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Abstract: We consider heat conduction models with phase change in heterogeneous materials. We are
motivated by important applications including heat conduction in permafrost, phase change materials
(PCM), and human tissue. We focus on the mathematical and computational challenges associated
with the nonlinear and discontinuous character of constitutive relationships related to the presence of
free boundaries and material interfaces. We propose a monolithic discretization framework based on
lowest order mixed finite elements on rectangular grids well known for its conservative properties.
We implement this scheme which we call P0-P0 as cell centered finite differences, and combine with
a fully implicit time stepping scheme. We show that our algorithm is robust and compares well to
piecewise linear approaches. While various basic theoretical properties of the algorithms are well
known, we prove several results for the new heterogeneous framework, and point out challenges and
open questions; these include the approximability of fluxes by piecewise continuous linears, while the
true flux features a jump. We simulate a variety of scenarios of interest.
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1. Introduction

In this paper we are interested in numerical approximation of heat conduction with phase change
in heterogeneous and composite materials. We are motivated by important applications in modeling
permafrost, human tissue, and phase change materials (PCM) for thermal energy storage, smart tex-
tiles and buildings. These applications involve materials with drastically different thermal properties
separated by an interface, thus require conservative algorithms. While we focus on mathematical and
computational challenges rather than on practical engineering or geophysics scenarios, we aim to de-
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velop robust and accurate yet simple algorithms adequate for low regularity of solutions and easily
extendable to future multiphysics simulators. Challenges similar to those discussed here occur in sim-
ulation of multiphase flow in fractures or rocks of different type [1, 2], as well as in other applications
which we give in what follows.

Overview. We focus on two phases: solid and liquid, separated by a free boundary, or by a region in
which these phases coexist. In a single material we consider the following nonlinear parabolic equation

∂tw + ∇ · q = f ; q = −∇ · (k(θ)∇θ); (1.1)

to be supplemented by appropriate boundary and initial conditions. The model is solved for the tem-
perature θ, the internal energy (enthalpy) density w and the heat flux q. Here f represents heat sources,
k is the heat conductivity. The definition of w closes the model. For this definition, we consider one of
the following equilibrium relationships

(S T ) : w ∈ αS T (θ), or (1.2a)
(S T )ε : w = αS Tε (θ), or (1.2b)

(P) : w = αP(θ). (1.2c)

In particular, in the Stefan problem denoted by (ST), w ∈ αS T (θ) = cθ+ Lχ. Here c is the heat capacity,
L is the latent heat, and the water fraction χ ∈ H(θ) (whereH is the Heaviside graph) “translates” the
well known Stefan condition prescribing the velocity of the free boundary S between the liquid and
solid regions to (1.1) defined over both solid and liquid regions. Its approximation is (ST)ε , in which
αS Tε (θ) is some ε-dependent single-valued piecewise smooth approximation to αS T with Lipschitz
constant LαS Tε ∼ ε−1; see Section 2 for details. In turn, in permafrost models (P) w = αP(θ) is given
by a monotone piecewise smooth Lipschitz function αP(·), with some large Lipschitz constant LαP; we
give details in Section 5. See also a summary of notation in Table 1.

Known work. Even in a single material the models (1.1) and (1.2) does not have classical solutions
and features challenges to the analysis and approximation due to the nonlinear multi-valued or only
piecewise smooth character of α(·). Typically, (1.1) is posed in the sense of distributions, and its
solutions (θ,w) have low regularity.

The majority of numerical analysis for (1.1), under homogeneous Dirichlet boundary conditions,
is carried out for (ST)ε after so-called Kirchhoff transformation which renders (ST) or (ST)ε in the
equivalent form, and with a new variable u instead of θ

∂tw − ∆u = f , u = βK(w).

Since u (as well as θ) are expected to be continuous, it appears natural to seek their continuous piece-
wise linear (P1) finite element approximations. In turn, wh is either also piecewise linear (P1) [3]
or piecewise constant (P0) [4, 5]. We denote these approaches, respectively, as P1-P1 or P1-P0. For
the permafrost (P) problem, the literature reports on the node-centered finite difference or piecewise
linear finite element implementations, but without theoretical analysis or studies of convergence; see,
e.g., in [6–11]. These also fall in the category of P1-based approximations. In turn, it is common to
use cell-centered finite differences (CCFD) or finite volumes (FV) for a variety of fluid flow problems
including those in subsurface [12].
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Heterogeneous materials and conservative approximations. It is well-known that the P1-based
approximations due to their poor approximation of fluxes are not well suited for computational model-
ing of problems with large heterogeneity of coefficients such as Darcy flow in porous media coupled to
transport; see, e.g., discussions in [12,13]. For computational models of (1.1) and (1.2) alone in single
material, this would not be an issue.

However, our goals in this paper are to study (1.1) and (1.2) in heterogeneous domains; addi-
tionally, we seek robust algorithms suitable for coupled multiphysics system such as THM [14–17],
and, simultaneously, for multiphase multicomponent systems at complicated geometries such as at
pore-scale based on voxel grids [18–21]. Therefore, we draw from literature on conservative approx-
imations using mixed finite element methods for multiphase flow in porous media and specifically on
problems with nonlinearities similar to (1.2) [22–24]. These feature conservative fluxes and piece-
wise constant (P0) approximations to scalar unknowns. In this paper we approximate both θ and w
with piecewise constants (P0), thus we refer to these algorithms as P0-P0. Finally, when fluxes are
approximated in the space RT[0] (discussed below), the algorithms can be conveniently implemented
as cell-centered finite differences (CCFD); this gives a robust easily extendable structure towards more
complex physics across many scales. Although these algorithms feature lower order approximation
error, this is not an issue given low regularity of solutions to (1.1). Unfortunately, the approximation of
fluxes features a technical gap since the normal fluxes for (ST) feature a jump; we defer the associated
theoretical issues to future work.

Our results. (i) We first evaluate the feasibility of P0-P0 approximations with fully implicit in time
approximations for (1.1) with (1.2) for a single material such as bulk water. We show our approach
compares well to P1-based schemes, and that the solvers are robust, even if there are some theoret-
ical concerns. (ii) Second, we develop P0-P0 algorithms for the heterogeneous case k = k(x; θ) and
α = α(x; θ) in multiple materials, when the data features the realistic but most challenging case of
piecewise constant k(x; ·) and α(x; ·). Another challenge is that θ may not be continuous across mate-
rial interfaces with high thermal resistivity. We prove various results and show robustness of our P0-P0
and monolithic CCFD algorithm which is conservative. Finally, we apply P0-P0 scheme to permafrost
modeling including in heterogeneous materials, tie the theoretical framework for αP to that developed
for other αS T and αS Tε , and confirm convergence.

Overall, we find that P0-P0 algorithm is robust for heterogeneous extensions of (1.1) with any of
(1.2) we considered. The order of convergence in the scalar variables (θ,w) is, for the most part, about
O(h) and, O(

√
h) whenever time step τ = O(h) is used. The nonlinear solver performs also well, even

though it might need improvements for strongly heterogeneous nonlinearities.

Outline: We give details on the phase change problems modeled by (1.1) with (1.2a) and (1.2b)
in Section 2. In Section 2.4 we overview, compare, and illustrate traditional piecewise linear ap-
proximations to (ST) and (ST)ε which we call P1-P1 or P1-P0. In Section 3 we define our P0-P0
approximations to (ST) and (ST)ε , prove some auxiliary results, and compare convergence and robust-
ness of the scheme to P1-based approaches. In Section 4 we address heterogeneous (ST) such as in
(1.3), and prove properties of the P0-P0 scheme for the solutions that feature a jump across the material
interfaces. In Section 5 we provide details on the permafrost model (P) (1.2c), along with convergence
results for P0-P0 scheme, and illustrate with simulations for both homogeneous and heterogeneous
problem. We close in Section 6, with auxiliary results given in Appendix 7.
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(a) (b) (c) (d)
Figure 1. Illustration of domains of interest in this paper. (a) Liquid and solid domains
in (ST) with a sharp liquid-solid interface S : θ = 0 (dashed curve), which is advancing
during melting; shown is its normal velocity given by Stefan condition and its components.
(b) Domains in the regularized (ST)ε problem including the light colored region Ωε

l ⊂ Ωl

given by (2.13): 0 < θ(x, t) < ε; x ∈ Ωε
l ; (c-d) Domains with with piecewise constant thermal

properties. (c) Pore-scale domain with two materials: grains in black and void space filled
with ice and water. (d) Phase change material at mesoscale.

1.1. Notation

The problem (1.1) is posed in Q = Ω × (0,T ) where Ω ⊂ Rd is an open bounded spatial domain
with a smooth boundary ∂Ω. In heterogeneous case, we partition Ω =

⋃NMAT
j=1 Ω( j) into subdomains

Ω( j), corresponding to j = 1, . . .NMAT materials, with the material interfaces Γ =
⋃

i j Γ(i j),Γ(i j) =

∂Ω(i) ∩ ∂Ω( j). Thermal properties of a region depend on the material in that region. We assume that in
material j the heat conduction and phase transition parameters are known fixed constants. For example,
at a point x ∈ Ω( j), the freezing temperature is fixed for this material so that θ f r(x) = θ

( j)
f r . In turn, the

thermal conductivity k(x; θ) = k( j)(θ) depends on the temperature in a fixed way specific to material j.
We denote this dependence of thermal properties as follows

c(x; θ)|Ω( j) = c( j)(θ); k(x; θ)|Ω( j) = k( j)(θ); θ f r(x)|Ω( j) = θ
( j)
f r ; L(x)|Ω( j) = L( j). (1.3)

The notation Q( j)
p indicate the portion of Q in domain ( j) and phase p.

We assume that the subdomains and interfaces are smooth enough so that standard notation and
results using the spaces Ck(Ω), and Lebesque and Sobolev spaces such as Lp(Ω) and HkΩ) make sense.
For a Lipschitz continuous function f we denote its Lipschitz constant by L f . We denote by V = H1

0(Ω)
for the primal variational formulation, and by X = Hdiv(Ω) and M = L2(Ω) the spaces for fluxes and
scalars, respectively, needed in the mixed setting. By (u, v) =

∫
Ω

uv we denote the inner product of
scalar functions on L2 as well as that for vector valued functions on (L2)d. The norms || f ||G of functions
in space G are as indicated with a subscript G which is dropped if G = L2(Ω) or G can be inferred
from context. For time-dependent problems when t ∈ (0,T ) and, e.g., u ∈ L2(0,T ; V) we use the
shorthand notation L2(V). For discrete formulations, we recall the spaces Vh ⊂ V of piecewise linear
finite elements based on a triangular grid. We will also use Xh ⊂ X some approximations to the vector
valued functions such as heat flux, and Mh ⊂ M the space of piecewise constant approximations.

By 1U(x) we denote the characteristic function of set U ⊂ Rd 3 x. For two sets Ω− and Ω+ separated
by an interface ∂Ω+∩∂Ω−, by [r(x)] = (r|Ω+ −r|Ω−)|x we denote the jump of quantity r at some interface
point x ∈ ∂Ω+∩∂Ω−. These two domains correspond to two materials, or to two phases of one material.
When the sign of the jump is important, we make it precise on which side of the interface the limits
are taken.
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Next, consider real functions u,w defined on Q, and a function β : R→ R. The statement u = β(w)
means that u(x, t) = β(w(x, t)) a.e. on Q. Similarly, consider a graph of a relation α ⊂ R × R for
which α−1 = β is a non-injective function, but α(·) is multi-valued. In this case υ ∈ α(r) is equivalent
to (r, υ) ∈ α, and, for functions u,w on Q, the statement w ∈ α(u) means that w(x, t) ∈ α(u(x, t)) a.e.
(x, t) ∈ Q.

In time-discrete formulations we use uniform time stepping with time step τ > 0 and 0 = t0 < t1, . . .

and tn = nτ. For an unknown u(·, tn), we denote by un(·) its time approximation, and by un
h(·) its fully

discrete approximation, which may be identified by the set of values such as Un
i . For a known function

f (·, t), we denote f n to be the value f (·, tn) or its integral average 1
τ

∫ tn

tn−1 f (·, υ)dυ, made precise in the
context.

Finally, when using physical data and units, we use SI units or state otherwise; see Table 1.
In addition, we make some assumptions on the data. Assumption 1.1 is a standard assumption for

data of heat conduction problems.

Assumption 1.1. We assume that the latent heat coefficients L( j) ≥ 0, and that heat capacity and
conductivity coefficients are cmax ≥ c( j)

p ≥ cmin > 0; kmax ≥ k( j)
p ≥ kmin > 0 for all phases p = s, l, and

domains j = 1, . . .NMAT .

For simplicity of notation when reviewing literature as well as in the proofs of some results we
assume the following. (More realistic cases are given in examples.)

Assumption 1.2. Let θ satisfy homogeneous Dirichlet b.c. θ|∂Ω = 0. We also assume that some initial
value winit ∈ L2(Ω) is given.

Last but not least, our focus in this paper is on the nonlinear relationship α given as one of the three
specific choices α(S T ), α(S T )ε , α(P) defined in (1.2) which come from phase change problems. However,
our results apply to other possible α(·) with properties summarized in Assumption 1.3. These properties
are well known for α(S T ), α(S T )ε ; see, e.g., [25]. For α(P) in the permafrost problem, these properties
follow from the algebraic formulas discussed in Section 5.

Assumption 1.3. We assume that α satisfies one of the following properties (a)–(c), similar to (ST),
(ST)ε , (P), respectively: (a) α is a maximal monotone graph with a non-injective Lipschitz inverse
β = α−1, similarly to αS T , (b) α is a monotone strictly increasing function which is piecewise smooth
and globally Lipschitz, with an injective Lipschitz inverse, similarly to αS Tε , (c) α is a smooth strictly
increasing globally Lipschitz function which has one point of non-differentiability (similar to αP).

2. Formulations and approximation of Stefan problem in a single material

In this section we provide details on (ST) and (ST)ε . We suppress these superscripts now. A
description of the variables used in this paper is given in Table 1.

2.1. Stefan problem

We follow closely [27] as well as the applications literature [28] for thermodynamics of multiple
phases. We consider the temperature field θ(x, t), x ∈ Ω, t > 0 and define Ωl = {x ∈ Ω : θ > 0}, Ωs =

{x ∈ Ω : θ < 0}, with Ql,Qs defined analogously. We also consider the phase interface S = ∂Ql ∩ ∂Qs,
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Table 1. Variables and symbols used in this paper. The units are chosen for consistency with
the literature; [26] e.g..

Variable Description Units

θ Temperature [◦C]
w Internal energy (enthalpy) density [J/cm3]
q Heat flux [J/cm2 s]
χ Water fraction [−]
c Volumetric heat capacity [J/cm3 ◦C]
k Thermal conductivity [J/cm s ◦C]
L Latent heat of fusion/melting [J/cm3]
u Kirchhoff temperature [J/cm s]
η Porosity [−]
χw Unfrozen water content [−]

Domains Description Units

x ∈ Ω ⊂ Rd Spatial variable in the domain of heat conduction [cm]
t ∈ (0,T ) Time variable and interval [s]
(x, t) ∈ Q Space-time cylinder [(cm, s)]
NMAT Number of different materials [−]
Ω( j) Subdomain with material j = 1, . . .NMAT [−]

Relationship Description

θ = β(w) Temperature-enthalpy relationship
w ∈ α(θ) Enthalpy-temperature relationship
u = βK(w) Kirchhoff temperature-enthalpy relationship
w ∈ αK(u) Enthalpy-Kirchhoff temperature relationship
Superscript Choice of constitutive relationships
S T Stefan problem
S Tε Regularized Stefan problem
P Permafrost model
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and S t its instance at time t. The motion of S t is described by its velocity v, with the normal component
v · ν. In turn, the normal n to S is oriented towards Ql, with components (nx, nt) with nx parallel to ν,
so that we have nt = −v · nx.

We recall first the so-called strong (classical) formulation of Stefan problem: we seek the tempera-
ture θ in each region Ωp, p = s, l which satisfies the heat equation

∂t(cθ) + ∇ · q = f ; q = −k∇θ, x ∈ Ωp. (2.1a)

The first part of (2.1a) is the energy conservation involving heat flux q, external source f , and the
internal energy cθ dependent on the temperature. The second part is the Fourier heat conduction law.

The coefficients of volumetric heat capacity c and heat conductivity k depend on the phase of a
material; see Table 2 for typical values. In this paper we consider the simplest realistic case in which
c, k are piecewise constant in each Ωs,Ωl, respectively.

c(θ) =

cs, θ < 0
cl, θ > 0

, k(θ) =

ks, θ < 0
kl, θ > 0

. (2.1b)

One can extend (2.1b) to θ = 0 using arithmetic averages [27](IV.4.1); see also Section 3.2.3.

