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Linear-Quadratic Stochastic Differential Games
on Random Directed Networks *
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Abstract

The study of linear-quadratic stochastic differential games on directed networks was
initiated in Feng, Fouque & Ichiba [7]. In that work, the game on a directed chain with
finite or infinite players was defined as well as the game on a deterministic directed tree,
and their Nash equilibria were computed. The current work continues the analysis by
first developing a random directed chain structure by assuming the interaction between
every two neighbors is random. We solve explicitly for an open-loop Nash equilibrium for
the system and we find that the dynamics under equilibrium is an infinite-dimensional
Gaussian process described by a Catalan Markov chain introduced in [7]. The discussion
about stochastic differential games is extended to a random two-sided directed chain
and a random directed tree structure.
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Nash equilibrium.
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1 Introduction

Stochastic differential games on networks have been studied widely with great interest in
recent years. The present paper about stochastic differential games on random directed
networks is a continuation of our work in Feng, Fouque & Ichiba [7], which mainly studies
linear-quadratic stochastic differential games on deterministic directed chains.

In stochastic differential games on directed networks, the state processes of all players are
described by a stochastic differential system. Each player is interacting with other players
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through its cost function and the aim of every player is to minimize this cost function by
controlling its state. Roughly speaking, the state process of one player is associated with a
vertex of the network graph. When the graph is directed and if there is an arrow from j to
1, the cost function of player ¢« depends on the state process of player j. Furthermore, when
the graph is random, the cost function of player i depends on the state process of player j
with some probability of the presence of an arrow from j to i.

The goal of studying the stochastic differential game problem on networks is to determine
and analyze the Nash equilibria of the game for different types of networks. There are two
extreme types of networks describes as follows.

On one hand, we can consider a fully connected network with interaction of mean-field
type, described in Figure (a). When the number of players goes to infinity, with appropriate
scaling, this kind of game can be approximated by a mean field game. This approximation
problem by mean field games has been widely discussed, for instance in Lasry and Lions
[9, (10, 11] and Lacker [§]. Stochastic games on infinite random networks have been proposed
and studied. For instance, Delarue [5] discussed a simple toy model with a large number of
players in mean field interaction when the graph connection between them is not complete but
is of Erdds-Rényi type. Recently, Caines and Huang [1} 2] investigated Graphon Mean Field
Games which relate infinite population equilibria on infinite networks to finite population
equilibria on finite networks.

On the other hand, the network can be very sparse, structured network. Detering, Fouque
& Ichiba [6] studied a particle system interacting through a one-dimensional directed chain
structure without the game aspect. Then Feng, Fouque & Ichiba [7] investigated linear-
quadratic games on a finite, directed chain of N vertices Figure (b), where there are arrows
fromi+1toifori=1,...,N—1 and a boundary condition at the vertex N. There are only
N — 1 directed edges in the network in contrast to the fully connected graph, where there
are (];7 ) undirected edges. It is a complete opposite situation to the mean field games since
each player interacts only with its neighbor in a given direction on a directed chain network.

The objective of our paper is to investigate linear-quadratic stochastic differential games
on random directed networks and to find their open-loop Nash equilibria explicitly in a similar
spirit of the work by Carmona, Fouque and Sun [4]. We propose first a stochastic game
on a random directed chain network shown in Figure 2l Then, we generalize the result to
stochastic differential games on a random two-sided directed chain and on a random directed
tree structure as two extensions of random directed chain graphs. In this framework, the
graph represents interactions among players through the cost functions but not necessarily
reflects physical (spatial) distance among players. The notion of neighbor refers to the
presence of a link (edge) in the graph.

The paper is organized as follows. In Section 2, we study a stochastic game with infinite
players on a directed chain structure and construct an open-loop Nash equilibrium of the
system. We assume that the interaction between two neighbor is random but frozen in time
and 4.1.d. among all the successive pairs of neighbors. Section [3]is devoted to the analysis of
an extension of Section [2| which considers a game for countably many players with random
double-sided interactions and studies the effect of random double-sided interactions on the
open-loop Nash equilibrium. We extend our results to a directed tree structure with random
interactions between players in the neighboring generations in Section We conclude in
Section [5] and Appendix [A] includes some technical proofs and discussions.
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(a) (b)
Figure 1: (a) Fully connected graph, (b) Finite directed chain graph.

2 Random Directed Chain Game

2.1 Setup and Assumptions

In Feng, Fouque & Ichiba [7], we have studied a stochastic game with infinite players on
a directed chain structure and found an open-loop Nash equilibrium of the system. In
this paper, we are still looking at an infinite-player system but assuming the interaction
between every two neighbors is random as follows. We introduce a binary random variable
R,, which represents the random interaction between player n and n + 1. The {R,,, n > 1}
are independent and identically distributed random variables taking values in {0,1} with
probabilities py and p; = 1 — py. When R,, is zero, we assume player n has no interaction
with player n 4+ 1. An example of the chain structure is shown in Figure [2|

1 2 3 4 5 6 .-

Figure 2: Example of a Random Directed Chain: Ry = Ry = R3=R;=1; R4 =0

We assume the dynamics of the states of all players are given by the stochastic differential
equations of the form: for ¢ > 1

dX} = aldt + cdW{, 0<t<T, (1)

where (W} )o<i<r, @ > 1 are one-dimensional independent standard Brownian motions. Here
and throughout the paper, the argument in the superscript represents index or label but not
the power. For simplicity, we assume that the diffusion is one-dimensional and the diffusion
coefficients are constant and identical denoted by o > 0. The drift coefficients a'’s are
adapted to the filtration of the Brownian motions and satisfy lE[fOT |at|?dt] < oo for i > 1.
The system starts at time ¢ = 0 from 7.7.d. square-integrable random variables X = &;,
independent of the Brownian motions and, without loss of generality, we assume E(;) = 0
for i > 1.

In this model, each player i chooses its own strategy o, in order to minimize its objective
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function given by:
i ol in2 | €/vitRs 2 z+R P2
L € . . .
:IE]X{/ (§(a§)2 + 5()(;*1 — X})? pr)dt + Q(XZ+1 Xi)? .pl},
0

for some constants € > 0, ¢ > 0 and @ = (a!,a?,...) with a’ € R. According to the objective
function, if a player is not in interaction with its right neighbor, then we assume she has no
incentive to do anything. This is a Linear-Quadratic differential game on a directed chain
network, since the state X of each player i interacts only with X**! of player i + 1 through
the quadratic cost function for ¢ > 1.

Remark 1. When every player is connected with the next one, i.e. p1 = 1, we get back to
the stochastic game on a directed chain structure, studied in Feng, Fouque & Ichiba [7].

2.2 Open-Loop Nash Equilibrium

In this section, we search for an open-loop Nash equilibrium of the system among the admis-
sible strategies {ai,7 > 1,t € [0,T]}. We construct the equilibrium by using the Pontryagin
stochastic maximum principle (see [3] for stochastic maximum principle in the context of
mean-field games).

The corresponding Hamiltonian for player ¢ is given by:

Hi(l‘l,QSQ,--- ,yi’l, ’yznl ol a Zakka“‘ ) + = ( i+1 i)2‘p1’ (2)

2

assuming it is defined on real numbers z?, y**, af,i > 1,k > 1, where only finitely many y**
are non-zero for every given i. Here, n; is a finite number depending on ¢ with n; > . This
assumption is checked in Remark [2| below. Thus, the Hamiltonian H* is well defined for
i > 1.

