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Abstract

With the continuous modernization of water plants, malicious, often state-sponsored attacks continue to create havoc in such
critical realms. Motivated by this, this paper proposes an unsupervised data-driven approach to support cyber forensics in such
unique setups. Specifically, the proposed approach aims at inferring and attributing cyber attacks using sensor readings and ac-
tuators states. The approach operates using attack-free data, which is attractive towards cyber forensics of such systems, where
attack-related empirical data is rarely widely available due to security and privacy reasons. The proposed method also provides the
capability to track and identify the attacked assets for prioritization purposes. The proposed approach exploits Bidirectional Gener-
ative Adversarial Networks (BiGAN) to fingerprint the behavior of the system under regular operation. It employs a combination
of Recurrent Neural Network (RNN) and Convolutional Neural Networks (CNN) as a basis of its design components. The Energy
Distance (ED) and Maximum Mean Discrepancy (MMD) are used to evaluate how firmly the model has learned the system’s be-
havior. The approach also leverages the /;-norm distance between unseen data and corresponding reconstruction to estimate the
irregularity score representing cyber attacks. The relative importance of the obtained residual error for each sensor/actuator is put
forward to attribute the attacked assets. To this end, we independently employ a regression tree technique, a game-theoretic concept
known as Shapley values, and a model-wise approach, the KernelSHAP, as residual loss to identify the relation of each asset to the
inferred anomaly. The results are then amalgamated to pinpoint the attacked asset. Empirical evaluations using data collected in a
testbed representing a small-scale water treatment plant uncovered 32 out of the 36 cyber incidents; exceeding the performance of
state-of-the-art. We also show that the proposed approach identifies the exploited sensors/actuators with more than 8-15% accuracy
improvement over current available works. We postulate and stress the fact that such proposed methods significantly contributes
towards the forensics of critical infrastructure.
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1. 1. Introduction untreated sewage directly in the waterway [1]. The threat of

) ) ) ) chemical attacks on a water systems is an ongoing concern. In
With the embedding of the latest technologies varying from 2016, attackers accessed a water company’s industrial control

telecommunication-enablers to advances in data-driven artifi- system and altered the amount of chemicals entering the water
cial intelligence, Industrial Control Systems (ICS), which pro- supply [2]. Further, a partially successful cyber attempt to dan-
vide partial or fully automated control for critical infrastructure, gerously elevate the level of sodium hydroxide in the water sup-
are now accessible through network communications. Com-  py recently threatened the health of around 15,000 individual
posed of various (?lect.ncal and mechanical devices, corpputers, [3]. Such security incidents, as well as many others, highlight
and human—mac.hn?e 1r.1terface.:s., _ICS are largely used in water  he yulnerability of the network-accessible automated systems
treatment and distribution facilities. of water infrastructure and shed light into the reality of its cyber
The network-connected water infrastructure, however, can  yogyre [4].
be used to put human population in danger. If an adversary The increasing relevance and the lack of cyber forensics
gained remote control over the automated operations, the fresh- 1 cthods for ICS deployed in water plants paved the way for
water supply and quality can be S?riOUSIY compromised. This  pew research to define required methods supporting cyber foren-
threat indeed went beyond theoretical when back in 2000, po-  gjcs. Herein, we perceive that besides network forensics, which

lice arrested a man who used a radio transmitter to take control ~ brovides insights into the attacks that use computer networks as
over the waste-water system and released one million liters of 4 malicious vehicle [5], the investigation of physical measure-
ments of the water plants will discover the attacks that origi-
- nated in the physical realm, where no change in network traffic
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Furht) forensic prioritization purposes. Indeed, given the high number




of sensors and actuators in the system, it is imperative to pri-
oritize the investigation of cyber misdemeanors by focusing on
the attacked ICS assets first. Besides, such prioritization allows
reducing the overhead associated with the digital triage investi-
gation and evidence collection processes.

Existing methods in this area include control-theoretic ap-
proaches, various machine learning algorithms, and those aim-
ing to leverage a particular scheme, known as Generative ad-
versarial networks (GAN) [6]. The first approach assumes the
availability of a mathematical model of the system, which is of-
ten an impractical assumption. Furthermore, control-theoretic
models are highly specific to the system under investigation.
Further, machine learning approaches can efficiently be scaled
to support a modernized system or another ICS, which is a
desirable quality in water facilities, where each deployed ICS
can have its own peculiar characteristics. Machine learning ap-
proaches, however, often only focus on the classification task,
omitting anomaly interpretation; knowing that the ability to
provide the reason for the estimated irregularity score is quite
essential in industrial settings [7].