2.1.1. Free boundary

Finding the free boundary S = ∂Ql ∩ ∂Qs, is part of the problem, with S (x, t) : θ(x, t) = 0. Addi-
tionally, the Stefan condition governs the velocity of S t as follows

[(ql − qs) · ν] = Lv · ν; or [(kl∇νθl − ks∇νθs] = −Lv · ν; (2.1c)
or [(kl∇θl − ks∇θs] · nx = Lnt

where ν is the unit normal to S t = S ∩Ω × {t}.
The strong (classical) form of the Stefan problem seeks {S , θ}, with θ is expected to have con-

tinuous derivatives to all the relevant order in Q \ S . As is well known, such a solution may not
exist [27](v)Section IV.1. Hence, there is need to define weak solutions of (2.1).

2.2. Weak formulation

The weak form of (2.1) is derived upon integration by parts using test functions from D(Q) and
assuming that θ ∈ C(Q) but that its derivatives need only be in L1(Q \ S ). The energy conservation
(2.1a) is written in all of Q, and the weak form, in the sense of distributions, reads

∂tw + ∇ · q = f ; q = −k∇θ, in D′(Q). (2.2a)

The definition of enthalpy w follows by integration of parts of (2.2a) written in the sense of distri-
butions, the use of (2.1a)–(2.1c) along with the assumption that S is smooth and θ continuous across
S ; see, e.g., [27](IV.1p.101) [25](A1 p244). This definition “translates” the Stefan condition (2.1c) as
follows, in one of the many variants

w = cθ +
L
2
φ; or w = cθ + Lχ. (2.2b)
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Here φ is the order (phase) parameter and χ =
φ+1

2 is the water fraction. In equilibrium, these are set
to φ = 1, χ = 1 in Ωl and φ = −1, χ = 0 in Ωs. On S where θ = 0, φ and χ are independent variables
determined uniquely by the heat content w; in particular, 0 ≤ χ = w

L ≤ 1 when θ = 0. However, when
written in terms of temperature, the relationships (θ, χ) or (θ, φ) appear multi-valued

φ ∈ sgn(θ) =


−1, θ < 0
[−1, 1], θ = 0
1, θ > 0

, χ ∈ H(θ) =


0, θ < 0
[0, 1], θ = 0
1, θ > 0

. (2.3)

This only appears when the fact that χ (and φ) are independent variables is ignored.
The definition (2.2b) can be also explained from thermodynamic principles: here we have dw =

c(θ, χ)dθ + Ldχ which expresses a general dependence of c on θ in (2.1b) as a weighted fraction of the
heat capacities cl in the liquid and cs in solid phases

c = clχ + cs(1 − χ), (2.4)

with a possibly variable cp = cp(θ). Then one integrates dw = cdθ + Ldχ to yield

w(θ, χ) =

∫ θ

θ f r

[
cl(υ)χ(υ) + cs(υ)(1 − χ(υ))

]
dυ + Lχ. (2.5)

This formula implies (2.1b) and has a nice nontrivial counterpart in permafrost; see Section 5.
In relaxation or in phase field models, i.e., away from equilibrium, φ is not given by (2.3), but is

governed by its own dynamics, with its range possibly outside [−1, 1]. We describe and illustrate such
models in Section 2.4.1.

2.2.1. Kirchhoff transformation

The analysis of (2.2) proceeds after we change variables and write

∂tw − ∆u = f , w ∈ αK(u) ≡ u = βK(w); or ∂tαK(u) − ∆u 3 f . (2.6)

The variable u is called the “Kirchhoff temperature” and is distinguished from the true temperature θ.
To transform (2.2) to (2.6) we replace k∇θ = k(θ)∇θ = ∇u with u(θ) =

∫ θ

0
k(r)dr, which, with (2.1b),

gives

u = u(θ) =

klθ, θ ≥ 0,
ksθ, θ ≤ 0

, or θ = θ(u) =

 u
kl
, u ≥ 0,

u
ks
, u ≤ 0

. (2.7)

Next, from (2.2b) with (2.1b) we have the relationships for (θ,w)

θ = β(w) =


w
cs
, w < 0

0, w ∈ [0, L]
w−L

cl
, w > L

≡ w ∈ α(θ) =


csθ, θ < 0
[0, L], θ = 0
L + clθ, θ > 0

. (2.8)

Electronic Research Archive Volume 30, Issue 4, 1477–1531.



1485

Finally, we combine (2.8) with (2.7) and see that u = u(θ) = u(β(w)) = βK(w) with

u = βK(w) =


ksw
cs
, w < 0

0, w ∈ [0, L]
kl(w−L)

cl
, w > L

≡ w ∈ αK(u) =


csu
ks
, u < 0

[0, L], u = 0
L + clu

kl
, u > 0

. (2.9)

We see that β and βK are non-injective functions, while α and αK are maximal monotone graphs, i.e.,
the range of identity plus the graph is R, and they are monotone. The functions βK, β are Lipschitz,
with Lipschitz constants

Lβ = max{c−1
s , c

−1
l }; LβK = max{ksc−1

s , klc−1
l }. (2.10)

The functions βK, β along with the graphs αK, α are affine bounded, i.e., there are constants Cβ =

max{c−1
s , c

−1
l , Lc−1

l },CβK = max{ksc−1
s , klc−1

l , Lklc−1
l } and Cα = max{cs, cl, L},CαK = max{csk−1

s , clk−1
l , L}

with which

|β(w)| ≤ Cβ(1 + |w|); |βK(w)| ≤ CβK(1 + |w|), ∀w ∈ R, (2.11a)
|w| ≤ Cα(1 + |θ|),∀θ ∈ R,w ∈ α(θ); (2.11b)

|αK(u)| ≤ CαK(1 + |u|),∀u ∈ R,w ∈ αK(u). (2.11c)

2.2.2. Approximations of (ST)

There are many ways to approximate a multi-valued graph α (or αK, sgn or H) by a single-valued
Lipschitz function so that its inverse is injective. One very specific (one-sided) approximation is the
Yosida approximation

αλ = 1
λ
(I − (I + λα)−1). (2.12)

We see that Lαλ = O(λ−1) which blows up as λ ↓ 0. For this and other similar approximations of αS T

by αS Tε there is no jump of q ·n or of w across the free boundary S . Rather, these variables vary sharply
in the region

Ωε
l = {x : 0 < θ(x) < ε}. (2.13)

See, e.g., illustration in Figure 1(c).

2.3. Well-posedness

The models (1.1) with (1.2) and in particular (2.2) and (2.6) are nonlinear monotone evolution
equations with maximal monotone graphs α. Theory for such equations in Banach spaces is given
in [25]; the specific case of Stefan problem is discussed in [27] in an abstract Hilbert space setting; see
also [3].

We recall only the case of Dirichlet homogeneous boundary conditions, in the Hilbert space case
with V = H1

0(Ω). We seek w ∈ L∞(L2)∩H1(H−1), u ∈ L2(V) such that u = βK(w), w(·, 0) = winit ∈ L2(Ω)
and (see, e.g., [4])

(∂w
∂t , ψ) + (∇u,∇ψ) = 0, ∀ψ ∈ V. (2.14)
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Assuming some smooth enough winit is given, the maximal monotonicity of αK and the fact that
both αK and α−1

K are affine bounded are sufficient for [27](1.20, p34; Thm.II.5.1, p59). In particular,
with f ∈ L1(L2) ∩ L2(V ′), and winit ∈ L2(Ω), one obtains that there exists a unique solution

∫ T

0
u ∈

L∞(V)∩H1(L2) (note that this implies u ∈ L2(L2)). Further refinement of the theory [27](Prop.II.1.3 and
Thm.II.1.4)) [27] gives u,w ∈ L∞(L2), with uniqueness in [27](Thm 5.2). Further regularity [27](Thm
2.5) indicates u ∈ H1(L2)∩ L∞(V). Since θ can be found from (2.7) which is continuous, one generally
obtains similar qualitative properties of θ as those of u.

These results indicate quite low regularity of w in contrast to the case when αε is single valued
and Lipschitz continuous, since then wε has the same regularity as uε [27](Thm 2.6). Further results
hold for in-homogeneous Dirichlet data as long as it is smooth enough; these results elucidate the
connection between weak and strong formulations [27](IV.6). Under nonlinear Neumann boundary
conditions [29] for NMAT = 1 one obtains θ ∈ L2(H1),w ∈ L2(L2).

2.4. Approximation of solutions to Stefan problem in a single material: review

In this section we review several approaches towards the numerical approximation of (2.2) and
the Kirchhoff transformed version (2.6) which combine time-stepping with some spatial discretization
such as finite elements or finite differences. We focus on the traditional mesh-based PDE discretization;
other approaches include explicit tracking of the free boundary, but without solving for (θ,w) on a
mesh; see, e.g., [30] for review. These latter approaches do not apply very well to the simulation at
pore-scale, permafrost, or heterogeneous materials.

In Section 2.4.1 we recall and illustrate time stepping schemes. Next in Section 2.4.2 we review spa-
tial discretization approaches focusing on piecewise linear approximations uh ∈ Vh ⊂ V; the methods
differ by how wh is approximated and how (ST)ε is selected.

2.4.1. Time stepping for an ODE

Consider some f = f (t), and A > 0 in

w′ + Aθ = f (t), θ(t) = β(w(t)), t > 0; w(0) = winit. (2.15)

We illustrate several time discrete schemes which approximate the relationship of (θ,w) either by reg-
ularization, Chernoff formula, or by relaxation.

The backward Euler scheme is

wn + τAθn = τ f n + wn−1, wn ∈ α(θn), ∀n ≥ 1, w0 = winit. (2.16)

and the solution for every n ≥ 1 is guaranteed from Lemma 7.1; in practice, we use Newton’s iteration
substituting θn = β(wn).

The solution to (2.15) can be also computed using so-called Chernoff formula [4]

θn + τ
µ
Aθn = τ

µ
f n + β(wn−1), (2.17a)

wn = wn−1 + µ(θn − β(wn−1)), ∀n ≥ 1, w0 = winit, (2.17b)

where µ is the relaxation parameter, a constant approximation to 1
β′

, which satisfies 0 < µ ≤ L−1
β , with

Lβ from (2.10). The Chernoff formula offers a way to linearize the non-linear relationship β. Chernoff
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Figure 2. Numerical solution of Example 2.1 using Backward Euler, Chernoff formula,
Smooth (S) and Non-smooth (NS) phase relaxation approximation. The thin black line shows
the exact solution (7.1). From left to right: plots of θ(t), w(t) and (θ,w).

formula does not require any nonlinear iteration, since it solves a linear problem for θ followed by an
update of wn. However, it produces consistency errors growing with µ−1.

We also consider the phase-relaxation approach: we replace the equilibrium relationship (2.8) w =

cθ + Lχ = cθ + L
2 (φ + 1) in which φ ∈ sgn(θ) by a coupled problem which allows φ = φ(t) to

evolve towards this equilibrium written as sgn−1(φ) 3 θ. [27](V.1). This relaxation is another form
of approximation to the equilibrium problem; see [31] for the PDE (2.2). In a more general phase-
field approach, one can consider an additional dissipative term similar to Aφ, plus a coarsening term
proportional to φ which acts to counteract Aφ; these together moderate the evolution of φ coupled to
the PDE (2.2).

Let ε > 0 and γ > 0. The phase-relaxation approach to (2.15) is given as

w′ + Aθ = f , w = c(θ)θ + L
2 (φ + 1), w(0) = winit, (2.18a)

φ′ + 1
ε
g(φ) = γθ, φ(0) = sgn(winit). (2.18b)

Here g is one of two possible choices which approximate sgn−1(·) and contain the linear destabilisation
term. We consider g◦(φ) = φ3 −φ similar to that in Allen-Cahn equation, [32] which we call “smooth”.
The other is g(φ) = g�(φ) = sgn−1(φ) − φ which we call “non-smooth” [27](Section VI.5) [33,34]. We
discretize (2.18) fully implicitly and solve by Newton’s iteration

wn − wn−1 + τAθn = τ f n, wn = c(θn)θn + L
2 (φn + 1), w0 = winit, (2.19a)

φn − φn−1 + τ
ε
g(φn) = τγθn, φ0 = sgn(winit). (2.19b)

Example 2.1. We solve (2.15) with α = αS T given by (2.8) with parameters in Table 2(W). We choose
A = 10−2,winit = −1, and a forcing term f (t) = sin

(
πt

3600

)
for t ∈ [0, 3600]. We derive the exact solution

given in Section 7.1.
In Figure 2 we plot numerical solutions using τ = 40 and one of the three schemes: fully implicit,

Chernoff formula, and phase relaxation with (2.18). For Chernoff formula, we choose µ = 1.5 so that
µ ≤ L−1

β = cs = 1.90. For phase relaxation, the key challenge here is a choice of the parameters
ε = 1/10, γ = 1, so that the time-relaxed dynamics resembles that of (2.15).

In the end we see that the fully implicit solution (2.16) trails the exact solutions θ(t) and w(t) fairly
well. The Chernoff formula and phase relaxation approaches seem to have less close agreement, es-
pecially in w(t). While they offer other advantages, this experiment informs our subsequent choice to
focus on the fully implicit time stepping.
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Table 2. Thermal properties of some materials including water, components of phase change
materials (PCM), human tissue, minerals, rock grains and insulators. Given are the latent
heat of fusion/melting L, volumetric heat capacity c, thermal conductivity k, and melting
point. For each material, the available thermal properties of its solid (s) and liquid (l) phase
are provided. (∗) Depends on proportion of silicone. (∗∗) Depends on water content. The
properties of (W) component will be used frequently below.

Material L cs/cl ks/kl Melting Point Ref.
units [J/cm3] [J/cm3 ◦C] [J/cm s ◦C] [◦C]

(W) Water/ice 306.00 1.90/4.19 0.0230/0.0058 0 [26]
Paraffin solid/liquid 183.18 1.58/1.84 0.0040/0.0040 60 [35]
Rubitherm RT 55 149.60 1.76/1.54 0.0020/0.0020 55 [36]
Octadecanol (silicone)∗ 168 to 213 0.002 to 0.002 55 to 60 [37]
Human skin (epidermis)∗∗ 0.8 0.0019 [38, 39]
Human muscle 0.0017 to 0.011 [38]
Silica 0.7 0.014 1713 [39, 40]
Styrofoam 0.00029 [41]

2.4.2. Spatial approximations

Early approaches to numerical solution to (ST) include the nodal finite difference approach in [42]
for which convergence (but no specific order) is proven, independently of ε in the regularization (ST)ε
of (ST) problem. In [26] some time error analysis is provided.

The majority of rigorous work is on nodal piecewise linear approximations Vh 3 uh ≈ u ∈ V in
(2.14); we call these P1-based. The approaches differ in time stepping (as in Section 2.4.1), in how
the original problem (ST) is approximated by some (ST)ε , and in how wn

h is defined. In particular, [43]
prove L2(L2) order of convergence close to O(h) for fully implicit approximations for (ST)ε , when
ε = O(h2), τ = O(h2) but require ∂twε to be bounded, and refer actually to simulations with the (P)
problem discussed in [7] instead of (ST)ε . In turn, [4, 5, 44] approximate solutions for some (ST)ε
rather than (ST); [4, 5] make use of the Chernoff formula similar to (2.17), while [44] and [31] use
phase relaxation; these are closely related as shown in Figure 2.

The main difference between the individual approaches is in the treatment of spatial integrals
∫

Ω
wψ

and
∫

Ω
uψ with ψ ∈ Vh, and in adjustments to how wh is found. In some schemes the numerical

integration, or one of projection operators such as P0
h, P

1
h,Πh are used. In some, piecewise constants

and wn
h ∈ Mh are used, this is similar to our P0-P0 schemes to be defined in Section 3.

The theoretically estimated convergence error depends, as usual, on h, τ and ε. Generally, θ is
predicted to be approximated well, qualitatively and quantitatively, by all the P1-based schemes, with
the order about O(h), in the weaker norms. However, the errors w−wh are, as expected, higher, and wh

appears “smeared” near the free boundary S t.
We set up detailed experiments and provide illustrations as part of our subsequent studies of P0-P0

schemes for (ST) problem in comparison to P1-based schemes. Our tests given in detail in Section 7.3
along with fine details on the schemes show somewhat better rates than those predicted and tested
in [26,31,44]. Of the schemes studied, [5] produces the best approximation and convergence rates. We
acknowledge the limitations of our study only in d = 1, but believe these provide good starting point
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for subsequent comparisons with P0-P0 schemes.