The value of & minimizing the Hamiltonian H*® with respect to o', when all the other
variables including o’ for j # i are fixed, is given by the first order condition

OpiH' =y + o' =0 leading to the choice: &' = —y™.

The adjoint processes Y} = (V7,5 =1,...,n;) and Zl = (Zti’j’k; 1<j<n,k>1) for
t > 1 are defined as the solutions of the system of backward stochastic differential equations
(BSDEs): fori > 1,1 <j<mn;
( o0
AV} = =0 H'(X,, Y, on)dt + Y Zp P dwf

k=1

= —pP1- E(Xz—’—l — Xti)(5i+17j — 517])dt + Z Zz’j7detk,
k=1

sz;,j = 0,9:(Xr) =p1 - C(Xéjrl - X%)(éi-f—ld — i j);
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for 0 <t < T. Particularly, for j =7 and j =i + 1, it becomes:

W = (- XD A S ZE, Y (5 - X

k=1

. (4)
A = —py (X = X+ Y 2T RAWE, YT =y (X = X)),

k=1

Remark 2. When j # i,i+ 1, AV} = S ZW"AW} and Y37 = 0, which gives Z}"" =
k=1

0,0<t<T forall k. Thus Yti’j =0,0<t<T forallj#1i,i+1. There must be finitely
many non-zero Y ’s for every i. Hence, the Hamiltonian H* in can be rewritten as

i1 2 i gl 12 i i1 il 2 i+l N2
H<xax7"'7y Y O, ) ay” +« Y +_<Oé> + z —ZZ') *P1-

We also note that V"™ = —Y;"" and Z""Y" = —ZF 5o that it’s enough to find Y;"".

Considering the BSDE system and its terminal condition, we make an ansatz of the form:

=> ¢'X], 0<t<T (5)

j=i

for some deterministic scalar functions ¢; satisfying the terminal conditions: ngT = pic, gf)z L —

—p1c, andgb =0forj>142.
Substituting the ansatz, the optimal strategy &° and the controlled forward equation for
X% in (1) become
— vt = - S,
Jj=i
dX] = = 3 ¢t xFdt + odWy.
k=j

Differentiating the ansatz (b)) and substituting @ leads to:

(6)

dvy" = [X%bﬁdtw#de]

(7)

(8 = 32 619 0*) XEdt + 0 2 o AW,

] =1

-
i

.ME{?ME%

Here gz.St represents the time derivative of ¢;. Comparing the martingale terms and drift
terms of the two It6’s decompositions (4) and . of Yt”, the martingale terms give the
deterministic (and therefore adapted) processes Zk

ZER =0 for k<i, and Z'""=o¢" for k> (8)
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Moreover, the drift terms show that the functions ¢; must satisfy the system of Riccati
equations :

17,8 7,0 (0
Py = . th — P Qb'T‘Tpl‘Ca
z,z—&—l _ ¢;z i zz+1 + ¢z H—l H—l 1+1 +pl “€, 7,7,17,-1— =—p -c, (9)
l
> ] '75 B y .,Z
eziv2i = Yol o =0,
J=t

The Riccati system is solvable and the solutions only depend on the “distance” ¢ — i
Thus, if we define ¢} " := ¢;” for all i > 1,5 > ¢ and p := p;, we can rewrite the system @

? :¢?¢?_p67 ¢8":pca

Qb% = 2¢? ' (b% + pe, ;Hl = —Dp¢,
, Koo (10)
k>2: ¢ =Y ¢ley?,  oh=0
j=0

Lemma 1. With ¢ > 0, and € > 0, the solution to the Riccati system (@) satisfies

= —€— 2‘/7’7€(T_t)+e—c\/ﬁ
k() 0_ . ZEm Vb >0 wh 0, (11
kz_:(bt I ¢t \/Z_) (_\/E_C\/Z—?)ez\/ﬁ(j‘,t)_\/g_‘_c\/ﬁ w enp;é 9 ( )

for 0 < t < T. Moreover, the functions ¢F’s are obtained by a series expansion of the
generating function Sy(z) =Y oo 2" ¢F, 2 < 1 of the sequence {¢*} given by Sy(1) =0, and
if 2 < 1,

(—e(l—2) —c(l—z2)\/pe(l — 2)) e*Vreli= Z)Tt+e(1—z)—c(1—z) pe(1 — 2)
(= Ve =2) — /pe(l — 2)) 2VPU=T=D _ Je(1T—2) + /pe(l — 2)

(12)

Si(2) = /p-

for every 0 <t <T.

Proof. Define the generating function S;(z) = > -, 2" gbik)where 0<z<1and qbgk) = ¢F
in to avoid confusion with derivation. Then substituting , we obtain

2) =Y oM = (Su(2)? —pe(l—2), 0<t<T;  Sp(z)=pe(l—2). (13)

e For z = 1, we get the ODE: Sy(1) = (S,(1))?, Sp(1) = 0. The solution is S;(1) = 0 for all
t. Because the series defining S;(1) may not converge, we take a sequence {z,} — 1. The
limit of S¢(z,) converges to the ODE above, and we can get the conclusion. Then we deduce:

k . k
quz(f ):Ov v.e., ¢1(50):_Z¢15 )
k=0 k=1
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e For z # 1, the solution to the Riccati equation satisfies:

— pe(1 — 2) — pey/pe(1 = 2)(1 — 2))VPUAT0 4pe(1 — 2) — pey/pe(1 = 2)(1 - 2)
(= V(T = 27— pel1 — ) AVr 0 foelT =5+ pel1 )

— pE(l _2)7

Si(z) = (

T—o0
which gives . O]
Remark 3. It follows from Lemma that the forward dynamics (@ can be formally written
as:
< , L , ,
ax; = = Yol Pt + cawi = o - (Y X - Xj)at+odW;  (14)
=0 =

fori>1,0<t<T. This is a mean-reverting type process, since ¢? > 0. We also see that
this system is invariant under the shift of indices of individuals. In particular, the law of X'
is the same as the law of X' for every i.

Here is a a summary of this section on the random infinite player game.

Proposition 1. An open-loop Nash equilibrium for the random infinite-player game with
cost functionals J is determined by , where {¢], 0 < t < T;j > 0} are the unique
solution to the infinite system (@) of Riccati equations.

