ n(Wmin(g.wn)  (81)
where

1
fonaf = 5 [ a0lfo0P

1 .
— [do, Y el |0,
ny+ny+nz;=n

= 4 (e, ny, ne

(82)

Here we can take the angular average over all q directions,
since we are dealing with an isotropic target system. This
quantity is proportional to the dynamic structure factor by

2
S@.w) = T3 I aPotw —w).  (83)

In this case, since the spectrum of the harmonic oscillator is
known exactly, we can enumerate the final states | /) in Carte-
sian coordinates by eigenvalues ny, ny, n;, with total energy
(n + %) wo where n = n, + ny + n;. Thus vyin(g, w,) is eval-
uated at w, = nwy.

14 For an interesting and detailed study on the possibility of detecting molec-
ular excitations induced by DM scattering in a gaseous target, see [96].
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permission from [90]. Note that no direct detection limits exist below m, = 50 MeV. (Right) A comparison of the cross sections needed to
observe three events per kg-year for various energy thresholds. The red lines show the reach in Si from exciting single acoustic (w > meV)
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meV and the light blue line is from the EFT of [92].

To compute |f(n, q)|?, consider first one Cartesian compo-
nent of the matrix element, |(n,|e!%**|0)|>. The perturbation
operator can be written in terms of creation and annihilation
operators:

. _ iq.
exp(igyx) = exp Tm
which has a very similar form to the exponential phonon dis-

placement operator in section 3.2.2. Similar to the calcula-
tion there, we use the Baker—Campbell-Hausdorff f_ormula,

(ax+al) |, (84)

equation (64), with A = ka,, B = kal, and k = —&— to
obtain Vamwes
iq. N 4
exp NG (ax+ ax)] = exp <—4me0>
igy

T
X € —F—
P (m“)
iqx

X exp (\/TTWOCZX> .
(85)

The first exponential factor is analogous to the Debye—Waller
factor introduced in section 3.2.2. Taking the matrix element of
this operator between the states (n,| and |0), the only contribu-
tion is from the n,th term of the middle exponential and taking
the last exponential to unity. Since these operators satisfy

dllny) = /ny!0),

(86)

we obtain

(0

2 .
exp | — 9 exp S
4mywo 2mywy
iq, 0

1, x
= —— — . (87
ny! ( V/2mywo ) exp ( 4mpywo ) (87)

Taking the modulus squared of this expression gives

1 q2 ny q2
I _4x ) 88
n,! <q3> ( a3 (8%)

where gy = v/2mywy is introduced for both notational conve-
nience and physical transparency: it is the momentum spread
of the ground-state wavefunction, which is given by

iqy
X T A Ux
exp < 2me0a )

[(nele*[0)* =

Go(p) = (wmywp) /4 e 7/, (89)

Equation (88) describes a Poisson distribution in n, with
mean g2 /g3. Since the harmonic oscillator Hamiltonian is sep-
arable in Cartesian coordinates, we may compute the desired
matrix element |(n,, ny, n,[€'97|0)|> by multiplying the three
Cartesian matrix elements for n,, n,, and n.. Since the sum
of Poisson-distributed variables is also Poisson-distributed, the
distribution of n = n, + n, + n, will be Poissonian, as can be
verified by explicit computation:

2 n
1 (¢ o 0745,
AN

|f(n, @) = (90)

20
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where ER = 23; is the recoil energy which would corre-
spond to free-particle elastic scattering. Equivalently, the mean
energy deposit iigwo is the same as classical elastic scattering
ER, even for a bound nucleus.

In the regime where g > ¢q,, the Poisson distribution
becomes sharply peaked around 7, approaching a delta func-
tion 6(n — n). This enforces the kinematic relation for elas-
tic scattering, ¢ = qo = v/2myEgr and permits the change of
variables dg = (my/q)dER. Taking the continuum limit with
>, — Jdn and n — Eg/wo, we recover precisely the spec-
trum for elastic nuclear scattering in equation (78) since

ngwo
q0

mNER
2“§<N .

9 _ 490
2my 2N

’Umin = =

92)

Thus, at large momentum transfer compared to the charac-
teristic scale of the harmonic oscillator, scattering is nearly
elastic and the energy deposited is given by Eg, up to small
fluctuations about Er as well as quantization of the spec-
trum in units of wy. There is an interesting intermediate
regime as ¢ approaches ¢, from above. Here, 71, 2 1 and
the Poisson distribution yields order-1 fluctuations in n and
thus order-1 fluctuations in the energy deposited from DM
scattering. This multi-phonon regime smoothly interpolates
between large-momentum quasi-elastic scattering and small-
momentum single-phonon production, and had not been con-
sidered much in the DM direct detection literature until
recently [98, 99]. As a practical matter, the fact that 7i,wy = Er
means that the intuition for the kinematics of elastic scatter-
ing still hold for a bound nucleus in a harmonic potential, but
the fact that the energy spectrum is quantized means that the
rate for energy deposits of twice the elastic energy, 2wy, is
of the same order as the rate for Eg. This implies that for a
given detector threshold, part of the multiphonon signal may
be above threshold even when Ey is not. This allows for new
parameter space to be probed by detectors which cannot yet
achieve single-phonon sensitivity, as illustrated in figure 6.
Another approach to the multi-phonon regime that does not
use the simple harmonic oscillator model can be found in [99],
which instead uses a phonon density of states, yielding similar
results with the nuclear response peaked about the free recoil
Er with a width of ~+/wyER.

Finally, let us consider the regime g < ¢,. Here the fac-
tor e~/ 1, and the probability for the production of n
phonons is suppressed by (¢°/¢3)". This is the same scaling
as equation (71), following our calculation there with detailed
phonon modes. However, we can see by explicit comparison
with equation (70) that the n = 1 term in this simple model will
not capture the target-dependent details of a solid state sys-
tem. As g drops down to keV scales and below, the particular
phonon spectrum and modes of the material will play an impor-
tant role in the form factors, and the assumption of a single

~
~
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Figure 6. Projected exclusion curves (three events, zero
background) for various energy thresholds in the simple harmonic
oscillator model with a dark photon mediator, along with elastic
scattering (long dashed) and single-phonon production (short dashed
magenta). Reproduced with permission from [98]. Constraints from
direct detection experiments [100—102] (converted from electron
scattering limits to nuclear scattering limits in the dark photon
model where necessary) and accelerator experiments are shaded
grey, along with the neutrino floor and the thermal target parameter
space (blue lines) for various candidate DM spins [66]. Since the
mediator in this model couples to charge rather than nucleon
density, the yellow shaded region m, < 10 MeV shows the
low-momentum-transfer regime where atomic screening effects may
be important, see [98] for details.

phonon energy wy breaks down. Furthermore, the DM cou-
plings also enter into equation (70). The simple ¢*/¢3 scaling
will not necessarily be present, depending on the DM model.
We will turn to this regime next.

4.2. Acoustic and optical phonons

For DM mass below ~1 MeV, the maximum momentum trans-
feris ¢ < 1 keV < g, such that the incoherent approxima-
tion is no longer valid. Furthermore, because ¢ < ¢, the lead-
ing rate will generally be from single-phonon excitations, as
argued above due to the (¢*>/¢3)" scaling of n-phonon excita-
tions. In this section, we will give some intuition for the rate
for DM to produce single phonons in solid state systems, and
summarize the results of detailed numerical calculations from
the literature.

First, it is worth commenting on how the kinematics of
single-phonon excitations compares to elastic nuclear recoils.
As discussed in section 3.1, there are two basic branches of
phonons we could consider, acoustic and optical phonons.
The comparison of DM scattering kinematics with the disper-
sion relations of these phonons is illustrated schematically in
figure 4. For the acoustic phonon branch, the energy deposited
must be w ~ cyg with ¢ ~ 107, Because the sound speed
is so low compared to the DM speed, energy conservation
(equation (9)) leads to the solution g ~ 2m,v, which is the
same as for sub-GeV elastic nuclear recoils. However, for
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acoustic phonons the energy deposited will be

w ~ 2csmyv ~ 2 meV x 93)

ny
100 keV'
which is well above the elastic recoil energy for the same
DM mass, Eg ~ 1077-107%eV depending on target mass. The
energy deposited into a single acoustic phonon could be made
larger by using a relatively hard target material, such as SiC
[103] or diamond [104] where ¢, &~ 4—5 x 107>, However, this
energy deposition is still quite small: a DM particle of mass
100 keV has a typical kinetic energy of 100 meV, suggesting
that acoustic phonons are not ideal in terms of matching DM
kinematics.

The optical phonon branch offers a potential solution to
the problem of kinematic matching. Since the dispersions are
fairly flat in momentum across the BZ, equation (9) gives the
approximate solution

g ~ myv £ 1/ m,0)? = 2 woprica. (94)
The typical energies are around woptical ~ 30—150 meV, which
matches well with the total kinetic energy of DM with mass
~10 keV—1 MeV. The higher energies are also favorable for
experimental implementation. From this discussion, we might
expect that an ideal target material would likely have a broad
spectrum of optical phonon energies in the range of 10 meV up
to 150 meV, to allow kinematic matching with a broad range
of DM masses. In fact, one can go further and consider sys-
tems with some amount of disorder, which further smears out
the phonon spectrum and leads to broad spectrum of available
modes; this idea was introduced in [105], which looked at sin-
gle molecular magnet crystals as a possible direct detection
target. Treating the DM coupling to specific modes is more
challenging in this type of system, however. In this section,
we will study only ordered crystalline lattices, where we can
next specify how DM couples to individual phonon branches.

Assuming the same contact interaction as above,
equation (75), and again applying our main rate formula
equation (8), the rate is given by

. 1 p d’q
RU ph)ziix/d3 / _d
L AR ¢7o
L —E)SUT™(qw).  (95)
/an

For convenience, we reproduce the single phonon dynamic
structure factor:

2
1 *
Wi 9 Cra

§(1—ph) ,
(q,w) Mg
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X 0(w — wWyq) (96)

with f; — A; for equal couplings to protons and neutrons.
While the eigenmodes and dispersions of the phonon
branches must be solved by DFT methods for arbitrary q, it is
possible to obtain approximate results in the long-wavelength
limit ¢ < 7/a where 7/a is the typical size of the first BZ.
In this limit, we know that the acoustic phonon modes are

22

Goldstone bosons of broken translation invariance, and that
as ¢ — 0 all the ions are displaced by the same amount for
a zero-energy mode. Comparing with equation (49) for the
displacement u, we see that in order for the \/]\7] depen-
dence to drop out, the eigenmodes for the acoustic phonons
must be given by |e, q ;| = \/M;/+\/>_,Ma as g — 0; here the
factor of /), My is just to give a normalized eigenvector,
where d sums over all ions in the unit cell. In addition, we can
restrict only to the longitudinal acoustic (LA) phonon branch
where ejaq; = q\/M;/\/3, Mg because of the q - €}, ; dot
product. This gives the LA single-phonon form factor in the
long-wavelength limit:

27 qZ\Z j|2
Qz(Zde)

where we have also taken e "i/® ~ 1 and an isotropic
speed of sound. The form of this structure factor is
similar to that computed for the harmonic oscillator model,
xq?A? /(2mywo)d(w — wy) for single-phonon excitations. The
difference here is that we are taking coherent sum of the cou-
plings over the ions in the unitcell, | 37, A i, as well as divid-
ing by unit cell mass. In addition, replacing wq with the linear
dispersion of the acoustic phonons leads to a ~ ¢ scaling for the
single phonon structure factor, rather than the ~ ¢ scaling that
was found in the toy harmonic oscillator model. Equation (97)
shows there is a coherent coupling enhancement over ions in a
unit cell for acoustic phonons, and in total scales as the num-
ber of ions in the unit cell. As noted above, the kinematic
matching is not ideal. If the energy threshold can be lowered
tow > 1 meV, however, there is still potentially a very strong
cross section reach from single acoustic phonons, as can be
seen for the w > 1 meV line in figure 5.

We next turn to the optical phonon branch. For DM mod-
els where f; = A}, there is instead a destructive interference
for the optical phonon coupling. To see why, let us assume
M = Ajm,. Then we can rewrite the structure factor as

iv/Mq- e,,qj
\/2m2w,

11_%1 SUPREA) (g, w) & o(esg —w)  (97)

S0 (g, 0)

- Z Z ~wio VY9 Crg,

X 0(w — Wy.q)- (98)
In the long-wavelength limit, we can exploit the scaling of the
LA phonon mode and rewrite the dot product \/M,q - €}, ; a
a dot product with the LA mode, epaq; - €, 4 ;- However, by
definition for normal modes, the optical phonon eigenmodes
are orthogonal to the acoustic phonon eigenmodes, so this dot
product vanishes! Thus, the rate to produce optical phonons in
this model (where the DM coupling is proportional to mass) is
highly suppressed compared the acoustic phonon rate, despite
the kinematic advantages. This effect was observed in the first
calculations of scattering into optical modes for specific mate-
rials [106, 107], and shown to be true in general using the
orthogonality argument in [108].

Since optical modes are so kinematically well-matched, it
is worth obtaining the leading nonzero contribution to the rate.
First, M ; = A jm, is not exactly true, since a nucleus is a bound
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state of nucleons and there is a small binding energy. Protons
and neutrons also have slightly different masses. This implies a
small nonzero dot product, but the effect is quite small since the
deviation from A jm, is at the 10~ level [108], and we will con-
tinue to assume M ; = A jm,,. A larger effect results from finite g
corrections to the eigenmodes. We can see this by taking a unit
cell with only two ions of mass M, M;, and approximating the
optical phonon eigenmode at low but finite ¢:

N VM, N V M, —iq-RY

€Loql X (- mm—m——, €L0q2 X —(q ———0C " 2
VM + M, VM| + M,

99)

where we took only the longitudinal optical (LO) mode again
due to the appearance of q - €} o ; in the structure factor. As
q — 0, this eigenmode is orthogonal to the LA mode, and the
two ions oscillate exactly out of phase. At finite q, however, the
different equilibrium positions of the ions start to be resolved
compared to the wavelength of the oscillation and there is an
additional relative phase factor (see also the toy model with
a diatomic molecule in [108]). In this unit cell, one ion is at
the origin and the other ion is located at position R). For a
cubic lattice, for instance, R} = (a /4,a/4,a/4) with a the lat-
tice constant. For ¢ < 7 /a, we can expand the phase factor in
powers of ga, which gives rise to the dynamic structure factor

2_7'(' 612A1A2 q2a2 5(

SA-PhLO g o) ~
(@9~ 5 300, + Myyorg 16

W — WLo)-

(100)
where we have taken the angular average |q - R9|?> ~ ¢%a?/16
and assumed a g-independent LO phonon energy wio. This
has a similar form to the previous single-phonon excitation
factors derived, but there is an additional (ga)> suppression
when ¢ < 7/a due to the destructive interference in the cou-
pling. The structure factor thus scales as ~g* for sub-MeV DM
scattering. This behavior has been confirmed in numerical cal-
culations [107, 108], and leads to the reduced cross-section
sensitivity for producing a single optical phonon. This can be
seen in figure 5 for m, < 0.2 MeV and w > 20 meV, where
only scattering into a single optical phonon is possible. For
masses m, 2 0.2 MeV, larger momentum transfers are acces-
sible and single acoustic phonon excitations also contribute to
the w > 20 meV line, leading to a similar sensitivity as the
w > 1 meV line. Given that the single-optical-phonon rate
scales as ¢, it is interesting to consider whether the two-
phonon contribution to the rate is comparable, since it is
expected to have the same scaling. This question was studied in
[88], where it was found that the two-phonon contribution does
indeed scale as ¢*, but is still smaller than the single-phonon
rate, at least for sub-MeV DM.

| 2

4.2.1. Dark photon couplings. Up to this point, we have dealt
with equal proton and neutron couplings (and zero electron
coupling), but it is instructive to also consider a dark pho-
ton mediator for single phonon excitations. The scaling for
the acoustic and optical structure factors above is not univer-
sal and depends on the DM model couplings. The situation
is quite different for dark photons, with enhanced couplings
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to optical phonons and a destructive interference with acous-
tic phonons. With this example, we will see the possibility of
selecting target materials to optimize for a certain DM model.
For dark photon mediators, the DM will couple equally
and oppositely to electrons and protons, similar to the ordi-
nary photon. The electron coupling introduces some addi-
tional complication, since as the ions undergo displacements,
the electrons will respond on a rapid time scale. With the
same Born—Oppenheimer approximation allowing decoupling
of ion and electron motion, the electron response to ion motion
can be calculated with first-principles approaches, such that
one can determine an effective dynamical ion charge. This
leads to the definition of the Born effective charge, which is the
dynamical ion charge in the long-wavelength limit. Formally,
it is a charge tensor for each ion j in the unit cell, defined as
the change in polarization P resulting from a displacement to
ion J:
_QopP

Z = ¢ 0, (101)
The Born effective charges are nonzero for polar materi-
als, while they vanish for standard non-polar semiconductors
such as Si and Ge. Let us take as a simple example of a
polar material GaAs, which has a unit cell of just two ions.
The Born effective charges can be approximated to be diag-
onal and isotropic, so that Zg, ~ diag(2.27,2.27,2.27) and
Z,, ~ diag(—2.27,—2.27,—2.27) [107], describing an effec-
tive charge sharing/splitting between the two ions. If one had
modeled the Ga as donating all three outer shell electrons
to the As, the electric charges would be 43 and —3 of the
two ions, but the actual Born effective charges of +2.27 and
—2.27 account for the deformation of the electron wavefunc-
tions as the ion is displaced. Since we are dealing with a net
neutral target, the sum of Born effective charge tensors for
the ions must also be equal to zero. Note that aside from
determining the structure factor, the polarization induced P
implies that the phonon energies must be re-calculated includ-
ing the electrostatic energy of this polarization. This leads to
an additional contribution to the dynamical force matrix, and
an increase of the LO phonon energy. For further discussion of
the Born effective charges and their effect on the LO energies,
see discussion in [19, 107].