3. Approximation to Stefan problem using P0-P0 finite elements and CCFD for a single
material

In this section we propose P0-P0 spatial discretization for (1.1) combined with any one of (1.2)
combined with fully implicit in time scheme. We start with a mixed finite element formulation for
(1.1), using M = L2(Ω) for scalar unknowns such as θ and w, and q ∈ X = Hdiv(Ω) which features
continuous normal components across any smooth surface. Next we choose P0-P0 approximations
θh,wh ∈ Mh ⊂ M. We also seek fluxes qh ∈ Xh = RT[0] on a rectangular grid as in [22, 45]. The pair
(Xh,Mh) is a stable pair for the Darcy problem satisfying the Banach-Neĉas-Babuŝka conditions [46].
For linear problems they approximate the fluxes and scalar unknowns to the same order O(h), with
superconvergence for smooth solutions and some norms [45–48].

Remark 3.1. For nonlinear relationship represented by (1.2) we encounter here the major challenge.
The choice X = Hdiv works for the (ST)ε and (P) problems when α(·) in (1.2b) and (1.2c) is single-
valued. However, in the Stefan problem (ST) with (1.2a), the fluxes q < Hdiv(Ω) since their normal
takes a jump across S t, which ties to the multivalued character of α(·). This raises concerns on the
approximability of q < X by qh ∈ Xh. We acknowledge this difficulty and formally develop the theory
only for the single-valued α such as for (ST)ε and (P) problems, but we extend the algorithms in Xh×Mh

to the (ST) problem. We defer further study to future considerations.

The P0-P0 algorithm has several attractive features. 1) First, the normal fluxes of qh ∈ Xh are
continuous, which leads to conservative schemes across element and material interfaces; to support
this, we work in the (θ,w) formulation instead with Kirchhoff variables (u,w). 2) Second, if θh is
piecewise constant, it is natural to define wh = α(θh) ∈ Mh in a consistent fashion so that (2.8) is
enforced at every degree of freedom. 3) Third, the P0-P0 equivalent to the mixed framework features
approximation properties known from the literature; in particular, the results in [22] are most relevant
for the present nonlinear case of (ST)ε and (P) problems. In fact, we demonstrate that the convergence
in (θ,w) is not inferior to that for P1-based schemes from Section 2.4 even for (ST) problem; this is
done in Section 3.4. 4) Last, the approximations, up to quadrature, are equivalent to a CCFD scheme for
θh ∈ Mh from which the fluxes qh ∈ Xh follow post-processing; these features, recalled in Section 3.2,
make implementation easy and allow its extensions to more complex nonlinear problems and multiple
materials.

Below we first set-up the notation and recall main results on the mixed finite element discretization
leading to P0-P0 algorithm. For simplicity of notation we consider Ω ⊂ Rd, d = 2 and assume that it is
well covered by a rectangular grid T h = (ωi j)i j so that Ω =

⋃
i j ωi j, with maxi j |ωi j| = maxi j hx,ihy, j =

h2. Each cell ωi j ∈ T
h has a center at some (xi j, yi j) and edges γi−1/2, j, γi, j−1/2, γi+1/2, j, γi, j+1/2, when

listed clockwise from the left edge. Throughout this section we use Assumption 1.2.

3.1. P0-P0 scheme from discrete mixed formulation for linear parabolic problems

We recall the mixed formulation for the linear case of (1.1) and (1.2b) with L = 0 but allowing
k = k(x), c = c(x), with some given initial condition w(x, 0) = winit(x). We have then k−1q = −∇θ; ∂tw+

∇ · q = f ; w = α(θ) = cθ. Its weak formulation follows after we multiply each of the equations in (1.1)
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by test functions ψ ∈ X, η ∈ M, integrate by parts, respectively, and apply the boundary conditions.
We seek (q, θ) ∈ X × M which satisfy

(k−1q, ψ) − (θ,∇ · ψ) = 0, ∀ψ ∈ X, (3.1a)
(∇ · q, η) + (∂tw, η) = ( f , η); ∀η ∈ M; w = α(θ) = c(x)θ. (3.1b)

(In these equations the symbols (a, b) mean inner product
∫

Ω
ab in L2(Ω) as given in Section 1.1). The

approximations qn
h, θ

n
h with wh = α(θh) are formulated after (3.1) is discretized in time, and when at

each time step tn we seek (qn
h, θ

n
h) ∈ Xh × Mh which satisfy a system similar to (3.1). We make these

precise now.
We consider the well known spaces (Xh×Mh) built on T h with Xh = RT[0], the lowest order Raviart-

Thomas space on rectangles [22, 45, 48]. The space Mh contains piecewise constants on T h; the basis
functions spanning Mh are simply 1ωi j , and θh|ωi j = Θi j associated with the cell centers of each ωi j. The
vector valued functions in Xh are tensor products of piecewise linears in one coordinate with piecewise
constants in the other. In particular, (qh)1 is identified by their edge values at the left and right edges
(i±1/2, j) so we have, e.g., (qh)1|γi+1/2, j = qi+1/2, j; analogously (qh)2 is identified by values at the bottom
and top edges i, j ± 1/2, respectively, (qh)2|γi, j−1/2 = qi, j−1/2. The basis functions for the vector valued
functions in Xh are ψi±1/2, j for (qh)1 and ψi, j±1/2 for (qh)2. Let (Qn,Θn) denote the degrees of freedom
for qn

h, θ
n
h in their bases.

We define the fully implicit approximations (qn
h, θ

n
h) ∈ Xh × Mh to (3.1) as those that satisfy

(k−1qn
h, ψ)h − (θn

h,∇ · ψ) = 0, ∀ψ ∈ Xh, (3.2a)

(∇ · qn
h, η) + (

wn
h − wn−1

h

τ
, η) = ( f n, η); ∀η ∈ Mh; wh = α(θn

h). (3.2b)

We applied here numerical integration to the first integral in (3.2a) and replaced (k−1qn
h, ψ) by its ap-

proximation (k−1qn
h, ψ)h. Specifically, the following numerical integration is used: on every ωi j =

(xi−1/2, xi+1/2)× (x j−1/2, x j+1/2), the trapezoidal (T) scheme over (xi−1/2, xi+1/2) and (M) midpoint scheme
on (x j−1/2, x j+1/2) for the first component of qh ·ψh, and M × T scheme for the second component. This
leads to some useful simplifications, very well known and described in [49]. In particular, (k−1qn

h, ψ)h

gives KQ with a diagonal matrix K of positive edge factors Ti±1/2, j and Ti, j±1/2 involving k−1; see
Section 7.5 for more details. We also get (∇ · qn

h, η) = −BQn while −(θn
h,∇ · ψ) becomes BT Θn. The

linear system reads

KQn + BT Θn = 0, (3.3a)

−BQn +
1
τ

Wn = Gn, Wn = CΘn. (3.3b)

with Gn = Fn + 1
τ
Wn−1. Note that C is the diagonal matrix of positive coefficients c|ωi j .

Remark 3.2. After we multiply the second equation in (3.3) by (−1), the system (3.3) has a saddle-

point structure. Thus it is well-posed, i.e., the operator N =

[
K BT

B −C

]
is an isomorphism [45](

Prop.3.3.1 and Thm 3.6.2), because K is coercive (positive definite) on the kernel of B, C is positive
definite. and B is surjective from Xh → Mh.
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Remark 3.3. The system (3.3) can be easily modified to account for non-homogeneous Dirichlet
boundary conditions; see Section 7.5 for details.

Connection to CCFD. Since K is diagonal, every degree of freedom of Qn has an easy discrete
interpretation, thus one can eliminate Qn, and (3.3) is equivalent to

(τBK−1BT + C)Θn = τGn. (3.4)

This system is known as the cell-centered finite difference (CCFD) formulation. Now BK−1BT is
symmetric and at least nonnegative definite for Neumann boundary conditions, and positive definite for
Dirichlet conditions. Since C is positive definite, we have a unique solution Θ from which Q follows.

3.1.1. Literature notes

For linear problems such as (3.1), mixed FE solution (qh, θh) features optimal first order convergence
of the errors ||q − qh||X and ||θ − θh||M for the choice of RT[0] × Mh [46]. For Darcy and potential flow
problems the quadrature error is lower order, and the mixed approach provides formal interpretation
of the CCFD algorithm [49]. For parabolic problems under Neumann boundary conditions and strong
assumptions on the smoothness of θ and q, [48] shows that

||θh − θ||∞,2 = O(τ + h2). (3.5)

This order, is, in general, not featured for nonlinear problems such as (1.1).

3.2. P0-P0 scheme for nonlinear heat equation with single-valued nonlinearity

Now we consider (1.1) or Kirchhoff-transformed problem (2.6) with (1.2b) or (1.2c) in the mixed
formulation. We seek (q, θ) or (q, u) ∈ X × M and replace w = cθ by w = α(θ) or w = αK(u) in (3.1b)
to get the weak mixed and discrete mixed formulations similar to that for (3.1).

3.2.1. Literature for nonlinear problems in mixed form

The challenge, well described in [22] is that one must respect the regularity of the unknowns (q, θ,w)
which is usually inferior to that for the linear case when ∂tw ∈ L2(Ω). In particular, when βK(·) has
derivative vanishing pointwise, it may happen that ∂tw < L2(Ω). This difficulty is partially overcome
with a Kirchhoff transformation and upon integration in time, and/or discretization in time; we refer
to e.g., [22, 46, 50] for thorough discussion. The approach of taking finite differences in time is also
known as the Rothe or Crandall-Ligget or Hille-Yosida framework [25, 29].

For nonlinear problems which are Kirchhoff-transformed the mixed framework is set-up for the
solutions (wn

h, u
n
h, q

n
h) in [22, 23, 51]. However, the error estimates depend on the smoothness of w and

u. Disregarding the error in the fluxes, these results, when applied to (1.1) state that, as in e.g., [22]

||Wn − wn||H−1(Ω) ≤ C(u, q, βK; h),
n∑

k=1

(Wk − wk,Uk − uk)τ ≤ C(u, q, βK; h),

with C,C ↓ 0 as h ↓ 0 depending on the smoothness of u, but with the order not specified directly.
The work [22] does not directly address existence and uniqueness of the solutions. Overall, the results
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in [22,23,51] are well-suited for problems such as Richards equation, with α which features somewhat
different challenges than those for (ST), (ST)ε , (P) problems listed in Assumption 1.3.

3.2.2. P0-P0 algorithm for nonlinear single-valued function

We extend now (3.3) to the nonlinear case when k = k(θ) and w = α(θ), working with (θ,w) as
scalar unknowns. We define some approximations c̃n ≈ c(θn) and k̃n ≈ k(θn), and take some α̃ ≈ α; we
make these precise in Section 3.2.3. The fully discrete problem reads

K̃Qn + BT Θn = 0, (3.6a)

−BQn +
1
τ

Wn = Gn, Wn = α̃(Θn). (3.6b)

This nonlinear system uses K̃ based on k̃. We prove first that the system has a unique solution; this is
needed since Remark 3.2 does not apply to this nonlinear case. We complete details on the algorithm
in Section 3.2.3.

Lemma 3.1. Let Assumption 1.1 hold on k̃, and let K̃ and B be computed as in Section 3.1; in
particular, let K̃ be positive definite. Then there exists a unique solution (Q,Θ,W) to (3.6) and its
generalization

K̃Q + BT Θ = 0, (3.7a)

−BQ +
1
τ

W = g, W ∈ α̃(Θ). (3.7b)

Proof. We discuss only (3.7) since the result for (3.6) follows as its special single-valued case. We
proceed in one of two alternative ways which are each worthwhile discussing. One is that we rewrite
(3.7) eliminating Q as in (3.8)

BK̃−1BT Θ + 1
τ
W = G,W ∈ α̃(Θ). (3.8)

We set A = BK̃−1BT which is at least nonnegative definite as discussed earlier. The system is as in
Lemma 7.1, thus the existence of a unique solution (Θ,W) follows, with Q found by postprocessing
from (3.6a).

Yet another proof follows ideas in [50](Thm 3.2), and is worthwhile mentioning because it extends
to the abstract weak formulation of (1.1) in (X,M) for the case when q ∈ X. We note that the system
(3.7) can be written asM([Q,Θ]T ) = [0,G]T ; the nonlinear operatorM a sum of diagonal matrix of

maximal monotone operators
[
K̃ 0
0 ∂Φα

]
(we define Φα as in Lemma 7.1), and the accretive linear

thus Lipschitz operator
[

0 BT

−B 0

]
. This means thatM is maximal monotone, and that there exists a

unique solution to (3.7).
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Figure 3. Illustrations of a grid over Ω, or over Q, for (ST) problem and (ST)ε . Left: the
free boundary S is not aligned with grid cell interfaces, and q < Hdiv(Ω). Middle: the
approximation of q by qh should be reasonable in the (shaded) region (Ωh

l (tn)∪Ωh
s(t

n)) defined
in (3.11), even if its complement in Ω is not empty. Right: in (ST)ε , q ∈ Hdiv(Ω) but q features
sharp gradient in the region Ωε defined in (2.13).

3.2.3. Details

Now we need to define k̃, c̃ and α̃. These are needed since we extend (3.3) to the nonlinear case
when k = k(θ) and w = α(θ). Typically, we assign these cell-wise based on the Θ = (Θi j)i j ≡ θh

k̃i j =


kl, ωi j ⊂ Ωh

l

ks, ωi j ⊂ Ωh
s

k∗, ωi j ⊂ Ωh
0

; c̃i j =


cl, ωi j ⊂ Ωh

l

cs, ωi j ⊂ Ωh
s

c∗, ωi j ⊂ Ωh
0

. (3.9)

(The value k∗, c∗ can be one of many including kl+ks
2 and cl+cs

2 , respectively [27](IV.4.1)). Also,

given (Θi j)i j, define Ωh
l =

⋃
Θi j>0

ωi j; Ωh
s =

⋃
Θi j<0

ωi j; Ωh
0 =

⋃
Θi j=0

ωi j. (3.10)

(In practice, the set Ωh
0 is empty). From these the formula for α̃ follows by (2.8).

Lastly, we need to make precise which Θ we use in (3.10). When entering a new time step tn, we
have the previous time step value Θn−1. When iterating on (3.6), in iteration m, we have Θn,(m−1) to
denote the iteration-lagged value, while we seek the new Θn,(m). We must therefore make precise in
(3.10) whether it depends on the old Θn−1, or on iteration-lagged value Θn,(m−1). Adopting the notation
for the sets in (3.10) from that for Θ we get, e.g., Ωh,n−1

l or Ω
h,n,(m−1)
l . In other words, we can calculate

k̃i j from (3.9) as either kn−1
i j or kn,(m−1)

i j . These choices give the matrix K̃ = Kn−1 or K̃ = Kn,(m−1),
respectively. Thanks to Assumption 1.1 these have positive entries; see also Section 7.5. Therefore
Lemma 3.1 applies to (3.6).

Remark 3.4. The sets in (3.10) are not the same as

given t > 0, and(Ωl(t),Ωs(t)), define Ωh
l (t) =

⋃
ωi j⊂Ωl

ωi j; Ωh
s(t) =

⋃
ωi j⊂Ωs

ωi j. (3.11)

If neither of Ωl(t),Ωs(t) is empty, Ω \ (Ωh
l (tn) ∪Ωh

s(t
n)) , ∅, as illustrated in Figure 3.
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3.2.4. Nonlinear solver

Next we discuss the nonlinear solver for (3.7). The solution to (3.7) exists and is unique according
to Lemma 3.1, but the proof makes a reference to some (iterative) optimisation algorithm to find the
desired minimizer Θn.

In practice, the use of such a minimisation algorithm may be tedious and is unnecessary. Instead, we
solve the problem using Newton’s method: we rewrite (3.8) from the proof of Lemma 3.1 in residual
form using the single-valued inverse β of α.

In each iteration m = 1, 2, . . ., given Wn,(m−1), Θn,(m−1) we solve

F1(Θn,(m),Wn,(m)) = τB(K̃n,(m−1))−1BT Θn,(m) + Wn,(m) − τGn = 0, (3.12a)
F2(Θn,(m),Wn,(m) = Θn,(m) − β(Wn,(m)) = 0. (3.12b)

This scheme means we are solving (3.12) simultaneously for two variables Θn,Wn. However, the
second part of (3.12) is diagonal, thus we can, instead, eliminate Θn,(m) and solve the problem in terms
of Wn,(m).

It is known that Newton’s iteration is not guaranteed to converge for an arbitrary initial guess even
for smooth F = (F1, F2). Now the nonlinear function β in (3.12) is only piecewise differentiable, but
such case is covered by the theory and practice of semi-smooth Newton methods in [52]. In our tests
the Newton solver is robust and essentially grid-independent as long as the time step τ is not too large.
We discuss performance of this iteration in Section 3.4.

3.3. Addressing multivalued (ST) problem with P0-P0

As we showed in Section 3.2, there is no difficulty formulating P0-P0 algorithm and solving the
fully discrete case of (1.1) with multi-valued α (1.2a).