2.3 Stationary Solution and Catalan Markov Chain

By taking T" — oo, we look at the stationary solution of the Riccati system satisfying
@ = 0 for all j. Without loss of generality, we assume ¢ = 1. Otherwise the solution
should be multiplied by +/€ for all {¢*, k > 1}. Then the system gives the solutions and the

recurrence relation:
_ 1 VP - k n—k _
=B o= and 3okt =0

This is closely related to the recurrence relation of Catalan numbers. By using a moment
generating function method as in Appendix we obtain the stationary solution:

_ L _ /P k_ (2k — 3)!
=Vp, ¢ =5 and ¢ TR = 5vp  for  k>2.
° o 2k —3)l 1
Let QO=—¢—=—1,Q1=—¢— and qk=—¢k _ 2k —3) for £ > 2. By

NG N VP (k — 2)lk! 222

o0
lemma we have the relation: ) g = 0. Then we consider the continuous-time Markov
k=0
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chain M (-) with state space N and Catalan generator matrix

Go 91 G2 g3
0 @ ¢ g -

Q = . : (15)
0 0 g ¢ T

Note that the transition probabilities of the continuous-time Markov chain M(-), called a
Catalan Markov chain, are p;;(t) = P(M(t) = j|M(0) = i) = (¢'9);;, 4,5 > 1,t > 0.
With replacement of qb{ , t > 0 by the stationary solution ¢’ in and assuming ¢ = 1,
the infinite particle system (X?, i > 1) can be represented formally as a linear stochastic
evolution equation:

dX, = VpQX,dt +dW,; ¢ >0, (16)
where X = (X* k > 1) with Xy = xg and W = (W* k > 1). Its solution is:

¢
X, = "VPQx, +/ e=IVPRAW ;¢ > 0.
0

Without loss of generality, let us assume Xy = 0. Then, for ¢t > 0

t o0 t o~
xi- | z<exp<<t @ = [ Y- s
t oo
ZIP’ (t—s)=j|M(0)=4dW/ =E [/0 leu o=y dWI|M(0) = 0];

where the expectation is taken with respect to the probability induced by the Markov chain
M(-), independent of the Brownian motions (W7, j € Ny). This is a Feynman—Kac represen-
tation formula for the infinite particle system X. in associated with the continuous-time
Markov chain M(-). We can compute explicitly the corresponding transition probability

(Pii ().
Proposition 2. The Gaussian process X}, 1 > 1, t > 0 in , corresponding to the
Catalan Markov chain, is given by

2(J 1)

- /Ot<exp<¢m<t )i dWi = Z [ FUD(—p(t — 5)?) A

—i t . 2(] i) )
= Z/ 2 2 pji(=p(t = 8)%) e VP AWy,
] — 7/
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where W7, j € N are independent standard Brownian motions and p;(-) is defined by

13 (e —1)! i
o) =52 @ —a@— = 9 18)

j=i

fori>1, and po(z) = 1 for x < 0. Moreover, when p # 0, the asymptotic variance of X},
1 > 1 s finite, i.e.

lim Var(X}) = tlim Var(X}) =
—00

t—o00

Proof. Given in Appendix O

3
>B.

3 Random Two-sided Directed Chain Game

To extend the investigation of random directed chain in Section [2| we will consider a linear-
quadratic stochastic game for countably many players with random double-sided interac-
tions over a finite time horizon [0,7]. We shall study the effect of random double-sided
interactions on the open-loop Nash equilibrium and compare it with the random one-sided
(directed) chain interaction in Section [2| To represent the random interactions of player n
in two directions, we introduce the binary random variables R,, and L,,. The R,’s forn € Z
are independent and identically distributed random variables taking values in {0,1} with
probabilities pg and p; = 1 — pg. The L,’s for n € Z are also independent and identically
distributed random variables taking values in {0, 1} with probabilities g = 1 — ¢; and ¢;.
{R,,n € Z} is independent of {L,,n € Z}. When R, is one, we assume player n is interact-
ing with player n + 1. When L,, is one, we assume player n is interacting with player n — 1.
The random variable R,, affects the left arrow on the right of site n and the random variable
L, affects the right arrow on the left of site n. Examples of the chain structure are shown
in Figure [3]

---- -1 0 1---- T -1 0 L----

(a)L():Ll:O;R_lzR()Zl (b)L():R_lzo;Role:l

Figure 3: Examples of Two-sided Directed Chain

We assume the dynamics of the states of all players are given by the one-dimensional
stochastic differential equations of the form: for ¢ € Z

dX} = aidt + odW/, 0<t<T, (19)

where (W%)o<i<r, @ € Z are independent, standard Brownian motions, independent of the
initial values X! := &', i € Z, the initial values &' are i.i.d. with finite second moments
for i € Z, a positive constant o > 0 is fixed and o' is a control of player i adapted to the
filtration of the Brownian motions with E[ [ |ai|*dt] < oo for i € Z.

In order to take into account the two-sided feature of the model, we introduce the pa-
rameter p € (0,1), which will measure the strength of the asymmetry between the right
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and left interactions. Notice that if p = 0 or 1, the chain is one-sided as already treated
in Section . We shall see how this parameter p and the weighted average pp; + (1 — p)¢
appear in the Nash equilibrium.

In the model, player i controls its own strategy o' in order to minimizes the objective
function defined by

J' (o) = ]EX,L,R{ / (5(04)2 +3p (X — XD+ 5(1 —p) (X, — X;7")?)dt
0

C i+R; i ¢ i i~L;
+ 5P O - XEP 4 50 - ) Ot - X5 (20)

S . € o
= Ex{ [ (a4 om0 S0 - - X ar
0
c , . c , .
b 50 OG- XEP 5= ) - (X - X,

= Ex [/OT F1(Xp ap)dt + g'(X7) |,

i i I € i i € i i
where fi(r,0) == (o) + Sp - pu(a™ = a4 S p) -l — o),

i c i i c i i

g'(x) = P pr(z —37)2+§(1—p) cqu(zt =2,

for some constants € > 0, ¢ > 0, and =z = (2,1 € Z), a = (' : i € Z) with o' € R.
Each player optimizes the cost determined by the mixture of two criteria: distance from the
right neighbor in the directed chain with weight p and distance from the left neighbor with
weight 1 — p. Here, the superscript ¢ indicates the index but not the power. The functions
f* and ¢' denote the running cost and terminal cost of player i, respectively. To simplify
some notations, let us write S := R% and S? := R?*Z,

3.1 Open-Loop Nash Equilibrium

We search for Nash equilibrium of the system among strategies {a’, i € Z}. We construct
an open-loop Nash equilibrium by the Pontryagin stochastic maximum principle. The cor-
responding Hamiltonian for player ¢ is defined by

ny, Zozk Zk+f’xa) (21)
k=—0oc0
i, € i i € i i
3 @R+ D e = =) - et —
k=—n;

for 7,0 € S, y € 8%, i € Z, where only finitely many y** are non-zero for every given i.
Here, n; is a finite positive number depending on ¢ with n; > |i|. This assumption is checked
in Remark 4 below. Thus, the Hamiltonian H* is well defined for every i.

The value of &' minimizing the Hamiltonian H? with respect to of, when all the other
variables including o’ for j # i are fixed, is given by the first order condition

OpiH" =y + o' =0 leading to the choice: &' = —y
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The adjoint processes Y = (Y;7; —n; < j < n;) and Z! = (Zti’j’k; —n; < j<ny k €Z)for
i € Z are defined as the solutions of the system of backward stochastic differential equations
(BSDEs): fori € Z, —n; < j <n;
(

AV = -9, HY(X,, Y, a)dt + S ZMRawk

k=—o00
= — (52?171 (X7 = X)) (65041 — 050) + (1 — p) @ (X} — X{71)(850 — 5j,i—1)) dt

+ 3z AW,
k=—o00
Yt =0wg(Xr) o
\ = ppi(X = X5) (41 — 00) + (1 = p) 1 (Xp — X57) (00 — 0jim1);

(22)
for 0 <t < T. Particularly, for j = i, it becomes:

AV = feppu(XE = X)) — (1= p)an(X] — XD Ao+ 3 ZPaw

k=—o0

=[—e(pp1 + (L= p)q) X{ +eppi X + (1 — p)g X{ M dt + > Zp"Fawf,

k=—o00
Y =c(pp+ (1= p)a) Xp — eppr Xp™' = (1 = p)n X7,
(23)

Claim 1. In the case of a deterministic two-sided directed chain, i.e. py = qo = 0, p; =
g =1and0<p<1, we have for 1 € Z,

yiicl pyii L yiitl — g giicl L gid g giitl — (24)

This is quite different from the one-sided directed chain case where the effect of player i — 1
does not appear.