With the goal to support cyber forensics for water plants,
we introduce in this work an unsupervised method that finger-
prints the behavior of the system under regular operations and
then isolates the deviations representing cyber attacks. It further
scrutinizes the inferred anomaly by distinguishing the attacked
sensors/actuators (ICS assets). It departs from available works
addressing this problem in three ways.

First, unlike works that require a precise understanding of
the physical process, the proposed method learns systems’ be-
havior autonomously using the observed/circulated empirical
data. It avoids issues associated with obtaining and maintain-
ing the process model, while possing the capability to infer
a wide range of attacks. Second, unlike works that use the
GAN-LSTM-RNN-based anomaly detection method, we en-
rich a classical GAN with the encoder and employ an archi-
tecture known as BiGAN [8]. We combine Recurrent Neural
Network (RNN) and Convolutional Neural Networks (CNN)
and leverage them as a foundation for the learning components
of the attack inference approach. This architecture is advanta-
geous for learning underlying data in-depth and improves the
robustness of the model over a classical GAN-formulation. Fi-
nally, unlike methods that use the greatest value of the change
ratio of prediction error for attack attribution, we uniquely com-
bine three different algorithms scrutinizing feature-wise resid-
ual error, which is the difference between incoming and fore-
casted sequence of sensors’ measurements and actuators’ states.
Such combination demonstrates better performance upon com-
parisons against state-of-the-art.

The proposed approach has a number of attractive charac-
teristics. It is designed to work with multivariate data; there-
fore, it exploits the inherent dependencies between ICS assets
deployed in water facilities, leading to better anomaly detec-
tion. Further, it can be trained using only attack-free instances;
therefore, it manifests as a promising application in cyber foren-
sics of ICS placed in water facilities, where attack-related data
is rarely widely available due to security and privacy reasons.
Finally, it pinpoints the attacked ICS assets, thus contributing

towards the cyber forensic prioritization objective.

In this work, we seek to contribute towards the specific
(somehow unique) area of cyber forensics for water systems.
To this end, we frame the paper’s contributions as follows.

o We complement existing methods supporting cyber foren-
sics for water treatment plants. To this end, we introduce
an unsupervised approach that infers maliciously modi-
fied processes and pinpoint attacked sensors. The tech-
nique is designed to work with multivariate data, where
variables represent connected sensors and actuators of
ICS deployed in a water treatment plant. It learns system
behavior and does not require previous knowledge about
its process model; therefore, it overcomes the issues asso-
ciated with control-theoretic approaches, which assume
the existence of a precise mathematical model represent-
ing system dynamics.

e We leveraged BiGAN, RNN, and CNN to fingerprint the
behavior of ICS deployed in water plants, isolate anoma-
lies and attribute the attack by pinpointing the exploited
ICS assets. For many machine learning methods, anomaly
interpretation is a well-known issue, while it is an essen-
tial feature towards prioritization for cyber forensics. For
machine learning methods, this imperative task can be
solved by exposing and scrutinizing feature importance
(features/variables represent ICS assets hereafter). In this
context, we explore a combination of three different algo-
rithms that scrutinize the asset-wise residual error, which
is the difference between incoming and expected data se-
quence for each sensor/actuator.

o We evaluate the approach on empirical data collected by a
small-scale water treatment plant. The proposed method
demonstrate state-of-the-art performance and improve-
ment over several machine learning approaches tested on
the same dataset. The approach successfully pinpointed
32 out of the 36 cyber incidents, exceeding state-of-the-
art detection methods. Given the direct impact of such
attacks on human health and life, this improvement is
quite noteworthy. We also show that the proposed ap-
proach can provide an intuitive explanation and identify
the exploited sensor/actuator with near 8-15% accuracy
improvement over prior literature contributions.

