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Abstract

A central tenant of the Comprehensive Everglades Restoration Plan (CERP) is nutrient

reduction to levels supportive of ecosystem health. A particular focus is phosphorus. We

examine links between agricultural production and phosphorus concentration in the Ever-

glades headwaters: Kissimmee River basin and Lake Okeechobee, considered an impor-

tant source of water for restoration efforts. Over a span of 47 years we find strong

correspondence between milk production in Florida and total phosphate in the lake, and,

over the last decade, evidence that phosphorus concentrations in the lake water column

may have initiated a long-anticipated decline.

Introduction

Historical perspective

Prior to the 19th Century, the Florida Everglades consisted of 3 million acres of marsh draining

the Kissimmee River Basin and Lake Okeechobee southward into Florida Bay. Water flowing

into Lake Okeechobee came primarily from the Kissimmee River, meandering approximately

103 miles as a 1 to 2 mile-wide floodplain. The shallow, slow moving flow provided conditions

well-suited for nutrient uptake, contributing to low nutrient concentrations throughout the

system. As a result, addition of even small amounts of nutrients can significantly effect the

structure and productivity of the native ecosystem [1].

Consistent with ideals of manifest destiny, efforts to “drain” the Everglades to produce ara-

ble lands were initiated in the late 19th Century, and, in the 1950’s, the Kissimmee Flood Con-

trol project replaced the original meandering geometry with a channel consisting of straight-

line segments [2, 3]. Completion of the project coincided with increased phosphorus loads to

Lake Okeechobee from the transport of phosphorus-laden sediments [4, 5]. A comparative

rendition of the pre-development and current systems is shown in Fig 1.

The extensive spread of agriculture in the upstream drainage basins also contributed to this

increased load. Phosphorus is added to uplands in fertilizers, organic solids (e.g., animal

wastes, composts, crop residues), wastewater, and animal feeds. Some phosphorus is exported

from the drainage basin as agricultural products, however, a significant amount accumulates
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in upland soils and sediments, and, a portion is then transported by surface flow to the lake

[6].

Historically, cattle ranching was the main agricultural use of the watershed north of the

lake, however, in the 1950s dairy farming increased eight-fold, with a corresponding increase

in phosphorus exports from 250 to 2,000 metric tons per year [7]. In 2000, Florida enacted the

Lake Okeechobee Protection Act (Chapter 00–103, Laws of Florida), mandating a comprehen-

sive plan to reduce watershed phosphorus loading to meet a total maximum daily load

(TMDL) of 105 metric tons (mt) per year of surface-water input by 2015.

Contemporary conditions & restoration

Over the last two decades, many sources have been remediated, producing significant declines

in source loadings [7–15]. On-site monitoring at the farm level has demonstrated improve-

ment, particularly for intensive land uses such as dairies where treatment systems, stormwater

Fig 1. South Florida satellite image. a) Simulated South Florida satellite image circa 1850. b) Satellite image 1994. c)

Pre-development hydrologic flow paths. d) Current flow paths. LOK—Lake Okeechobee. EAA—Everglades

Agricultural Area. EPA—Everglades Protection Area. ENP—Everglades National Park.

https://doi.org/10.1371/journal.pone.0248910.g001
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management, and reuse have been implemented [16]. However, a large amount of legacy phos-

phorus remains throughout the watershed [17], and, owing to the significant variability in

phosphorus dynamics, it is not clear that total phosphorus concentrations have significantly

declined [18].

A longstanding presumption of CERP is that substantial quantities of “new water” will be

delivered from Lake Okeechobee, accordingly, water quality in the lake has important implica-

tions on Everglades restoration [18]. However, currently, Lake Okeechobee water has a limited

effect on the downstream Everglades Protection Area (EPA) as roughly 4 percent of the lake’s

average outflow reaches the EPAs. The primary contributors are nutrients discharged from the

Everglades Agricultural Area (EAA) and C-139 basins [3]. To address this, best management

practices (BMPs) and stormwater treatment areas (STAs) have been designed and imple-

mented to reduce phosphorus from the EAA basins into the Everglades Protection Area [19].