Proof. First, for the relation among player ¢ and players ¢+ 1, note from that for each
1 €7,

OH'

8’HZ = ori (xvya O{) = —€p($i+1 — $Z) + 5(1 —p)(l'z — $i_1),
Ol 1= o (0,,0) = ep(™! =), Oy H = (0, y,0) = —e(1 - p)(&' — ),
and hence,

OH" = —(0;p1H'+ 0,4HY), and  0;,9° = —(0i119" + 0i19") .
Thus, (according to (22)), we claim that for i € Z,

Yi,ifl 4 Yz,z 4 Yi,iJrl = O, Z.i,ifl 4 Zz,l 4 Z.i,iJrl = 0’
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Remark 4. We can also see from that Y7 =0, Z"* =0 whenever j #i—1,i,i+1.
Thus there must be finitely many non-zero Y ’s for every i.

For each i € Z , we make the ansatz

V= Y X 4uls i€Z,0<t<T, %)

k=—00

where (¢ 1,5 € Z), (¢',i € Z) are some differentiable deterministic functions satisfying
terminal conditions: gblTZ =c (pp1 + (1 —p)ql), iT’Hl = —cpps, “ "= —c(1-paq, ”“ =
0otherwise and % = 0 for i € Z; and ¢** is assumed to be shlft invariant, that 1s7 it
depends only on the difference k£ — ¢ but not on the values ¢, k themselves. Substituting the

ansatz, the optimal strategy &' and the forward equation for X in become

Gi=-Y" =~ 3 & XF -,
| o T | (26)
dX] = (= 3 ¢ XF —hdt + odW.
k=—00

Using the “dot” notation for derivatives with respect to ¢ and differentiating the ansatz (25))
and substituting leads to:

A=y oAXT (0 Y o XDt

k=—o00 j=—00

= [ i (— i ooyt + o) XL + 4y — Z o wf]dwra i PIFAWE,

l=—00 k=—o00 k=—o00 k=—o00

(27)

Comparing the finite variation and local martingale parts of the semimartingale decomposi-

tions ((23) and (27)), we derive
ZHk = gttt 0<t<T,ieZ; (28)

and the following system of ordinary differential equations of Riccati type:

g = otur,

o0 (29)
oy = Z O S + 8ji41 - epp1 — 04 € (ppr + (L —p)ar) + 655-1 - (1 = p) @
k=—o00
for 0 <t < T, 1,5 €Z with the terminal conditions
o7 = c(pm+(1-p)ar), o7 = —cppr, ¢F ' = —c(l=p)q, ¢ =0, j#i—1,i,i+1,
(30)

and ¢ =0 for i € Z.
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3.2 Discussion of the Riccati System

Since we make the ansatz shift invariant, that is, ¢"* depends only on the difference
k — i, we may write ¢"% = ©F for some function ¢!, j € Z, 0 <t <T. Here, note that
the superscript j is the index but not the power. Then we may rewrite for ¢** as the
following ordinary differential equation for ¢/, j € Z:

¢l = Z ool 851 eppi—0i00e (pp1+(1—p)an) +0j—1c(1-p) s jEZ,0<t<T,

k=—o00
(31)
ie., )
@ =3 oo —e(pm+ 1 -pa),
kzozoo
Gr = 2 #f-wy “repm,
= (32)
it = 2 ofer TP el -p)a,
Ig—oo
¢l = 3 @F.pl™" otherwise,
k=—o00

\

with ¢} = c¢(ppr+ (1 —p)a1), o7 = —c(1=p) a1, p5' = —cpp1, ¢p =0, j#—1,0,1.

Remark 5. According to equation , the sum > cp{ satisfies

Jj=—00

d . . >~
T2 =02 ). Y =0 (33)
j=—00 j=—00 Jj=—00
This ordinary differential equation has a unique solution
>

j=—o00

0; 0<t<T. (34)

The generating function Si(z) := > 2F¢F, 2 € C\ {0}, if it is well defined (and the

k=—00
superscript j of 27 is the power), satisfies the one-dimensional Riccati equation

. SN >0 e
Siz) = > A= D gl kZ“r;-6(1—p)q1+z-€pp1—8(pp1+(1—p)q1)

j:—oo ],sz()o

o0

- 1
= D> et - <1 - ;)6(1 —p)gr — (1= 2)epm

k=—o00 f=—00
= (5P~ [(1 -2 ) cl = pas + (1~ ) o
= [Si(z)? —eT(z); 2€C,0<t<T
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with Sp(z) = ¢T(z), where T(2) = (1= 1) (1 —p)qr + (1 — 2) pp1 -

L (ppr+(1-p)ar) i\/(p1;1+(1p)q1) —4p1 (1P)a 1 or (1 —p)q1’ T(+*) = 0. Then we
] PP1 ppl
get the ODE: Sy(2%) = (Si(2%))?, Sr(2*) = 0. The solution is Sy(2*) = 0. Then we can

conclude:

e For 2

> (#H)rer =0
k=—o00
e For z€ C\ {0} and z# 1lor %, the solution S;(z) is given by
= (b(z) + (2)) - O — (b(z) — q(2)) - T
Si(z) = 2op = b(2) - b(2)(T—t “b(2)(T—t b(2);
25 o T ()= o) T 7
b(2) = VETG) = [(1- 2) el —pav + (1= 2)epm]

a(z) = eT(z) = (1= =) el = phar + (1= =) eom.

3.2.1 Stationary Solution for Two-sided Directed Chain Game

In this section, we want to see how the values p p1, q1 affect the game. For our analysis
let us consider the limits ¢! := limy_oo @l of @ for t >0, j € Z,as T — oo and take
them as a stationary solution of . As T'— oo, we have obtalned from (136

oo

Jim. Z Al = Jim S(2) = b(z) = Z Al >0, ze€{z:b(2) €R,b(2) >0},
j=—00 J=—

where b(-) does not depend on t. Hence, the limit ¢/ does not depend on t, and we

write it as constant ¢’ for every j € Z. Also, substituting this observation into (29)) with

Yi =0, we observe ¢! = 0, and hence, we obtain a dynamics for the stationary equilibrium:

dX; = = > ¢ FXfdt+odW); Xi=¢ i€Z, t>0. (37)

k=—o00

We shall identify the values ¢/, j € Z and behaviors of X' i€ Z.
The function b(z) can be rewritten as

0(z) =vE[(1- 1) (1 - P+ (1= 2)pm]

pp1 1 (1-pa 1/2
=Ve- Vi + (1 -pa [1 - (Z it (—pa  Zm+a —p)qlﬂ (38)

:\/5 (pp1 + (1 = p)g1) [1_ (Zer%)]l/z
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v1—4wv 1—
for z € C\ {0} N {X4—""} and define w = e V= %,Where0<p<

ppi(1 —p)g

1,0<p <1and0< ¢ < 1. First, by inequalities, we have wv = 5
(pp1 + (1 —p)an)

[0, 7.