The rest of this paper is organized as follows. In the next sec-
tion, we review related works and demonstrate the added value
of this work. In Section 3, we detail our method that infers and
attribute cyber attacks conducted against smart water facilities.
In Section 4, we describe the experimental setup and report on
the results of applying our model to the data collected using a
testbed from an operational water treatment system. We elabo-
rate on the limitations of this work and pave the way for a few
future endeavors in Section 5. Finally, we conclude the paper
in Section 6.



2. Related work

This section elaborates on relevant endeavors leveraging control-

theoretic and machine learning methods for discovering abnor-
mal behavior of ICS. This section also explores the usage of
Generative Adversarial Networks (GAN) for anomaly detection
and corresponding methods for anomaly attribution.

2.1. Control-theoretic approaches for attack inference

By employing a system- and graph-theoretic approaches,
Pasqualetti et al. [9] identified and characterized the vulnera-
bilities of power networks. The authors proposed an attack de-
tection mechanism rooted in Luenberger-type detection filters.
In the same vein, Mo et al. [10] centered their work on attack
scenarios in which the adversary records regular system mea-
surements to produce statistically identical yet malicious data
for further injection into the system. To detect such attacks,
the authors leveraged physical watermarking to authenticate the
correct operation of the system. The injection of a known noisy
input into a physical system, leading to controllable physical
properties changes, was used to detect the attack. Chabukswar
et al. [11] extended noisy control to multi-input, multi-output
systems of chemical plants and microgrids.

Alternatively, Bou-Harb et al. [12] modeled a semantic be-
havioral graph consisting of malicious attack signatures, which
are retrieved from active cyber threat intelligence, and data flows
extracted from the physical layer. Significant similarities be-
tween semantic graphs represented indicators of ongoing mali-
cious activities. Further, Khanna el al. [13] employed a control-
theoretic Hidden Markov Model (HMM) for intrusion detection
in ad hoc wireless networks. An observed deviation from pre-
determined rules which govern the system’s behavior carries a
higher probability of being the attack. To reduce the computa-
tional complexity of the approach, each node is observed in a
periodic manner.

Although these methods demonstrate a remarkable perfor-
mance of attack inference and attribution, they are computation-
ally expensive and require a precise understanding of the under-
lying physical processes of ICS. The advantage of our approach
over control-theoretic methods is that it efficiently generalizes
the underlying system and can infer a wide range of attacks
by employing learning algorithms operating on circulating ICS
data.

2.2. Machine learning for attack inference in water plants
Several works utilized various machine learning approaches
for inference of anomalies in water facilities. For instance, In-
oue et al. [14] evaluated Deep Neural Network (DNN) and one
class Support Vector Machine (OSVM) as a detection mecha-
nism against ICS deployed in a water plant. The SVM clas-
sifier demonstrated a better attack detection rate though led to
a higher false alarm rate than those derived using the DNN-
based approach. Further, Elnour et al. [15] proposed a semi-
supervised method rooted in the Dual Isolation Forest (DIF)
model for attack detection in a water treatment plant. The ap-
proach comprised of two independently trained isolation for-
est models. The first was trained using the normalized raw

data, while another leveraged a pre-processed version of the
data using Principal Component Analysis (PCA). By model-
ing non-linear correlation among multiple time series, Li et al.
[16] put forward an unsupervised GAN-based anomaly detec-
tion method in this context. The method employed Long Short
Term-Recurrent Neural Networks (LSTM-RNN) for both the
generator and discriminator and calculates scores to indicate the
level of abnormality in the time series. Lin et al. [17] combined
time automata learning and Bayesian neural network to infer
the abnormal behavior of a water treatment plant. This combi-
nation led to the inference of wide range of attacks.

We complement these works by employing a BIGAN-based
approach for inference and attribution of anomalies resulting
from malicious manipulation of the ICS process. Unlike meth-
ods that do not pinpoint attacked sensors, this work infers anoma-
lies and successfully addressed attack attribution with signifi-
cant improvement over the state-of-the-art. In particular, the ap-
proach inferred and correctly attributed more attacks and their
respective targets than previously proposed methods.