Specific to Lake Okeechobee, increased phosphorus concentrations alter the structure and

functioning of the lake and downstream ecosystems. The chronic and substantial phosphorus

increase has resulted in conversion of a phosphorus-limited system into a nitrogen-limited sys-

tem. Attendent changes in the lake include increased algal blooms and abundance of nitrogen-

fixing cyanobacteria [20]. For example, during summer 2016, a large bloom of the cyanobacte-

rium Microcystis aeruginosa occurred in Lake Okeechobee, and, subsequently in the St. Lucie

Estuary. These events were attributed to high nutrient levels supporting the growth of phyto-

plankton [18].

Dynamical perspective

Conventional views find that total phosphorus concentrations in the lake have not significantly

declined over the 1974–2017 period of record, despite the array of projects that have reduced

phosphorous sources [12, 18]. However, there is significant variability across multiple time-

scales in the phosphorus data, with the potential to confound linear, block approaches of statis-

tical interpretation. Here, we use two data-driven, nonlinear dynamical tools to examine time

and cross variable dependence: Empirical Mode Decomposition (EMD) [21], and, Empirical

Dynamic Modeling (EDM) [22].

EMD decomposes signals into scale-dependent modes termed intrinsic mode functions

(IMF) without constraints of linearity or stationarity as presumed by Fourier, wavelet or Eigen

decomposition. IMFs capture oscillatory modes, and, EMD residuals the nonlinear trends.

Application of the Hilbert transform to IMFs provides time-dependent instantaneous fre-

quency estimates, with the combination of EMD and IMF Hilbert spectra constituting the Hil-

bert-Huang transform (HHT). The Hilbert-Huang transform was motivated by the need for

data-adaptive signal decomposition rather than one based on a-priori presumed basis, ala Fou-

rier and wavelet decompositions. As many real-world systems express nonlinear, nonstation-

ary dynamics, it has been found that IMFs are particularly astute at isolating physically-

meaningful dynamics. Examples include structural damage detection, seismology, speech rec-

ognition, biological and geophysical signals, and, financial time series [23]. A comprehensive

introduction and review of the HHT is found in reference [21].

EDM is a toolset to predict, explore, and, identify relationships of nonlinear dynamical sys-

tems. Nonlinear systems are state-dependent systems: states are determined by previous states

wherein a specific set or sequence of states govern transition from one state to another. EDM

operates in this space, the multidimensional state-space of system dynamics rather than on sin-

gle dimensional observational time series. Further, EDM does not presume relationships

among states, for example, a functional dependence, but predicts future states based on projec-

tions from localised, neighboring states. EDM is thus a state-space, nearest-neighbors
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paradigm where system dynamics are inferred from states derived from observational time

series. This provides a model-agnostic representation of the system naturally encompassing

nonlinear dynamics without parametric presumptions, fitting statistics, or, specifying equa-

tions [24]. An accessible and complete overview of EDM is provided by Chang et. al. [22].

We examine the data with EMD and EDM to reveal underlying dynamics and relationships

between milk production and lake phosphorus. The synthesis of EMD and EDM has been

termed empirical mode modeling (EMM), where EMD IMF’s are used to create physically rel-

evant multivariable state spaces for EDM [25].

Materials and methods

Data

Milk production data are obtained from the United States Department of Agriculture (USDA)

National Agricultural Statistics Service (NASS) database, reporting total monthly milk produc-

tion in Florida from January 1970 through June 2020 [26]. Data are shown in Fig 2a.

Phosphorus data for Lake Okeechobee is a 5 station average (stations L001, L003, L004,

L007, L008) obtained from the South Florida Water Management District (SFWMD) DBHy-

dro environmental database [27]. Raw data span the period December 11, 1972 to August 8,

2020. Stations were selected based on criteria of a minimal 40 year period-of-record, and, sub-

jected to manual quality assurance inspection.