In fact, given Θn we get Qn from (3.6a); this gives qn
h ∈ Xh. However, the true q < Hdiv. Thus any

attempts to quantify the approximation error for qh−q must take into account this important discrepancy
expressed already in Remark 3.1. Thus there is a question whether the use of qh ∈ Xh is appropriate
for the (ST) problem. This challenge is somewhat more complex than the pointwise degeneracy with
β′ = 0 pointwise handled, e.g., in [22], which still keeps q ∈ X.

At this time we see various avenues to address this challenge. One is to solve (ST)ε formally, and
create a sequence qεh ∈ Xh for a collection of ε > 0 adjusted to h, and defining q̃n

h as their limit. The
fluxes qεh would be reasonably accurate approximations to qε ∈ X, and their limit q̃n

h to q < X. One
other is to find some approximation q̃n

h to q by postprocessing qn
h. One can also consider projecting q

to Xh. We defer further analyses of possible improvements to q − qn
h to future work.

3.4. Results of P0-P0 algorithm

Now we present examples and study the convergence of P0-P0 approximation for (ST) problem.
We focus on the scalar unknowns (θ,w), and defer the study of the error q − qh to future work. We
study the approximation error θerr = θ − θh and werr = w − wh. We choose only those norms that are
easy to use when analytical solution is not available, and are easy to compare to the theoretical results
on P1-based schemes. For completeness, the definitions of these norms are given in Section 7.4.1.

In convergence studies we use uniform spatial and temporal discretization. We also note that when

Electronic Research Archive Volume 30, Issue 4, 1477–1531.



1495

Figure 4. Solution to (VV) Example 3.1 with M = 10, τ = 10−2 at three different times
t = 0.01, t = 0.1, and t = 0.2.

using fine grid, the error rates, especially those for w, are sensitive to interpolation and machine preci-
sion; thus, some care in grid refinement is needed to obtain consistent rates.

The goal now is to compare the performance of our P0-P0 scheme with the P1-based schemes from
Section 2.4. These results provide confidence in our work on multiple materials, as well as guide the
choice of time step τ depending on h. We use two test cases which we call (RBC) from [26] and
another called (VV) from [44]. These examples feature an assumed free boundary S moving with
some given prescribed velocity, winit and time-dependent Dirichlet boundary conditions found from the
exact solution. For illustration, the plots of the solutions and their approximations are given in Figure 4
and Figure 5.

Example 3.1. (VV) This example from [44] is not connected to any particular physical scenario,
but results in very simple mathematical calculations. Let Ω = (0, 0.4) and T = 0.2, f = 0 and
L = c = k = 1. Note that since the data is not physical, no particular units are used, even if our code
assumes units such as those in Table 1. We have the free boundary for (2.2) S : ψ(x, t) = 0, with
ψ(x, t) = −x + t + 0.1, and

(VV)

w(x, t) = 2
(
eψ(x,t) − 1

)
+ 1, θ = w − 1 ψ(x, t) ≥ 0,

w(x, t) = eψ(x,t) − 1, θ = w ψ(x, t) < 0
. (3.13)

In experiments we stop the simulation at T = 0.2, a time at which the free boundary position is still
inside Ω. This choice helps to analyse how well the free boundary is approximated by the different
numerical schemes.

Example 3.2. (RBC) example uses realistic physically meaningful data from [26]. We have Ω =

(0, 20)[cm], L = 306[J cm−3], cs = 1.90 and cl = 4.19 [J cm−3 ◦C −1], ks = 0.023 and kl = 0.0058 [J
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Figure 5. Solution to (RBC) Example 3.2 with M = 20, τ = 500, at three different time steps
t = 20000, t = 100000, and t = 200000. See also more details in Figure 13 in Section 7.4.2.

Table 3. Parameters in Example 3.2.
s0 B vs

15 [cm] -594 [J/cm3] −5 × 10−5 [cm/sec]

sec−1 cm−1 ◦C −1]. The free boundary s(t) = s0 + vst, and

(RBC)

w = −B + (B + L)eαw(vst−x+s0), θ = (w − L)/cl x ≤ s(t),
w = −B + Beαs(vst−x+s0), θ = w/cs x > s(t),

(3.14)

where αl = vscl/kl and αs = vscs/ks, and data as in Table 2. We also use the parameters in Table 3.

3.4.1. Convergence tests

Convergence results for P0-P0 algorithm and (VV) example are given in Table 4, with τ = h/10.
We also provide the fine grid-study with h f ine = 6.4 × 10−5 in Table 5; these results are very similar to
those in Table 4, thus they validate our process for using θh f ine as a proxy for θ.

The convergence results for (RBC) using the fine grid solution and exact solution are shown in
Tables 6 and 7 respectively. We also tabulate the comparison to P1-based methods in Section 7.4.2 in
Table 13.

Summary of convergence of P0-P0 schemes: Generally, we see that our P0-P0 schemes converge
roughly with first order in θ and half order in w. These rates are similar to those for P1-P0 schemes
from Section 2.4. However, our P0-P0 schemes seem to improve on P1-based schemes qualitatively
and quantitatively; in particular, we see improvement in the quality of approximations to the enthalpy,
which seems due to the lack of consistency errors such as those for Chernoff formulas or phase relax-
ation.
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Table 4. Temperature error calculated with the exact solution in Example 3.1 (VV) as de-
scribed in Section 3.4.

(VV) example convergence rates for error with exact solution
Mx hx τ ||θerr ||∞,1 Order ||θerr ||∞,2 Order ||θerr ||2,2 Order
10 4.0 × 10−2 1.0 × 10−2 5.6635 × 10−3 - 1.1472 × 10−2 - 2.4479 × 10−3 -
50 8.0 × 10−3 2.0 × 10−2 8.6400 × 10−4 1.1682 1.8488 × 10−3 1.1342 3.9386 × 10−4 1.1352
250 1.6 × 10−3 4.0 × 10−4 1.5112 × 10−4 1.0833 3.0694 × 10−4 1.1157 6.6943 × 10−5 1.1011
1250 3.2 × 10−4 8.0 × 10−5 2.8084 × 10−5 1.0456 5.5618 × 10−5 1.0613 1.2197 × 10−5 1.0579
6250 6.4 × 10−5 1.6 × 10−5 5.4205 × 10−6 1.0221 1.0502 × 10−5 1.0358 2.3245 × 10−6 1.0300
Mx hx τ ||werr ||∞,1 Order ||werr ||∞,2 Order ||werr ||2,2 Order
10 4.0 × 10−2 1.0 × 10−2 2.3537 × 10−2 - 1.1428 × 10−1 - 2.5765 × 10−2 -
50 8.0 × 10−3 2.0 × 10−3 5.6481 × 10−3 0.8868 5.7288 × 10−2 0.4291 1.1383 × 10−2 0.5076
250 1.6 × 10−3 4.0 × 10−2 1.4820 × 10−3 0.8313 3.4627 × 10−2 0.3128 6.4965 × 10−3 0.3485
1250 3.2 × 10−4 8.0 × 10−5 2.6131 × 10−4 1.0783 1.3404 × 10−2 0.5897 3.0606 × 10−3 0.4677
6250 6.4 × 10−5 1.6 × 10−5 5.7018 × 10−5 0.9459 6.5021 × 10−3 0.4495 1.2067 × 10−3 0.5783

Mx hx τ ||θerr ||∞,L1 Order ||θerr ||∞,L2 Order
10 4.0 × 10−2 1.0 × 10−2 7.8606 × 10−3 - 1.5139 × 10−2 -
50 8.0 × 10−3 2.0 × 10−3 1.5822 × 10−3 0.9960 3.0487 × 10−3 0.9957
250 1.6 × 10−3 4.0 × 10−4 3.1399 × 10−4 1.0048 6.0509 × 10−4 1.0048
1250 3.2 × 10−4 8.0 × 10−5 6.2432 × 10−5 1.0036 1.2031 × 10−4 1.0036
Mx hx τ ||werr ||∞,L1 Order ||werr ||∞,L2 Order
10 4.0 × 10−2 1.0 × 10−2 2.7565 × 10−2 - 1.0452 × 10−1 -
50 8.0 × 10−3 2.0 × 10−3 5.7124 × 10−3 0.9779 5.7020 × 10−2 0.3765
250 1.6 × 10−3 4.0 × 10−4 1.1932 × 10−3 0.9730 2.5900 × 10−2 0.4903
1250 3.2 × 10−4 8.0 × 10−5 2.4169 × 10−4 0.9921 1.1867 × 10−2 0.4849

Table 5. Convergence error for Example 3.1 (VV) as described in Section 3.4, error calcu-
lated with fine grid where Mx, f ine = 6250 in both || · ||∞,1, || · ||∞,2 and || · ||∞,L1 , || · ||∞,L2 , in
comparison with errors calculated using the exact solution as in Table 4.

(VV) example convergence rates for error with fine grid solution
Mx hx τ ||θerr ||∞,1 Order ||θerr ||∞,2 Order ||θerr ||2,2 Order
10 4.0 × 10−2 1.0 × 10−2 5.6586 × 10−3 - 1.1462 × 10−2 - 2.4464 × 10−3 -
50 8.0 × 10−3 2.0 × 10−3 8.5860 × 10−4 1.1716 1.8394 × 10−3 1.1368 3.9202 × 10−4 1.1377
250 1.6 × 10−3 4.0 × 10−4 1.4570 × 10−4 1.1021 2.9652 × 10−4 1.1340 6.4815 × 10−5 1.1183
1250 3.2 × 10−4 8.0 × 10−5 2.2663 × 10−5 1.1562 4.5146 × 10−5 1.1695 9.9217 × 10−6 1.1661
Mx hx τ ||werr ||∞,1 Order ||werr ||∞,2 Order ||werr ||2,2 Order
10 4.0 × 10−2 1.0 × 10−2 2.0291 × 10−2 - 8.8338 × 10−2 - 1.5892 × 10−2 -
50 8.0 × 10−3 2.0 × 10−3 5.6438 × 10−3 0.7951 5.7286 × 10−2 0.2691 8.7731 × 10−3 0.3691
250 1.6 × 10−3 4.0 × 10−4 1.1927 × 10−3 0.9658 2.8148 × 10−2 0.4415 4.2063 × 10−3 0.4568
1250 3.2 × 10−4 8.0 × 10−5 2.3874 × 10−4 0.9995 1.3043 × 10−2 0.4779 1.9348 × 10−3 0.4825

Mx hx τ ||θerr ||∞,L1 Order ||θerr ||∞,L2 Order
10 4.0 × 10−2 1.0 × 10−2 7.8603 × 10−3 - 1.5140 × 10−2 -
50 8.0 × 10−3 2.0 × 10−3 1.5819 × 10−3 0.9961 3.0482 × 10−3 0.9959
250 1.6 × 10−3 4.0 × 10−4 3.1365 × 10−4 1.0054 6.0466 × 10−4 1.0051
1250 3.2 × 10−4 8.0 × 10−5 6.2148 × 10−5 1.0058 1.1999 × 10−4 1.0049
Mx hx τ ||werr ||∞,L1 Order ||werr ||∞,L2 Order
10 4.0 × 10−2 1.0 × 10−2 2.4335 × 10−2 - 1.0102 × 10−1 -
50 8.0 × 10−3 2.0 × 10−3 5.7104 × 10−3 0.9007 5.3364 × 10−2 0.3965
250 1.6 × 10−3 4.0 × 10−4 1.1920 × 10−3 0.9734 2.5740 × 10−2 0.4530
1250 3.2 × 10−4 8.0 × 10−5 1.9459 × 10−4 1.1261 1.1151 × 10−2 0.5198
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Table 6. Convergence error with exact solution from (RBC) example described in Exam-
ple 3.2 from Section 3.4.

(RBC) example convergence rates for error with exact solution
Mx hx τ ||θerr ||∞,1 Order ||θerr ||∞,2 Order ||θerr ||2,2 Order
20 1.0 5.0 × 103 7.4093 × 100 - 2.5085 × 100 - 4.5435 × 102 -
200 1.0 × 10−1 5.0 × 102 5.9623 × 10−1 1.0944 2.4650 × 10−1 1.0076 4.3065 × 101 1.0233
2000 1.0 × 10−2 5.0 × 101 2.9571 × 10−2 1.3045 7.8455 × 10−3 1.4972 2.2161 × 100 1.2885
20000 1.0 × 10−3 5.0 3.1198 × 10−3 0.9767 8.2743 × 10−4 0.9769 2.4358 × 10−1 0.9589
Mx hx τ ||werr ||∞,1 Order ||werr ||∞,2 Order ||werr ||2,2 Order
20 1.0 5.0 × 103 2.1277 × 102 - 2.0829 × 102 - 3.7168 × 104 -
200 1.0 × 10−1 5.0 × 102 1.3797 × 101 1.1881 3.9387 × 101 0.7233 9.3584 × 103 0.5990
2000 1.0 × 10−2 5.0 × 101 1.3045 × 100 1.0243 1.2142 × 101 0.5111 2.8891 × 103 0.5104
20000 1.0 × 10−3 5.0 1.3097 × 10−1 0.9983 3.8480 × 100 0.4990 9.1760 × 102 0.4981

Mx hx τ ||θerr ||∞,L1 Order ||θerr ||∞,L2 Order
20 1.0 5.0 × 103 1.2507 × 101 - 3.3887 × 100 -
200 1.0 × 10−1 5.0 × 102 1.1890 × 100 1.0220 3.3678 × 10−1 1.0027
2000 1.0 × 10−2 5.0 × 101 9.0292 × 10−2 1.1195 2.4144 × 10−2 1.1445
Mx hx τ ||werr ||∞,L1 Order ||werr ||∞,L2 Order
20 1.0 5.0 × 103 1.9895 × 102 - 2.0449 × 102 -
200 1.0 × 10−1 5.0 × 102 1.9028 × 101 1.0193 6.2413 × 101 0.5154
2000 1.0 × 10−3 5.0 × 101 1.5034 × 100 1.1023 1.2142 × 101 0.7110

Table 7. Convergence error calculated with fine grid for Example 3.2 (RBC) from Sec-
tion 3.4.

(RBC) example convergence rates for error with fine grid solution
Mx hx τ ||θerr ||∞,1 Order ||θerr ||∞,2 Order ||θerr ||2,2 Order
20 1.0 5.0 × 103 7.4070 × 100 - 2.5080 × 100 - 4.5425 × 102 -
200 1.0 × 10−1 5.0 × 102 5.9330 × 10−1 1.0964 2.4588 × 10−1 1.0086 4.2914 × 101 1.0247

2000 1.0 × 10−2 5.0 × 101 2.6568 × 10−2 1.3489 7.0525 × 10−3 1.5424 1.9892 × 100 1.3339
Mx hx τ ||werr ||∞,1 Order ||werr ||∞,2 Order ||werr ||2,2 Order
20 1.0 5.0 × 103 2.1277 × 102 - 2.0829 × 102 - 3.4425 × 104 -
200 1.0 × 10−1 5.0 × 102 1.2880 × 101 1.2180 3.8145 × 101 0.7372 7.4205 × 103 0.6664

2000 1.0 × 10−2 5.0 × 101 1.2954 × 100 0.9975 1.2142 × 101 0.4972 2.8891 × 103 0.4097
Mx hx τ ||θerr ||∞,L1 Order ||θerr ||∞,L2 Order
20 1.0 5.0 × 103 1.2505 × 101 - 3.3883 × 100 -
200 1.0 × 10−1 5.0 × 102 1.1877 × 100 1.0224 3.3632 × 10−1 1.0032
2000 1.0 × 10−2 5.0 × 101 8.9758 × 10−2 1.1216 2.3903 × 10−2 1.1483
Mx hx τ ||werr ||∞,L1 Order ||werr ||∞,L2 Order
20 1.0 5.0 × 103 1.9401 × 102 - 2.0449 × 102 -
200 1.0 × 10−1 5.0 × 102 1.9025 × 101 1.0085 6.2413 × 101 0.5154
2000 1.0 × 10−2 5.0 × 101 1.3806 × 100 1.1393 1.1519 × 101 0.7339
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Table 8. Newton iterations for Examples 3.1 (VV), 3.2 (RBC), and multiple material Exam-
ple 4.2 as discussed in Section 3.5.

(VV) (RBC) ( 4.2 )
Table 5 Table 7 Table 10

Mx iter Mx iter Mx iter

10 4 20 4 20 3
50 5 200 5 100 5
250 5 2000 5 500 5
1250 5 - - 2500 5

We acknowledge that this might be due to only testing in d=1; nevertheless, these results are promis-
ing.

3.5. Robustness of nonlinear solver

Last but not least we discuss performance of the nonlinear solver for (3.7) since it works without
regularization for (ST) problem, and we have not found a discussion for (ST) problem in the literature.

The maximum number of iterations required for each case to converge is listed in Table 8. The
solver uses for stopping criterium a combination of absolute tolerance of 10−12 and a relative tolerance
of 10−6 and τ = h/10, relative to the first iteration.