2.3. GAN-based methods for anomaly inference

The GAN architecture demonstrated its ability to detect anoma-
lies across different domains. For instance, one of the first ap-
plications of GAN-based anomaly detection was proposed by
Schlegl et al. [18]. To infer and quantify disease markers in im-
age data, the authors first trained a generator and a discriminator
of the GANs using only normal data and then fixed the weights.
Furthermore, this trained model was mapped to a latent vector
that represented the distribution of the data. By assigning a
higher anomaly score to more irregular images, the framework
pinpointed the level of abnormality of each instance. Further,
Ravanbakhsh et al. [19] employed conditional GANs to de-
tect abnormal video events. They trained the model based on
only normal events. The authors hypothesized that usual frames
should have low reconstruction loss, whereas anomalous frames
should be poorly reconstructed. To examine the abnormality in
crowded scenes, the image-to-image translation was utilized. In
an alternative work, Zheng et al. [20] trained an adversarial de-
noising autoencoder, which combined the properties of both a
discriminator and a generator of a GAN. The trained model was
then used to calculate the probability that the financial trans-
action is abnormal. The model demonstrated compelling re-
sults in the form of detection of more than 300 fraudulent cases
during 12 weeks in two major banks in China. Moreover, the
framework has a remarkably low misclassification rate. Further,
Jiang et al. [21] adopted an encoder-decoder-encoder three-
sub-network and DCGAN (Deep Convolutional Generative Ad-
versarial Network) for the generator and discriminator, respec-
tively. Only normal samples are used as an input to the training
stage. Abnormal samples received higher anomaly scores com-
pared to normal samples in the testing stage.

We extend the application of GAN-based anomaly infer-
ence methods towards cyber forensics for water facilities. The
GAN is designed to work with multivariate data, which is a
desired characteristic for water facilities with inherent depen-
dencies between ICS assets. We exploit both the trained dis-



criminator and generator for inferring irregularities and outliers
in the water treatment process; this combination provides reli-
able anomaly inference in the systems with multiple dependent
components.

2.4. Anomaly attribution

To support the prioritization objective in cyber forensic triage
and gather relevant evidence, the inference method should re-
veal the ICS assets connected to anomalies [22]. To this end,
two alternative approaches are presented in the literature. The
first outlines model-agnostic frameworks, while the second is
very specific to the methods that use reconstruction error as an
indicator of anomalies.

Ribeiro et al. [23] introduced a model-agnostic, generic
framework, dubbed as LIME, that explains the prediction of
any classifier. The model identified a set of most important fu-
tures that contribute to the prediction. In an alternative work,
Lundberg and Lee employed game theory and offered a uni-
fied framework, namely SHAP [24], for interpreting predic-
tions based on feature importance in supervised settings. Later,
Giurgiu and Schumann [25] leveraged SHAP to provide addi-
tive explanation for anomalies detected by GRU-based autoen-
coder. In particular, the authors used influence weighting to lo-
cate informed neighborhood to compute values per each signal
of EEG for their further investigation.

In the alternative approach, Wang et al. [26] used the recon-
struction error’s change ratio as an anomaly localization tech-
nique. The authors noticed that the complexity of the system
requires a sounder technique for better attribution. Further, Sha-
lyga et al. [27] used the distance between the forecasted and the
actual value of sensors’ measurements to locate attacked tags at
certain point of time. The greatest error value in the prediction
pointed out the attacked sensor. We compare the attribution ac-
curacy with these two methods later in this work.

We complement these contributions by proposing a unique
combination of three different methods of deriving feature im-
portance. In particular, we employ a regression tree method
in addition to leveraging a game-theoretic concept, known as
Shapley values, and model-wise approach proposed in [24].
The proposed attack attribution technique renders a higher in-
ference rate when compared to prior research as evaluated on
the same dataset.

3. Proposed approach

This section details the approach for achieving the follow-
ing goals: (i) infer system instability at a certain time, and (ii)
identify attacked ICS assets.

3.1. Methodology

The three core components - behavior fingerprinting, attack
inference, and attack attribution — and the underlying architec-
ture of the approach are illustrated in Figure 1.

The first component learns to fingerprint the typical behav-
ior of the system by leveraging the BiGAN-based learning ap-
proach. The second component estimates anomaly score by

comparing incoming data sequences for each sensor/actuator
with the fingerprinted system behavior. This score indicates of
any plausible ongoing attack. The attribution function evaluates
the contribution of each ICS asset to the anomaly score to ex-
tract the affected sensors/actuators to prioritize cyber forensics.
We now detail the architectural design of each component.