Recalling the out of phase oscillations for LO modes,
equation (99), and the fact that Ga and As have opposite Born
effective charges, we see that the LO mode in a polar mate-
rial can be thought of as a coherently oscillating dipole in the
g — 0 limit. Thus, we can expect that the dark photon media-
tor primarily couples to the LO mode. To relate the dynamical
ion charge to the DM couplings f;, we must further use the
fact that the ion charge will be screened in a medium, where
the relevant screening factor is given by e.,. Here e, is the
long-wavelength dielectric screening at frequencies below the
electron band gap but well above the optical phonon frequen-
cies, such that e, only receives contributions from valence
electrons. (At frequencies below the optical phonon frequen-
cies, the optical phonons also contribute to dielectric screen-
ing, giving rise to a low-frequency dielectric constant ey, with
€0 > € in a polar material.) Then, taking f; — Z; /€~ and
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interactions, since the interaction of the electron is very simi-
lar to that of DM through a dark photon mediator [106, 107].
Finally, for the acoustic phonons, the opposite Born effective
charges implies a destructive interference when we sum coher-
ently over ions in the unit cell, with the structure factor going
to 0 in the limit ¢ — 0.

From these examples, we see that polar materials with large
effective charges and a range of optical phonon energies are
nearly-ideal target systems for DM interacting through a dark
photon, since they enjoy both the kinematic matching and a
coherent sum over the ions in the unit cell. For crystals with
multiple optical phonon energies, it is also often the case that
the highest-energy mode gives the strongest coupling [107].
This is because large effective charges also implies larger
electrostatic energies associated with the phonon. For DM
which couples equally to protons and neutrons, instead the rate
is determined primarily through a combination of the sound
speed ¢, target nucleus masses, and optical phonon energies of
the target system, depending on the energy threshold. Figure 7
shows cross section sensitivities for example polar materials
experiments, including GaAs and Al,O; which are planned to
be used in experimental collaborations. Studies of additional
target materials can be found in [74, 103, 107, 112, 113]. Due
to the resonant response, it can also be seen that single phonon
excitations can give a much larger rate than DM-electron scat-
tering (faint lines) for sub-MeV DM, at least in the materi-
als studied so far; we will explore the DM-electron response
more in the following section. Note that in figure 7, a mass-
less dark photon mediator has been assumed where Fpy(g) =
(am,/q)*. For sub-MeV DM with g < keV, this form factor
can be quite large. For massive dark photon mediators with
Fpm(q) = 1, the rate is much smaller and there is very limited
sensitivity to cosmologically interesting parameter space from
optical phonon excitations.

While we have mainly taken an isotropic approximation for
the dynamic structure factors, another advantage of CM sys-
tems is the potential directional dependence in S(q, w). If the
DM-phonon couplings or the phonon dispersions are highly
anisotropic, this will lead to a modulation of the DM scattering
rate as the Earth (and thus crystal) rotates relative to the typical
direction of the incoming DM. The modulation is also sensi-
tive to the DM model details. Combined with the fact that the
scattering form factor depends on the DM model, it might be
possible to obtain some signal-to-background discrimination
in phonon-based detection schemes, or in the case of multiple
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Figure 7. Cross section for three events/kg-year for single optical
phonon excitations in various polar materials, and assuming a
massless dark photon mediator. For this mediator, the convention in
the literature is to show projections in terms of the DM-electron
cross section o, even when the scattering is into phonons. This is for
easier comparison with experiments searching for DM-electron
scattering, which can probe the same model; in particular, the
different faint lines in this plot are the various projections for
DM-electron scattering proposals shown in figure 12. The thick blue
line is the predicted cross section if all of the relic DM is produced
by freeze-in interactions [18, 109] and the shaded regions are
constraints from stellar emission [110, 111].

targets and a positive signal, to deduce information about the
DM candidate. The directionality of single-phonon excitation
rates is explored further in [103, 107, 112].

4.3. Superfluid helium

Historically, the first efforts to exploit the particular properties
of phonon modes for sub-GeV DM scattering began with an
investigation of superfluid helium, a system which is different
enough from solid-state lattices that it merits its own discus-
sion. Superfluid helium-4 had been identified as an excellent
candidate detector material as early as 1988 [114], just three
years after the first concept for direct detection via nuclear
recoil [35, 115], though the theoretical priors on WIMP DM
at the time were strong enough that the prospects for sub-GeV
DM were not considered. From the kinematics of nuclear scat-
tering discussed above, it is clear that helium, as the second-
lightest nucleus, is ideal for maximizing the energy transfer
from GeV-mass DM [116]. To pack enough atoms into a com-
pact volume to maximize the detection rate, one wants to use
the liquid phase: “He remains a liquid even down to absolute
zero, and in fact becomes a superfluid at 2.2 K. In contrast to
a solid-state system with a fixed lattice spacing a, the disor-
dered liquid has only an average interparticle spacing A. For
DM with mass above 5 MeV, the typical momentum trans-
fer exceeds the inverse interparticle spacing, 1/A 2 5 keV, and
the scattering process can be treated as quasi-elastic, similar to
the regime in section 4.1. However, for lighter DM, the small
momentum transfers instead imply that we are in the regime
of coherent scattering. The DM will then couple to collec-
tive density oscillations in the superfluid, which are quantized
into acoustic phonons. Superfluid “He is a strongly-correlated
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liquid, and so the formalism in sections 3.2.2 and 4.2 does not
apply, however. We will review here the excitations in super-
fluid “He along with a few different strategies for treating this
system.

The measured single-excitation spectrum e(q) of “He
(figure 8) contains a piece with linear dispersion at small q,
€(q) ~ cs|q| where ¢; &~ 2.4 x 10> ms~! is the speed of sound,
extending out to about ¢ ~ 1 keV. This mode is interpreted as
an acoustic phonon. DM can create a single acoustic phonon
if w = ¢|q|, and the kinematics is similar to that of acous-
tic phonons in crystals. Analogous to the discussion around
equation (93), the typical recoil energy is

w ~ 2cgmyv ~ 0.2 meV x (103)

My
100 keV
which, unfortunately, is even more poorly kinematically
matched to the DM since ¢y is an order of magnitude smaller
for “He than in solid-state targets. The rest of the dispersion
curve contains a local maximum at ¢ ~ 2 keV and e(q) ~
1.1 meV (the maxon) and a local minimum at g ~ 4 keV
(the roton), asymptoting to e(q) ~ 1.5 meV at large q. We
see that single-excitation production can only ever yield an
energy deposit of at most ~1 meV, regardless of the DM mass.
Eventually, at large ¢ > 1/, the dispersion is expected to
asymptote to e(q) ~ g*/(2mye), with the DM effectively scat-
tering off single helium atoms. However, as discussed through-
out this section, the dynamic structure factor also includes
multi-excitation rates which grow in importance as g grows,
until they eventually converge to the quasielastic regime in
section 4.1. Thus, it is also possible to consider the multi-
excitation rate in the regime w > 1 meV and ¢ < 1 keV, which
is better kinematically matched to the DM and which does
not require as low of a threshold as detecting single acoustic
phonons. This was indeed the idea behind the recent renewal
of interest in *He as a DM detector [91, 118].

The dynamic structure factor for “He (using conventions
from [91] which differ slightly from our previous definitions)
is defined as

1
S@w) = 2> [ (W5 lng [ W) "3 — w5) (104)
8

where ny = N/V is the average number density, and the den-
sity operator in Fourier space is

I igr
ng = erq (105)

i=1
where r; is the position operator for helium atom i. As dis-
cussed in section 3, DM which couples to nucleons through
a scalar or vector mediator will couple to the helium density
operator. However, for a dark photon mediator, in the small-g
limit the DM will couple to induced dipole moments since the
overall helium atom is neutral (see equation (33)), exactly as
in the case of polar crystals. Then the correct response func-
tion will also include the polarizability of “He, which is small.
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This generally results in a much less competitive reach for dark
photon mediators [91].

For superfluid “He there are various strategies for determin-
ing the dynamic structure factor and DM scattering rate:

(a) Directly tackle the microscopic physics to the extent
possible, up to some assumptions needed to improve
agreement with experimental data. There has been some
recent progress in determining the dynamic structure
factor including multiphonon contributions in this way,
based on a many-body theory for strongly-correlated sys-
tems (e.g. [117] and references therein). This calculation
roughly agrees with the measured dynamic structure fac-
tor where data is available, but extends it to the regimes
needed for DM scattering. This was applied to calculate
the excitation rate from DM in [91].

(b) Use measurements of the structure factor to directly deter-
mine the rate to produce single excitations. The single-
excitation rate shows up as a resonance in the experimen-
tally measured dynamic structure factor, which can then
be applied directly for the DM rate [119]. Using sum-rule
arguments, it is possible to estimate the maximum size of
the multi-excitation rate and obtain measurements of the
multiphonon excitation in some regimes, but it is more
challenging to accurately obtain the multi-excitation rate
in this approach.

(c) Write down an effective field theory (EFT) based on the
spontaneous breaking of particle number symmetry, inter-
preting the acoustic phonon as a Goldstone mode and
using measurements to fix the unknown coefficients in
the effective action [92, 120—122]. This approach can be
used for single and multi-excitation rates, but is limited
to treating only the acoustic phonons in the excitation
spectrum.

In particular, the data-driven approach of the second strat-
egy has a close analogy in the use of the ELF to determine
the response to DM-electron scattering, as we will discuss in
section 5.3 below.

While the details of these approaches are beyond the scope
of this review, we introduce some of the main ideas to illustrate
the behavior of the dynamic structure factor. One perturbation
theory approach starts from the original Bijl-Feyman theory
for excitations in superfluid He [123, 124]. The fact that the
system has a continuous translation invariance allows the pos-
sibility of a general analysis based on symmetry considerations
alone, without requiring knowledge of the microscopic Hamil-
tonian. The Bijl-Feynman theory postulates that the approxi-
mate wavefunction for single excitations of momentum q may
be constructed from the exact many-body ground state as

1

lq)

One can show that |q) is orthogonal to the ground state,
and in fact approaches an exact eigenstate of the many-body
Hamiltonian as q — 0, so this theory accurately describes the
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Figure 8. Plots reproduced from [91]. (Left) The measured dispersion curve for single excitations in superfluid helium (solid black line) has
phonon modes at low q and the maxon and roton at high q. At high ¢, there is also a broad multi-excitation response centered around the
free-particle dispersion (dotted line). The dashed blue is the Bijl-Feynman relation for excitations, equation (108), which approximates the
phonon-roton dispersion at low ¢ and converges to the free-particle excitations at high ¢. (Right) Self-consistent calculation of the dynamic
structure function S(q, w), obtained from [117]. There is a resonant response on the single excitation dispersion, corresponding to the
response at the minimum w for a given ¢. The response at larger w is the multi-excitation component, where the structures at 2 meV and
above arise from multi-excitations of rotons/maxons. In the experimental data these structures are less prominent, which is expected once
additional interactions are included (see figures 21 and 22 and discussion in [117]).

acoustic phonon part of the dispersion curve but begins to fail
for ¢ 2 1 keV. The normalization of the state is enforced by
the static structure factor

1
S(q) = /dw S(q,w) = <\Ilo|n,qnq\\110> (107)

Experimentally, S(q) has been measured to be linear as g — 0,
with S(q) = ¢/(2mpecs), and approaches S(q) — 1 in the high
¢ limit. The leading order energy of the state |q) is given by

q2

co@ = (aldHa) = 5 "er s,

(108)

where 0H = H — E| is the exact many-body Hamiltonian with
the ground state energy E, subtracted; see [91] for more
details. As can be seen from figure 8, this Bijl-Feynman
energy approaches the acoustic phonon dispersion as g — 0,
while at high g it approaches the free particle dispersion
q* /(2mye). However, it clearly does not reproduce the correct
phonon and roton dispersion, and it is necessary to compute the
full energy e(q) of the state accounting for quasiparticle inter-
actions, such as the three-excitation vertex. These interactions
also lead to multi-excitation states in the dynamic structure

factor.
In general, the dynamic structure factor contains a single-
quasiparticle peak and a continuum of multi-excitation states,
S(q,w) =

Z(@)d(w — (@) + Sw(q, w) (109)

where Z(q) ~ S(q) in the low ¢ region, where equation (106)
is a good approximation to the true single-particle eigenstates.
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In this region, S,,(q,w) will be subdominant and the single-
phonon structure factor is given by

2

2q—6(w — (@) ~
MyeCsq

2

" q
S 2myee(q)

O(w — e(q)

(110)
which is precisely the same form as the single acoustic phonon
structure factor computed in equation (97), up to the factor of
27 /) corresponding to different normalization conventions.

To obtain S,,(q,w) by perturbation theory, one must next
construct a set of basis states from repeated applications of the
density operator, |k, q) ~ ngng|Uo); the difference from the
previous treatment of phonons is that the states are not auto-
matically orthogonal, and one must orthogonalize the states
by subtracting off overlaps with states of different phonon
number. Unfortunately, to compute the overlap term relies on
knowing the strongly correlated ground state, but a simple
approachis to use the ‘convolution approximation’ to postulate
its form. With these ingredients, it is then possible to compute
the three-excitation vertex (q — k, k|0H|q). One can compute
the renormalized energies e(q), as well as write the leading
contribution to S,,(q, w) in terms of two-excitation states:

S(q) / &’k |(q — k k|0H|q)?
Q2n)y  (eo(q) — w)?
x 0w — (k) — eo(q — K)).

S(Z)(q’

(111)

The approach which led to equation (111) may be refined and
improved, but even from the leading order result it is possi-
ble to reproduce the rough behavior of S,,(q, w). In the small g
limit with fixed w, S,,(q, w) will be dominated by nearly back-
to-back excitations with momenta k and q — k ~ —k, with
|k| > |q| [118]. In this limit the two-excitation structure factor
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scales as

$P(q,w) x ¢* (112)

at fixed w, which is physically reasonable and in agreement
with the arguments of section 3.2.2 as well as in this section.
The expected sensitivity of a “He experiment sensitive to
energy depositsw € [1.2,8.6] meV is shown in figure 5, based
on theoretical calculations.

Another option to determine DM rates might be to simply
use experimental data on S(q,w) in the general rate formula
equation (8). The dynamic structure factor may be directly
measured with neutron scattering because neutrons also couple
to nucleon density: by arguments very similar to the derivation
of equation (8), the double differential neutron scattering cross
section is

o
dQ dw

where p; (pf) is the initial (final) neutron momentum and
b, is the neutron scattering length from an individual helium
nucleus. Unfortunately, experimental data on S,,(q,w), for g
below ~keV is quite limited because of the small rates, which
is precisely the region needed for sub-MeV DM. The pecu-
liar kinematics of DM make it particularly difficult to probe
certain kinematic regions with standard techniques, and one
must therefore use theoretical approaches validated at higher
g in these cases. Indeed, as we emphasize throughout this
review, the kinematic regime relevant for sub-GeV DM has
not previously been of interest to the CM community, and even
theoretical data may not exist at the required gq.

One can obtain qualitatively similar results for the dynamic
structure factor from an EFT perspective. The presence of the
acoustic phonon mode with approximately linear dispersion
can be understood as a Goldstone mode for the spontaneous
breaking of both particle number and time translations, via
a real field ¢ whose vacuum expectation value (vev) repre-
sents a time-dependent chemical potential, (1)) = uz, where
1 1s the relativistic chemical potential which includes the rest
mass myy in addition to the non-relativistic piece. Parameter-
izing the fluctuations about the expectation value in terms of a

real field 7 as
P(r, 1) = pt + ¢4 EW(r, 0,
no

one can write down an effective action for m whose coeffi-
cients are fixed entirely in terms of the superfluid equation
of state, P = P(u) or ¢y = cs(P). This effective action has a
cutoff at the momentum scale A ~ 1 keV where the disper-
sion €(q) deviates from linear, and thus it does not describe
the maxon or roton modes, and moreover it neglects the fact
that the dispersion of the phonon mode is not exactly linear
but has a small positive curvature (anomalous dispersion, to
be discussed further below). Since in the large-volume limit
the system is translationally invariant, one can write down a
relativistic EFT invariant under Poincaré transformations and
the internal U(1) particle number symmetry. If we model the
DM field as a complex scalar x with a dark U(1) symme-
try to ensure its stability (a discrete Z, symmetry would also
accomplish the same thing), the most general effective action

= bﬁ%sm, w) (113)

(114)
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(a) (b)

Figure 9. Feynman diagrams contributing to two-phonon
production in the “He EFT. Reproduced from [92]. CC BY 4.0.

which generates a spin-independent interaction between DM
and “He, at lowest order in momenta, is

Sefr = /d4x {PX) + Z2(X)|0,x> — m*X)|x|*},

X = /0, 0").
By computing the stress tensor for ¥, one can verify that P(X)
does indeed represent the pressure of the superfluid. Expand-
ing the Lagrangian to cubic order in 7, canonically normaliz-
ing 7 and ¥, and taking the non-relativistic limit fixes all of the
coefficients of the Lagrangian in terms of derivatives of P, and
can thus be matched to data. The result contains terms of the
form 7(V)? and 73, which represent three-phonon vertices,
as well as |x|*7 and |x|*(0,7)* terms, which represent DM-
phonon three- and four-point interactions, respectively. In the
EFT language, the two-phonon creation is described by two
Feynman diagrams shown in figure 9. In the limit q — 0, the
intermediate phonon in the second diagram is highly off-shell,
and integrating it out leads to a seemingly fine-tuned cancella-
tion between the two amplitudes that results in the two-phonon
matrix element scaling as

(115)

4
| M phonon|? o L., (116)
w
which is consistent with the result (112) from the dynamic
structure factor extrapolation'. Integrating the two-phonon
rate yields a sensitivity curve in [92] which is within a fac-
tor of 2 to the one from [91] that includes rotons and maxons,
see figure 5.