Overall, the solver performs reliably under a variety of circumstances, including with uniform co-
efficients used in Example 3.1 (VV), realistic thermal properties used in Example 3.2 (RBC) and in
the presence of multiple materials in Example 4.2 to be discussed below. It is also important that the
performance seems to be mesh independent.

Though not illustrated in Table 8, we see in practice that the number of Newton iterations may
increase with larger discrepancies between parameters and larger latent heat L values. We add the
notes on the specifics of the heterogeneous permafrost case in Section 5.

3.6. Summary

More work on the theoretical underpinnings of P0-P0 algorithm is needed for Stefan problem, but
overall our P0-P0 (CCFD) algorithm seems well suited to all the choices of α in (1.2) including even
the most challenging case of αS T (·).

4. Stefan problem with heterogeneity, and its P0-P0 approximation allowing for thermal
resistivity of interface

We consider now the main challenge addressed in this paper, that of simulation of phase change
problem in a heterogeneous domain, a generalization of (2.2) to the case when the region Ω is occupied
by NMAT materials, each in Ω( j), j = 1, . . .NMAT , with interfaces denoted by Γi j = ∂Ω(i) ∩ ∂Ω( j), and
Γ =

⋃
i j Γi j. We also have Σ = Γ × (0,T ). See Figures 1 and 6 for illustration. The data corresponding

to material ( j) are denoted by c( j)
l , c

( j)
s , k

( j)
l , k

( j)
s , θ

( j)
f r , L

( j). With these we formulate α( j) as in (2.8), and
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Figure 6. Illustration of thermal conduction in domains where the fluxes are continuous as
in (4.1b) but the temperature appears to take a jump modeled by (4.1c). Left: two materials
separated by a layer of third material with very low conductivity; temperature in function
of x is shown as a black curve. Middle: the same materials as on left when the width of
the interface is very small, thus it is only practical to model this region as low dimensional
interface, and the temperature features behavior with a jump. Right: the results of simulation
of stationary and non-stationary heat conduction in Example 4.1 similar to the case illustrated
in the middle.

assume that the data satisfies Assumption 1.1, and that Γ is at least as smooth as ∂Ω. We denote the
appropriate functional spaces local to Ω( j) with superscript ( j), e.g., in X( j), and so on.

Let (2.2) hold in each Ω( j). Denote by w( j), θ( j) the restriction of w, θ to Ω( j), so we have

∂tw( j) + ∇ · q( j) = f ( j); q( j) = −k∇θ( j), w( j) ∈ α( j)(θ( j)). (4.1a)

This problem requires some initial conditions and some boundary conditions on ∂Ω. We also need
some interface conditions on each Γi j. For these, it is natural to assume (i) continuity of fluxes, and (ii)
of the temperatures across each Γi j. However, in some applications including PCM, the condition (ii)
must be relaxed to model the heat conduction across a very thin region of very low heat conductivity.
When the width of that layer is very small compared to the width of the regions surrounding this
layer, and if the interface region is approximated by a lower dimensional interface Γi j , the temperature
appears to take a jump, since the limits of temperature from both sides of Γi j are quite distinct, while
the flux is preserved [37]. See Figure 6 for illustration.

This jump condition is formulated, e.g., in [29, 53, 54]

q(i) · ν = q( j) · ν, on Γi j. (4.1b)
θ( j) − θ(i) = −ρRq(i) · ν, on Γi j. (4.1c)

where ρR ≥ 0 is called “thermal resisitivity” and where the orientation of the unit normal ν to Γi j is
from Qi to Q j. (More generally, one can consider ρR to be specific to an interface).

If ρR = 0 or the fluxes q( j) vanish, we have continuity of temperatures θ across Γi j (but not necessarily
of u). If ρR > 0, the condition (4.1c) is a Robin condition which slows down the process of reaching
thermal equilibrium across the interface. This latter case is important for applications. However,
its mathematical and computational challenges have not been well studied. We address some of the
challenges that (4.1) brings from theoretical and algorithmic point of view when ρR > 0.

The mixed formulation is particularly convenient for problems involving interfaces and multiple
materials. In particular, the condition (4.1b) prescribes the continuity of normal fluxes across Γ which
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is naturally preserved for the fluxes q ∈ X. The condition also prescribes a possible jump of the
scalar unknowns, but this is not an issue when extending θ ∈ M. Therefore, if the problems on each
Ω( j) are well posed in X( j) × M( j) for each j, then the global problem can be well studied in X × M;
see, e.g., [55, 56]. Similarly, one can easily define the P0-P0 (CCFD) algorithms on each subdomain
coupled to the discrete counterparts of (4.1b)–(4.1c).

As concerns the overall solution algorithm based on CCFD for (4.1a), in principle, some domain de-
composition approach iteration is required to satisfy (4.1b)–(4.1c). However, one of our contributions
in this paper is that we are able to formulate a monolithic P0-P0 algorithm on Ω. We also formulate
various theoretical results and estimates for qh ∈ Xh. We note however that even though we do not state
approximation properties in this paper, these may involve θ considered in some broken spaces such as
H(Ω) = H1(Ω(1)) × H1(Ω(2)) rather than H1(Ω) due to the discontinuity of θ across Γ.

After some literature review in Section 4.1, we formulate and illustrate our algorithms in Sec-
tions 4.2 for linear and nonlinear problems when q ∈ X. We extend these to (ST) problem and apply
the same scheme, even if some of the theoretical results do not apply when q < X. We provide examples
and study convergence in Section 4.3.2.

4.1. Literature on heterogeneous Stefan pbm

The mathematical literature on (4.1) is not abundant, but we review what is available. The problem
is a special case of more general heterogeneous nonlinear parabolic problem in which

θ f r = θ f r(x); L = L(x); c = c(x; θ); k = k(x; θ). (4.2)

When the data (4.2) vary smoothly as functions of its first argument, it is possible to apply Kirchhoff

transformation on Ω but this introduces various lower order terms in the PDE. This approach consid-
ered, e.g., in [57, 58], allows some well-posedness analysis.

Another class of approaches in [59–61] study a problem similar to Stefan problem via minimization
of a collection of normal convex integrands, and assumes smoothness of α(x; θ) in x, for an application
with phase change of a different type where the multivalued graph α(x; ·) representing the solubility
constraint depends smoothly on x. At the same time, the challenges discussed here are similar to those
revealed by simulations in [61] when applied to piecewise constant data.

The piecewise constant case (1.3) of interest in this paper does not allow Kirchhoff transformation
but is also most realistic. The well-posedness of the case ρR > 0 is studied in the primal setting
in [29] under external Neumann boundary conditions on ∂Ω and with some initial data. Existence of
solutions is proven for ρR > 0, with estimates which allow the limiting case ρR ↓ 0. Uniqueness is also
proven [29]. For ρR > 0, the paper predicts w ∈ L∞(Q), θ ∈ L2(H), and that the jump is

(i) ||[θ]||L2(Σ) = O(
√
ρR), (ii) ||∂tw||L2(H ′) ≤ C1 + C2√

ρR
. (4.3)

We note that as as ρR ↓ 0, the estimates (4.3) suggest continuity of the temperature across Γ but also
predict the blowup of ∂tw.

As concerns numerical approximation, [54] describes the approximation in (V ( j)
h ) j similar to the

P1-P1 schemes described in Section 2.4. A-priori bounds for (θn
h,w

n
h) including those similar to (4.3)

are proved in [53] for ρR > 0. Finally, a time discrete approximation to ∂twh is measured in some
seminorms which involve h2

τ2 , 1
√
ρR

; these suggest to use h
τ

bounded as h → 0, τ → 0, and ρR such
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that τ2

ρR
→ 0. Based on these a-priori bounds, convergence to the solution corresponding to ρR = 0 is

established. However, no rate of convergence for the approximation errors θ − θh is given.
Last but not least we mention other problems and applications which feature jumps of the primary

unknowns and fluxes. These works fit in the framework of heterogeneous domain decomposition
[56] and inform our results, but are not closely related. The closest is our prior work on the domain
decomposition approach for semiconductor modeling of heterogeneous junctions in [62–64]. Further,
there is closely related substantial work on multiphase flow and multiple rock types in, e.g., [1, 2]
as well as the abundant literature on Beavers-Joseph conditions on the Stokes-Darcy interfaces, e.g.
in [65] and other heterogenous domain decomposition settings.

4.2. P0-P0 scheme

We approximate (4.1) with P0-P0 discrete scheme from Section 3. We recall that even though the
formal approximation with X 3 q ≈ qh ∈ Xh is appropriate only for the single-valued setting w = α(θ)
(as in Remark 3.1), the P0-P0 algorithm produces discrete conservative fluxes qh ∈ Xh also for the
multivalued case w ∈ α(θ).

We start with P0-P0 (or CCFD) algorithm on each material domain, a counterpart of (3.7), which
we couple with discrete counterparts of (4.1b)–(4.1c). Then we show that this domain decomposition
formulation can be handled by a monolithic solver. With this, the theoretical results including conver-
gence analyses available for single domain formulations in X( j)

h × M( j)
h extend to that on Xh × Mh (as

long as q ∈ X). Moreover, the problem does not require any iteration on the interface.
We explain the details first for the linear heat equation with the notation from Section 3.2; the gen-

eralization to the nonlinear problem is straightforward. For simplicity, we focus on only two materials
NMAT = 2 which occupy the domains Ω(1),Ω(2) separated by an interface Γ = Γ12.

4.2.1. P0-P0 formulation with mixed finite elements

We rewrite (4.1) in a time-discrete mixed form, with subdomain problems (4.4a)–(4.4b) to be solved
by (θn,( j), qn,( j)) j. We also make precise the initial, external, and coupling boundary conditions (4.4c)
and coupling via (4.4d)

(k( j))−1q( j) = −∇θ( j), x ∈ Ω( j), t > 0 (4.4a)
∇ · q( j) + 1

τ
w( j) = g, x ∈ Ω( j), w( j) = α( j)(θ( j)). (4.4b)

w( j)(x, 0) = winit(x)|Ω( j) , θ|∂Ω∩∂Ω( j) = θD|∂Ω∩∂Ω( j) , (4.4c)
(q(2) − q(1)) · νΓ = 0, θ(2) − θ(1) = −ρRq(1), (x, t) ∈ Σ. (4.4d)

We approximate (4.4) with P0-P0 algorithm for (4.4a)–(4.4c) on each Ω( j) as in Section 3, each im-
plemented as CCFD, and corresponding to a block linear system similar to (3.3) is solved, with off-
diagonal coupling terms expressing (4.4d).

This coupling could be solved by iteration; we refer to [56] for a discussion of domain decomposi-
tion iterative algorithms. In contrast, we propose to satisfy (4.4d) without an iteration which simplifies
the implementation substantially. We explain the ideas briefly for d = 1 in Section 4.2.2.
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4.2.2. Monolithic scheme

Let Ω = (a, b) and Ω(1) = (a, x∗) and Ω(2) = (x∗, b), with a grid (ωi)i covering Ω(1)∪Ω(2) so that Γ = x∗

is one of the cell edges. With global numbering of the cells ωi in Ω, we have i = 1, . . . j∗, j∗ + 1, . . .M,
where Γ = x∗ = xi∗+1/2 = γi∗+1/2 is between some cells ωi∗ and ωi∗+1. Now the problem is discretized
as in Section 3.2 with q(1)

h and q(2)
h identified by the edge values Q(1) = (Q1/2,Q3/2, . . .Q−i∗+1/2) and

Q(2) = (Q+
i∗+1/2,Qi∗+3/2, . . .QM+1/2), respectively. We note the double value of the flux Q−i∗+1/2,Q

+
i∗+1/2

to be set equal due to (4.4d). The temperatures θ(1)
h ∈ M(1)

h and θ(2)
h ∈ M(2)

h , respectively, are identified
by the cell values Θ(1) = (Θ1,Θ2, . . .Θi∗), and Θ(2) = (Θi∗+1 . . .ΘM). Finally, the Dirichlet conditions
at the external boundaries are with Θ∗1/2 = θD(x1/2), and Θ∗M+1/2 = θD(xM+1/2). These enter (3.3) as in
Remark 3.3.

The approximation to the first part of the interface condition (4.4d) equates the fluxes Q−i∗+1/2 =

Q+
i∗+1/2. We also require Dirichlet values Θ−∗ and Θ∗+ to be used by each subdomain problem at x∗ so

that the second part of (4.4d) holds. Finding these is part of the problem. In summary, the approxima-
tion to (4.4) is as follows.

Find Θ−∗ and Θ+
∗ so that the discrete counterpart of (4.4d) holds
Q−i∗+1/2, j = Q+

i∗+1/2, j; Θ−∗ − Θ+
∗ = −ρRQ−i∗+1/2, j, (4.5a)

where we find Q−i∗+1/2, j and Q+
i∗+1/2, j from the solutions on Ω(1) and Ω(2) defined as follows.

Use Θ∗1/2 and Θ−∗ as Dirichlet boundary conditions in (3.3) and find (4.5b)
(Θ1 . . .Θi∗) and (Q1/2,Q3/2, . . .Qi∗−1/2,Q−i∗+1/2).

Use Θ+
∗ and Θ∗M+1/2 as Dirichlet boundary conditions in (3.3) and find (4.5c)

(Θi∗+1,Θi∗+2, . . .ΘM) and (Q+
i∗+1/2,Qi∗+3/2, . . .QM+1/2).

The solution to (4.5) requires formulation of appropriate matricesK (1), K (2) to solve (4.5b) and (4.5c),
respectively. These come from the transmissivities (Ti±1/2)i on every γi+1/2 ∈ Ω( j) and are given as
in Section 7.5 by (7.11). We also have two boundary edge factors T −i∗+1/2 and T +

i∗+1/2 given by (7.13)
independently on Ω(1) and Ω(2), respectively.

The problem (4.5) could be solved by iteration. However, our idea is that (4.5) can be solved by
a much simpler monolithic CCFD solver on Ω for Θ = (Θ(1),Θ(2)) and Q = (Q(1),Q(2)) for which
Q−j∗+1/2 = Q+

j∗+1/2. The system takes the form

KρR Q + BT Θ = 0; (4.6a)
−BQ + CW = G; W = α(Θ). (4.6b)

The definition of B is a straightforward extension of B( j), butKρR involvesK ( j) as well as an appropri-
ately chosen transmissibility T ρ

i∗+1/2 to guarantee (4.4d).

Lemma 4.1. Solution to (4.5) exists and is unique; it is equivalent to that of (4.6) provided

T
ρ
i∗+1/2 =

T −T +

T− + T + + T −T +ρR
, (4.7)

where we use the shorthand notation T − = T −i∗+1/2, j and T + = T +
i∗+1/2, j.
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Proof. The proof is purely algebraic. Assume (4.5) is satisfied. Denote Q− = Q−j∗+1/2, Q+ = Q+
j∗+1/2, so

(4.5a) holds for some Θ−∗ ,Θ
+
∗ , Q−,Q+. We know also Θi∗,Θi∗+1 from (4.5b) and (4.5c).

1. Recall Q− = T −(Θi∗ −Θ−∗ ) and Q+ = T +(Θ+
∗ −Θi∗+1). Setting these equal from the first condition

in (4.5a), and expressing Q− from the second part of (4.5a), we work to eliminate Q+ and get a
formula for Θ− in terms of Θi∗ and Θi∗+1. After some lengthy calculations we get

Θ−∗ = (T −(1 + T +ρ) + T +)−1 [
T −(1 + T +ρ)Θi∗ + T +Θi∗+1

]
.

2. Next we recalculate Q− = T −(Θ−∗ − Θ−i∗). After some algebra we get

Q− =
T −T +

T − + T + + T −T +ρ
(Θi∗ − Θi∗+1).

3. Now the expression on the right hand side can be written as

Q− = T
ρ
i∗+1/2(Θi∗ − Θi∗+1).

This provides the definition of (4.7), i.e., ofKρR for the monolithic formulation. Existence and unique-
ness of the solutions to (4.6) follows directly from that for (3.3) with the special definition of T ρ

i∗+1/2, j
which satisfies the same properties as all other Ti±1/2.

Remark 4.1. When ρR = 0, (4.7) reduces to give Ti∗+1/2 as the usual weighted harmonic average of ki∗

and ki∗+1 in (7.11), and provides the interface value of Θ∗ = Θ−∗ = Θ+
∗

Ti∗+1/2 :=
T −T +

T− + T + + T −
, Θ∗ =

T−

T− + T +
Θi∗ +

T +

T− + T +
Θi∗+1.

In other words, a monolithic CCFD approach on matching grids is equivalent to the domain decompo-
sition approach. This observation is perhaps not new, but is nevertheless very useful.

Corollary 4.1. The results in Lemma 4.1 easily extend to d = 2 when Γ is aligned with cell interfaces.
In addition, these results extend to nonlinear problems such as (3.6) and (3.7) with

w = α∗(θ) means w(x, t) = α( j)(θ(x, t)) for a.e. x ∈ Ω( j), t > 0.