The station average phosphorus time series is interpolated with a spline to monthly dates of

the milk production data. The result is a data block of monthly milk production and interpo-

lated total phosphate from January 1973 through June 2020 (Fig 2a and 2b).

Fig 2. Data and empirical mode decompositions. a) Milk production b) LOK total phosphate c) Milk decadal d)

Total phosphate decadal e) Milk interannual f) Total phosphate interannual g) Milk intra-annual h) Total phosphate

intra-annual.

https://doi.org/10.1371/journal.pone.0248910.g002
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Data representing the El-Niño Southern Oscillation are monthly values of the Multivariate

ENSO Index (MEI) obtained from the National Oceanic and Atmospheric Administration

Physical Sciences Laboratory [28].

Empirical mode modeling

We use EMD [29] to decompose the time series into IMFs and associated nonlinear residuals

(see Fig 5 in S1 Appendix Empirical mode decomposition). We use the mean value of the

instantaneous frequency of each IMF to represent the overall frequency, and thus inverse

period, of the IMF. Intra-annual IMFs are deemed to have mean periods between 0.5 and 2

years. Interannual IMFs have periods greater than 3 years. Interannual time series are created

by summation of IMFs with interannual frequencies, for milk production IMFs 4,5,6, and

IMFs 5,6,7 for phosphorus. Intra-annual time series consist of IMFs 2 and 3 for milk produc-

tion, and, IMFs 2,3,4 of phosphorus.

We then use raw data and IMFs of interannual and intra-annual modes in an EDM conver-

gent cross mapping (CCM) analysis [30]. CCM identifies potential causal links between state

variables based on information shared between multidimensional embeddings of the variables

[31]. CCM can be viewed as a dynamically-informed, fully nonlinear, analog to cross correla-

tion. However, instead of reliance on temporal or cross variable coincidence, CCM is based on

affine mappings of dynamical system states where CCM values indicate the cross variable

predictability. Convergence of predictability as the information content and density of the

state-space increase indicate shared dynamics and a measure of causality [31].

Since the data are autocorrelated (lag-1 correlations of 0.86 and 0.70 for milk and phospho-

rus respectively), and, exhibit seasonal dynamics, we use an exclusion radius of 12 points

(months). That is, in the EDM state-space nearest neighbor search for the prediction at each

time step, neighbors that are temporally within the exclusion radius of 12 points (months) are

excluded from the prediction. This prevents any influence of autocorrelation or seasonality on

the CCM information assessment.

To assess significance of the CCM results, we employ surrogate data samples created from

the random phase method of Ebisuzaki [32]. We use N = 1000 surrogate time series of the

milk or phosphorus data, and compute an EDM cross map strength for each surrogate and the

original time series. For example, the original phosphorus time series is EDM cross mapped

against 1000 surrogate milk time series created from Ebisuzaki spectral phase randomisation.

Given the cross map strength of variables X and Y, ρXY, and, a vector of cross map strengths

rXYN
between X and N surrogates YN, a p-value representing the probability of rejecting the

null hypothesis that the cross map strength ρXY is not due to randomness, can be specified as:

p ¼ 1 � CDFðrXYN
Þj

rXY
ð1Þ

where CDFðrXYN
Þ is the distribution function of the surrogate cross map strengths.

Results

One of the most striking results can be seen in a relative comparison of milk production and

lake phosphorus at different time scales. Fig 3 presents scaled (mean offset, standard deviation

normalized) comparisons of the raw data, nonlinear trends, interannual, and, intra-annual

modes. In the nonlinear trends of panel b) there is a remarkable coherence on the decadal time

scale with relative changes in milk production and lake phosphorus nearly identical from the

mid 1970’s through the early 2000’s. In the final decade, 2010–2020, there is flattening of over-

all milk production, and, a noticeable inflection towards phosphorus reduction. This may
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represent the long-anticipated decline in lake phosphorus concentration in response to best

management practices and remediation efforts of surface water sources.