While meV energy thresholds are already well beyond cur-
rent capabilities (though they are a subject of active investiga-
tion, see section 7.2), one can also explore the idea of lower
energy thresholds which opens up the possibility of single-
excitation production [119]. Indeed, multi-phonon production
is inefficient at low ¢ and for sub-MeV DM, in the sense that
it does not fully exploit the fact that the normalization of the
dynamic structure factor is fixed by conservation of mass, and
thus the DM scattering rate can be maximized by ensuring that

150f course, fine-tuned cancellations in low-energy Lagrangians are often
manifestations of symmetries, and in this case the cancellation may be under-
stood as a consequence of the Ward identity [119, 125]. The cancellation
breaks if DM does not couple linearly to density, but the non-relativistic limit
of all spin-independent scalar or vector exchange yields a coupling to density.
While there may be unusual non-perturbative models for DM-SM interactions
which do not couple linearly to density, all of the perturbative UV completions
of spin-independent scattering yield this cancellation, which is independent of
the details of the *He EFT.
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the integral in equation (5) contains the region where S(q, w)
has largest support!'®. More precisely, the ‘f-sum rule’ is
given by

e

ZmHe ’

o0
/ dwwS(q,w) = (117)
0
which is valid for any momentum q and derives from the ana-
lytic properties of S as a causal density—density correlation
function. While directly measuring S, (q,w) at low ¢ is dif-
ficult with neutron probes, the single-excitation rate can be
directly computed using experimentally measured quantities,
with the sum rule used to constrain the remainder of the spec-
tral weight. At low g, the wavefunction renormalization can be

expanded as
( .. ) , (118)

where the coefficient of the ¢* term is fit to neutron scattering
data. The sum rule implies that
2
~0.1( )

(119)

In other words, over 90% of the spectral weight in scattering

of sub-MeV DM lies in the single-phonon part of the dynamic
structure factor at ¢ = 0.7 keV.

An interesting property of superfluid “He is that the low-

energy dispersion is not exactly linear, but is slightly convex,

q2

2myee(q)

2
1—163—- L 4

Z(q) - (’/nHeCs)2 .

q2

) (’/nHecs)2

Jo dww Sp(gq,w)
Jo dwwS(qw)

9
0.7 keV

w(@) = csq(1 + Cag* + ) (120)

with ¢4 > 0.7 At standard volume and pressure, the dis-
persion curve has an inflection point at g ~ 0.4 keV, such
that phonons with g < g, >~ 0.8 keV (w(g,) = 0.68 meV) are
unstable against decay into two lower-energy phonons. This
regime is less important for the multi-excitation phonons,
which have total energy well above 1 meV. For sub-meV sin-
gle phonons, this will lead to a ‘phonon cascade’ phonons
reminiscent of jets or electromagnetic showers. This makes
detecting individual sub-meV excitations effectively impossi-
ble, as the mean free path for splitting is on the order of cm
or smaller, but if the total energy in the cascade cone could
be detected, anomalous dispersion offers the intriguing possi-
bility of localizing the event within the sample volume based
on the ellipticity of the cone projected onto the surface of the
detector.

5. Dark matter-electron scattering

The phenomenology of DM-electron scattering is dominated
by the fact that electrons are bound in atomic, molecular,
and solid-state systems, with wavefunctions that are very far
from momentum-eigenstate plane waves. The typical length

16 We will see an exactly analogous situation with DM-electron scattering in
semiconductors in section 5.3 below.

17 This effect may be captured in the EFT through the inclusion of higher-
derivative operators.
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or momentum scale for electronic wavefunctions is set by the
Bohr radius:

1
= — =3.73 keV.

ap

(121)
In the ground state of the hydrogen atom, (r) = %ao; in an
larger atom, the larger value of the principal quantum number
n is partially compensated by the increased screened nuclear
charge, giving a parametrically similar answer. In a molecule,
the interatomic distance is set by minimizing the total energy
of covalently-bonded atoms, and since the atomic wavefunc-
tions must overlap to bond, the bond length is also of order
ap; for example, the carbon—carbon bond length in organic
molecules is 0.14 nm ~ 2a,. The same logic holds for solid-
state lattices (silicon has a minimum interatomic distance of
~4.4a, and a lattice constant of ~10ag), and even the Fermi
momentum kg for delocalized electrons in a metal is of order
Po» since it depends on the number density of electrons and
hence is set in part by the lattice spacing. The ground state
position-space orbitals are localized as exp(—r/ap), yielding
momentum-space orbitals which fall off at large p as a power
law. The energies of electronic states are parametrically set
by the Rydberg energy: 13.6 eV for the ionization energy
of hydrogen, O(10) eV for outer-shell binding energies in
noble atoms, O(5) eV for excitation gaps in organic molecules,
and O(1-5) eV for semiconductor gaps. As mentioned in
section 1, these binding energies decrease from isolated atoms
to molecules to solid-state systems.

However, electron interactions can give qualitatively dif-
ferent behavior in specific condensed-matter systems. A key
example is a superconductor, where phonons mediate a weak
attractive force between electrons, binding them into Cooper
pairs with a gap of O (meV). There are also numerous exam-
ples of narrow-gap materials with sub-eV excitation energies:
ZrTes (an example of a Dirac material) with a 30 meV gap,
SmBg (a Kondo insulator) with a 10 meV gap, and InSb (an
otherwise ordinary semiconductor) with an accidentally small
gap of 200 meV. In addition, the plasmon mode, a collective
oscillation of all the valence electrons in a solid, has typi-
cal energies of 15 eV but exists solely at momenta below the
scale py.

Comparing these scales to the typical energy and momen-
tum scales of DM, we can refer to figure 1 and equation (9) to
see that the momentum transfer required to create an excitation
w must exceed

ag = =529 % 107" m,

am,

w
{dmin = 5
Umax

(122)

where v« 18 the maximum DM velocity, and we have taken

the large m, limit (for smaller m,, g, is strictly larger). Tak-

iNg Vmax = Vo + Vese ~ 800 km s~! = 2.67 x 1073, we find
w

10 eV)

while g, = 21, Umax =~ py(m, /0.7 MeV). From this superfi-
cially trivial observation, we learn a number of things:

dmin = Do ( (123)

e By pure (cosmic!) coincidence, MeV-GeV DM has the
correct kinematics to access the electronic response for
atomic and molecular systems near where they have
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Figure 10. For DM-electron interactions, the response at high ¢ is
peaked about the free-electron dispersion w = ¢° /(2m,). The
dashed lines at ¢ ~ p, = am, and w ~ ap, = a’m, indicate typical
scales for the wavefunction spread and energies of bound electrons.
Many-body effects are expected to be particularly important at lower
q,w, indicated by the shaded region. Depending on the target
material and detection method, the relevant response function will
be cut off at low w; we show typical gaps for ionization in atomic
systems, scintillation in molecules, electron—hole excitations in
semiconductors, and gapped excitations in superconductors and
Dirac materials. Kinematically allowed regions for DM scattering
are shown for m, = 10 keV, 1 MeV, and 100 MeV at v = 1073, as
in figure 1.

strong support, as shown schematically in figure 10. How-
ever, it can also be seen from figure 10 that the DM scat-
tering kinematics is not necessarily ideally matched to the
response. For example, for atomic ionization, the rate will
be strongly peaked at low ionization energies, since larger
w requires accessing the high-momentum tail of the elec-
tron wavefunctions which is power-law suppressed. Thus,
while it is kinematically permitted for (say) 100 MeV DM
to deposit all of its ~50 eV of kinetic energy on an atomic
electron, it is extremely unlikely to do so. Similarly, this
will favor scattering on the high-velocity tail of the DM
velocity distribution, which implies a large increase in rate
as the gap is lowered [126].

For conventional semiconductors with O (eV) gaps, DM
necessarily probes distance scales smaller than the lattice
constant. Taking silicon as an example, with w = 1 eV,
we find from equation (123) gmin =~ po/10 =~ (10a)~",
which is the inverse lattice spacing. Thus, while it is true
that the valence electrons are delocalized across the lat-
tice, the particular kinematics of DM scattering weights
the quasi-localized portion of the electronic wavefunc-
tions. Collective modes or effects are therefore less impor-
tant for conventional semiconductors than for lower-gap
materials.

The peak of the plasmon mode, with ¢ < p, and w ~
15 eV, is kinematically inaccessible to halo DM. As we
will see in section 5.3 below, the plasmon is responsi-
ble for the bulk of the support of the loss function at
low momentum, while the loss function at high momen-
tum is spread out over a larger w range. In this sense,
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conventional materials are ‘inefficient’ with respect to
DM scattering. This is analogous to the case of multi-
phonon excitations in superfluid helium discussed in
section 4.3 above, rather than the resonant single-phonon
excitations discussed in section 4.2.

Accessing the true long-range behavior of delocalized
electrons requires a narrow-gap material, most of which
have rather exotic electronic properties. Since these nar-
row gaps are mandatory to probe sub-MeV DM which car-
ries sub-eV kinetic energies, the search for novel materi-
als with the required electronic properties, involving close
collaboration with CM physicists, is a key component of
the active research in light DM detection.

The peculiar kinematics of DM also mean that the regime
of the electronic response function accessible to DM is quite
under-explored experimentally. For example, the plasmon has
been extremely well-studied at energies near the peak, but
much less attention has been given to the low-energy tail which
is the only part accessible to DM in conventional materials. For
heavier DM, the high momentum regime dominates, for which
there is limited experimental data. Similarly, atomic wavefunc-
tions are often studied using photoabsorption, where w = g,
but DM probes the kinematically-distinct regime w ~ 10~3g.
At present, almost all of the predictions for DM-electron scat-
tering rates rely on primarily theoretical determinations of the
response, using the tools described in section 3.1, with lim-
ited direct experimental input for calibration. That said, the
arguments of section 3.2 show that, at least for the dark pho-
ton model, the relevant dynamic structure factor (namely, the
ELF) may be directly measured with electromagnetic probes
such as EELS or x-ray scattering, which can be configured to
access the correct kinematic regime. Dedicated measurements
in the coming years, on novel and conventional materials alike,
will greatly reduce the systematic uncertainty associated with
DM-electron scattering.

To give a sense of the available parameter space for DM-
electron scattering, figure 11 shows the current leading lim-
its from several experiments, each of which will be discussed
more below and in section 7.'® The two models correspond
to spin-independent scattering through a heavy mediator (left
panel) or light mediator (right panel). Constraints are shown
alongside the relic density targets from the freeze-out and
freeze-in mechanisms and the ‘neutrino floor’ (see section 7.5)
for a silicon target with a 100 kg-yr exposure and a one-
electron threshold. Figure 12 shows the background-free pro-
jected limits from a number of theory proposals, many of
which would allow access to the remaining cosmologically-
allowed sub-GeV parameter space.

5.1. Atomic ionization

5.1.1. Hydrogen toy model. The first application of DM-
electron scattering involved electron ionization in liquid xenon
[18, 132], but to illustrate the essential features we will start

18 These limits are derived from published results, but many of them are based
on theoretical rate predictions which neglect important many-body effects, as
pointed out in [113, 128, 131, 132] and to be discussed further below.
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projections for an example Dirac material from [130] and for Al from [128,131]. In the left plot, the thick blue line is the predicted cross
section if all of the relic DM is produced by freeze-in interactions [18, 109] and the shaded regions are constraints from stellar emission
[110, 111]. In the right plot, the thick blue lines are cross sections for freeze-out of scalar DM or asymmetric DM, and the shaded region
shows combined direct detection bounds (solid grey) and model-dependent accelerator bounds when the dark photon mass is m,, = 3m,
(hatched grey) [98]. All bounds and relic density lines assume a dark photon mediator.

first with a simpler toy example, DM scattering off a single
hydrogen atom [133, 134]. Throughout this section, we will
take the benchmark dark photon model, where DM couples
to both protons and electrons with a spin-independent poten-
tial. Summing over all target atoms (or nuclei), the dynamic
structure factor is

27 Nnye

S(q,w) = v

D (FI™ — &9 |0) Po(E, — Eo — w)
-
(124)
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where ry and r, are the nuclear and electronic coordinates,
respectively, and | f) represents an excited electronic state of
the atom. In the approximation where the nucleus is infinitely
heavy and thus stationary, we may set ry = 0. In that limit,
nuclear scattering does not contribute to electronic excitation
when | f) # |0); we will see in section 6 below how this picture
is modified when the finite mass of the nucleus is taken into
account.

The excited electron state | /) may be either a bound state or
a continuum state, the latter of which corresponds to an ionized
electron. Since the formalism of atomic electron scattering is
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typically applied to liquid noble element detectors which are
sensitive to ionized electrons, we will focus on the continuum
states and return to the discrete spectrum of bound states in
section 5.2 below. The initial state is simply the ground state
of the hydrogen atom, 10o(r) = 24, 3/2 e=r/a0 Excited states
are labeled by a wavevector k, so the sum over | f) turns into
an integral, and the structure factor becomes

27TN nuc

S(a,w) = /Qp&a Ey— o)l fo @] (125)

where

hﬂwz/@wmwmmﬁ‘ (126)

is the atomic form factor for transitions between the ground
state and the continuum state k. Asymptotically far away from
the nucleus, the final-state electron behaves as a free parti-
cle, so we have absorbed an extra factor of v/V inside YE(r),
such that it behaves as v;(r) o e*T as r — co. Similarly, we
may deﬁne k through the energy of the continuum state as
Ex = 2m . Typically we are interested in the energy spectrum
of ionized electrons dR/dE;, so using dE,;, = dEx = kdk/m,,
we may trade the integral over k for an integral over E;. Col-
lecting the various normalization factors, and decomposing
the outgoing wavefunction into spherical waves with angu-
lar quantum numbers [" and m', it is convenient to define an
ionization form factor,

UMMW=ZQPWMMM2 (127)

! 0!
I'm

where the factor of 2 accounts for spin degeneracy. The radial
part Ry, of the ionized wavefunctions is normalized as

/ drrRi(r) Ry (r) = (27r)3 ~wd(k — K, (128)

so that kkl(r) itself is dimensionless, and therefore so is fion-
Using equation (11) since the target system is spherically sym-
metric, we obtain the experimental quantity of interest, the
total differential rate per unit detector mass,

dr Px Oe / 2 5

= o d F, ion k, min />

d1n Ey my 8122, 4q|Fom(@)|* | fionCk, 1 1(vrmin)
(129)

where for electron scattering
Eer E
S e 2 (130)
q 2m,

and the form factor for a dark photon mediator Fpy(g) was
defined in equation (25). Ny is again the number of target
nuclei per unit detector mass, and Ey = —13.6 eV is the
binding energy of hydrogen.

If we approximate the outgoing state i, as a pure plane
wave e KT we may use the decomposition of plane waves

into spherical wavefunctions to compute the form factor
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analytically for I' = m’ = 0 [134]:

64(kao)®
4> + 2a3(k> + ¢?) + 1]

| fosk00(@)* =

2k
@)y mlag(k* —

(hydrogen, plane — wave final state).

(131)

This function has the most support at k ~ g ~ 1/ay, reflect-
ing the fact that the characteristic momentum scale for elec-
trons in the hydrogen atom is 1/a. Of course, since DM must
have at least |Ey| of kinetic energy to ionize hydrogen, ion-
ization is only kinematically allowed for m, 2 10 MeV, for
which ¢ = 1/ay is kinematically allowed as well. This intu-
ition typically holds for more complicated atoms—the peak of
the structure factor is kinematically accessible—but not nec-
essarily for molecular or solid-state excitation, as we will see
below.

Note also that fion(k, ¢) in (131) does not vanish as g — 0,
as required by orthogonality of initial and final states. This
unphysical behavior is simply because the plane-wave approx-
imation is sufficient far from the origin, but due to the local-
ization of the initial state, the integrand of the transition form
factor (126) is dominated by the region close to the origin.
Indeed, the Coulomb potential of the nucleus distorts the con-
tinuum wavefunction, which we can account for by choosing
the final-state wavefunction to be the exact positive-energy
solution of the Coulomb potential. Writing 1), (r) in spherical
coordinates as Y;"(6, ¢)I~€k1(r), the radial function is [135]

Al )|

Ru(r) = QL+ 1)

‘ iz
x e | F <l+l+k 20+ 2, 21kr> (132)

where I is the gamma function, | F, is the confluent hypergeo-
metric function, and we leave the nuclear charge Z arbitrary
to facilitate later comparison with larger hydrogenic atoms.
Since this is an eigenstate of the same potential which deter-
mines the ground state, it is automatically orthogonal to 1,
when Z = 1. The ratio of the wavefunction at the origin to the
wavefunction at infinity is

_ 2
Ry(r=0)| 2nZ 1

Ru(r = o0)|  kag 1 — e27Z/(kap)’ (133)

where the right-hand side is also known as the Fermi factor.
It diverges as k — 0, reflecting the infinite range of the pure
Coulomb potential. This increases the form factor at small
k compared to the plane-wave approximation [18, 136], an
effect known as Sommerfeld enhancement in the context of
beta decay.

However, using the exact radial wavefunction in equation
(132), the ionization form factor can be obtained as [133]
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)

‘fion(ka Q)‘z =

which vanishes as ¢ — 0 as expected. The dynamic structure
factor for ionization of atomic hydrogen is then given by

\V 2me(w — |E0‘)
(135)
We plot this in figure 13, as compared with the kinematic
restriction for DM scattering, which requires us to be to the
right of the dashed line. As discussed in the introduction to
this section, this implies that we obtain the largest rates for
DM on the tail of the velocity distribution and favoring low w.
Furthermore, it is clear that atomic hydrogen is not an ideal
direct detection target given that the region where the dynamic
structure factor is largest is not entirely accessible to DM.