Here in each time step n and iteration (m) one updates the transmissibilities T n,(m)
i±1/2 based on the cur-

rent guess of Wn,(m). This system uses special interface transmissivities involving ρR resulting in the
dependence of matrix K̃n,(m)

ρR on ρR.

Remark 4.2. Convergence of the solutions (qh, θh) to (q, θ) for the linear problem is expected to be
qualitatively similar to the case without jump, since, upon Lemma 4.1, it follows from those for CCFD
on each domain, e.g., in [48]. At the same time, the solution θ ∈ M is not globally smooth enough, thus
broken norms must be used when referring to the approximation error’s dependence on higher order
norms.

We provide an example with a numerical approximation in Section 4.3. We also prove theoretical
estimates on the jump [θ]Γ.
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4.2.3. Estimates of the jump on the interface

We aim to derive results similar to (4.3) in the mixed setting. We write the fully discrete mixed form
of (4.4), and work with the discrete counterparts of θ( j),w( j), q( j), with w( j) ∈ α( j)(θ( j)). As explained for
(4.6), we use k̃ which can be k(θn), or k(θn−1) or k(θn,(m)), formed, respectively, either in a fully implicit,
time-lagging or iteration lagging fashion.

Lemma 4.2. Let θD = 0. Then the numerical solution of (4.1) satisfies, at every tn

||θn,(1)
h − θn,(2)

h ||L2(Γ) = O(
√
ρR). (4.8)

Proof. We suppress h and n. The weak mixed formulation of (4.1a) after integrating and adding the
equations over ( j) reads: find (q, θ) ∈ Xh×Mh such that for every ψ ∈ Xh, η ∈ Mh we have the following

∫
Ω

k̃−1q · ψ −
∫

Ω

θ∇ · ψ +

∫
∂Ω

θψ · ν +

∫
Γ

(θ(1) − θ(2))ψ · n = 0, (4.9a)∫
Ω

η∇ · q + 1
τ

∫
Ω

wη =

∫
Ω

gη. (4.9b)

To derive the estimates we now choose ψ = q and η = θ. Adding the two equations and cancelling the
skew-symmetric terms we obtain, after rearranging∫

Ω

k̃−1q · q + 1
τ

∫
Ω

wθ +

∫
Γ

(θ(1) − θ(2))q · n =

∫
Ω

gθ −
∫
∂Ω

θDq · n.

The right hand side now involves the boundary and the right hand side g. We have control over the
boundary term since θD = 0. The first term on the left hand side is nonnegative. The second term can
be bounded from below for αS T , as well as for αS Tε and α(P)∫

Ω

wθ =

∫
Ωl

wθ +

∫
Ωs

wθ ≥ cα

∫
Ω

θ2.

In fact, for (ST) problem we have cα = min j((c
( j)
l ), (c( j)

s )). For (ST)ε , we have cα =

min j((c
( j)
l ), (c( j)

s ), ε−1), with a similar calculation for α(P) from Section 5. Then we apply Cauchy-
Schwarz inequality to the integral

∫
Ω

gθ ≤ ||g||L2 ||θ||L2 and follow up with the inequality |a||b| ≤ a2

2s + sb2

2 .

With sufficiently large s we can now move the term
||θ||2

L2

2s to the left hand side to balance it with cα||θ||L2 .

We conclude that
∫

Γ
(θ(1) − θ(2))q · n ≤

s||g||2
L2

2 = C thus, upon (4.4d) we finally obtain∫
Γ

(θ(1) − θ(2))q · n =

∫
Γ

1
ρR

(θ(1) − θ(2))2 ≤ C, (4.10)

from which (4.8) follows.

This result is similar to that predicted in (4.3) [29] in the primal formulation. With more work, we
can also cover the case θD , 0.

Corollary 4.2. The estimate in Lemma 4.2 extends to the solutions (q, θ) for (ST)ε or (P) problems
with single-valued α when q ∈ X.
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Table 9. Heterogeneous materials from Example 4.2.
Ω ks kl cs cl L θ f r

Ω(1) = (0, 0.1) 0.5 0.15 0.5 1 0 0
Ω(2) = (0.1, 0.4) 1 0.25 1 2 10 0

4.3. Numerical examples of P0-P0 for heterogeneous domain with two materials

Now we illustrate the problem (4.1) with simulations using our P0-P0 solver.

4.3.1. Linear heat equation with a jump

We consider first an example in d = 1 for which we study the dependence of the jump of θ on ρ.

Example 4.1. Let Ω = (a, b) with some a < x∗ < b. Let some ρ ≥ 0 be given, as well as L = 0,
k(1)(x) = k1; k(2)(x) = k2, and c(1) = c(2) = 1 so that w = θ. We also impose boundary conditions
θ(a) = θa, θ(b) = θb, The numerical solutions are computed with M = 50, and τ = 0.0.001. We
consider different ratios k2/k1, and ρR.

We plot the solutions to Example 4.1 found numerically with our monolithic P0-P0 solver. We
also consider the corresponding stationary limit θstat(x) of (4.1); see the details in (7.15) and (7.14) in
Section 7.6.

The numerical solution to the stationary problem in this simple case essentially coincides with the
exact solution; this is typical for P0-P0 solution. The non-stationary solutions evolve towards this
stationary solution. The qualitative nature is consistent with the imposed interface jump condition.

In the end we also test the scaling of the jump [θ]Γ predicted by (4.8) given what we found for the
stationary solution in Section 7.6; we check how it behaves over time. The details in Section 7.6
predict that the jump of θstat(x) scales linearly with ρR as ρR ↓ 0, unlike O(

√
ρR) predicted for the

evolution problem in (4.3). For large ratio k(2)

k(1) and small ρR < 1 we find that the jump behaves
similarly to that for the stationary problem. For small k(2)

k(1) , and before the solutions are close to the
stationary limit, we see that the size of the jump [θh]Γ depends significantly on the grid discretization
h. This behavior correlates with the large magnitude of ∂tw when t is small. In fact, it also correlates
with the estimates of ∂tw in (4.3) (see also subsequent discussion in Example 4.3). We defer further
study of these features to the future.

4.3.2. Examples for Stefan problem for heterogeneous domain with two materials

Now we consider (ST) problem, and start by checking convergence of our P0-P0 scheme for the
case of heterogeneous materials. To this end, we modify Example 3.2.

Example 4.2. We let Ω = (0, 0.4) with Ω̄ = Ω̄(1) ∪ Ω̄(2) with parameters given in Table 9. Note that the
material within Ω(2) has L , 0 while Ω(1) has L = 0; the freezing temperature θ f r = 0 for both.

The initial conditions are winit(x) = cs(x)θinit(x) which corresponds to θinit(x) = −2 for all x ∈ Ω.
Boundary conditions are θ(0.4, t) = −2 and θ(0, t) = 15 for t ∈ (0,T ]. Figure 8 shows the temperature
increase throughout the domain due to the heat transfer through the left boundary.

We do not have an exact solution, thus we must use fine grid solution for convergence studies. The
coarse grid solution for Mx = 20, is compared with that for the fine grid, Mx = 2500 at the first fine
grid time step of t = 0.005 and the time t = 0.15. In convergence study we disregard the initial time
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k(2)

k(1) = 10−1, ρR = 0.1 k(2)

k(1) = 1, ρR = 0.1

k(2)

k(1) = 1, ρR = 1 k(2)

k(1) = 10, ρR = 0.1

Figure 7. Solutions to Example 4.1 in Section 4.3 obtained with monolithic CCFD, with
comparison to the corresponding stationary solution θstat given in (7.15). The graphs corre-
spond to the different ratios k(2)

k(1) and ρR as indicated. The magnitude of the jump [θh]Γ scales
with ρR, as expected, but is robust with respect to k(2)

k(1) . For small k(2)

k(1) and small t, the jump
[θh]Γ is sensitive to h.
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Table 10. Convergence error for θ and w in Example 4.2 calculated for t > 0.005.
Mx hx τ ||θerr,num||∞,1 Order ||θerr,num||∞,2 Order ||θerr,num||2,2 Order
20 2.0 × 10−2 5.0 × 10−3 3.8777 × 10−1 - 9.8085 × 10−1 - 7.7555 × 10−2 -
100 4.0 × 10−3 1.0 × 10−3 6.1873 × 10−2 1.1404 1.4680 × 10−1 1.1801 1.0807 × 10−2 1.2245
500 8.0 × 10−4 2.0 × 10−4 1.3598 × 10−2 0.9414 3.0670 × 10−2 0.9729 2.1699 × 10−3 0.9975
2500 1.6 × 10−4 4.0 × 10−5 2.3750 × 10−3 1.0842 5.3472 × 10−3 1.0853 3.7841 × 10−4 1.0851
Mx hx τ ||werr,num||∞,1 Order ||werr,num||∞,2 Order ||werr,num||2,2 Order
20 2.0 × 10−2 5.0 × 10−3 3.8122 × 10−1 - 1.4377 × 100 - 2.9132 × 10−1 -
100 4.0 × 10−3 1.0 × 10−3 5.6373 × 10−2 1.1876 5.8560 × 10−1 0.5580 1.0393 × 10−1 0.6404
500 8.0 × 10−4 2.0 × 10−4 1.2365 × 10−2 0.9426 2.6286 × 10−1 0.4977 4.7824 × 10−2 0.4823
2500 1.6 × 10−4 4.0 × 10−5 2.1711 × 10−3 1.0809 9.8921 × 10−2 0.6072 1.8280 × 10−2 0.5975

period t ∈ [0, 0.005] in which the solution has very steep wt due to the discrepancy between the initial
and boundary data. The convergence of the solution is of lower order during that time and pollutes the
rest of the error analysis.

Convergence results, calculated for t ∈ [0.01, 0.15] are shown in Table 10. We see similar rates of
convergence for this heterogeneous example as for the homogeneous Example 3.2.

Next we illustrate the need for multiple materials by simulating heat flow at the pore-scale. We
proceed to the simulation in d = 2 at the pore-scale which is motivated by our interest in permafrost.
We use our P0-P0 solver with ρR = 0, since there is no interface with high resistivity between the
mineral and water components.

Example 4.3. Let Ω = (0, 1) × (0, 1)[cm2] with Ω̄ = Ω̄(1) ∪ Ω̄(2), with water saturated pore space Ω̄(1),
and the rock grains Ω̄(2); see Figure 9. The material parameters are those of water for Ω(1) and inferred
from those for silica for Ω(2) as given in Table 2. We start from thermal equilibrium, with constant
temperature θinit = −1[◦C] with which we calculate winit(x) = cs(x)θinit(x).

The heat in Ω increases due to the boundary condition at ∂Ωleft = {0} × [0, 1] where we set
θD(x, t)|∂Ωleft = 10. We also assume insulated boundary conditions elsewhere q · ν|∂Ω\∂Ωleft = 0 for
t ∈ (0,T ].

In Figure 9 we show temperature profiles of four time steps. The melting front moves from left to
right with a phase change in the void space Ω(1), but the grains do not undergo phase change. The heat
flux moves faster through the areas with more grains, since this change requires less energy required
for phase change than the heat conduction in the water component.

4.4. Summary

More work on testing the heterogeneous Stefan problem and even the linear heat equation is needed,
but overall we believe our monolithic P0-P0 scheme performs well for multiple materials. While
not reported here, we tested the simulation cases of different freezing temperatures, and drastically
different parameter L between domains, and see that the algorithms perform in a robust way across
these scenarios, even if a decrease of the time step is needed in the most challenging cases.

5. Permafrost models

Permafrost is defined as the ground that remains frozen for two or more years [41,66,67]. Temper-
atures in permafrost respond to the changes in ambient temperatures at the soil-atmosphere interface,
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t = 0.01

t = 0.15

Figure 8. Simulation results in Example 4.2. Top row: solution at t = 0.01; Bottom row:
solution at t = 0.15. The interface separating Ω̄(1) and Ω̄(2) is shown by the vertical magenta
line.
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t=0.1 s t=43.8 s t=968.8 s t=2611.8 s

Figure 9. Simulation described in Example 4.3 within Section 4.3.2 of heat conduction in
the pore space, with geometry within Ω = (0, 1) × (0, 1)[cm2] depicted on top. We simulate
the thawing front moving from the left to the right starting from thermal equilibrium and
with left boundary subject to increased temperature. Displayed is the first time step (left),
two middle time steps (middle) and steady state (right) for temperature θ (top) and enthalpy
w (bottom).
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possibly including the effects of precipitation and vegetation. In the upper portion of permafrost called
active layer the temperatures increase in the summer and decrease in other parts of the year. The bottom
of the active layer is isothermal but the depth of this layer is changing due to the increase of ambient
temperatures, and this causes the thawing of some portions of permafrost, with further environmen-
tal consequences. The importance and impact of coupled phenomena within permafrost models is of
current interest. Modeling of the coupled phenomena in permafrost regions is complex, and requires
careful conservative approximations across the scales [10, 14, 15, 67–69].

5.1. Energy conservation in permafrost

We recall now the (ST) problem discussed in Section 2 for conservation of energy in any volume
Ω occupied only by water component in one of two phases: liquid or solid. For any small sub-volume
ω ⊂ Ω centered at some x ∈ Ω we can calculate the water fraction χ(x) = |Ωl∩ω|

|Ω∩ω|
. In equilibrium, χ

it equals 1 whenever θ > 0 in the entire ω. On the other hand, if θ < 0 on ω, then χ(x) = 0. In the
case θ = 0, we have 0 ≤ χ(x) ≤ 1, and χ can be considered as an independent thermodynamic variable
at constant volume; see [27]. In other words, the water fraction can be considered a pointwise or a
volumetric quantity, and in (ST) problem we assumed (2.3) and χ = χ(θ).

The model for conservation of energy in permafrost must extend this formulation to account for the
presence of rock grains which do not change phase. We assume here that the soil rock grains have a
constant heat capacity cr and a constant thermal conductivity kr.

The presence of rock grains has several consequences. The first consequence is that in the energy
balance we have to account for the rock as a separate material; we discuss this in Section 5.1.2. Second,
the presence of rocks affect the local energy landscape at the fluid-rock interfaces; in particular, it
causes depression of freezing temperatures in small pores, as well as premelting, the presence of a thin
film of water around rock grains [70, 71]. Both phenomena have significant effects on the qualitative
behavior of phase transitions in permafrost.

In modeling, one must consider the scale at which we wish to consider the phenomena. At the pore-
scale of [mm] to [nm] scale, the rock grains and water occupied domains should be treated as separate
materials such as in Example 4.3. In practice, modeling large scale changes in permafrost in response
to the temperature in the environment must occur at larger scale such as that of [m], i.e., at the so-called
Darcy scale. Typically, models at Darcy scale take advantage of constitutive relationships measured
experimentally in a laboratory. Thanks to modern computational science the pore-scale modeling can
be connected to Darcy scale such as in our work and in particular [18–21], but a thorough discussion
is outside our present scope.

5.1.1. Permafrost as a porous medium

We introduce notation which helps to explain the difference and connections between Stefan prob-
lem and permafrost models.

As mentioned earlier, porous medium is made of rock grains and non-rock “void space” occupied
by fluids such as water and air. In this paper we consider only the water component. The rock grains
occupy a fixed portion Ωr of Ω, and the water component in Ωw occupies the remainder so that Ω =

Ωw ∪ Ωr. The void (non-rock) proportion η = |Ωw |

|Ω|
is called porosity, and 0 < η ≤ 1. The water

component can be in liquid or solid phases so that Ωw = Ωl ∪ Ωs, and we have χ = |Ωl |

|Ω|
= |Ωl |

|Ωw |

|Ωw |

|Ω|
=
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ηχw, with χw = |Ωl |

|Ωw |

χ(θ) = ηχw(θ). (5.1)

The quantity χw is called “unfrozen water content” in permafrost and is determined experimentally for
a particular soil type depending on the temperature.

5.1.2. Energy balance in permafrost

The presence of rock grains influences the energy balance. In permafrost the balance of energy
must account for the energy content in Ωr and Ωw, thus the heat capacity is a weighted fraction of that
in rock grains and in fluid space,

c(θ) = cr(1 − η) + η (clχw + cs(1 − χw)) = cr(1 − η) + clχ + cs(η − χ), (5.2)

which can be also written, after rearranging, as

c(θ) = cuχw + c f (1 − χw); cu = (1 − η)cr + ηcl, c f = ηcs + (1 − η)cr, (5.3)

where cu is the (constant) heat capacity of the “unfrozen soil” and c f is the (constant) heat capacity of
the “frozen soil”. In the end, we get [8]

w =

∫ θ

θ f r

c(υ)dυ + Lηχw(θ); c(θ) = cuχw(θ) + c f (1 − χw(θ)). (5.4)

Remark 5.1. We can now compare the formulas for w in the classical Stefan problem (2.5) and in
the permafrost model (5.4). The former sees the change between “solid” and “liquid”, but the latter
(5.4) presents the phase change problem between the “frozen soil” and the “unfrozen soil”, where the
amount of each is controlled by the unfrozen water content χw.