. V(l/hen wv =0, i.e. pr =0 or ¢; =0, we get back to Section [2 one direction random chain
game. For example, when ¢; = 0, each player is interacted with her/his neighbor with a
probability of pp;.

e In the case when wv = pp; (1 —p)g1 € (0,1],i.e. 0 <p; <1 and 0 < ¢ <1, we expand

formally

b(z) = /= (pp1 + (1 - p)a) i <1£2) (1) (2w + %)

=0

:\/€ (pp1 + (1= p)n) i <1£2>(—1)’i: (,%)wk”l = i 2,

i=0 k=0 j=—00

(39)

and hence, comparing the coefficients of 27 and letting B = pp; + (1 — p)q1 , we obtain

s Y
=0
:\/E_B(—l)j’w](1§2) 2F1< — % + % % +% 1 +],4w'0>
41
i = [ 1/2 2047\, \oerj e4joe “
d’_\/s_BZ%H )T
=0

=Ve B (=1 wivr~7 (1§2> cosh <<] — %) tanhfl(M))

for j > 1, where tanh™'(-) is the inverse hyperbolic tangent function and oF(-) is the
hypergeometric function defined by

ayn - (a2)n
oFi(ar, a;b1;2) = ZO%Z ; 2zeC
with the rising factorial (a)y = 1, (a), = ala+1)---(a+n—1) for ae C, n>1.

3.2.2 Special Case: Catalan Markov Chain of the Deterministic Two-sided
Chain Game

When the chain is deterministic, i.e., p; = ¢1 = 1, the stationary solution is give in (40 -

(@) by taking w = ——Po— — p, v = LU — 1 —p and B =pp1 + (1 —p)gs = L.
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Remark 6. When the chain is deterministic and the interaction is symmetric, i.e. p; =
g = 1 and p = %, solutions - suggest to take w = m = 1/2 and

(1-p)q1

i pn = 1/2, and we obtain simpler forms:

0 _ 2V2¢ i v ]2 1/2 (1 +7)
o = 22 e (D)t .

VEBI+V3) (1/2\ .
m -l COREEL

v =

67 = (-1

Coming back to general p € (0,1), we have by numerical evaluation,
¢’ >0, ¢ <0, jeL,

and hence, can be seen as a linear evolution equation. Without loss of generality, we

o0
assume € = 1 and 0 = 1. Since we have the relation : > @* = 0 in Remark , we can
k=—0o0
consider a continuous-time Markov chain M (-) in the state space Z with generator matrix

: ¢ ¢ @
Q=—| " ¢F ... ¢t @ @' ‘-. *-. |. Theinfinite particle system (37)
o D .. ol @0 !

can be represented as a stochastic evolution equation:
dXt — Q Xtdt ‘I— th, (43)

where X. = (X* k € Z) with Xo =& := (¢,i € Z), W. := (Wi i € Z). The solution is:
t
e / IUW,; £ >0, (44)
0

where €"Q, u > 0 forms the semigroup induced by the continuous-time Markov chain with
the generator Q and the transition probability matrix function p;;(t), 4,7 € Z, t > 0 in
the state space Z. Without loss of generality, let us assume X, = 0. With these transition
probability matrix function, we may write the solution of as

/ Zp”t—de] i€Z,t>0. (45)
j—foo
The variance of X is given by
Var(X}) / Zp”t—s J?ds < . (46)
j=—o0
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Proposition 3. The Gaussian process X, t >0 in , corresponding to the (Catalan)
Markov chain, is given by

X =y / (exp(Q(t — 5)))a, AW

j=—00

© Lt Ep L NARO ()2

> t—s)"F t—s 20 o
B / - (26)(' — <€+m> P p) AW

(=0 m=—¢ V0 !

O Ep A2 O ()2

E : E: (t — s)4+2p (—(t—1s)?) [ 20+1 s . -
! £=0 m=—(f+1) /0 (26 + 1)! {+1+m p ( p) W ,

(47)

where W7 | j € 7, are independent standard Brownian motions and F® (z) = py(z)e V™",
with -

| G- 1) y
W)—%E; (2j—2k;)]!!(2k:—j—1)!<_x) 5 Jor k2l

and po(x) = 1 for z <0.
Proof. Given in Appendix O

4 Random Directed Tree Game

Motivated by the discussion about the deterministic directed infinite tree game in Feng,
Fouque & Ichiba [7], we now look at a random tree structure. The connection and similarity
between random and non-random cases is illustrated in Corollary [I0]

4.1 Setup and Assumptions

We describe a stochastic game on a directed tree where the interaction between every two
players in the neighboring generation is random. All players have a fixed number of potential
players in the next generation to interact with, denoted by a finite positive integer M. That
is, for n, k > 1, player (n, k) is the k-th individual of the n-th generation and she can interact
with the players in the (n + 1)-th generation labelled as {(n + 1, M(k —1)+j):1 < j <
M?}. We introduce the i.5.d. binary random variables N™*M&=1+7 valued in {0, 1}, which
represent the random interaction between player (n, k) and player (n+ 1, M(k — 1) + j) for
1 < j < M, present with probability p, where 0 < p < 1. When N™*ME=1+7 ig zero, we
assume player (n, k) has no interaction with player (n + 1, M(k — 1) 4+ j) for 1 < j < M.
We assume the dynamics of the states of the players are given by the stochastic differential
equations of the form:

AX7F = kAt + odW*, 0<t < T, (48)

where (W,"")o<i<r,n,k > 1 are one-dimensional independent standard Brownian motions.
We assume that the diffusion is one-dimensional and the diffusion coefficients are constant
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and identical denoted by o > 0. The drift coefficients a™*’s are adapted to the filtration of
the Brownian motions and satisfy ] fOT la]"*|2dt] < co. The system starts at time ¢ = 0 from
i.i.d. square-integrable random variables X e &n i independent of the Brownian motions
and, without loss of generality, we assume E(¢,, ;) = 0 for every pair of (n, k).

In this model, each player (n,k) chooses its own strategy a™* in order to minimize its
objective function of the form:

74t ~gxf | ' (3t (19)

M
erl n,k, M (k—1)+j .k, M(k=1)+j nk)
+§(/T/- ZN X, - X ) '1-/\/’#0 de

j=1

M
1 . v 2
+ ( E :Nn,k,M(k:—l)—l—] X;J%M(k’ D45 X;k) . ]1/\/#0}

¢
2\N

M
where N := S N™EME-D4T for some constants € > 0, ¢ > 0 and a = (@™ :n > 1,1 <
j=1
k < M™ 1) with a™* € R. When the player has no connection with any player in the next
generation, her insentive is to choose a™* = (.

M
Conditioning on Y N"*M*E=DH — ¢, where 0 < d,, < M, and denoting py,, =
=1

P(% Nn,k,M(k71)+j —d ) _ M dn,k (1 _ )M_dn,k t
— Unk) — d N b b , We ge

j=1

ZXTH-I] Xnk) )dt
k

n

n,k g 1 n,k\2 € EM: 1 § :
0 dn,kzl dn,k

IeSdn’k jel
(50)
2
4= pdn . < Xn+1,j nk) }7
S megy ¥ (Y
nk nk GSd ok ]GI

where Sy, = {(i1," " ,4a,,) : M(k—1)+1 <14 <--- <igq,, < Mk} denotes the set of
all possible combinations of d,, ;, elements between M (k — 1)+ 1 and Mk with an increasing
order.
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4.2 Open-Loop Nash Equilibrium

We search for an open-loop Nash equilibrium of the directed random tree system among
strategies {a™*;n > 1,k > 1}. The Hamiltonian for player (n, k) is of the form:

n M™m— 1
Hn,k(l_m,l7yn,k;m,l7&m,l;m Z 17 1 S l S M 1 E E : aml n,k;m,l _(an,k)Q
m=1 [=1

—_

2

B e gy T (e,

dp =1 1eSq, ), nk Jjel

n,k, n,k;m,ls

assuming it is defined on Y,;""’s where only finitely many Y, s are non-zero for every
given (n, k). Here, N, represents a depth of this finite dependence, a finite number depending
on n with N,, > n for n > 1. This assumption is checked in Remark [7] below. Thus, the
Hamiltonian H™* for player (n, k) is well defined for n > 1.