S(q’ Cd) |f10n(k q)‘z k=

71-’/lél[()r'l‘l

5.1.2. Noble atoms. For DM scattering in many-electron
atoms, we must contend with the fact that there are no longer
exact solutions for the wavefunctions, and electron interaction
and exchange effects can generically no longer be ignored.
One approach is to use the Hartree—Fock approximation to
construct the approximate many-electron bound-state wave-
functions as a Slater determinant of single-particle orbitals v,

i=1,...,N,:
Ve, o) = [ ] = Z (-1
(TGSNL
X Yoy(r1) . . Yo,y (Ta,) (136)

where Sy, is the permutation group on N, elements and o is a
permutation with sign (—1)?. The matrix element for a single
ionized electron will involve a new Slater determinant state
W' = |thy .. bW . . by, | with one of the 1; replaced
by some continuum wavefunction ¢’. As long as all of the
single-particle orbitals are orthonormal, the only nonvanishing
terms will contain transitions between 1); and 1)’

(v’ \Zelq'z\\p

Thus, in the Hartree—Fock approximation one can compute the
scattering rate using single-particle orbitals, with many-body
effects included in the chosen form of the orbitals.

To generalize the formalism for hydrogen to noble atoms
with filled shells (the case most relevant for experiments prob-
ing atomic electron scattering, all of which are currently using
noble liquid targets), we may define the atomic form factor for
the (n, [) orbital as

(']e7|v). (137)

2

fua(@ =

m

(138)

/ Eryp(r) Y (r) €97

3((q + b2a} + 22V (g — ka3 + 227 (1
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(hydrogen, exact) (134)

)

—e ta
where we have assumed approximate degeneracy in m and
summed incoherently over transitions of individual orbitals.
Using spherical symmetry and decomposing the outgoing
wavefunction into spherical waves, we can then perform the
sum over m and write the ionization form factor as an integral
over the radial functions,

4k3 I+l
I'=0L=|I' |

I L]? ~ ' 2

: {0 0 0] / drr Rig (NRu(1)j(q7)|

(139)

where ﬁk,/(r) and R, are the final-state and initial-state radial
wavefunctions, respectively, j; is the spherical Bessel function
of order L, and the term in brackets is the Wigner-3 j symbol
evaluated at m; = m, = m3 = 0.'° In practice, the sum over /'
may be cut off at some moderate value /' ~ 10 once the sum
converges to the desired accuracy. The total scattering rate is
an incoherent sum over all | lon(k q)|? for different (n, ),

dR
dIn E.;

Py Oe
T 3 B
My Sy,

<X [ dad @Itk 0 v,

(140)

with
Eer + ‘Enl |

q

where E,; is the binding energy of the (n, /) shell.

In the Hartree—Fock approximation, the radial wavefunc-
tions for each orbital can be expressed in a basis of Slater-type
orbitals with effective charges Z ; and coefficients C;, as [137]

2Z /+1/2 n/.lfl
Rulr) = ag 3/ZZCJ"( )" ( r > " Zrfay

Jen! \a
(142)

These wavefunctions are known as Roothaan—Hartree—
Fock (RHF) wavefunctions after a standard technique in quan-
tum chemistry for solving the Hartree—Fock equations. Since
[137] does not provide parameterizations of the continuum
wavefunctions, the earlier applications of this formalism [132,
138] had to supply the final-state wavefunctions externally,

1

141
- (141)

Umin =

19 Here we have included the factor of 2 for spin degeneracy in equation (139)
rather than equation (138), but this is simply a matter of convention.
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Figure 13. The dynamic structure factor for ionization of hydrogen,
obtained using equation (134) with an arbitrary reference

Natom = 1/ (ap)3. For q > py, the bound nature of the electron
becomes less important and the peak of the structure factor
converges to the free-particle dispersion w = ¢*/(2m,), indicated by
the dotted line. The dashed line is the minimum ¢ for DM scattering,
equation (123), such that the kinematically-accessible region is
below and to the right of the dashed line. The region of largest
support for the structure factor is inaccessible to DM scattering.

which were not guaranteed to be orthogonal to the bound
states and thus neglect many-body effects in a possibly impor-
tant way?’. In the most recent analyses used by the XENON
[100] and Panda-X (liquid Xe), and DarkSide [139] (liquid
Ar) collaborations, the following prescription for the outgo-
ing wavefunctions was used: pretend the bound-state orbital
R, is a bound state of a pure Coulomb potential —Z""/r
(rather than the self-consistent potential giving rise to the RHF
wavefunctions), and determine Z”; by matching the Coulomb
energy eigenvalue to the RHF eigenvalue. For all transitions
from the nl state, one then uses this Z”; to construct the out-
going radial functions Ryy(r); note this does imply differ-
ent outgoing radial functions used for different transitions.
Figure 14 shows the ionization form factors (139) and ion-
ization spectrum (140) for the outermost shell in argon, for
different choices of the outgoing wavefunctions and/or Fermi
factors. The rate peaks at Ee =~ pi/(2m,) =9 eV, largely
independent of the DM mass, as anticipated from the argu-
ments at the beginning of this section.

As the atomic number of an atom increases, relativis-
tic effects become more important. These can be incorpo-
rated [140, 141] with the Dirac—Hartree—Fock approximation,
for which a public code, FAC, exists to calculate both the
bound and continuum wavefunctions from a self-consistent
potential [142], ensuring orthogonality?!. The combination of

201n the earliest literature [18], a plane-wave approximation was used for com-
putational simplicity, along with choosing a rather ad hoc Z and adding in a
Fermi factor by hand.

21 That said, FAC is unable to reproduce measured binding energies of outer-
shell electrons in xenon at the 20% level, which strongly affects the sensitivity
near threshold; the private code of [140] utilized the relativistic random-phase
approximation and benchmarked the wavefunctions by matching the measured
ionization energies of each shell.
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relativistic and many-body effects (which are expected to be
important for excited states) in xenon produces a spectrum
which differs by almost an order of magnitude at both small
and large ionization energies, suppressing the rate at small
energies but drastically increasing the tail at large energies,
which can potentially have a large impact on experimental
searches [140]. As of yet there is no direct measurement of
the ionization form factors of xenon and argon in the relevant
kinematic regime for sub-GeV DM-electron scattering, and
thus each of the above approximations for the wavefunctions
must be considered to carry some unquantified systematic
uncertainty.

5.1.3. General atomic response. All of the above discussion
has assumed that the DM-electron interaction Hamiltonian
AH,, is independent of both the DM and electron spins. As
shown in equation (20), this is true in the v — O limit for the
dark photon model, but in a bottom-up approach there are 14
non-relativistic operators at linear order in v and quadratic
order in q consistent with Galilean invariance and momen-
tum conservation which can depend on various products of
momentum and spin, as shown schematically in equation (30).
Among the incoming and outgoing DM and electron states,
there are two independent momenta, which can be taken to be

q and
k

nme

_q
2bye

where k is the initial-state electron momentum (or the rele-
vant Fourier component of the wavefunction, if the initial state
is not a momentum eigenstate). The notation and definition
are inherited from the case of elastic nuclear scattering, where
k = Oforanucleus at rest, and vell - q = Oforelastic scattering.

Specializing to the case of DM-electron scattering in atoms
[71], the possible dependence of AH,, on v leads to a second
vectorial atomic form factor

V=V , (143)

el

&k k
fi2(q) = / W@(k +q) (m—> i(k) (144)

which appears in the total scattering rate through three addi-
tional atomic response functions. Schematically, these are

Wa ~ mif ni-k(@Fu-k(q), W3 ~ [fuk(@),

2

L @) . (145)
m,

e

Wi |

where W, is proportional to the ionization form factor
| f,,Hk(q)\2 and is the sole response function which gov-
erns spin-independent scattering. Since |q| < m, for sub-GeV
DM, and atomic wavefunctions have support peaked at |k| ~
1/ap = am, < m,, these additional form factors are typically
strongly suppressed compared to the standard atomic form fac-
tor. In addition, these response functions are multiplied in the
rate by additional powers of v, further suppressing the rate.
The only exception is the standard ‘spin-dependent’ operator
S. - S, which does not depend on any powers of momentum
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Figure 14. Ionization form factor (left) and ionization spectrum (right) for the outermost 3p shell in argon, shown using plane-wave
outgoing states with Z. = 1 (red) and Z:f‘; = 3.26 (yellow), as well as the full-continuum wavefunction (green). The form factor is shown at
fixed recoil energy E., = 15 eV; note that equation (123) requires ¢ = 5 keV, so the large differences at small ¢ between the different models

do not enter into the DM scattering rate.

and hence scales parametrically like spin-independent scatter-
ing. Recently, [143] provided a many-body treatment of these
spin-dependent operators.

Depending on the particle nature of the DM, spin-
independent scattering may not be the leading contribution
to DM-electron interactions, and thus these general atomic
responses may offer the possibility of distinguishing between
DM models (though at the cost of a suppressed rate compared
to the spin-independent expectation) [144]. One example is
if DM couples to electromagnetism through electric dipole,
magnetic dipole, or ‘anapole’ moments; if DM is a Majo-
rana fermion, a spin-1/2 particle that is its own antiparticle,
the anapole moment is the only nonzero coupling because
the electric and magnetic dipoles vanish identically. In this
scenario, the mediator between DM and electrons is just the
photon itself, but DM couples directly to the Maxwell field
strength tensor F,,,,, giving additional spin and velocity depen-
dence to AH,.. By exploiting the differences in the ionization
spectra in xenon inherited from the various spin-dependent
atomic response functions, [144] showed that observation of
O(100-1000) events can reject the Majorana DM hypothesis.

5.2. Molecular excitation and scintillation

Molecular systems offer several unique advantages for DM-
electron scattering. First, consistent with the general principle
that closer interatomic spacing leads to smaller binding ener-
gies, molecules can have electronic states with smaller sepa-
ration than the ionization energies of the isolated outer-shell
atomic electrons. Second, unlike noble atoms, molecules are
naturally anisotropic, and the breaking of spherical symme-
try can lead to pronounced daily modulation of the event rate
which is a smoking-gun signal of DM?2, Third, organic com-
pounds in particular have a long history of use as scintillation
detectors for high-energy particles [147]: when a molecule

22 Similar effects are present when electrons are ionized from two-dimensional
materials like graphene [145] or carbon nanotubes [146].
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de-excites from an excited electronic state, it emits a pho-
ton, which is wavelength-shifted with respect to the excitation
energy through internal relaxation (for example, via vibra-
tional levels) such that the probability of the photon exit-
ing the sample (rather than being reabsorbed) is large. This
property has previously been proposed to detect nuclear scat-
tering events [93, 148], where the electronic excitation occurs
due to collisions between molecules, but it was pointed out
in [127, 149] that the same scintillation effect may be used to
search for direct electron scattering.

The key property which differentiates a condensed-matter
molecular system (either a liquid, or a molecular crystal with
very weak intermolecular correlations) from a generic semi-
conductor or insulator is that the electrons are not delocal-
ized across the entire sample but are confined to individual
molecules. Focusing on organic aromatic compounds in par-
ticular, the general structure for molecules with delocalized
electron systems is a planar network of carbon-carbon dou-
ble and single bonds in which hexagonal rings are present.
Figure 15 shows as an example the structure of trans-stilbene
(t-stilbene). The partially-filled 2p shell in carbon can accom-
modate a handful of arrangements of four bonds and, in par-
ticular, the sp, hybridized configuration (formed from linear
combinations of 2s and 2p orbitals) allows for two single bonds
and one double bond. The three sp, hybrid orbitals responsible
for the so-called o-bonding, which runs along the interatomic
axis, gives these molecules their planar nature. By contrast,
the unhybridized 2p, orbitals extend out of the plane and form
m-bonds through lateral overlap. The alternating 7m-bonds form
a delocalized electronic system whose dynamics can be con-
sidered independently from the tightly bound o-bonds that
make up the rigid skeleton of the molecule; the electrons in the
7 system are the analog of the valence electrons in a solid-state
system.

Ignoring electron correlation and repulsion effects for the
moment, and considering only nearest-neighbor bonding inter-
actions, the ground state and lowest-lying electronic states of
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Figure 15. Chemical structure of trans-stilbene, a planar organic
molecule which exhibits scintillation. Each vertex hosts a carbon
atom, and single and double lines represent single and double bonds,
respectively. The 2p, orbitals responsible for the scintillation
transition have electron density concentrated in the direction normal
to the plane of the molecule (out of the page). Reproduced from
[127]. CC BY 4.0.

the many-body system are well-described by linear combina-
tions of 2p, orbitals, which represent 7 electrons delocalized
across the molecule:

U, =) clny.(r—Ry),
J

Z5ff r cos 0 —Zofil
= < , 146
O2(1) = || et == exp ( o R

where j runs over all the carbon atoms in the molecule with
positions R; and Z.; ~ 3.15 is the effective nuclear charge
of carbon seen by the 2p, orbital. These states are known as
Hiickel molecular orbitals (HMOs). Typical excitation ener-
gies from the ground state to the lowest excited state are
AE ~ 4.5 ¢V in benzene (6 carbon atoms) and AE ~ 4.2 eV
in t-stilbene (14 carbon atoms), about a factor of 2 lower
than the outer-shell ionization energy in xenon, which allows
organic scintillators to probe lower-mass DM compared to
noble liquids.

Due to the relatively small number of electrons involved in
the low-lying states (one per carbon atom), a fairly complete
treatment of the correlation and repulsion effects is feasible for
molecules with O(10) carbon atoms, using the Hartree—Fock
approximation in the HMO basis. Indeed much of the work
in understanding organic compounds was done in the quan-
tum chemistry literature in the 1960s with results that can be
borrowed almost verbatim, as detailed in [127, 149]. Another
useful result from this literature is a semi-empirical method
which may be used to avoid the computational complex-
ity of Hartree—Fock for larger molecules [150—153]. First,
the coefficients c§ of the HMOs are fixed by assuming that
nearest-neighbor interactions dominate and empirically fit-
ting the coefficients such that the eigenspectrum matches the
observed spectrum of the desired molecule; off-diagonal ele-
ments are related to bond lengths and diagonal elements can
be interpreted as an effective nuclear charge. Degeneracies are
resolved by requiring each HMO to transform in an irreducible
representation of the symmetry group of the molecule in ques-
tion, known as the point group which keeps the origin fixed. To
obtain the many-body wavefunction, antisymmetry is enforced
with a variant of the Hartree—Fock approximation, where the
ground state is constructed as a Slater determinant of the
lowest-energy HMOs in a spin-singlet configuration, and the
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excited states are constructed by replacing one of the HMOs
with a higher-energy orbital in the antisymmetrized wavefunc-
tion. Finally, electron—electron interactions are treated as per-
turbations which mix states with the same symmetries under
the point group. This procedure, which focuses on just the
bound-electron spin singlet configurations, suffices for prac-
tical applications because the singlet states are overwhelm-
ingly responsible for the experimentally-observable scintilla-
tion transitions.

As with the case of atomic scattering, the transition form
factor can be reduced to calculating matrix elements with
single-particle orbitals at different sites, because each excited
electron state can be written as linear combinations of states
where one electron has been excited from an occupied HMO
¥ to an unoccupied HMO ¥’. Now, though, the form fac-
tor involves taking linear combinations of the single-particle
matrix elements and then squaring, reflecting the fact that the
system can be treated with the full many-body states. Because
all orbitals are simply spatial translations of the same 2p,
orbital, the linearity of the Fourier transform means that there
is only a single primary integral to compute, involving the
momentum-space orbital

7/2 3/2

Z.g ay k.ag

(k*ad + (Zew/2)%)?

$p.(K) = (147)

weighted by phase factors and coefficients which can be taken
from the literature and/or determined from symmetry consid-
erations for a large number of organic scintillators. From there
on, the formalism for computing the scattering rate is identical
to atomic ionization, with the small modification that the con-
tinuous spectrum of ionized states is replaced by a sum over
the discrete spectrum of bound states. The first limits on DM-
electron scattering from 1.3 kg of organic scintillator EJ-301
(doped p-xylene) using a photomultiplier tube (PMT) read-
out were set in 2019 [149], and are competitive with current
constraints from low-mass semiconductor detectors in the few-
MeV mass range for m,, though many improvements on this
setup are possible.

As can be seen from equation (147), the electrons in the 2p,
orbitals break spherical symmetry, leading to an anisotropic
form factor for transitions where these orbitals dominate.
Define the scintillation transition form factors from the (many-
body) ground state |1);) to scintillation state |1, ), with energy
AE; with respect to the ground state, as

Nc
£ = (13 4 ) (148)
k=1

where the sum runs over the k delocalized electrons, equal to
the number N¢ of carbon atoms in the molecule. This nota-
tion differs somewhat from the atomic case since we are only
indexing the transition by its energy, rather than labeling the
initial and final states by individual orbitals, due to the fact
that the electron—electron interactions in the molecule have
caused these orbitals to mix. Using equations (17) and (18) for
the time-dependent rate, the rate for observing a scintillation
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(149)
where N is the number of molecules per unit detector mass,
¢ is a quantum efficiency factor representing the probability
that the de-excitation of a scintillation state yields a photon
which escapes the sample, and the sum runs over all transitions
to singlet states. Some examples of form factors for the lowest
s transition in t-stilbene (which can be grown as high-quality
single crystals, preserving the directionality of the form fac-
tors) and the associated time-dependent rate for various DM
masses are shown in figure 16. The anisotropy is clear, leading
to a large modulation amplitude of ~50% for m, = 2 MeV
for an orientation of the crystal axis with respect to the z-axis
givenby 3 = 90° (see [127] for details). The four-fold symme-
try of the form factor is due to the presence of four molecules in
the unit cell with different orientations; the anisotropy would
be even larger in a crystal with fewer independent molecular
orientations.