5.1.3. Experimental models

One of important features of permafrost is the presence of unfrozen water at low temperatures i.e.
χ(x, t) > 0 even when θ(x, t) < θ f r. This phenomenon is not fully explained, and is accompanied
by the depression of the freezing temperatures in small pores. The permafrost models take advantage
of the empirical data which fits one of the parametric relationships for χw(θ) such as (5.1), where
χw is the unfrozen water content determined experimentally and dependent on soil type. We follow
a formulation based on [14]: here χw(θ) is parametrized with some soil-type dependent parameters
b > 0, as well as with χres ∈ (0, 1)[−] which denotes the residual unfrozen water content at some really
low reference temperature

χw(θ) =

χres + (1 − χres)eb(θ−θ f r); θ ≤ θ f r

1; θ ≥ θ f r
. (5.5)

Now θ f r is the threshold temperature called freezing point depression such that for θ > θ f r, only liquid
water is present. Unlike in bulk water, typically θ f r < 0. Parameter b[1/◦C] depends on the soil type.
For example, for coarse-grained soils such as sand, the value of b is large, but for fine-grained soils
such as clay b is small. For a particular soil type, we assume b to be a constant.
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Table 11. Different models for liquid water fraction in Section 5.1.

Model Unfrozen water content Parameters Typical
(reference) χw|θ≤θ f r values

[L] [72] χw(θ) =
∣∣∣∣ θ f r

θ

∣∣∣∣a a[−] Silt: a ∈ [0.3, 0.5] [73]

[W] [6] χw(θ) = (1 − χres)
[

θλ
θλ+θ f r−θ

]4
+ χres θλ[◦F] Sand: θλ = 0, Silt: θλ = 2 [6]

[M] [14] χw(θ) = χres + (1 − χres)eb(θ−θ f r) b[1/◦C] Clay: b = 0.16, [15]
[A] [41] χw(θ) = a(−θ)b a[−], b[−] Silt: a = 3.2, b = −0.5, [41]

Basalt: a = 3.45, b = −1.13 [41]

Remark 5.2. A variety of algebraic models for χw(·; θ) other than (5.5) are given in applications liter-
ature; see Table 11 for expressions adapted so that they fit (5.1). The models are qualitatively similar
to each other. For a particular expression for χw(θ) plugged in (5.4) they produce w = αP(θ) which
is a monotone increasing injective Lipschitz function. In particular, with (5.5) we get, after some
rearranging

αP(θ)|θ>θ f r = cu(θ − θ f r) + ηL, (5.6)

αP(θ)|θ≤θ f r = c f (θ − θ f r) + (cu − c f )
(
χres(θ − θ f r) +

(1 − χres)
b

(
eb(θ−θ f r) − 1

))
+ ηL

(
χres + (1 − χres)eb(θ−θ f r)

)
.

For comparison, we plot αP corresponding to the the different models in Figure 10. Here we use the
parameters [16] cr = 0.9, kr = 0.0195, θ f r = −0.5, χres = 0.2035 and η = 0.43 along with the thermal
properties of water as given in Table 2.

We see that each αP can be seen as an approximation to the monotone graph αS T , and each is
a strictly monotone smooth increasing function of θ, differentiable everywhere except at θ f r (as we
stated in Assumption 1.3 for αP).

5.1.4. Thermal conductivity in permafrost

To complete the permafrost model, we need to define the thermal conductivity of the porous medium
which is made of Ωr and Ωw, with the latter partitioned between Ωl and Ωs.

It is well known that, unlike capacity given in (5.3), conductivity k of composite materials depends
not just on the values of kr, kl, ks, as well as on the fractions η, χw, but also on the geometry of how the
phases are arranged. Still, some authors consider straightforward weighting with volumetric fractions
as in (5.3) which gives, e.g., in [16]

k = klχ + ks(η − χ) + kr(1 − η) = kuχw + k f (1 − χw). (5.7)

where ku = ηkl + (1 − η)kr is the thermal conductivity of the “unfrozen soil” and k f = ηks + (1 − η)kr is
the thermal conductivity of the “frozen soil”. While (5.7) is a good first order approximation, it does
not take into account the geometry of the rock grains; more accurate expressions based on data are
considered in [10,14,15] [41](.) Other general approaches can be considered and involve upscaling or
homogenization; see, e.g., [18, 74]. More work is needed on more accurate expression for k(x, t).
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Figure 10. Enthalpy given by (5.4) for different experimental models for unfrozen water
content χw(θ) tabulated in Table 11. The plots mimic the properties of clay [15]. Although
the graphs appear to have a singular derivative near θ f r, the functions are all Lipschitz. For
the particular curves, we use b = 0.2[1/◦C] for [M] [14], a = 0.4 for [L] [72], θλ = 1[◦C]
for [W] [6]. Also shown is the enthalpy curve (ST) calculated without considering the effects
of unfrozen water content when at i.e.. when the enthalpy (5.4) is calculated assuming that
χw = 0 ∀ θ < θ f r.

For the needs of this paper we use (5.7), combined with some selected model for χw = χw(θ(x, t)).
This completes the permafrost model, once boundary and initial conditions are specified. To construct
these for realistic scenarios, care is needed. The former depend on environmental conditions, while the
latter must be found carefully since thermal equilibrium might not be always realistic to assume.

5.2. Approximation of permafrost model with P0-P0

We recall now the P0-P0 (equivalent to CCFD) approximation to (1.1) with (1.2) given in Section 3.
The function αP described in Section 5.1.3 features a piecewise smooth nonlinearity, thus fits the
general class of problems that Section 3 applies to, and we expect that the scheme P0-P0 will work
well.

In fact, the fluxes q permafrost problem feature continuous normal components since there is no
jump prescribed. Therefore, we expect that θ is approximated to at least to first order accuracy, similarly
to what we encountered for the (harder) (ST) problem.

To put our P0-P0 approach in perspective, we first briefly review relevant literature; see Sec-
tion 5.2.1. Then we follow up with the test of convergence of P0-P0 in Section 5.2.2 along with
examples in Section 5.2.3.

5.2.1. Approaches in literature

The work [6] uses a variational formulation, implicitly discretized in time, to generate a set of non-
linear algebraic equations which are solved using the Newton’s method; they test their algorithm on
2D examples; see also discussion in [11]. Next, [8] use a fixed grid finite element method further
employing Picard’s method to deal with the consequential nonlinearity in the mass and stiffness ma-
trix. In turn, [9] use a node-centered finite difference scheme and solve the nonlinear equations using
Newton’s methods, and [15] implement their finite element model within the commercially available

Electronic Research Archive Volume 30, Issue 4, 1477–1531.



1515

Table 12. Convergence orders using P0-P0 scheme to permafrost problem for Example 5.1,
and a fine grid solution. Different soil types are used, as shown by parameter b in Column 3.

M τ b ‖θerr‖∞,2 ‖θerr‖∞,1 ‖θerr‖2,2 ‖werr‖∞,2 ‖werr‖∞,1 ‖werr‖2,2

τ = O(h)
{20, 40} {5000, 2500} 0.1 0.37 0.50 0.81 0.52 0.63 0.93
{40, 80} {2500, 1250} 0.1 0.34 0.55 0.80 0.43 0.61 0.86

τ = O(h2)
{20, 40} {20000, 5000} 0.1 0.65 1.06 1.30 0.53 0.95 1.30
{40, 80} {5000, 1250} 0.1 0.54 0.99 1.46 0.54 1.01 1.44

τ = O(h)
{20, 40} {5000, 2500} 1 0.57 0.66 1.08 0.95 1.15 1.36
{40, 80} {2500, 1250} 1 0.49 0.61 0.95 0.69 0.85 1.18

τ = O(h2)
{20, 40} {20000, 5000} 1 0.56 1.00 1.35 0.50 0.97 1.29
{40, 80} {5000, 1250} 1 0.54 1.03 1.48 0.53 1.03 1.42

τ = O(h)
{20, 40} {5000, 2500} 4 0.62 0.73 1.22 1.55 1.77 1.56
{40, 80} {2500, 1250} 4 0.60 0.63 1.02 0.50 0.72 1.28

τ = O(h2)
{20, 40} {20000, 5000} 4 0.54 0.96 1.35 0.51 0.98 1.18
{40, 80} {5000, 1250} 4 0.53 1.03 1.47 0.54 1.03 1.32

solver ABAQUS.
We adopt the fully discrete formulation for P0-P0 as given in Section 3 and extended to heteroge-

neous media in Section 4.

5.2.2. Convergence of P0-P0 scheme for permafrost model

Example 5.1. For convergence studies, we choose an example based on [26]. We consider the scenario
as in Example 3.2, but with αP(·) instead of αS T , and with the following initial and boundary conditions

winit(x) = αP(−1), θ(0, t) = −1[◦C], θ(20, t) = 1[◦C]. (5.8)

The soil properties are chosen to be η = 0.43, b = 0.9. We run the simulation over a time period of
(0, 50000)[s]. Since the exact solution is unknown, the convergence rates are calculated using a fine
grid solution (θn

h f ine
,wn

h f ine
)n computed on a mesh with M = 4000 cells and time step τ = 25[s].

The results are given in Table 12. We see a modest improvement in the present case with αP over
the rates obtained for αS T in the Stefan problem, with order robustly ≈ 1 for θ and ≈ 0.5 for w. Further,
we also observe that the order of convergence seems independent of small variations in the soil type,
or in the parameter b in (5.5). These results are for τ ≈ O(h) as in (ST) problem.

Next we attempt τ ≈ O(h2) which is optimal in linear and mildly nonlinear parabolic problems. We
attempt the latter since the graph αP is much smoother than any of αS Tε , hence, we hope to have better
than first order convergence. However, there is only mild improvement in the convergence rate when
using τ ≈ O(h2) compared to τ = O(h); specifically, the order of convergence is roughly ≈ 1.3–1.5. In
the end, this improvement may or may not justify the extra computational effort of using τ = O(h2).
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5.2.3. Simulation of realistic examples

Next we apply our P0-P0 algorithm to physical examples pertaining to permafrost thawing. The
goal of these examples is to test the robustness of our scheme and to illustrate the modeling aspects
of permafrost. Since most of the interesting dynamics in permafrost occurs due to the varying surface
boundary conditions and along the depth, we confine ourselves to the d = 1 case.

We use the expression (5.5) for the unfrozen water content χw(θ).

Example 5.2. Homogeneous case. Consider a small column of soil Ω = (0, 20)[cm] with physical
parameters as in Table 2 along with η = 0.43, χres = 0.1, b = 0.5[1/◦C]. We use the following initial
and boundary conditions

winit(x) = αP(2), θ(0, t) = 2[◦C], θ(20, t) = −4[◦C],

and run the simulation over a time period of (0, 50000)[s]. The solution at different times is shown in
Figure 11.

We see the temperature profile trending slowly towards the stationary distribution. When the simu-
lation is run over a time period of at least 4.5 hours, steady state is achieved in which the temperature
qualitatively has an almost linear profile.

Example 5.3. Heterogeneous case. We extend Example 5.2 to a heterogeneous case. We consider
Ω = (0, 20)[cm] be composed of two different soil types: Ω f ine = (0, 15) and Ωcoarse = (15, 20).
Thermal properties of water are as in Table 2, and we use η = 0.43, χres = 0.1. The difference in
the properties of coarse and fine soil is in parameter b in (5.5). We choose b f ine = 0.5[1/◦C] and
bcoarse = 1[1/◦C]. We start with the initial and boundary conditions

winit(x) = αP(2); θ(0, t) = 2[◦C], θ(20, t) = −4[◦C],

and run the simulation over a time period of (0, 50000)[s]. The solution at different times is shown in
Figure 11.

The difference between Examples 5.2 and 5.3 is apparent from Figure 11. At t ≥ 25000[s] a
prominent jump in enthalpy appears near x ≈ 15[cm]; this effect is due to the soil heterogeneity.

Next we aim to simulate the effect of permafrost warming due to variable temperature at the top
boundary, and a possible effect of climate warming.

Example 5.4. Homogeneous case with time dependent boundary condition. Let Ω = (0, 15)[m]
represent a column of soil of porosity η = 0.43, with the top boundary subject to time-varying tem-
perature boundary conditions representing typical environmental change; see, e.g., [41](Figures 3–5)
and [75] where the effect of climate warming is considered. At the bottom we apply fixed Dirichlet
condition representing fixed temperature below the active layer. For simulation we use thermal proper-
ties of water from Table 2, along with χres = 0.1, b = 0.5. Our goal is to simulate the temperature and
enthalpy profile during the time period of [0, 2.5] years following an earlier period of time [−10, 0],
initiated with

w(x,−10) = αP(−0.2), θ(0, t) = −0.5 + 10 sin ( 2π
365 t − 0.2π)[◦C],

θ(15, t) = −0.2[◦C], t ∈ [−10, 0].
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Figure 11. Solution at different time steps of the permafrost examples. Left: results for
homogeneous soil in Example 5.3; Right: simulation for heterogeneous soil in Example 5.3.
Also shown is the interface separating the fine and coarse soil. Bottom: the corresponding
(θ,w) curves at t = 50000 for the homogeneous and heterogeneous example, respectively.
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We use the simulated w(x, 0) (shown in the top row of Figure 12) as the initial data for the new time
period [0, 2.5], with

θ(0, t) = −0.5 + 0.052t + 10 sin ( 2π
365 t − 0.2π)[◦C], θ(15, t) = −0.2[◦C], t ∈ [0, 2.5][yr].

The simulation results are shown in Figure 12. The temperature at a depth x ≈ 0.5, 1.5 and 3.5 as a
function of time is plotted along with the temperature and enthalpy at the end of 2.5 years. We use the
simulation results to get a rough estimate of the active layer thickness to be ∼ 4[m].

5.3. Solver challenges and open questions

The P0-P0 approximation scheme and the solver behaves similarly for permafrost problem (P) as
for (ST) problem. For single material problems, the model is robust and features essentially mesh
independent number of iterations under reasonable time steps.

However, simulation in heterogeneous domains pose difficulties. The performance of Newton’s
method can be rather rugged, and is a (well-known) challenge [76]. For permafrost, the solver perfor-
mance deteriorates in the case of highly disparate data, and/or and large time steps. Specifically, the
former is an issue if there is a big difference, e.g., in the soil parameters b (or a) in Section 5.1.

One way to overcome this challenge is to use adaptive time stepping through which the time step is
reduced if Newton iteration struggles to converge. Generally, reducing the time step leads to smoother
convergence of residuals to zero. For very difficult cases related to high degree of heterogeneity,
we regularize the problem by introducing an artificial “intermediate” layer in the region close to the
interface Γ in which the soil parameters vary more smoothly. Such a strategy can be used to find an
initial guess for Newton step, or be used as the solution for a few initial time steps.

5.4. Summary

More work on the solver and schemes is needed, but overall we believe our P0-P0 scheme per-
forms well for the permafrost problem (P). We see that its behavior is smoother and the challenges are
somewhat milder than those for the (ST) problem, except in heterogeneous domains.

6. Summary and future works

In this paper we consider a collection of models motivated by the applications to the phase change
problems dubbed (ST), their (ST)ε modeling approximation, and the models (P) in permafrost.

For approximation, we consider the technique well known for its conservative properties, mixed
finite element method on rectangular elements. Because the solutions are expected to have low regu-
larity, we choose to use only lowest order finite elements, with piecewise constant approximations to
the scalar unknowns (θ,w) which we call P0-P0, and which are similar to finite volume or cell-centered
finite difference approaches. For time discretization we employ a first order fully implicit scheme. We
show that our P0-P0 approach works well for (ST) as well as (ST)ε and (P) permafrost, and that they
compare well to the P1-based approaches that were primarily formulated for (ST)ε . We extend the
P0-P0 approach to heterogeneous case of multiple materials, and showed that a monolithic P0-P0 dis-
cretization we construct is robust and easy to implement. We set up theoretical framework relating to
known literature results, proved several results, and point out the challenges and open questions.
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θinit(x)

θ(x, 2.5) w(x, 2.5)

Figure 12. Top: θinit and θ(·, 2.5), w(·, 2.5) for Example 5.4. Middle left: temperature plot.
Included are θ(0, t) (top boundary), and θ(x, t) at the depth x = 0.525, x = 1.525, and x =

3.125[m] for a period of t ∈ [0, 2.5] years. Middle right: enthalpy plot at the corresponding
(x, t). Bottom: temperature and enthalpy at the end of simulation t = 2.5[years].

Electronic Research Archive Volume 30, Issue 4, 1477–1531.