The adjoint processes Y;"* = (Y"¥™! m > 1,1 <1 < M™ ') and 2" = (z"hmhv,
myp > 1,1 <1< M™11<qg< MPYforn >1,1 <k < M are defined as the
solutions of the backward stochastic differential equations (BSDES).

co MP—1
d)/;n,’ﬁm,l _ _amm’lHn,k(Xt’ Y;n’k,oét)dt + Z Z Zzlvk;m,lmﬂthILq (51)
p=1 ¢=1
k 1
= —e Z Pany* e D (72 X = XY (=37 iy 1) = Somi ) )
dp =1 (dn k) I€8q,, jeI i,k jeI
co MP—1
+Z Z Z?k;m,l;p,qdwtp,qy
p=1 g=1
with terminal condition:
M 1 1
Jesm,l 1 K
Y=o b i D0 (*ZXM T = XY (=2 minn 1) = dmi )
dy k=1 (dn,k) IeSy, I, jerI ok T

Remark 7. For every (m,1) # (n, k) or (n+ 1,i) for M(k —1) +1 < i < Mk, dy;"¥™ =
oo MP~1

SOOS ZpEmERAqP and YN = 0 implies 2P = 0 for all (p, q). Thus there are
p=1 g=1

finitely many non-zero Y% for every (n, k) and the Hamiltonian can be rewritten as

Hn,k(mm,l’yn,k;n,k7yn,k;n+1,i,am,l;m > 1’ 1< l < Mmfl,M(k o 1) +1<i< M]{I)

Mk 1
:an,kyn,k;n,k_i_ Z an+1,zyn,k;n+l,z+ §(an’k)2
i=M(k—1)+ (52)
2
T3 Zpdnk-— > <_Z“"n+l’] " )
dp p=1 (dnk) Iesq, , dnk jel
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Remark 8. For every (n, k), we will solve when (m, 1) = (n, k) in the following discus-
sion. Other non-zero Y™ *ml’s in are solvable with the stmilar method.

When (m, 1) = (n, k), becomes:

co MP~1
dYnknlc — Z Pa, Z ( 1 ZXnJrL] Xnk dt—i—z Z annk,pqdwpq7
ok jel p=1 ¢=1

(53)
To simplify the equation system, we use the result: for all d,,, € [M(k —1) + 1, Mk]

1 1 . .
. § { § { n+l,j __ E n+1,i1 4ot ntliq, o
Pav.i k ! — P dp k (dn k) I=( ¢ ' )

d, . ,
nk I€8q,, jeI =(i1, sid,, €S,

1 1 M-1 _ "
=y — M) ( )(anrl,M(k DHL | L. g gt LME)

ok dn,k (dn X dn,k -1
1 Mk
_ n+1,5
=Pdpr>s Z T )
M F=M(k—1)+1
which gives:
1 1 Mk
S by O S el S e
dp x=1 (nk) resq,, "F jer j=M(k—1)+1
Then we can rewrite system as:
( 1 oo MP—1
dyvtn,k;n,k _ 6(1 . pO)(M Z XnJrl,j Xn k)dt + Z annk,p qupq
j=M (k— 1+1 p=1 ¢=1
. 1
Y;,k,n,k _ —C(l . po) (M Z Xn—i—LJ Xn k)‘
\ j=M(k—1)+

(54)

By minimizing the Hamiltonian with respect to a™", we can get an open-loop Nash

equilibrium: a&™* = —y»knk for all (n,k). Considering the BSDE system, we make the
ansatz of the form:

k

M=k

y;ukink Z Z R (55)

i=n j=Mi—"(k—1)+1

for some deterministic scalar function ¢; depending on (n, k). According to , the func-
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tions satisfy the terminal conditions:
° (bn kyn, k (1 . po)
. ; 1
o LI — (1 —pO)M, for M(k—1)4+1<j < MEk;
et — 0 for 0> 2, M (k—1)4+1<j < Mk

Using the ansatz, the optimal strategy &™* and the forward equation for X™* in (48)
become:

( Mi—"k
~n,k . n,k;n,k n,k; 1,5 v 1,J
Qy’ =Y, E E o8 X,
i=n j=Mi—"(k—1)+1
. (56)
§ Y XAt + edW,
\ 1=n j=Mi—"(k—1)+1

which gives: for 0 <t < T

M’l‘ ’L
dX}7 = — Z Z ¢y7 " XAt + odIWY.

r=it s=M""(j—1)+1
Define a set S*¥ = {i : M*(v — 1)+ 1 < i < M"v, i € N}. Differentiating the ansatz

and substituting , we obtain:

dy;hmk — Z > (GrEE XY AL+ ¢ X))

1= n]eS'L n,k

EDIID DI A TR DD DI Sl B DD DI A A A

i=n jegi-n.k i=n jeSi—nk r=i g€Sr—iJ
0o oo 00
. Z n,k; 4,5 vi,g ZZ }: 2 : n,k; 4,5 14,557,8 37,8
- E ¢t Xt dt — ¢t (rbt Xt dt
i=n jesifn,k i=n r=1 jesifn,k seST—iJ

[e.@]
n,k; 4,7 2
oY ST erktaw;
i:njesifn,k

L QS I 55

(57)

For the first and third terms, we have

M™ "k
1= Z > ertXpIdt = Z > eptrexrdt
i=n jeSi—n.k r=n s=M"—"(k—1)+1
M "k
111 = JZ > ertaw) = UZ > kT AW
i=n jeSi—nk r=n s=M"—n"(k—1)+1
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Then, for the second term, we have

M=k
555 3 Sb o ECYTEOTTES SIS S O 3l g P
i=n r=i jesimmk seSr-t r=n s=Mm—"(k—1)+1

where [x] denotes here the smallest integer greater than or equal to .
Thus equation can be written as:

Ay Rk = 1 — 11 + 111 (58)
M"™ "k

—Z > <¢"’”S Z¢"k’“ | “"J”’S>X{’Sdt (59)

r=n s=M"""(k—1)+1

tod > A

r=n s=M""(k—1)+1

Now comparing the two Ito0’s decompositions and , we obtain first the processes
Z Rk from the martingale terms :

Z:,k;n,k;p,q — Uqﬁ?’k;p’q for p > n and Mp_n(k‘—l)—Fl <q< MPk: Z:,k;n,kz;p,q = 0, otherwise.