Note that the form factor peaks at a typical scale g* ~ 6 keV,
of order the inverse carbon—carbon bond length, consistent
with the arguments at the beginning of this section. Since the
minimum-allowed ¢ in a scattering event is ¢,,;,, = AE/v, we
can define an effective velocity scale

AE
q*

(150)

such that the peak of the form factor is accessible if v > v*.
In t-stilbene, v* ~ 200 km s~ !, and the form factor peaks are
accessible to the bulk of the DM velocity distribution in the
SHM, a fortuitous coincidence given that v* and v, are set
by completely different physical mechanisms! As we will see
below, this yields a total rate per unit mass for organic scintil-
lators which is within a factor of a few of silicon. However, this
same fact leads to a smaller ~10% daily modulation amplitude
at large DM masses, due largely to structure of the secondary
peaks in the form factor at ¢ ~ 1.2 keV (comparable to the
inverse size of the entire molecule). Indeed, daily modulation
is mainly a threshold effect, occurring when form factor peaks
are kinematically accessible for some values of q - v but not
others, and thus depends sensitively on the high-velocity tail
of the DM distribution. Thus, there is an inevitable trade-off
between maximizing the total rate and maximizing the mod-
ulation amplitude, an effect also seen in the analogous daily
modulation signal in phonons [103, 107, 112]. The enhanced
statistical power of a modulating rate, even in the presence of a
nonzero (but non-modulating) background rate, may be favor-
able over simply maximizing the total rate if zero-background
operation is not feasible.

5.3. Solid-state excitation and collective modes

To probe DM with MeV mass or below, electronic excitation
energies at the eV scale and below are required, necessitat-
ing the use of solid-state systems with the required low band
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gaps. Historically, much of the theoretical and experimen-
tal effort has focused on conventional semiconductor detec-
tors—specifically silicon and germanium—as well as con-
ventional superconductors like aluminum. Recently there has
been a flourishing effort to identify new materials with par-
ticular properties which are well-suited to the kinematics of
sub-GeV DM. We will survey these new candidate in mate-
rials in section 8.1, and focus here on a particular illustrative
example, Dirac materials, which has a band structure suitable
for semi-analytic calculations of the dynamic structure factor.

The first calculations of DM-electron scattering in silicon
and germanium used either DFT band structures and wave-
functions [18, 154] or semi-analytic models based on hydro-
genic or tight-binding orbitals [43, 126]. By the arguments
at the beginning of this section, the typical momentum trans-
fers probe electrons on length scales smaller than a single unit
cell as long as the gap is O (eV) or larger, so both of these
approaches are expected to give the correct order of magnitude
for the total scattering rate, though there are important differ-
ences between the spectra at small and large recoil energies, as
we will discuss shortly.

We first review the original DFT approach of [154], which
amounts to the following procedure: start with equation (53),
treat the initial and final states as Bloch states, and neglect
the sum over all electrons in the operator by taking
>,€l9T — el9T, First, using the Bloch wave parametrization
of equation (38) and the Fourier expansion of the cell function
(35), we may write the single-particle wavefunctions as

Uam = oSk GO (1s)
G

where i is a band index, Kk is a crystal momentum, and G is a
reciprocal lattice vector. The normalization of the wavefunc-
tion is enforced by Y ¢ |ui(k + G)|* = 1. The analogue to the
atomic form factor is given by single-particle wavefunction
overlaps [154]

‘f i/ /|2 = Z (27T)353(q - (k/ —k+ G'))
k—i'k : v
G
2
X Z”?(k/ +G+GHuk+G) (152)
G
_ 200 - K~k +G) >
- Z Vv | fracnd chl™s
G/
(153)

where the delta function makes explicit that crystal momentum
is conserved only up to a reciprocal lattice vector. Note that
we will use i to label valence bands and 7 to label conduction
bands, assuming the target is at zero temperature. Similarly,
summing over initial and final states and bands (including
an explicit factor of 2 for spin degeneracy) and assuming an
isotropic DM velocity distribution yields the analogue of the
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Figure 16. Slices though the molecular form factors for the lowest-energy (s;) transition in t-stilbene and modulating rates for DM masses
near threshold, m, = 2 MeV. Reproduced from [127]. CC BY 4.0. The four different molecular orientations in the unit cell are apparent in
the four-fold symmetry of the form factor. The gridded bean-shaped region outlined in red and orange indicates the kinematically-accessible
momentum transfers q at two different times of day (+ = 0 and r = 10 h); for the chosen orientation of the detector with respect to the DM
wind, the kinematically-allowed region at t = 0 does not extend into the plane g, = O (upper left), and is only barely visible at # = 10 h for
an azimuthal angle of ¢ = 125° (bottom center), leading to the large modulation amplitude shown in the upper-right plot.
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(154)

referred to as the crystal form factor. Here, the integral is taken
over the 1BZ and (2 is again the unit cell volume. By analogy
to equation (140), the spectrum is
2
/ d In

dR {m
1
X q (%n(vminnFDM(CI”zfcl’}'stal(q’ w)2>:| :

dInw

2
xe

(155)
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Note that now w is total energy deposited, while in the atomic
case we gave the differential rate with respect to the outgo-
ing energy of the ionized electron, E.;, which differs from the
total deposited energy by the binding energy of the initial-
state orbital. In equation (155), the factor in square brack-
ets is a dimensionless O(1) number when ¢ ~ p, and w ~
O(5 eV), since w/q~ 1073 ~v while (Vi) ~ 1/v. For
m, =10 MeV and 7, = 1073 c¢m? at the freeze-out cross
section, this gives an expected rate of O(1) events/min/kg, a
sizable rate compared to WIMP experiments!

One limitation of the DFT approach is that it is com-
putationally expensive to include high-momentum compo-
nents of the wavefunctions, which are needed for scatter-
ing of heavier DM and to describe excitations of core or
semi-core electrons. For instance, in germanium, the 3d elec-
tron shell generates an important contribution to the spectrum
above about 30 eV [43]. The importance of including these
components was emphasized in [155], which used the pro-
jector augmented wave (PAW) method for an ‘all-electron’
reconstruction of the wavefunctions, but this treatment was
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Figure 17. Contributions to the electron scattering spectrum in
germanium for m, = 1 GeV and 5, = 107* cm?, using all-electron
reconstruction, including valence to conduction (11 — ¢), valence to
free (v — f), core to conduction (¢ — c¢), and core to free (¢ — f).
The ¢ — ¢ transition involving the core 3d electron shell dominates
the rate above 25 eV, an effect which is underestimated in the
QEdark code [154] which uses only a Bloch wave basis. The y-axis
is a binned event rate in 1 eV bins. Reproduced from [129]. CC BY
4.0.

still limited to DM masses below about 100 MeV. Recently,
[129] extended the PAW approach and also included core elec-
trons by a semi-analytic method similar to that of [43, 126]. In
particular, [129] showed that the core electron wavefunctions
are accurately modeled in a basis of Wannier orbitals

Ya(r) = fZel“Raxr— R) (156)

i=1

where the sum runs over all lattice sites with positions R;. The
Wannier functions ¢ are typically taken to be linear combina-
tions of atomic orbitals, similar to those used in sections 5.1
and 5.2. Since g, > |[R; — R;|™! for the high-momentum
transfers of interest, the sum is mostly incoherent and the crys-
tal form factor can be approximated with an atomic form fac-
tor. The conclusion of [129] is that rates can be much larger for
excitation energies =25 eV and that for Ge in particular, scat-
tering of 3d electrons dominates for DM mass above 30 MeV
and a heavy mediator, as shown in figure 17.

5.3.1. Dynamic structure factor for electron scattering. To
make contact with the dynamic structure factor language of
section 3.2, and to see the appearance of many-body effects,
recall that we determined a general relationship between the
dynamic structure factor and the dielectric function e(q,w),
equation (58). We can see how the single-particle form factor
equation (154) arises from equation (58) if we use a partic-
ular approximation for the dielectric function called the ran-
dom phase approximation (RPA) [156]. Within RPA, we treat
the medium as a degenerate gas of weakly-coupled quasipar-
ticle excitations and use perturbation theory to compute the
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loop to absorb and emit single-electron excitations, yielding
the Lindhard dielectric function,

(W) =1- 3= Z (K, 7]k, i) |2
q kK i,i’
YEns) — fUE;

7n—0 Ei/k/ — Eik — W — ”7,

where |k, i) denotes Bloch states. This approximation to the
dielectric function is essentially computing the polarization in
anoninteracting gas?3. Note that e(q, w) acquires an imaginary
part when the denominator becomes singular:

I e(q ) = T2

197K, i) |*0(w + Ex — Epg),

k k' i,i’
(158)
using the Dirac identity Im(lim, o — m) = 7d(x). Then the
dynamic structure factor can be written as

)

1
e(q,w)
> Ik
kK ,ii

- Ei/k/).

q2

V\e(q w)|? |k, i) [P

X 0w + Ex (159)

S(q,w) has the expected form if we were to start with
equation (53) and treat the initial and final states as Bloch
states, which led to the rate in equations (154) and (155),
but here an additional factor of 1/|e(q,w)|* appears. The dif-
ference arises from the fact that the true initial and final
states are many-body states, and the actual result in terms of
single-particle states must account for the total response of the
medium, which screens any external perturbation by e(q, w). In
other words, the factor of 1/|e(q, w)|? accounts for in-medium
screening effects and is equivalent to resumming an infinite
series of insertions of the polarization loop, where we see
explicitly that the structure factor includes terms to all orders
in .>* We can also write S(q, w) explicitly in terms of the same
wavefunction overlaps as before using equation (151) for the

23 A potentially confusing piece of nomenclature, standard in the condensed
matter literature, is that ‘noninteracting’ refers to the fact that the electrons
are treated as not directly interacting particle-by-particle when calculating the
leading-order response function to an external probe. However, one obtains
an approximation to the dielectric function of an interacting gas by self-
consistently treating each individual electron as feeling the average potential
accounting for all the other electrons [81]. In field theory language, the ground
state of the system is corrected by the photon vacuum polarization diagram,
which is calculated by neglecting electron—electron interactions.

24 These ‘in-medium” effects may be though of as corrections to the propagator
of the mediator for DM-electron interactions [157], or g-dependent modifica-
tions to the DM-electron coupling [19], but here we include them directly in
the dynamic structure factor.
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initial and final states [128]:
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S(q,w) = €(q,w)|22:/
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(160)
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(161)

where the second line is obtained by comparing with
equation (154). For typical momentum transfers g > q .
le(q, w)\2 ~ 1 and screening will lead to O(1) effects, though
this is needed to obtain precise predictions of the scattering
rate beyond an order-of-magnitude estimate.

While the interpretation of the dielectric function in terms
of single-particle Bloch states is only true within RPA, the rela-
tionship between the dielectric function and the scattering rate
is more general. For spin-independent DM-electron scattering,
which may arise from exchange of a scalar or vector mediator,
the transition rate for a fixed DM velocity v is [128,131]

(~awan)]

(162)
which is proportional to the ELF W(q, w) (equation (61)) and
the DM-electron scattering potential V(q) (or equivalently, the
DM form factor Fpy(g)).>> Assuming an isotropic velocity
dispersion, the spectrum per unit mass is

/

X 1 (Umin(g, W) W(gq, w).
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(163)

Using equation (161) for the Lindhard dielectric, we see that
equation (163) exactly matches previous results (155) using
DFT wavefunctions except for the factor of 1/¢2. This makes
it clear that the objects of interest are not the single-particle
wavefunctions themselves, but rather the particular combina-
tion which appears in the dynamic structure factor.

The advantages of the dielectric function formalism for
spin-independent scattering are that there are many simple
analytic models and detailed CM calculations for e(q,w),
and that for many common (and some less-common) materi-
als, e(q,w) has been directly measured. The free-electron gas
(FEG) dielectric function (somewhat confusingly, also com-
monly referred to as the Lindhard function) is a particularly
useful analytic model which captures important scales in the
problem. In this model, the electrons are assumed to fill up an
isotropic Fermi sphere with no band gap or lattice structure,

23 See [158, 159] for a discussion of interactions beyond spin-independent
couplings to electron density, performed in the single-particle Bloch wave
basis. See also a dedicated study of magnon excitation by spin-dependent
scattering in [160].
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which gives [161]
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The free parameter in this model is the electron density 7.,
in terms of which we have

UF = >
m, m,

ke = 3m%n,)' 3,

Typical values for the FEG model parameters are

ke ~5keV~py, wp~107%  w,~15eV. (166)

In general, the ELF in an isotropic medium must satisfy two
important consistency conditions, arising from its origin as a
causal correlation function:

W(q, —w) = —W(q,w), / dwwV(q,w) = gwlz,.
0

(167)
The integral constraint is known as the f-sum rule, and both are
satisfied by the FEG dielectric function. One limitation of the
FEG is that it does not account for finite electron damping time
or the plasmon width; this can be accounted for in the Mermin
dielectric function with damping parameter I',, [162]:

(1 +ily/w) [err(q, w +iT,) — 1]
Ll /w |

6Mermin(qa W) =1+ eppG(Qu—+il,)—1
EEGARTT — p) -
€rEG(¢,0)—1 }

(168)
In particular, one can also take a linear combination of Mer-
min models with different n,, fitted to experimental measure-
ments of energy loss or dielectric functions and appropriately
weighted to satisfy the f-sum rule [84—86]. This is called the
Mermin oscillator model.

In figure 18, we show the dynamic structure factor calcu-
lated with the FEG dielectric function in the limit I', — 0 and
with a DFT calculation for Si from [128]. In both cases, there
is a strong resonance at low ¢ and w ~ 10-20 eV associated
with the plasmon excitation, with is infinitely narrow in the left
panel but has a finite width of a few eV in the right panel. At
high g, there is broad support for the dynamic structure fac-
tor, interpreted here as electron—hole excitations, which are
peaked about the free-electron dispersion ¢* /(2m,). An impor-
tant difference between the two structure factors is that the
dynamic structure factor goes to zero as w approaches the band
gap of the material. However, for w somewhat above the band
gap and g > g,,;, for DM scattering, we see that the two struc-
ture factors are qualitatively quite similar. Indeed, as shown in
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Figure 18. (Left) Dynamic structure factor for a free electron gas with w, = 15 eV and kg = 3.3 keV, obtained by taking the I', — 0 limit
of equation (164). The plasmon resonance shows up as an infinitely narrow resonance indicated by the dotted line, while the rest of the
support is interpreted as electron—hole excitations. (Right) Dynamic structure factor for ionization in a Si semiconductor, based on the
calculation in [128]. At low ¢, it is peaked at the plasmon resonance, while at high g the peak converges to the free-electron dispersion
q*/(2m,), similar to the structure factor for hydrogen. In both panels, the dashed line is the minimum ¢ for DM scattering, equation (123),
such that the kinematically-accessible region is below and to the right of the dashed line. Thus, the peaks of the structure factor are not

accessible to halo DM.

[113, 131], the FEG model describes the DM-electron spec-
trum for w € [5,15] eV in Si and Ge semiconductors quite
well. For higher energies, it is also expected that the FEG
model fails to capture the localized core electrons and the asso-
ciated high-momentum tails. This can be improved on by gen-
eralizing the FEG ELF to the Mermin oscillator model fitted
to experimental data, which gives good agreement with DFT
calculations at higher energies and momenta as well, see [113,
128]. Note there is also good agreement among independent
DFT calculations accounting for screening effects [128, 129,
163].

The upshot of this discussion is that the FEG dielectric
function provides a useful analytic model to understand the
dynamic structure factor in conventional semiconductors and
metals, and we can use it here to explore the features and
general behavior of the structure factor in several limits:

e For g > kp, the FEG ELF is maximized at w ~ ‘J;T”l:. For
vg = kg/m,, this relation is simply the dispersion for elas-
tic scattering, w = q2 /(2m,), reflecting the fact that elec-
trons are mostly independent particles at large g. The
width of the peak is quite broad, since the Fermi velocity
of electrons at the Fermi surface is sizeable, but at g > kp,
the scattering rate converges to that of free-electron
scattering.

e For lower g < kg, screening and many-body effects start
to play an important role. Taking ¢ < kp and w < gvg,

we have
e .37rw§w
erEG(Q W) & 55 +is o5 (g <kp, w < qup)
2q 2q°vy,

(169)
where Arp = wpvr/ V3 is the inverse Thomas—Fermi
screening length. The fact that |e[> > 1 in the low-
momentum regime is a manifestation of long-range
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charge screening. For typical values of the FEG param-
eters, Ree > Ime, so we may approximate the ELF as

N Ime(q,w)
WA~ Redq w)y

67rw12,
~ 3 (g < kg, w < qug) (170)
TEUF

which vanishes as g — 0.

e At small ¢ < kp but larger energy w 2 gvg, collective

modes emerge from the ELF. The FEG model gives rise
to poles:

;i_)rgl W(q,w) = % (5(w — wp) — 0w + wp)) (171)

which describes a plasmon mode of energy w, where
all of the valence electrons in the material are oscillat-
ing in phase at the classical plasma frequency. At finite
q, the plasmon pole has a dispersion relation given by
w? ~ w) + 3¢*v§/5 and extends up to a cutoff momen-
tum g, ~ w,/vr, beyond which Landau damping occurs
and the plasmon can efficiently decay into electron—hole
pairs. In a realistic material, various decay paths for the
plasmon are also available for g < g, so that we should
use the Mermin dielectric function, equation (168), with
finite I',, to represent the plasmon width, which yields at
q=0

2
wpwl"p

2
(( 72 ¢ ,2)2 ¢ 72|

,}lj{)‘ W(q,w) =

Using the relation between the dynamic structure factor
and the ELF, equation (58), we see that S(q, w) scales as
g*w at small g and w as claimed in equation (59). This
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Breit—Wigner lineshape is the same as what would be
obtained from treating the valence electrons as a damped
harmonic oscillator (the Frohlich model). The measured
plasmon lineshapes in both semiconductors like Si and Ge
[83] and metals like Al [164, 165] are extremely close to
this simple form.