1520

More work is underway. In particular, due to the challenges we acknowledged above, rigorous
convergence analysis of P0-P0 is inaccessible at this time, even if it can be inferred in the limit of that
for (ST)ε . The main challenge is that that the use of X = Hdiv(Ω) for the heat flux q is not directly
possible for (ST). At the same time, our algorithms are robust even if they do not address this formal
difficulty, but require more work which we defer to the future.

On modeling side, in permafrost, or more generally, in freezing soils, there are additional micro-
scale physical effects which contribute to the complex physics of phase change. These include freezing
temperature depression, presence of air which acts as an insulator, configuration (geometry) of the
pore space, as well as the chemical composition of liquid and mineral phases. While these are not fully
explained, we aim to connect the computational models of multi-material pore-scale to the macro-scale
experimental models such as those in Section 5.

For (P) models in permafrost, in the paper we neglect convection and other physical phenomena
which can potentially contribute to the temperature changes such as flow and mechanical behavior;
these, along with other physical and environmental effects including those of radiation, vegetation and
snow cover, and more, will be studied in forthcoming paper.

7. Appendix

7.1. Exact solution for Example 2.1

The exact solution to (2.15) with data as in Example 2.1 is given by

w(t) =



1

1+
A2T2

end
c2
sπ

2

[
−

Tend
π

cos ( πt
Tend

)+
]

+ winit; t ∈ [0, t1]

−
Tend
π

cos ( πt
Tend

) + cos ( πt1
Tend

); t ∈ [t1, t2],
1

1+
A2T2

end
c2
l π

2

[−Tend
π

cos ( πt
Tend

) +
AT 2

end
clπ2 cos ( πt

Tend
)

−

(
−

Tend
π

cos ( πt2
Tend

) +
AT 2

end
clπ2 sin ( πt2

Tend
)
)

e
A(t2−t)

cl ] + Le
−At
cl ; t ∈ [t2, 3600],

where t1 = 44.2658[s] is when phase change begins, t2 = 858.5458[s] is when all the solid has changed
into liquid, and winit = −1 is the initial enthalpy.

7.2. Auxiliary finite dimensional result

We consider a useful ODE system on Rk with a matrix A ∈ Rk×k and right hand side F(t) ∈ Rk

d
dt W + AU = F,w(0) = Winit; W ∈ α(U). (7.1)

We define the solutions W(t) as limits of the solutions Wn to the time-discrete problem

Wn−Wn−1

τ
+ AUn = Fn, Wn ∈ α(Un), n ≥ 1; W0 = Winit. (7.2)

The result below will be used many times in this paper.

Lemma 7.1. Let α(·) be maximal monotone and A symmetric nonnegative definite. Then there exists
a unique solution (Un,Wn) to (7.2).
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Proof. We find Un as the minimizer of

J(U) =
τ

2
UT AU + Φα(U) − UT (Wn−1 + τFn)

where we set Φα(U) =
∑k

i=1 φα(Ui), with φα(r) the (strictly convex) primitive of α(r) (i.e., φ′α(r) = α(r),
and the subgradient ∂Φα(U) =

∑
k φα(Ui)). The functional J(U) is strictly convex due to the convexity

of UT AU and strict convexity of Φα, and thus it has a unique minimizer U, and we set Un = U. With
known Un, we find Wn from Wn + τAUn = Wn−1 + τFn, which follows from (7.2).

7.3. Detailed comparison of P1-based formulations

Now we provide a detailed comparison of the P1-based formulations recalled in Section 2.4. We do
so, for simplicity, for d = 1 and a grid covering Ω = [a, b] with M cells ωi = [xi−1/2, xi+1/2] with centers
xi so that Ω̄ = ∪M

i=1ωi and x 1
2

= a, xM+ 1
2

= b. Other results not reviewed here include grid adaptive
schemes in [77].

We recalling that un
h ∈ Vh is identified by its nodal values (U j±1/2n) j. In turn, in P1-P0 approaches

wn
h ∈ Mh are identified by (Wn

j ) j.
We denote by Π0

hun
h the L2 projection onto constants Π0

h : L2(Ω)→ Mh, by P0
h the L2 projection onto

Vh, and by P1
h the Ritz projection onto Vh.

P1-P0 approximations: In [4]: one seeks wn
h ∈ Mh such that

(un
h, ψ) + τ

µ
(∇un

h,∇ψ) = (βK(wn−1
h ), ψ), ∀ψ ∈ Vh, (7.3a)

Wn
j = Wn−1

j + µ
(
un

h(x j) − βK(Wn−1
j )

)
, ∀ω j. (7.3b)

Here we require µ ≤ L−1
βK

, since (7.3b) implements the Chernoff formula. Note that the advantage

of (7.3) is that (7.3a) is linear in un
h. However, a consistency error arises since µ , β′K(Wn−1

j )−1 and

un
h(x j) =

Un
j− 1

2
+Un

j+ 1
2

2 , βK(Wn
j ), and

βK(Wn
j ) = βK

(
Wn−1

j + (Wn
j −Wn−1

j )
)
≈ βK(Wn−1

j ) + (Wn
j −Wn−1

j )β′K(Wn−1
j ).

Next, [5] are able to improve the convergence rates by modifying the scheme given by (7.3) through
the use of regularization and projection. Their fully discrete regularized scheme reads [5]: find un

h ∈

Vh, wn
h ∈ Mh such that

(Π0
hun

h, ψ) + τ
µ
(∇un

h,∇ψ) = (βKε(wn−1
h ), ψ), ∀ψ ∈ Vh, (7.4a)

Wn
j = Wn−1

j + µ
(
(Π0

hun
h)(x j) − βKε(Wn−1

j )
)
, (7.4b)

where βKε is given by (7.5), essentially a Yosida approximation to βK,

βKε(w) =

βK(w); w < 0, w > Lkl
kl−clε

εw; 0 ≤ w ≤ Lkl
kl−clε

, (7.5)

for some 0 < ε < kl
cl

.
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The work of [44] uses a semi-implicit scheme for phase relaxation coupled with (2.6) given by
ε ∂χ
∂t +H−1(χ) 3 u, They seek χh

n ∈ Mh as an independent variable and solve

τ
ε
(un

h, ψ)h + (χh
n, ψ) + τ(∇un

h,∇ψ) = τ
ε
(un−1

h , ψ)h + (χh
n−1, ψ),∀ψ ∈ Vh, (7.6a)

χh
n(x j) =

(
τ
ε
(Π0

hun−1
h )(x j) + χh

n−1(x j)
)
− τ

ε
βK

(
τ
ε
(Π0

hun−1
h )(x j) + χh

n−1(x j)
)
, (7.6b)

where (un
h, ψ)h =

∫
Ω

Ih(un
hψ), with Ih : C0(Ω) → Vh being the linear interpolator. We see that (7.6b)

is equivalent to the Chernoff formula (7.3b) with µ = τ
ε
. This shows the subtle difference in the

scheme by [5] and [44]: in [44] numerical integration (un
h, ψ)h is employed whereas in [5] the projection

operator is used to obtain (P0
hun

h, ψ).

Remark 7.1. (7.6b) is obtained using the discretization

ε
χh

n(x j) − χh
n−1(x j)

τ
+ H−1(χh

n(x j)) = un−1
h (x j). (7.7)

To account for un−1
h in (7.7) instead of un

h, the stability condition τ ≤ ε must be enforced [31].

P1-P1 fully implicit approach in [3] A scheme of a different flavor is explored in [3]. Fully implicit
in time formulation of (2.6) is approximated with un

h ∈ Vh

(wn
h, ψ) + τ(∇un

h,∇ψ) = τ( f n, ψ) + (wn−1
h , ψ), ; wn

h ∈ P0
h(α(un

h)). (7.8)

This discrete systems is, in practice, similar to (7.2) except it applies to (ST) and pays considerable
attention to the identification and the role of P0

h in this last equation. While no regularization of α
is needed, the results are not accompanied by numerical computations. Optimal convergence rates
[3](Theorem 2.7) apply to all models (1.2)

‖θ − θh‖L2(L2) + ‖w − wh‖L∞(H−1) ≤ C
(
τ + h

[
ln

(
h−1

)]1+ r
2
)

(7.9)

where 0 ≤ r < ∞ is a constant such that

|α(θ)| ≤ C(1 + |θ|r). (7.10)

In particular, for (ST) and (2.8) we have r = 1. This corresponds to an order of convergence ≈ 1 when
τ = O(h). However, [3] do not include numerical implementation details or experiments.

Other P1-P1 schemes include those in relaxation models [31].

7.4. Convergence studies of P1-based and P0-P0 algorithms.

We carry out convergence analyses when the true solution θ,w is known, or when only its proxy, a
fine grid solution θh f ine ,wh f ine is available. For time dependent problems the use of θh f ine ,wh f ine renders
convergence order verification in some norms impractical. Therefore in this paper we only use Lp

norms; we also confine ourselves only to the error in scalar unknowns, deferring the discussion of the
error in the fluxes to future work.
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Figure 13. Top row: Solutions with P1-P0 to (VV) Example 3.1 with M = 10, τ = 10−2 at
t = 0.2. Bottom row: Solutions P1-P0 to (RBC) Example 3.2 with M = 20, τ = 500 at time
t = 200000.

7.4.1. Error norms

As stated in Introduction, the notation f ∈ L∞(Lp) means f ∈ L∞(0,T ; Lp(Ω)). We denote the norms
appropriately, say as || f ||∞,p; all these have to be approximated. In particular, we distinguish the grid
norms

‖θerr‖∞,p = max
n
||θh − θ(·, tn)||p,∆ = max

n

h M∑
i=1

|θi − θ(xi, tn)|p
1/p

.

‖θerr‖2,2 =

τ∑
n

||θn
h − θ(·, t

n)||2,∆

1/2

.

We also use a tighter approximation than the grid norm

‖θerr‖∞,Lp = max
n

(∫
Ω

|θn
h − θ(·, t

n)|p
)1/p

≈ max
n

 M∑
j=1

10∑
l=1

|θn
j − θ(x j+ l−5

10
, tn)|p


1/p

.

7.4.2. P1-based schemes

The theoretically estimated convergence error depends, as usual, on h, τ and ε. Of the literature we
have reviewed, [26,31,44] provide numerical results supporting their theoretically derived convergence
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Table 13. Convergence orders obtained in Examples 3.1 (VV) and 3.2 (RBC) for P1-based
schemes from literature and for our P0-P0 scheme. Also listed is the order of convergence
for ‖θerr‖2,2 derived theoretically in the literature which is denoted by (Lit.).

Scheme θ-w Case ‖θerr‖∞,2 ‖θerr‖∞,1 ‖θerr‖2,2 (Lit.) ‖werr‖∞,2 ‖werr‖∞,1 ‖werr‖2,2 Notes

P1-P0 [4] (VV) 0.47 0.52 0.52 0.25 0.27 0.53 0.24
τ = O(h)(RBC) 0.42 0.44 0.42 0.26 0.5 0.25

P1-P0 [5] (VV) 0.84 0.84 0.91 0.66 0.51 0.96 0.52
τ = O(h2)(RBC) 0.70 0.72 0.72 0.45 0.87 0.45

P1-P0 [44] (VV) 0.66 0.69 0.73 0.50 0.35 0.70 0.35
τ = O(h

3
2 )(RBC) 0.14 0.13 0.26 0.28 0.47 0.24

P0-P0 (VV) 1.38 1.43 1.27 - 0.50 1.00 0.47
τ = O(h)(RBC) 1.08 1.09 1.07 0.45 0.96 0.47

rates. We set up additional experiments and convergence study as a prequel to the study of our P0-P0
schemes for (ST) problem: we use analytical solutions given in [26, 44] for d = 1. The theoretical
convergence orders as well as those we tested are tabulated in Table 13. We compare the [P1-P0]
schemes given in [5, 44] in Examples 3.1 and 3.2, respectively; see the plots shown in Figure 13.
Additionally, we mention the work in [4] which provides a semi-discrete scheme which we further
discretize in space following [5]. For this reason, along with using a small regularization parameter
ε in (7.4), the numerical solution following the formulation as in [4] is virtually indistinguishable
from [5] in Example 3.1 and hence is not shown in Figure 13.

All together, we observe that θ is approximated well, qualitatively and quantitatively, by all the
schemes. However, w appears to be “smeared” near the interface and features higher errors. Of all the
schemes, that in [5] produces the best approximation and convergence rates. The examples we show
are consistent with the rates proved in [44]; see Table 13.

7.5. Auxiliary properties

We recall now one especially useful and well known feature of numerical implementation of (3.6)
when numerical integration is used to get the entries of matrix K . As discussed in [24, 49], these
follow from the use of trapezoidal (T) and midpoint (M) rules (

∫
Ω

k−1(qh)1ψi+1/2, j)T M which leads to
an algebraic expression involving the so-called transmissivity or transmissibility edge factor Ti+1/2, j =

hy, jki+1/2, j, where

ki+1/2, j =
(

1
2hik−1

i jk + 1
2hi+1k−1

i+1, j,k

)−1

is the weighted scaled harmonic average of ki j and ki+1, j so that (see, e.g., [24]( eq.(15)))(∫
Ω

k−1(qh)1ψi+1/2, j

)
T M

= qi+1/2, jT
−1
j+1/2, jhy, j, (7.11)

We emphasize that the use of harmonic averages leads to conservative fluxes; this is in contrast with
primal formulations in which arithmetic averages are used, and fluxes are not conservative.

Next, we integrate
∫

Ω
∇ · ψi+1/2θh and obtain, for the total normal flux hy, jqh · ν|γi+1/2, j = hy, jqi+1/2, j

across γi+1/2, j ωi, j and the first component (qh)1 of qh

hy, jT
−1
i+1/2, j(qi+1/2, j) = −(θi+1, j − θi, j). (7.12a)
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The right hand side explains how the entries of matrix BT arise.
A similar expression is obtained for (qh)2 and (qi, j+1/2) using T −1

i, j+1/2.

hx,iT
−1
i, j+1/2(qi, j+1/2) = −(θi, j+1 − θi, j). (7.12b)

The use of factors T allows the interpretation of (7.12) as a finite difference analogue of q = −k∇θ. It
also explains why the matrix K is diagonal.

Last but not least, (7.11) is done also for the second component of flux (qh)2 across ωi j.
Handling Dirichlet boundary conditions. The expression (7.12) is valid for the interior edges

away from external boundaries and interfaces. If the edge γi+1/2, j is on a boundary on which Dirichlet
condition θ|γi+1/2, j = θ∗ is prescribed with some θ∗, then the analogue of (7.12) reads

hy, jT
−1
∗, j+1/2, j(q∗,i+1/2, j) = −(θ∗ − θi, j), with T −1

∗, j+1/2, j = hy, j

(
1
2hik−1

i jk

)
. (7.13)

The portion of the expression associated with θ∗ moves to the right hand side of (3.3), but the structure
of the matrix does not change.

7.6. Linear heat equation with a jump condition

We consider the special linear case with piecewise constant coefficients of (4.1) from Example 4.1

∂tθ + qx = 0, q = −kθx, x ∈ (0, x∗) ∪ (x∗, 1), (7.14a)
θ(0, t) = 1, θ(1, t) = 0, (7.14b)

θ(2)(x∗, t) − θ(1)(x∗, t) = −ρRq(1)(x∗, t); q(2)(x∗, r) = q(1)(x∗, t). (7.14c)
θ(x, 0) = 0. (7.14d)

7.6.1. Stationary solution

We also consider the stationary solution qstat(x) = q(x), θstat(x) = θ(x) to (7.14) which satisfy

qx = 0, q = −kθx, x ∈ (0, x∗) ∪ (x∗, 1), (7.15a)
θ(0) = 1, θ(1) = 0, (7.15b)

θ(2)(x∗) − θ(1)(x∗) = −ρRq(1)(x∗); q(2)(x∗) = q(1)(x∗). (7.15c)

It is not difficult to find its analytical solution, with q = q(1) = q(2) = C and

θ(1)(x) = − C
k1

(x) + C1; x ∈ Ω(1); θ(2)(x) = − C
k2

(x) + C2; x ∈ Ω(2);

C =
[
(x∗( 1

k2
− 1

k1
− ρR) + a

k1
− b

k2

]−1
(θb − θa); C1 = θa + a

k1
C; C2 = θb + b

k2
C.

In particular in the special case k1 = 1 = k2, and a = 0, b = 1, θ0 = 1, θ1 = 0, x∗ = 1
2 we get

q = 1
1+ρ

; θ(1)(x) = −1
1+ρ

x + 1; θ(2)(x) = −1
1+ρ

x + 1
1+ρR

(7.16)

From this we have the jump [θ]|x∗ = θ(2)(x∗)− θ(1)(x∗) = −
ρR

1+ρR
scaling linearly with ρR as ρR ↓ 0, unlike

O(
√
ρR) predicted for the evolution problem in (4.3).
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