The interannual components provide no clear covariance, while the intra-annual compari-

son suggests strongly phase-locked dynamics over most years. To explore cross variable depen-

dence, we use CCM.

Convergent cross mapping

Convergent cross mapping assesses the extent to which states of variable X can be predicted

from variable Y. If predictability using the entire time series (the full library of states) is signifi-

cant, and, if predictability increases and converges as the state-space provides improved repre-

sentations of the dynamics with increasing library size, it indicates shared dynamics and a

causal link [31]. Fig 4 shows CCM results applied to milk production and phosphorus at differ-

ent time scales.

We note that the nomenclature for cross mapping is X:Y, indicating that states of X are

used to predict states of Y, and conversely, Y:X means that states of Y are used to predict states

of X. Sugihara et al. [31] suggest that causality is inferred by measuring the extent to which the

historical record of Y can reliably estimate states of X. This happens only if X is causally influ-

encing Y. That is, if X is causally influencing Y, then states of X are “encoded” in states of Y. If

states of Y are then able to predict states of X as dynamical information represents the com-

plete dynamics (increasing library size) then one can infer that X is influencing Y. Causality is

detected in the upstream direction. This means that links for Y causing X are denoted X:Y.

The top row of Fig 4 plots a) CCM with all time scales, and, b) with removal of the highest

frequency IMF effectively implementing a low pass filter removing high frequency noise.

Here, we find evidence that milk production can be considered a causal driver of lake phos-

phorus when all time scales are included in the system dynamics, with slightly clearer evidence

when high frequency noise is removed.

Panel c) indicates no viable link between milk production and lake phosphorus on interan-

nual time scales. One might expect a link between interannual climate conditions and milk

Fig 3. Empirical mode decompositions scaled. a) All timescales, b) decadal, c) interannual, d) intra-annual.

https://doi.org/10.1371/journal.pone.0248910.g003
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production since El-Niño conditions tend to produce cooler and wetter conditions in Florida

[33], and, Holstien milk production increases as temperatures cool [34]. A more detailed

investigation of this hypothesized link is shown in S1 Appendix El-Niño Southern Oscillation

and milk production, providing additional details on the lack of an interannual link to milk

production associated with ENSO.

The intra-annual, seasonal metric indicates strong coupling, but fails to resolve a directional

attribute to the state predictions. This suggests a coupled, or common external driver on sea-

sonal time scales. Seasonal maximums of lake phosphorus are associated with wind forcing

during the winter [35], and, as noted above, milk production is also enhanced by winter tem-

perature reduction.

Conclusion

Decades of prosperity and attendant agricultural productivity have indelibly altered the land-

use and ecosystems of central and south Florida. The addition of nutrient concentrations at

order-of-magnitudes above pre-development levels have created a large reservoir of phospho-

rus in Lake Okeechobee. The waters of the lake are an important source of water supply for the

Comprehensive Everglades Restoration Plan, but strict phosphorus limits must be met for this

water to be admitted into the Everglades. Impressive phosphorus remediation efforts have

been undertaken this Century, including restoration of natural flow paths to portions of the

Kissimmee River [36], however, owing to the large amount of legacy phosphorus and complex

dynamics of phosphorus monitoring, traditional data processing has not identified a decline of

concentrations in the lake.

Using tools from nonlinear dynamical systems analysis, we find evidence of a reduction in

mean phosphorus concentration over the last decade. Continued monitoring will reveal

Fig 4. Convergent cross mapping (CCM) of milk and lake phosphorus. Dashed horizontal lines show linear cross

correlation. a) All timescales, b) Low pass filter, c) interannual, d) intra-annual.

https://doi.org/10.1371/journal.pone.0248910.g004
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whether this reflects the long-anticipated secular trend in phosphorus reduction, or, a tempo-

rary decline.

Additionally, we find that when data are viewed across all time scales, there is an apparent

causal link between milk production and phosphorus concentration in the lake. This verifies

the importance of continued remediation and source control efforts to mitigate phosphorus

runoff.
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(PDF)
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