From the identification of the peaks of the ELF (and thus
dynamic structure factor), we learn that conventional met-
als and semiconductors are not optimal in terms of match-
ing the DM scattering phase space, which requires w < gv,,.-
At g > kp, the peak at w ~ q2 /(2m,) is not accessible, since
in this regime w 2 gkg/m, ~ qa. Atlow g < kg, most of the
weight in the ELF is carried by the plasmon which is located at
w > gvp. However, the DM velocity is typically much slower
than the Fermi velocity in conventional materials, so that the
DM cannot access the plasmon®®. Since the integrated weight
of the ELF is constrained by the f-sum rule, it is in this
sense that DM-electron scattering in conventional materials
is ‘inefficient’ as was the case for multi-phonon excitations
in superfluid helium. However, semiconductors are still bet-
ter than a typical atomic target as in figure 13, due to the lower
gaps. Projections in terms of the DM-electron cross section
are shown in figure 12 for example semiconductors of Si
and Ge.

5.3.2. Sub-MeV DM scattering. The small-g regime is espe-
cially important for sub-MeV DM, which carries maximum
momentum p, < 1 keV < kp. This regime is accessible in
superconductors, which have a gap A < O (meV) and hence
g can be as small as O (eV) for DM scattering. [169] first
pointed out the suitability of superconductors for sub-MeV
DM, using the FEG model to compute scattering for w > A.
[157] noted the reach is suppressed for a dark photon medi-
ator because of screening effects; recently, [128,131], using
the dielectric formalism, clarified that screening is present for
all scalar and vector mediators (not just dark photons), and
furthermore that the reach is considerably better than previ-
ously estimated because [157] effectively used a loss function
which did not satisfy the causality property due to an incor-
rect choice of branch cut?’. The projected reach for different
energy thresholds is given by the Al lines in figure 12.

The screening effects in a superconductor can be traced
back to the behavior of the ELF in the low ¢ limit,
equation (170). This behavior gets cutoff in a semiconductor,
since in the limit of low ¢, w we should reproduce the static
dielectric function which is typically O(1-10). We can see

26 A fast subcomponent of DM, arising for example from supernova remnants
[166], may excite the plasmon directly [167]. DM-nucleus scattering can also
excite the plasmon through a 2 — 3 process [167, 168], as will be discussed
in more detail in section 6.

27 As noted in [131], there may also be additional contributions to the ELF
from the plasmon tail, which would further improve the reach, but dedicated
measurements are required in the small-g regime to confirm the presence of
the tail; [165] shows the tail in aluminum extending down to 0.1 eV.

4

the finite behavior of the dielectric function in this case from
the Lindhard formula (157). In the limit ¢ — 0, the squared
matrix element must then vanish like ¢ as ¢ — 0, since we
are considering orthogonal states. At the same time, in a semi-
conductor or insulator, the Fermi level lies in the gap and the
lowest-energy excitations are interband transitions between
bands, so that energy differences Ey — Ex = Eyxyq — Eix
should be approximately independent of g. The ¢* from the
matrix overlap then cancels the Coulomb prefactor and yields
a constant €. An alternate parameterization of the dielectric
function for semiconductors at low ¢ can be found in [170].
Thus, large screening effects at small g are absent in mate-
rials with a Fermi level lying between the valence and con-
duction bands, which motivates considering narrow-gap semi-
conductors as targets to enhance the sub-MeV DM scattering
rate.

An example of such a narrow-gap semiconductor is a
gapped Dirac material, so named because the valence and
conduction bands have dispersion relations which approxi-
\/vEk* + A?, with
the gap 2A playing the role of (twice) the relativistic parti-
cle mass. The point in the BZ with k = 0 is known as the
Dirac point. [171] first determined the scattering rate in Dirac
materials by computing the single-particle matrix elements
(k + q; + |€!97|k; —) between the uppermost valence (—) and
lowest conduction (4) bands, imposing a momentum cutoff
at |[k| = A where the dispersion deviates from the relativistic
form, and dividing by |e(q, w)|? to account for screening. This
is equivalent to simply computing the ELF directly, which we
will do here as it is somewhat more transparent. Assuming
that the — and + bands are the only bands which contribute
to the dielectric function, €(q,w) may be computed in exact
analogy with the one-loop vacuum polarization in quantum
electrodynamics, with appropriate factors of vg instead of c.
The momentum cutoff corresponds to the familiar UV cutoff
in one-loop diagrams, and the result is

mate the relativistic dispersion, E. (k) =

2 1
e(q’W):l—’_M/o dx
(2vpA)? }
X 4 x(1 —x)In
{ A? — x(1 — x)(w? — viq?)
e 4A? 20
1 - 2 1+ 2
24T KVE w? — viq? w? — viq?
X O(w? — viq® — 4A7). (173)

However, as noted in [130], this calculation for the real part of
is unreliable because DFT calculations show that Re € receives
contributions from the entire BZ, not just the region around
the Dirac point with |k| < A. Thus, we may approximate
Ree(q,w) =~ €(0,0) = k > 1 as a background static dielec-
tric constant which should be measured or determined from
DFT. The imaginary part is unaffected by this complication,
so assuming Im e < x (which is in fact required for the per-
turbation theory calculation we used to determine €) we may
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compute the ELF as [131]

Im e(q, w)
Wi(g,w) ~
K
& ant () N 2A°
- 12K27oR w? — vig? w? — vig?

X OW? — vig? — 4AY)O(Wiax — W) (174)

where we have replaced the momentum cutoff A with an
energy cutoff wp,. In contrast to the FEG single-particle ELF
(170), the Dirac ELF is unsuppressed by powers of g and can
thus lead to a larger scattering rate for small DM masses. In
addition, scattering is forbidden for v < vg, a peculiarity of
the kinematics of linear dispersion. The projected reach for an
example Dirac material of ZrTes is shown in figure 12. Dirac
materials may also feature anisotropic dispersion relations,
with parametrically different Fermi velocities vgy, Vgy, Vk;
along different crystal axes, which allows for a large O(1) daily
modulation signal for sub-MeV DM [130, 172] (due partly
to the requirement v > vg), greatly improving the detection
prospects if such a detector can be realized in the laboratory.
Finally, we note that plasmons are also expected to exist in
Dirac materials [173—175]; indeed, the ELF in equation (174)
does not satisfy the f-sum rule and therefore cannot represent
the entire excitation spectrum because it only contains single-
particle contributions. The effect of these contributions to the
ELF on the DM-electron scattering rate remains to be fully
evaluated.

6. The Migdal effect

The main narrative emphasized the dynamic structure fac-
tor including only phonon excitations (section 4) or only
electronic excitations (section 4). This is a good leading
approximation, but there are regimes of phase space or sit-
uations where it is valuable to consider a mixed response
in a dynamic structure factor. For instance, for DM-electron
scattering below the gap, phonon modes are the only avail-
able excitations, and thus DM-electron scattering may lead to
phonon production [19, 107]. At energies just above the band
gap, the response function may be dominated by simultaneous
production of an electron and phonon. This can be thought of
as a2 — 3 process, where an off-shell electron emits a phonon;
in particular, it is distinct from possible subsequent interac-
tions of the electron in the material, which may scatter off other
electrons to produce phonons. This 2 — 3 process is known to
be important in the limit of zero momentum transfer for indi-
rect gap semiconductors, since the emission of phonon allows
for conservation of crystal momentum. However, the energy of
the phonon would generally be much smaller than that of the
electronic excitation itself.

For DM-nucleus interactions, a similar 2 — 3 process is
possible, with a nuclear recoil and electronic excitation being
produced simultaneously. In this case, the possibility of a
mixed electronic and nuclear response provides a more inter-
esting prospect for experimental detection, since the electronic
excitation could have comparable energy to the energy in
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phonons or nuclear recoil. Furthermore, at the present time
the detection thresholds for electronic excitations are also
much lower than for nuclear recoils (see section 7), which
means that it is possible to indirectly observe nuclear recoils
of much lower mass DM with electronic detection approaches.
This idea of producing a charge excitation from a nuclear
interaction was originally studied and proposed in the con-
text of atomic targets, where it is known as the Migdal effect
[176—178]. Historically, it played a role in explaining obser-
vations of radioactive decays of heavy elements, which cause
the sudden recoil of the nucleus [179-182]. Discussions of the
Migdal effect in DM-nucleus collisions first appeared in [183,
184], but it is only in recent years that interest has revived due
to the interest in sub-GeV DM and the attainment of lower
electronic thresholds [141]. The majority of theoretical stud-
ies have treated the target material as consisting of individual
atomic targets [141, 185—-191], similar to the original deriva-
tion by Migdal, while recently the effect has also been general-
ized to CM targets [99, 168, 192]. In principle, if the response
function for nuclear recoils is obtained from experimental data,
it would contain such contributions, and we could similarly
determine the size of the Migdal effect for DM direct detection.
However, similar to the other cases discussed in this review,
DM scattering kinematics are quite different from where the
Migdal effect was originally studied, and so far there are no
direct measurements in the desired regimes.

In this section, we will review the Migdal effect, as applied
to direct detection of DM-nucleus interactions. As shown in
figure 19, initial applications of the Migdal effect have already
given the leading constraints of nuclear recoils to sub-GeV DM
compared with traditional searches for nuclear recoils (dark
gray region). We will begin with a treatment of the Migdal
effect in atomic targets to reflect the approach by Migdal and
in the majority of studies. The argument of Migdal, however,
does not apply when treating solid state targets. We therefore
give several alternate ways to understand the Migdal effect,
and then discuss its generalization to solid state materials.

6.1. Atomic Migdal effect

For a DM-nucleon interaction given by equation (75), recall
that we obtained a nuclear recoil structure factor given by

).

where we can take Fy(g) — 1 in equation (76) for sub-GeV
DM. For the atomic Migdal effect, the dynamic structure factor
contains an additional contribution that can be written as

dSMisdil(q, ) 27Ny, dpP
@) e =

dw, \% dw,
where dP/dw, is a differential probability for energy w, to be
deposited into an electron excitation. This factorized form of
the response function is approximate, because it assumes that
any momentum transferred to the electron excitation is much
smaller than the total momentum transfer q. However, this
will easily be valid for nuclear recoils with energy 10 meV or
above, since ¢ = \/2myEg will be much larger than the typical

q2
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Figure 19. (Left) The dark gray shaded regions are combined nuclear recoil bounds from XENONIT [193], LUX [194], CRESST III [102]
and CDEX [195]. The light gray region is a XENONIT limit using the Migdal effect [193] (see also LUX limits [194]), and the hatched
region is a recasted XENON limit in terms of the Migdal effect by [188]. Si and Ge lines are expected 90% CL sensitivity to DM-nucleon
cross section o, due to the Migdal effect, assuming a heavy mediator, 1 kg-year of exposure, and minimum two electrons observed. The
shaded bands are an estimate of the theoretical uncertainty due to the impulse approximation, see [99] for details. The red line is a 90% CL
limit obtained using the recent upper limit on the two-electron rate from SENSEI [196]. For comparison, the dotted line is a projection for the
atomic Migdal effect in xenon (dotted line) from [188]. (Right) Comparison of the spectrum of ionizations from the Migdal effect in atomic
Si [141] with the spectrum of electron excitations due to the Migdal effect in a Si semiconductor. Reproduced with permission from [99].

momentum of electron excitations, p, = am,. Then dP/dw,
depends only on the nuclear recoil energy Er = ¢*/(2my).
We will clarify the validity of this factorized form further
below.

Migdal gave an elegant argument to obtain dP/dw, by treat-
ing the nuclear recoil as ‘sudden’ (fast compared to response
of electronic orbitals). For a sudden collision, the original elec-
tron wavefunction has not been perturbed at all. However, after
the collision, the asymptotic eigenstates are given by atomic
wavefunctions with respect to the moving nucleus. Migdal thus
obtains the ionization probability by finding the overlap of the
original state with excited or ionized states about the mov-
ing nucleus. In particular, if the initial state is given by the
ground state |i), then after the collision the wavefunction is
given by applying a boost operation to obtain e<"¥"2-57|;),
with vy = q/my and rg the electron position operators. Then
dP/dw, can be written as

dpr
dw,

= Sl T D PAE — B —wo). (177)
f

This resembles the general form for the dynamic structure fac-
tor (53), but the interpretation is quite different, and in particu-
lar the sum over electron coordinates appears inside rather than
outside the phase factor. Writing the electron state as a Slater
determinant of electron orbitals, and considering just single
electron ionizations, the wavefunction overlap can be simpli-
fied to (k.'m’'|e""WT|nlm). For an atomic target where it is
assumed that ionizations can be detected, the outgoing states
are unbound states with energy E = kg /(2m,), and normal-
ized such that (k,¢'m’|k.lm) = 275 (k], — ke)0pp 0y (nOte that
this differs from the chosen normalization for atomic ioniza-
tion in section 5.1). This leads to the following form of the ion-
ization probability, where we have included a factor of 2 to sum
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over spin and assumed degenerate spin states for simplicity:

dpP dk, .
-2 e kegl /| SimeVy-T Y 2
Rt [ S lttmi| )
X O(Eer — Eng — we) (178)
ke I 1| Lime VN T 2
= 3E. /E/, /|<ke€m [e™ N T nlm)|=.  (179)

Here we have written the differential probability in terms of
outgoing energy E., rather than the total deposited energy
Ee + |Eyl, in order to match the convention in some of the
literature and to indicate this is an ionization probability. This
form can be simplified further if the wavefunctions are writ-
ten as Ry (r)Y?" and Ry, ¢ (r)Y? for the initial and final orbitals,
respectively, giving the form of the differential probability in
[188].

For sub-GeV DM, the nuclear recoil velocity is slow, vy <
o, so that m,uy < p,. As aresult, a very good approximation
is to take the leading term in the boost operator which gives
rise to transitions, with

dpr

~

dE,;

2m§ER

my

ke
2mEe;

x S oy (kelni|x|nlm)|®

n,lm,l" m!

(180)
where we have pulled out the magnitude of vy from the matrix
element squared and written v} in terms of Er. From this
form of the differential ionization probability, we see that the
leading contribution comes from dipole transition matrix ele-
ments, and that overall the rate scales with Eg, at least in
the rate of small enough recoil energy. Writing the matrix
element as a dipole transition allows one to determine the
Migdal rate in terms of an experimentally measured photoab-
sorption cross section [189]. This form of the matrix element
is therefore reminiscent of the probability for bremsstrahlung
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from a recoiling charged source, with the radiated field con-
verted or absorbed into an electronic excitation. We will give
an alternate derivation of the Migdal effect in terms of this
interpretation shortly.

The wavefunction overlap computed by Migdal made two
key assumptions: a ‘sudden’ collision, and that the asymp-
totic eigenstates of the electrons are obtained by boosting the
wavefunctions to the frame of the recoiling nucleus. The first
assumption is not necessarily true for all collisions, and one
may question whether it applies for all DM interactions, in par-
ticular long-range interactions where the momentum transfer
may be slow. The second assumption breaks down for solid
state targets, where there is a preferred frame of reference
given by the center of mass of the crystal, and the valence
electron eigenstates are defined with respect to that preferred
frame. Given these limitations, we give two alternate ways to
derive the Migdal effect.

The hydrogen atom provides a useful toy model where we
calculate the ionization rate from the Migdal effect without
any semiclassical or sudden approximation. Together with the
DM, this forms a three-body system which can be solved for
with a quantum mechanical treatment [197]. First, recall that
the two-body Hamiltonian for the hydrogen atom can be writ-
ten in terms of a center-of-mass coordinates rcy = (myry +
m,x,)/(my + m,) and relative coordinates r = r, — ry with
conjugate momenta pcy; and p, respectively. Including also the
DM kinetic energy and DM-nucleus interaction potential, the
total Hamiltonian is given by

? p

2
X

+ Von(r ry).
N XN(X N)

2
(181)
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+

Treating V,n as a perturbation, the eigenstates are Fock
states |pcyv) ® [nfm) @ |p,) for bound states or [pcy) @
|kefm) ® |p,,) for continuum states, where the DM and center-
of-mass pieces are just plane wave states. We can treat
the initial state as having pcy =0 in the atomic ground
state, and final state with poy = qy = myVy in an excited
state.

To calculate the matrix element for the DM-nucleus inter-
action, we rewrite the interaction potential so that it is written
in terms of CM and relative coordinates:

(W Vn(ry —rn)[¥5)
n,
= <\Iff‘VXN (I‘X —rcMm + ml‘) |\If,>

(182)

Writing the interaction potential V,y in terms of its Fourier
transform,

d’q iqR
Vor(R) = / V@™, (183)
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where R = r, —rey + oyt X We can now separately eval-
uate the matrix element for each piece of the Fock state. This
gives

(2m)*
—i5-0 (pf —P - qN) Viv(ay)

x (k,fm|e™"V | 100)

(184)

where in the last line we have used m,r/(my+ m,) =~
mer / my.

The first factor of this matrix element will precisely give the
DM-nucleus scattering rate, while the second factor matches
the wavefunction overlap derived by Migdal. Applying this
argument to multi-electron atoms becomes more cumbersome
as one must then use a generalized coordinate system of rel-
ative coordinates, which in general introduces additional cor-
rections at higher order in m,/my. However, at leading order,
which gives the dipole matrix element in equation (180), the
result remains the same. The same ionization probability can
thus be obtained without the sudden approximation or boosting
argument in the dipole limit for a general atom.