Then we obtain from the drift terms:

n,k;n.k n,k;n,k n,k;nk n,k;n,k
o ¢ =g e —e(l=po) o = (1= po); (60)
=y " = ¢/ for any pairs (n, k), (i, j);

efor M(k—1)+1</¢< Mk,

jrokint L8 _ gndinkgnkintle | gnkintlegnilbntle | _ po)%
.2¢nknk n,k;n+1,e+€(1_po)%’ mkintLe c(l—po)%; (61)
ofor m>n-+2, M™"(k—1)+1<0< M ™"k,
gt = 3o gt gl ot (62)
4.3 Discussion about the Solution
Remark 9. Since by definition, py = (1 — p)™ = ]E[]l Y ] for any (n, k), the

{S NnkM(k=1)+5 20}

j=1

above equation system — depends on p and M.
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Theorem 1. The solution of the system - are independent of n,k and depend on
the “depth” i, i.e., i
?k ;4,0 ¢T,];m+z,€, t>0
for every suitable pairs (n, k), (m, j) and every suitable i, ¢, { € Ny. Thus the system is closed

Jor {orF ™ m >, M™ Mk —1)+1 < £ < M™ "k} and the solutions exist.

Proof. First, . is a simple Riccati equation for ¢™*™* and it is independent of (n, k).

Thus, its solution ¢"*"™* exists uniquely for every (n, k) with ¢/"""™" = ¢/ t > 0 for
any suitable pairs (n, k), (m,j). This is depth 0.

Next, substituting ¢/ "* = ¢ into the first line of (61)), we see for every M (k—1)+
1 <0< Mk, is a first-order linear differential equation for ¢™*"*+%¢ and it depends only
on pg, € and M but not on (n,k). Thus, we claim that the solution {gzﬁnk LM (k1) 1<

(< M} of exists uniquely. They are identical among the depth 1, i.e.,

:L,k;n—l-l,f—&-M(k—l) E¢;n,j;m+1,2+M(j—l) for 1§£’Z§ M. (63)

/< . n,k; n+2,04+ M2 (k—1)

Form =n+2and 1 < ¢ < M?in (62), we have the derivative of the function ¢,"

of depth 2:

¢ P

~ n+ —n 11—
ik n 2,04+ M2 (k—1) qunkz[ rer=t | M h=1) [ Sty | M ()5 ne 2,04 M2 (k—1)

=n

_nkingk noknd2,0+M2(k—1) .k ntl, LHJFM("? 1) n+l, LHJFM("C 1);n+2,0+M> (k=1)
R t + t t

n,k; n4+2,0+M2(k—1) n+2,04+M?(k—1); n4+2,0+M?2(k—1)
+ ¢ :

. . Z 7 2

sk okt M2 (k1) | kil [ |+ M=1) L] [+ M (k=1) 2,04 M2 (k1)

2¢ ¢ + ¢t th )

where the last term has the function of the depth 1:

et [ [ M (o= 1); 2, M2 (k- 1) n+1,(ﬁ+M(k—1);n+2,@+MHﬁhM(k 1)-1]
t = ¢
— ?’k;"+1’el+M(k_1) according to equation ([63)),

where ¢/ = 0+ M — M {%—‘ satisfies 1 < ¢/ < M. Thus, the differential equation for

?’k;nH’HM =1 is reduced to a first order linear differential equation depending on the

functions PRk and gkt M=) o depths 1,2. The solutions {¢;" " M2 (b V1<
< M 2} of depth 2 exist and are identical.
When m > n+2in , we proceed the discussion recursively by using a similar method,

that is, we can reduce the differential equation for the function ¢;"" M 1) o depth

m—n to a first order linear differential equation depending on functions {¢;"" s MR (k1) n <
1 <m,1< (< M~ "} of shallower depths less than m —n. Then we verify that the solutions

{¢?’k;m’e+Mm_n(k71), 1<li<M m=ny of exist uniquely and identical among the depth
m — n for every given m > n + 2.
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From above, we can conclude the solution ¢™™" of the system exist, depending only on
the "depth” m — n. Therefore, the system — can be reduced to a closed system for
{ormm™E >, M (k—1)4+1 <0< M™ "k}, O

Remark 10. If we assume that each individual (n, k) is in interaction with its all potential
players in the (n + 1)-th generation, i.e., p = 1, py = 0, the model becomes the same as the
system of the deterministic tree model in in Feng, Fouque € Ichiba [7)].

Proof. When N, = M(> 0), the functions only depend on the depth. Thus equations

— above become

n+m m
T in,k;n+m i—n n—+m-—i 1 A m—i 1
\IJ?L = ¢t intmé E \Ijt . \Dt+ — (Sm,oe -+ 5m’1EM = E \Ijt . \Ift — 5m,0€ + 5m’16M7
i=n i=0
\IJ? = Om,0C — 5m,1CM.

It is the same as the Riccati system of the deterministic tree model in Feng, Fouque & Ichiba
[7] with M = d.
O

As a consequence of Theorem [I} the infinite-player stochastic game on the random tree
model has an open-loop Nash equilibrium:

Proposition 4. An open-loop Nash equilibrium for the infinite-player stochastic game on the
random tree with cost functionals is determined by (56), where {¢™*3 i > n, M= (k—
1)+ 1 < j < Mk} are the unique solution to the infinite system — of Riccati
equations.

5 Conclusion

We studied a linear-quadratic stochastic differential game on a random directed chain net-
work by assuming the interaction between every two neighbors exists with a probability p.
We constructed an open-loop Nash equilibria in the case of infinite chain and computed the
stationary solution explicitly, named Catalan functions. The equilibrium is characterized by
interactions with all the players in one direction of the chain weighted by Catalan functions
and the probability of interaction p. The asymptotic variance of a player’s state converges
to a finite limit depending on p in the infinite time limit, which is different from the be-
havior of the nearest neighbor dynamics discussed in Detering, Fouque & Ichiba [6]. In the
particular case with the probability of interaction equal to 1, we obtain the deterministic
directed chain structure studied in Feng, Fouque & Ichiba [7]. The random directed game
model is extended to games on a random two-sided directed chain structure and a random
tree structure.

102



A Appendix

A.1 Stationary Solution of the Riccati System

By taking T — oo and _assuming € = 1 the constant solution of the moment generating
function satisfying S;(z) = 01is S(z) = \/p(1 — z). We can then find constant solutlons
for ¢ functions by taking Taylor expansmn and comparing it with S(z) = > 50, 2* ¢
because

s - viri—a - vivi—e =i Y (1) (-2) - \/ﬁ—iz—\/ﬁi G2

A.2 Proof of Proposition

k
2 > qiqe—; = 0 for k > 2. Then, it is easily seen that
7=0

(vPQ)? =p(I — B) with B having 1’s on the upper second diagonal and 0’s elsewhere,
ie.,

We have the results: ¢o = —1, ¢1 =

p —p 0 - A1 0
WVPQ?*=|[0 p —p = —pJo(-1), JoN) =0 X 1

Here, J.(\) is the infinite Jordan block matrix with diagonal components .
The matrix exponential of \/pQt, ¢t > 0, is written formally as

exp(y/pQt) = F(—p Q2t2) = F(Jo(—1) -ptz) ,t>0, F(x):= exp(—\/—_x), z e C.