It remains the case that the change of coordinates to relative
coordinates applies only to atomic targets. Our final approach
to the atomic Migdal effect relies on a semiclassical model,
but one which generalizes more readily to a CM treatment.
Our discussion will closely follow [99], although the same
idea was applied in earlier studies of the Migdal effect for
nuclear decays [180, 181]. In this approach, the nucleus motion
is treated with a classical trajectory ry(f) = 6(t)vyt, similar to
the original sudden approximation by Migdal. However, rather
than considering the eigenstates with respect to the moving
nucleus, we treat the sudden relative motion of the nucleus as
a perturbation to the electron Hamiltonian, by splitting up the
Hamiltonian as:

ZNa ZNOé
e ’ %: rs — rn(D)] z,:

— (185)
]
where Hj, is the time-independent Hamiltonian with the
nucleus at the origin and rg are the electron coordinates. The
perturbation H () therefore involves the difference of the full
time-dependent nucleus potential and the equilibrium nucleus
potential, where Zy is the charge of the nucleus.

At small 7, the potential can be expanded about small ry(z),
yielding a dipole potential for a recoiling nucleus with dipole
moment Zyry(?):

H~-)

B

Zya f'ﬁ -1y (?)

2
s

(186)

Assuming that ionization primarily occurs at early times when
the perturbation is small (since the recoiling nucleus moves
very slowly), to compute the probability we include a damp-
ing factor e™" in H,(z), where 7 is a small positive number.
Then the transition probability between initial and final elec-
tron eigenstates |i), | f) is given in time-dependent perturbation
theory as [198]
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with wy = E;y — E;, and where we took 1 — 0 in the last

equality. To see the connection with the wavefunction overlaps
derived previously, we will utilize the relationship between the
dipole transition matrix element and the dipole potential itself.
First, we use the standard relationship for the dipole transition
matrix element, generalized to a many-electron system,

(flrgli) =

—i )
s sl (188)

which comes from writing py = im.[Ho, rs]. The matrix ele-

ment of p; between eigenstates can further be rewritten as
—[pg, Hol/w. Altogether,

(13 rsli)
B

f|Z[P3,H0

meo.)2
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Mew?

ZNOTy
1> Nf%”\i» (189)
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The second equality follows if we assume that H, consists
of electron kinetic terms, Coulomb interactions between elec-
trons, and the Coulomb potential of the nucleus. Because
> ﬁ[pB,HO] is proportional to the total force on all of the
electrons, the interactions between electrons drop out and
we are left only with the force due to the nucleus. Using
equation (189) in equation (187), it follows that the transition
probability can be written as Pi,; = |me(f|vy - > 515[i)[*.
This is the same wavefunction overlap derived by Migdal, in
the dipole limit where vy < «. Thus we arrive at an alternate
interpretation of the Migdal effect, which is that the recoiling
nucleus induces a dipole potential and therefore dipole transi-
tions of the electronic states. In this sense, the Migdal effect
is analogous to bremsstrahlung, except instead of producing
transverse radiation, the dipole field induces ionizations. Note
that radiation of photons from the nucleus does occur as well,
and this process has been studied in [186, 193, 194, 199-201].
However, the rate is much smaller than the Migdal effect and
it generally leads to weaker direct detection constraints, and so
we do not discuss it further.

This final interpretation of the Migdal effect has the advan-
tage that the same idea can be applied in a crystal target by
considering the perturbation due to a single recoiling nucleus
in a crystal. Because in a crystal target, the electron states can
be modeled as Bloch states with crystal momentum p,, it is
useful to rewrite equation (187) as a differential probability in

Fourier space:
Z / &’k vy - k
@2y} K

~("

X 6 (wpi —w) .
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dp .
(e

dw,

47TZN04

(190)
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As before, we have assumed single electron ionizations and
that the wavefunction overlap can be computed with single
electron orbitals.

6.2. Migdal effect in crystal targets

The interpretation and result of equation (190) provides a way
to generalize the Migdal effect to crystal targets, which was
first discussed in [99]. In the atomic case, we assumed ini-
tial and final states are many-body states that could be build
up from single-particle orbitals, and that the wavefunction
overlap was computed with those orbitals. For the case of
a crystal, we will treat the excitations of the valence elec-
trons with the single-particle picture discussed in section 3.1,
with wavefunctions given by Bloch states, equation (38). In
this single-particle picture, the interaction between the nucleus
and a valence electron is screened due to two effects: by the
bound inner-shell electrons, and by all the other valence elec-
trons in the material. The first effect can be accounted for
by modeling the nucleus charge as a momentum-dependent
charge Zio,(k), which asymptotes to the nucleus plus inner-
shell electron charge as k — 0; this can be obtained from cal-
culations of ionic form factors. The effect of all the other
valence electrons can be accounted for by a factor of 1/e(k, w)
in the potential, with e(k,w) the longitudinal dielectric func-
tion. Another key difference is that for atomic targets, we
assumed only ionizations could be observed but not exci-
tations to bound states, while in crystal targets it is pos-
sible to observe all electron excitations. However, we will
still generally refer to the Migdal effect in crystals by an
ionization probability. With these important differences in
mind, we can now directly evaluate equation (190) with Bloch
states.

We will denote initial and final Bloch states with momenta
p, and p., suppressing the band index for simplicity. Because
of the periodicity of the Bloch functions u(r), the wavefunction
overlap can be split up as an integral over unit cell volume 2
and a sum over lattice vectors R,;:

1 .
v / &r ul’;,,(r)upe(r)e‘(pf_p/f“k)‘r
— izei(pe_p/e"rk)‘Rn
N .

1 o
X — / dru’, (r)up, (r)e!PePeOT (197)
Q Q Pe e

= ke [PLE*T P o (192)
G

where we used that " el®e PR = NS5y with
N the number of unit cells and G reciprocal lattice vectors. In
the last line, [p)|e*T|p,]q is shorthand for the wavefunction
overlap computed over the unit cell. Taking k to be small, such
that we can neglect the sum over G for simplicity, the matrix
element simplifies to &y , +k[P,/e™|p,lo with conservation
of crystal momentum.
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To evaluate equation (190), we can sum over initial
occupied states p, and available final states p/, leaving the
occupation numbers factors implicit. Discrete sums and delta

functions can be interchanged with continuous ones as ) _, <+
‘(/2325‘ and & > (2m)3/V x §(k). Then the ionization probabil-
ity in a crystal is given by

(
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(193)
Instead of first integrating over k and then squaring the ampli-
tude, the momentum conservation delta function leads to an
integral over the amplitude squared. In the second line, we
rewrote the ionization probability in terms of Im(—1/e(k, w))
using the relationship in equation (158). The form of the ion-
ization probability in the second line can be interpreted in
terms of the longitudinal energy loss rate of the ion in a
material, which depends on the ELF Im(—1/e(k, w)). Again,
the result is analogous to bremsstrahlung to transverse radi-
ation (photons), but here we are considering the longitudi-
nal (Coulomb) field which leads to electron excitations [168].
Comparing to the discussion in section 5.3, we also see that
plasmon emission is possible, since it appears as a resonance
in the loss function.

While the starting point here was a semiclassical approach
to the atomic Migdal effect, [99, 168, 192] calculated the ion-
ization probability more generally by considering the 2 — 3
process of DM + N — DM + N + ¢~ with second-order
perturbation theory in quantum mechanics. One arrives at the
same result of equation (193) in the ‘soft’ limit, when k < gy
and |qy - k| < myw, [99]. This is similar to the limit of
‘soft’ bremsstrahlung radiation. The full quantum mechani-
cal result gives a more general version of the Migdal effect
in crystals, although in practice using equation (193) is a very
good approximation for the DM mass range studied in [99],
70 MeV-1 GeV. In particular, this mass range is dictated by
where we can approximately treat the nucleus as a free par-
ticle, and avoiding dealing directly with multiphonon states.
The treatment of [99] accounts for the fact that the initial ion
is in the ground state of an approximately harmonic potential,
but relies on an impulse approximation to treat the recoiling
ion wavefunction as a plane wave. The impulse approxima-
tion is valid as long as the DM collision occurs on short time
scales. Then the ion remains near the minimum of the poten-
tial during the collision, we can approximate the ion as a plane
wave when its energy is much greater than the harmonic fre-
quency wy. The physics is very similar to that of section 4.1: at
energies well above w, the nuclear response is highly peaked
at the free recoil energy, with some spread due to the multi-
phonon response. At m, 2 70, this spread in the response is
negligible.
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Compared to atomic targets of the same element, the rate
for the Migdal effect in semiconductors is found to be much
larger due to the strong 1/w? dependence and lower band gap
[99, 192]. This makes crystal targets with low charge thresh-
old particularly attractive in searching for DM-nucleus interac-
tions. Previous attempts to estimate the Migdal effect in semi-
conductors tended to underestimate the ionization probability
at w,. For instance, [202] first attempted to treat the Migdal
effect in crystals by using atom-centered Wannier functions in
a tight-binding model, but noted the limitations when Wan-
nier functions have too large of a spread, such as for Si or Ge
semiconductors. In [192], the same authors instead pursued the
approach in terms of bremsstrahlung given in equation (193),
finding much larger rates at low w,.

Because the ionization probability depends on the same
ELF as for DM-electron scattering, we expect similar benefits
in going from atomic to CM systems as for DM-electron scat-
tering, although the Migdal ionization and DM-electron scat-
tering rates are weighted towards somewhat different regions
in w, k. As shown in [187, 188], for the atomic Migdal effect,
the relationship between the Migdal and electron ionization
rates is schematically

dRy/dq [ m.\>
Z a b
dR.jdq = % \my ) @

where r, ~ O(ap) is an effective atomic radius. The Migdal
spectrum is therefore dominated by larger momentum trans-
fers, and the total rate can exceed the rate for electron scatter-
ing in the dark photon model for large-Z atoms, while the spec-
trum is peaked at lower energies, consistent with the behavior
seen in crystals. While so far there are only a few studies of the
Migdal effect beyond atomic targets, they make a strong case
for further study of the Migdal effect in CM systems and con-
sidering such higher order effects in response functions more
generally. Aside from Si and Ge, shown in figure 19, calcula-
tions of the Migdal effect can be found for diamond and Si in
[192] and for a limited set of other target materials in [113].

(194)

7. Experimental techniques

Since the first theoretical proposals for sub-GeV DM detec-
tion, there have been numerous experimental results, both from
existing experiments originally designed to look for heavier
DM and more recently from dedicated experiments designed
specifically to search for light DM. Here we summarize the
main experimental techniques which can be harnessed for sub-
GeV DM detection, focusing on the end-stage signal in the
detector rather than the primary interaction between DM and
the detector constituents. Indeed, the relationship between the
primary interaction and the detector signal is highly nontrivial,
and dedicated calculations and/or measurements of the charge
multiplicity per electronic energy deposited or the phonon life-
time are still needed. Very broadly speaking, the signals appear
as charge, light, or heat, often with one signal transduced into
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another during the detector operation®®. It is worth pointing
out that, because the deposited energy (eV scale or below) is
so small, and the event rate so low, there is often only one quan-
tum of excitation (electron, phonon, or photon for charge, heat,
and light detection, respectively) present in the detector at a
time. In this sense, light DM detectors are part of the emerging
field of quantum sensing, though most detection schemes thus
far proposed have not exploited the quantum entanglement that
is the usual hallmark of quantum detectors. In this section we
focus primarily on experiments that are currently operational,
leaving a discussion of future experiments for section 7.2.

71. Charge

DM interactions may produce mobile charge carriers in a
detector, which may then be collected in a charge sensor: for
simplicity, we define ‘charge detectors’ to operate with the
assistance of a static electric field or voltage sensor to move
the charges to a desired location and/or count units of charge
by measuring the static Coulomb potential. The charges may
be produced as a result of direct ionization from DM-electron
scattering, or as secondary excitations from a primary DM-
nuclear scattering event as in the Migdal effect. In a semicon-
ductor detector, mobile charges are the ones which have been
excited from the valence band to the conduction band, while in
a noble liquid detector, mobile charges must be ionized from
their parent atom. In both cases, electric fields can be applied
to drift the charges across the detector before they recombine
and leave the detector in a charge-neutral state. In a metal (and
in a superconductor in particular), there is a large density of
mobile charge at the Fermi surface even when the detector is
in its ground state, so charge detection as we have defined it
above is not feasible; rather, quasiparticles (even if charged)
must be detected as heat, which we discuss below.

Consider a charge-coupled device (CCD) detector, of which
DAMIC and SENSEI are two examples, using devices made
from silicon. The CCD is a thin sheet of silicon segmented
into ~107 pixels of area Apixel = (15 m)?, and when an elec-
tron is excited to the valence band in the bulk of a pixel, it is
drifted ~700 pm across an O(50) V potential to the surface.
Various voltage pulses can move charge across the surface, first
to a ‘serial register’ which collects all the charge in a row of
pixels, then to a ‘sense node’ which measures the total charge
collected by comparing the voltage in the sense node (propor-
tional to the number of electrons) to a floating reference volt-
age. In traditional CCDs used by DAMIC at SNOLAB [203],
this charge is measured once, leading to a typical noise of about
2e~ per pixel. With ‘Skipper CCDs’ used by SENSEI, one
can perform N >> 1 non-destructive measurements of the same
pixel, leading to a noise which scales as o, o 1/+/N and which
can be made arbitrarily small in principle [204]. In practice,
readout time considerations favor N ~ 10? yielding a noise of
less than 0.1 e~ /pixel. This makes it possible to truly count

28 Other signals, like magnetic fields, are more relevant for ultralight axion
dark matter, but are occasionally useful for DM scattering, and we will briefly
mention those signals that have been proposed in the literature.
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integer numbers of charges in each pixel. The energy thresh-
old for exciting electrons in a silicon CCD is equal to the band
gap of silicon, 1.2 eV. The ‘single-electron bin’ (i.e. the num-
ber of pixels with exactly one electron) tends to be polluted
by a dark rate consisting mostly of charge leakage across the
band gap [205], with an important secondary contribution from
Cherenkov photons generated by high-energy charged parti-
cles such as cosmic ray muons [206]. Therefore, the strongest
sensitivity to DM comes from the two-electron bin, which is
also where the rate is expected to peak from scattering through
aheavy mediator. While nuclear recoil searches with CCDs are
currently obtained with higher thresholds [207], the inclusion
of the Migdal effect could be used to extend the sensitivity
of such searches to light DM, especially with the inclusion of
Skipper amplifiers. The current state-of-the-art is a SENSEI
detector with a total mass of about 2 g, which has demon-
strated background-free operation for three or more e~ /pixel
in a 24 day run [196] (superseding previous test runs at the
surface [208] and underground [209]). The next phase of the
DAMIC experiment, DAMIC-M, will scale to a 1 kg array of
Skipper CCDs [210]; the Oscura experiment is expected to
merge the efforts of DAMIC and SENSEI to scale up to a total
CCD mass of 10 kg [211].

An alternative charge detection strategy in semiconduc-
tors is to exploit the conversion between charge and heat
when an electron is drifted through the conduction band at a
high voltage. The Neganov—Trofimov—Luke effect, the emis-
sion of phonons from a high-velocity electron, acts as a
charge amplifier and yields a phonon signal proportional to
the number of conduction-band electrons ., and the applied
voltage V:

Epn = E, + nepeV, (195)
where e is the electron charge and E, is the energy deposited
into primary phonons, typically much less than the second term
which is linear in ng,. In the superCDMS detector, a 150 V
potential difference applied across a silicon chip of gram-scale
mass yields quantized peaks at integer multiples of 150 eV
of phonon energy detected in the calorimetric phonon read-
out [212-214]; the same technique has been used in germa-
nium by the EDELWEISS collaboration [215, 216]. Leakage
currents are still a main background in this approach, espe-
cially at high voltages where electrons can tunnel across the
interface (Schottky barrier) between the electrode and the sub-
strate; at lower voltages, it is possible to some extent to reject
these backgrounds since they yield non-quantized phonon
energies. Charge readout via calorimeters has the advantages
of being able to operate at cryogenic (mK) temperatures, as
opposed to the 100 K required to obtain sufficient charge
mobility to read out a CCD, and of utilizing a thicker (cm-
scale) sample of silicon which allows a kg-scale mass to be
placed in a compact cryostat. On the other hand, the event
localization is much coarser than in a CCD due to the lack
of pixellated segmentation, which makes background rejec-
tion somewhat more difficult. Similar to the plans for CCDs,
work is ongoing to demonstrate scalability to kg-scale masses,
either by multiplexing or scaling up individual detector masses
[103,217].
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The large-volume noble liquid detectors like LUX,
XENONNT, and Panda-X (xenon) and DarkSide (argon) which
are sensitive to sub-GeV DM are dual-phase time projection
chambers. ‘Dual phase’ refers to the fact that a small layer of
the gaseous phase sits above the bulk of the detector which
is in the liquid phase, and ‘time-projection chamber’ refers to
the method by which ionized charges are detected. A large
electric field is applied vertically across the detector (about
125 V cm™! in XENON), drifting the charges to the liquid-
gas interface, at which point they are extracted and amplified,
producing scintillation light (known as S2 in the literature) pro-
portional to the number of electrons. These detectors therefore
operate as transducers from a charge signal to a light signal. If
an event produces a substantial nuclear recoil, primary scintil-
lation photons (S1) are also generated by the recoiling nucleus,
and the timing difference between S1 and S2 allows the event
to be localized in the vertical direction (hence the name time-
projection chamber). However, sub-GeV DM always produces
an S2-only signal because the maximum kinetic energy which
can be transferred to the nucleus is below the S1 threshold.
A well-known background to few-electron events are ion-
ized electrons produced in a high-energy event which become
trapped at the liquid-gas interface for long times; when they
are later released, they appear uncorrelated with an S1 signal,
thus mimicking an S2-only signal [218]. However, there are
as of yet no quantitatively satisfactory models for this back-
ground, and given that the strongest sensitivity to light DM
comes from small numbers of ionized electrons [100], model-
ing and reducing this background is an active area of research
[219, 220].

72. Heat

Heat detectors, or calorimeters, are excellent multi-purpose
DM detectors because they are sensitive to the total energy
deposited in the detector, regardless of the character of the
excitation. The second law of thermodynamics and the large
entropy of the phonon system in a solid-state detector guar-
antees that any excited state of the detector, whether arising
from DM-nuclear or DM-electron scattering, will eventually
decay or annihilate to (possibly a large number of ) phonons.
The present best limits on DM-nuclear scattering for sub-
GeV DM come from WIMP DM detectors like CRESST-III
which have been able to lower the energy detection threshold
to the O(30) eV scale [102]. The detector is calcium tungstate
(CaWOy,), which has been used for calorimetric particle detec-
tion applications for decades, and the detection principle is that
a small heat deposit somewhere in the 24 g bulk crystal will
produce a large number of meV-scale phonons. Crucially, if
the detector is operated at cryogenic temperatures of 15 mK
(~1 peV), thermal phonons have peV energies, so the sig-
nal phonons are non-thermal and will propagate and scatter
ballistically throughout the crystal [221]. The thermalization
time is slow enough that there is a large probability of the
phonons encountering a transition edge sensor (TES) placed
on the surface of the crystal. A TES is a thin film of super-
conducting metal biased to a temperature just below its crit-
ical temperature Tc. Absorption of a few phonons can then
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heat the film above T'¢, causing a massive increase in resis-
tance and a measurable change in current or voltage [222].
The energy threshold is in one-to-one correspondence with the
number of ‘noise triggers’ from the TES readout; the 30 eV
threshold in CRESST-III corresponds to one noise trigger per
kg-day of exposure. This general principle, where a large-mass
absorber provides a large number of DM scattering targets
while a small-mass thermometer can efficiently convert small
amounts of heat to a measurable signal, informs the design
of many calorimetric detectors. The lowest threshold among
currently-operating experiments is 16.3 eV, achieved by the
SuperCDMS cryogenic phonon detector (CPD), a silicon crys-
tal with a mass of 10.6 g coupled to a tungsten TES with energy
resolution of 3.86 eV [90, 223].%°

An alternative strategy is to sacrifice the large-mass
absorber and use the small-mass thermometer itself as the
absorber, exploiting the incredibly sensitive energy resolution
of the smaller mass. One such implementation is supercon-
ducting nanowire single-photon detectors, originally designed
for detecting optical photons through absorption but which are
also sensitive to DM-electron scattering. These devices con-
sist of meandering arrays of nm-thick wires, with a total area
of about 400 x 400 ym? and a mass of ~ng. At an energy
threshold of 0.8 eV, a prototype device with WSi wires has
been shown to have zero dark rate with 10* seconds of expo-
sure at temperatures of 300 mK [225]. Prototype devices with
NbN wires have been shown to have an energy threshold of
250 meV [226], and thus further improvement in the energy
threshold is likely in the near future.

The peculiar properties of superfluid helium also make
it an excellent calorimetric detector [227]. First, the exci-
tation energy to the next available n = 2 electronic state is
19.77 eV, so any energy deposit below this must appear purely
in phonons. Similar to solid-state detectors, the quasiparticle
excitations are also very long-lived, allowing ballistic propa-
gation out to the surface of the sample. Indeed, “He remains a
liquid down to absolute zero, allowing cryogenic operation at
the lowest temperatures available. Finally, the phenomenon of
quantum evaporation converts quasiparticle excitations with
energy above about 0.6 meV to an ejected helium atom at the
interface of the liquid with vacuum, and when this atom is
eventually adsorbed on a nearby calorimeter surface, it gains
an energy equal to the adsorption energy. Typical surfaces have
an adsorption energy of 10 meV, but in principle it is pos-
sible to increase this to 42.9 meV in fluorographene [228];
since typical quasiparticle excitations have meV energies (see
section 4.3), this corresponds to an effective amplification by
a factor 10-50. The HeRALD experiment aims to exploit
these phenomenon to obtain the first sensitivity to sub-MeV
DM-nuclear scattering [227].

73. Light

The primary signal in conventional scintillation detectors
is optical or near-UV photons with eV-scale energies. A

29 Recently, a tungsten TES tuned to 65 mK was able to achieve an energy
resolution of 2.65 eV [224], with a full DM search analysis expected soon.
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common way to detect such signals is with a PMT, also with a
long history of use in WIMP DM experiments: when a photon
is incident on a PMT, it collides with a metal plate and ejects
an electron via the photoelectric effect. That electron is accel-
erated toward another plate, where due to the gain in kinetic
energy, more electrons are ejected, yielding a cascade consist-
ing of a macroscopic current after a gain of ~107. This is effec-
tively a transduction of a light signal to a charge signal, and is
almost universally the way single photons of this energy are
detected in practice. The first limits on sub-GeV DM-electron
scattering in organic scintillators were set using a PMT readout
[149], but were limited by the dark rate of ~30 Hz, achieved
at a stabilized temperature of ~5 °C. Even after subtracting
the intrinsic dark rate of the PMT by decoupling the PMT and
the scintillator, a 3.8 Hz residual single-photoelectron dark rate
remained. The possibility of using a skipper CCD as a photon
readout for a solid organic scintillator, where absorption of a
~5 eV scintillation photon will generate either one or two elec-
tron/hole pairs in a single pixel, is currently being investigated
[127], motivated by the much lower dark rates possible with
a CCD. Nal and Csl are two standard scintillators in use for
numerous particle detection applications; their band gaps of
5.9 and 6.4 eV respectively are comparable to organic materi-
als, but the response is isotropic. GaAs [229-231] is another
promising scintillator detector. The lower band gap of 1.52 eV
results in infrared rather than optical photons, which will not
typically trigger a conventional PMT but may be detected with
TESs in a method analogous to heat detection described above.
Indeed, most of the charge and heat sensors described above
may also function as light detectors, since a photon will gener-
ically produce charge pairs above the band gap and phonons
below the band gap.

Light detection may also be useful for nuclear scattering in
a solid. When a nucleus is scattered out of its equilibrium lat-
tice position, it leaves behind a defect, whose electronic states
may scatter light of a particular wavelength where the crys-
tal is transparent. This defect is known as a color center and
has been proposed as a detection signal for DM-nucleus scat-
tering [95]. Once created, at an energy cost of ~10 eV, color
centers are typically stable on very long time scales (effec-
tively infinite at room temperature), and can be interrogated
at will by irradiating the sample with a laser and looking for
scattered light. Because the light produced by the color cen-
ter is due to electronic transitions, it is typically in the optical
or near-UV, and may be detected with a PMT or its solid-
state analogue, the silicon photomultiplier (SiPM). The lat-
ter is simply a silicon absorber biased at a large voltage: an
absorbed photon with energy exceeding the 1.2 eV band gap
produces a few electron/hole pairs, which create a cascade
of free charges through collisions with valence band elec-
trons, known as impact ionization. The persistent nature of the
defects is both an advantage and a disadvantage, since ordinary
radiobackgrounds such as neutrons will also create defects,
and these are indistinguishable from DM-created defects on an
event-by-event basis. Indeed, in this setup the crystal must be
scanned prior to the DM search in order to identify any exist-
ing defects, and/or undergo an annealing process at ~1000 °C
to cure these defects.
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74. Other signals

A qualitatively different signal of DM scattering arises from
a detector placed in a metastable state, such that a small
energy deposit from DM causes a runaway transition to the
ground state, greatly amplifying the signal. Indeed, this is the
operating principle of the bubble chamber, where a super-
heated liquid can undergo localized transitions to the gas phase
after a nuclear scattering event, forming macroscopic bubbles
which can be photographed. Bubble chambers have been in use
since the earliest days of particle physics, and have recently
been revived for few-GeV DM-nuclear scattering in the PICO
experiment [232], but the bubble nucleation threshold is too
high for sub-GeV DM. However, an analogous magnetic sys-
tem may be constructed using a crystal of single-molecule
magnets [105]. The molecules in these crystals essentially act
as individual isolated nano-magnets, and may be prepared in
a metastable state where an order-1 fraction of the spins are
anti-aligned with an external magnetic field. A localized heat
deposit from DM scattering (or other particle interactions) will
flip some spins, releasing the Zeeman energy in the transition
to the ground state, causing more heating an a runaway spin-
flip process called magnetic deflagration. The detectable signal
is a growing magnetic field which may be read out with a preci-
sion magnetometer such as a SQUID. The deflagration process
may be arrested simply by turning off the external field, and
dead time from background events may be reduced by using
a ‘powder’ of small grains rather than a large single crystal.
It was recently demonstrated that one such candidate, Mn12-
acetate, can function as a particle detector with a MeV energy
threshold [233], so considerable R & D is still required to reach
the meV—-eV energy thresholds which would allow sub-GeV
DM sensitivity.

75. The neutrino floor

At sufficiently small DM cross sections, neutrino-electron
scattering and secondary ionization from low-energy neutrino-
nucleus scattering begin to compete with the DM rate. In stan-
dard WIMP detection, the background from solar neutrinos
scattering off detector nuclei is known as the ‘neutrino floor’
because the sensitivity to DM degrades rapidly in the pres-
ence of a background with similar spectral shape to the signal,
requiring either much larger exposures or directional detection
capabilities to overcome this background. However, the situa-
tion is somewhat more favorable for sub-GeV DM because the
kinematics of the signal and background are quite different.
Neutrinos are produced via several nuclear fusion processes
in the Sun, yielding a spectrum which is peaked in the few
MeV range, along with a component from the pp process that
extends to very low energies and is the dominant component
below 0.5 MeV. Because the neutrinos are highly relativistic,
the typical momentum is always much larger than p,, yielding
an electron spectrum from neutrino-electron scattering which
is approximately flat below electron recoil energies of 10 keV
and easily distinguishable from the DM-electron spectrum at
few-eV energies [234]. On the other hand, coherent neutrino-
nucleus scattering may produce a few ionized electrons as
secondary excitations from the recoiling nucleus, yielding a
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spectrum which peaks at low energies and mimics the DM-
electron spectrum [94, 234]. That said, the expected rate in the
few-eV electron energy range (equivalently, the few-electron
bins in semiconductor detectors) is about one event/kg-yr for
coherent neutrino-nucleus scattering and 10~* events/kg-yr for
neutrino-electron scattering, well below the event rates for DM
cross sections at the thermal targets described in section 2.
Thus, for the near future, sub-GeV DM experiments with O
(kg-yr) exposures will be relatively unaffected by the neutrino
background.

8. Conclusion and outlook

Despite being only a decade old, the field of sub-GeV DM
searches with CM systems has made enormous progress and
opened up new directions and collaborations, including ded-
icated experiments. In the next decade, experiments based
on conventional semiconductors and liquid nobles will likely
begin to probe the thermal-target cross sections for DM heav-
ier than 1 MeV. If a positive signal is found, more experiments
with a variety of different targets will be required to confirm
the DM interpretation; if no signal is seen above background,
it will be imperative to push the cross section limits to the neu-
trino floor, which may require new types of detectors to avoid
impractically-large exposure requirements, at least for existing
approaches. In either case, new detectors with sub-eV thresh-
olds will be required to probe light DM down to the keV-scale
warm DM limit. In this section, we provide our perspective
on the theoretical and experimental frontiers in sub-GeV DM
detection over the next decade.

8.1. Theory: towards a theoretically-optimal detector

Much of the early progress in DM searches with CM systems
focused on evaluating the suitability of particular well-studied
systems like noble liquids and conventional semiconductors
for light DM detection. As we have discussed in this review,
these systems are sub-optimal in a quantifiable sense because
the DM kinematics are mismatched to the target response
since the peaks of the dynamic structure factor are inacces-
sible. Recently, a number of groups have begun the process
of identifying figures of merit which govern the DM scatter-
ing rate in terms of CM properties like the band structure,
dielectric function, and Born effective charges, and leverag-
ing the ‘materials-by-design’ program such as the Materials
Project [235] to search large databases of CM compounds
for an optimal target. As an example, [171] identified small,
anisotropic Fermi velocities and a meV-scale gap as optimal
features for DM-electron scattering in Dirac materials, using
ZrTes as an example candidate material. Using these figures of
merit, [172, 236] identified several additional candidate com-
pounds, and [237] used the fact that spin—orbit interactions are
a controllable way to open a gap in DFT calculations, identi-
fying several additional families of targets. To bring the plas-
mon peak of the ELF within the kinematic regime accessible
to DM, [131] proposed heavy-fermion materials where strong
electron interactions yield a renormalized electron mass that
is much larger than m,, reducing vg by the same factor and
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yielding v > vg which is not possible in conventional mate-
rials. In another approach, [238] used sum rules similar to
equation (167) to formulate conditions on optimal dielectric
functions for DM-electron scattering.

Similarly, for single-optical phonon production in polar
crystals through a dark photon mediator, [74] identified the

‘quality factor’
< ) 2/n

with the DM scattering rate scaling as Q at large DM masses;
here j runs over the ions in the unit cell, Z;f are the Born
effective charges, A; are the ion mass numbers, €, is the
directionally-averaged high-frequency dielectric constant, and
wWro is the directionally-averaged LO phonon energy. Al,O3
(sapphire), previously identified as an excellent candidate
polar material, turns out to have Q = 130 x 1077, which can
be surpassed by SiO, (Q = 200 x 10~7) and LiF (Q = 270 x
10~7). Accounting for the anisotropy of the phonon dispersion
relation, [112] identified hexagonal boron nitride (h-BN) as
having an exceptionally large daily modulation, but at the cost
of areduced total rate compared to Al,O3, illustrating some of
the tradeoffs inherent in this target optimization.

While these candidate detector materials range from
commonly-available compounds to newly-synthesized ones,
requiring a commensurate range of R & D efforts, the impor-
tance of discovering DM will likely motivate identification of
theoretically-optimal materials for a given candidate DM inter-
action and spur additional collaborations between the DM and
CM communities.
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8.2. Experiment: towards low thresholds and dark rates

Searches for DM-electron scattering with DM lighter than
500 keV require a material with a band gap smaller than the
0.67 eV gap in germanium. Although many such searches have
been proposed, none have yet been experimentally realized.
While a CCD-type detector made from a narrow-gap semi-
conductor is certainly a theoretical possibility, the practical
difficulties of obtaining a working CCD from any materials
but silicon (and to a lesser extent, germanium [239, 240]) make
this approach unlikely to succeed in the short term. An alterna-
tive approach is direct charge amplification from impact ion-
ization, where a charge drifted at high voltage can collisionally
excite other charges from the valence to the conduction band.
If the voltage, and hence the gain, is small and approximately
linear, such a device is called an avalanche photodiode (APD);
if the voltage is large and gain is exponential, the device is
a single-photon avalanche detector. The names and practical
use of these devices come from the silicon particle detection
community, where the typical application is a SiPM as dis-
cussed in section 7.3. The advantage of direct charge amplifi-
cation is that the energy threshold of the detector is set by the
band gap, rather than the readout: as long as one electron is
in the conduction band, and the impact ionization efficiency
is sufficiently high, a sufficiently large applied voltage will
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create a current which can be detected above a noise back-
ground. APDs have already been constructed from the semi-
conductor InSb [241, 242], with a gap of about 0.2 eV, but
the dark rate has not yet been characterized at the low tem-
peratures required for DM searches. There is an active R & D
effort towards developing functional avalanche detectors for
even more exotic compounds with gaps down to 20 meV
[243]. In all detector materials, calibration measurements of
the many-body response, both of the ELF itself and of the
correlation between energy deposited in scattering and mul-
tiplicity of final-state electron—hole pairs, will be extremely
useful in reducing systematic uncertainty on the predicted DM
rate.

A parallel effort is ongoing to lower the thresholds for DM-
nuclear scattering toward the single-phonon threshold. One
active direction is based on achieving the theoretical sensitivity
floor of a TES [157],

/ 3
g X \/ VresT, 1gs>

where Vrgs is the volume of the TES and T 1gs is the super-
conducting transition temperature at which the TES is biased.
In principle, meV energy resolution is achievable by both
lowering T (with the use of titanium or tungsten instead of
aluminum, for example) and V; it is also necessarily to use
a target with a sufficiently long phonon mean free path, so
that phonons can scatter multiple times and still have a high
probability of being absorbed at the TES. An alternative strat-
egy is to use microwave kinetic inductance devices, for which
the operating principle is that a small deposit of energy will
change the inductance of a resonant superconducting circuit
[244, 245]. Since kinetic inductance exists even at zero tem-
perature, these devices may be operated colder than TESs, and
are also somewhat easier to parallelize.

(197)

8.3. Outlook

The nature of DM remains perhaps the most pressing mys-
tery in fundamental physics. The overwhelming weight of the
gravitational and astrophysical evidence for DM makes it our
best empirical clue to physics beyond the SM, and a labora-
tory discovery would strengthen the case even further. The
rapid development of new tools for DM searches, including
detectors exploiting the properties of CM systems, has greatly
improved the prospects for discovery across a much larger
range of DM masses than was previously thought accessi-
ble. The continued investigation of new detector materials and
readout technologies, coupled with the scalability of existing
detectors to larger masses, makes it likely that the simplest
thermal targets will either be confirmed or ruled out within the
next decade. Regardless of whether these experiments yield
discoveries or stronger exclusion limits, our knowledge of
the experimentally-viable parameter space for sub-GeV DM
will continue to sharpen, shedding more light on the viable
models for explaining the physics of the early Universe. The
field of light DM is still new and growing, and many creative
ideas are sure to continue to push the field forward—we espe-
cially encourage graduate students in particle physics and CM
physics to join this adventure!
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