Since a smooth function of a Jordan block matrix can be expressed as

= g FO) FO) E58 e B
F(Jwu(\) = F(M+B) = ZT BF =
k=0 ’
we get
L PR (—pt?
xp(VFQI) = F(J(~00) -p1?) = F((~I +B)-p?) = S TP ey
k=0 '

k!

k=0
The (j, k)-element of exp(,/pQt) is formally given by

P 203) L k=) (_pg?)
(k—Jj)! ’
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d*F
dak
and (exp(y/pQt))jx = 0, j >k for t > 0. Here the k-th derivative F*)(z) of F(-) can
be written as F®)(z) = pp(z)e~V =", where pi(z) satisfies the recursive equation

F®(z) = (); x>0, keN,

) = Alo) + P

k>0,

with po(x) = 1, z € C. By mathematical induction, we may verify

2k—1

J—l) i
= k> 1. 64

Therefore, substituting them into (17]), we obtain the formula of Gaussian process.
Next, it follows from that for ¢ > 0, the variance of the Gaussian process X?, i > 1
is given by

. t _g26-) ,
vm@w):\@mxb::vm(E:KJ“ E;—$! pwﬂx—mt—sfmmg)

00 nt 95y \4j
p(t—s _ _s
-y / P2 )7 |t — )2)Pe A=) ds,

=0 /0 (1?2

Since it can be shown that

1 v, .
(=) = 5\ ¢ Kiap(v); G211, (66)

where K, () is the modified Bessel function of the second kind defined by

K,(x) = / e et cogh(nt)dt; n > —1,2 > 0.
0

Then substituting into (65)) and using the change of variables, we obtain

N 2 J2k+1 1 — e—2VPt

Var Z/ k' 24k (Kk (1/2) ( )) dv + 7; t> 0.

Using the following identities from the special functions
T ) = (S (S - u)r(2 )
A ) dt = vt ()T G — )T )

V2o - ﬁ—z() R

o + 1 4k’
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we obtain the limit of variance of X}, as t — o0, i.e.,

SD)) 52k:+1

Jim Var(X}) = IZ | = o (a)Fas

VAR > T / S K (5) s

k=1

1 1 & 2 nT(k+1)T(2k + (1/2))
- ﬁ+ﬁ ; m(k)24k ST (k + (3/2))

1 =4\ 1 1 1 V2, 1
- g—pZQk S ion = oy 1 2VE0= g

A.3 Proof of Proposition

We assume ¢ = 1, pp = —@* = limp_,o ©F. According to the equations , for the fully
directed two-sided chain and , we have: Z Pe Pk = 1, Z Pk P1—k = —P, Z Dk P_1—k =

—(1—p), Z prPj— = 0 for other j. Then it is easily seen that Q? = I— (pB* (1—p)By)

with B* havmg 1’s on the upper second diagonal and 0’s elsewhere, and B, having 1’s
on the lower second diagonal and 0’s elsewhere i.e.,

—(1—-p) 1 -p 0
Q= . 0 —(1-p) 1 —p 0 |
' 0 ~(1=p) 1 -p
0 0 1 0 1 0 0 0
B=1 - 0 0 0 1 0 .|, Be=| . 0 1 0 0 o0
0 0 0 1 0 1 0 0
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If we look at the power of pB* + (1 — p)B.:

pB* + (1 —p)By =

* 2 _
(PB™ + (1 = p)Bx)” = 1-p> 0 2p1-p) 0 p?

. 3 _
(pPB™ + (1 = p)Bx)° = 1-p3 0 3pl-p2 0 3p21—p) 0 pd

" 4
B+ (= pBe) = -p* 0 4p(1-p® 0 621-p> 0 4P1-p) 0 p

We find the diagonal increases following the binomial expansion and we have formulas
to generalize the result:

k {(pB* + (1 — p)B.)* = - k k_y kg k k & kg k_q
even :(pB” + (1 — p)Bx) (6" e 1-p)zt o (§)p2(1-p2 0 (E+l)p2+(l—p)2
2 2

[Nk

k odd :(pB* + (1 — p)B)"

k+1 k—1 k41 k—1

k _==-1 ===+1 k zro Fudntt )

0 (kt1_)p 2 'a-p =z Tt 0 (rki1)p 2 (1-p) 2 0
2 2

1.e.,
k k k_ E 5
. b (k )p2+’”(1—p)2 ™ j=i+2m,and ——~<m< - mez
keven: ((pB" + (1 —p)Bs«) )i j = £+ 5 5
0 otherwise.
k A B +1 k—1
* k (k+1 ) p 2 +m(1_p) 2™ j=i4+2m+1, and — < < :
kodd: ((pB” + (1 —p)Bx)")i,j = = tm —_—
0, otherwise.

The matrix exponential of Qt, t > 0 is written formally by
exp(Qt) = F(—Q**),t >0, F(z) := exp(—v~2), v €C.

Since a smooth function can be expressed as

— FO ) FOMN) FOMN)
F(M\ + B) = ;TB :;;;dTB +k2 — B
=0 o even
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S0
—$2
exp(Qt) = F((—I+pB" + (1 -p)B)t*) = Y — 0 @B (- p)B.)".
k=0 '
The (i, 7)-element of exp(Qt), is formally given by

12k (k) (_42) ( &

k
5+m k_m o
. Tl )pz (1-p)2 .1_%§m§%, j=1i42m, m €7,
even
(GXP(Qt))z,J - 12k (k) (_42) k k1, k=1 o
> T(erm)p Rt 2l kgl kot J=id2mAlmel
k odd 2
00 40 1 (20) (42
t**F (t)(2€)£+m —m
- - N7 1— 1 e, , = itom mez,
ZZO (20)! ram)? AP e<m<e j
= oo 4042 (20+1) 42
t F (t)(2z+1 ) et 1tm v
T e+ 1) ] l—p) 71 , j=i+2m+1, m € Z
Z (20 +1)! er1+m/ -7 (e+1)<m<e J

where F®)(z) := 9“£(3). £ >0, k € N. Here the k-th derivative F®)(z) of F(-)

dx
can be written as F*)(z) = pk(x)e_r, where

2k—1

1 (j = D! i
p’“(x):?; (2j—2k;!!(2k—j—1)!<_x) s for k21,

and po(z) = 1 for x <0.
Thus the Gaussian process X, t > 0, corresponding to the Markov chain, is

X? : = Z / (exp(Q(t — s)))o ]dW7

Jj=—o0
. t .
= > /(exp(@(t—s)))o,jdwg + > / (exp(Q(t — 5)))0,;dW?
j even VO j odd”0
(t = )MFCI(—(t - )?) t4m m 2m
= . (1 — : a1 dwW,
m;w A Zzo oo (,2 )otma-n t<mze AW
=M PPRCAD (- 5)) ¢ 2041 \ 41, —m m
+ Z /Z - (2¢+ 1)! : (Z+1+m)p[+1+ =2 " 1y <mge dWITH

o L Eop AL (20 2
_ (t =)™ F = (= (t —8)7) 20 thm s e—m i 2m
> ;Z‘U (20)! (Hm)f’ (1 —p) " "awW,

+§: 2": /t (t — s)4£+2F(2£+1)(7(t—s)2)< 20+1 >p“+1+’"'(17p)“mdw2’"+1
o (224 1) L4+14m s ’

where W¥(.), k € Z are independent standard Brownian motions.
Thus, the variance is given by

o £ t 40 12 (2£) 2
(t =) P (=(t —5)%) ¢ 20 o+ £— 2
X0y — mey m m
Var(Xy) Var( E E ) (20)! (z + m) P ( P) dw; )
£=0m=—4¢
o ’ by A2 (2041) oy 2
(t—s) F (=(t—5)7) 2041 (+14+m t—m 2m+1
Ve 1— dW
+Var(yo Y 20+ 1) (z+1+m)p t-» )-

£=0m=—(e+1) "0
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