3.1.1. Behavior fingerprinting

To fingerprint system behavior under normal operation, we
employ a GAN-based model. In the classic formulation, a GAN
is a generative and discriminative deep learning architecture
that consists of two competing neural network models, namely
a generator (G) and a discriminator (D). As a first step, G re-
ceives noise z to learn a distribution p(z). Based on perceived
distribution, G produces data samples and passes them to the
discriminator D. In its turn, D determines the distribution be-
tween real and fake data, and back-propagates the probability
of data authenticity to G, which adapts its parameters based on
received gradient information and passes new samples back to
D. The learning goal of a generator is to produce more realistic
instances, while the discriminator aims at improving its ability
to distinguish fake data from the real.

To unlock the potential of GAN and address their chal-
lenges, several extensions of the original framework have been
proposed in the literature. The main difference between these
developments is the adjusted architecture of GAN in the form
of additional networks. The design components of the proposed
behavioral fingerprinting (Figure 1) are inspired by BiGAN [8].
This architecture was originally employed for anomaly detec-
tion in images. In our work, we extend its application to data
with temporal components and adjust the underlying learning
networks accordingly.

In addition to the generator G, the architecture includes an
encoder E which learns a feature space of underlying data x =
{x1,...x;}, where x; denotes a m-dimensional vector {x}, LX)
representing sensor readings and actuator states at certain points
of time. E maps X to latent variable space z. D discriminates
data space x versus G(z), and also (x, E(x)) versus (G(2),z). In
this architecture, an encoder E should learn to invert the gen-
erator G. The encoder cannot discover the output of the gen-
erator and vice versa. The simultaneous training of an encoder
with generator and discriminator improves the robustness of the
model.

The building blocks of the learning components incorporate
Recurrent Neural Network (RNN) and Convolution Neural Net-
work (CNN). This combination leverages the ability of RNN
to effectively grasp time series since it keeps track of previous
data points and can perceive the long-term pattern. Besides, it
exercises the power of CNN to learn features of time series and
extract behavioral patterns.

3.1.2. Anomaly inference

Given the simultaneous training of D and G, it is advan-
tageous to exploit both networks for attack detection, as sug-
gested in [18]. First, we utilize the ability of trained D to dis-
tinguish the normal operational behavior of ICS. To this end, D
determines the distribution between fingerprinted behavior and
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Figure 1: The components of the proposed approach

a latent representation of incoming data E(x), and returns the
abnormality score, namely the discriminator loss Lp(x) (Eq.

().

Lp(x) = cross_entropy(D(x, E(x)), 1) (1)

Further, a network G was trained to capture the complex-
ity of the data distribution and generate ICS assets’ measure-
ments and states at a certain point in time. Therefore, G can
take a latent representation of incoming data obtained from the
encoder and reconstruct the expected ICS behavior (G(E(x))).
The trained model then evaluates /;-norm distance, namely resid-
ual loss, between actual (x) and expected G(E(x)) physical mea-
surements for all ICS assets (Eq. (2)).

Lr(x) =[l x = G(E(X)) Iy @)

We further obtain the irregularity score Lr(x) for each time
point as a weighted sum of Lz(x) and Lp(x) (Eq. (3)) .

Lr(x) = (1 = w) * Lg(x) + w * Lp(x) 3)

where w is a weighting parameter controlling the impact of
the loss on the anomaly score. A larger score Lg(x)) denotes
the time points representing physical properties of ICS that do
not align with the fingerprinted behavior, therefore, portrays an
anomaly.

3.1.3. Asset attribution

The high number of connected sensors and actuators in the
system challenges discovering the attacked ICS asset, though
this recognition is quite beneficial for forensics’ prioritization.
For data-driven methods, the attack attribution can be made
with feature (ICS assets) selection algorithms [28]. To this end,
we leverage three algorithms to derive the relative feature im-
portance from the inference model. We further aggregate their
predictions (pr;,i = 1,2,3) for optimal output. The rationale
behind combining different algorithms is that the independent
results can be misinterpreted [28], while the combination would

likely provide a better understanding of ICS assets’ relation to
anomaly score.

The first algorithm, namely Classification and Regression
Trees (CART), creates a binary tree to obtain a representative
feature (variable) based on an appropriate impurity criterion
[29]. CART identifies the most significant variable and effec-
tively handles outliers.

The next approach uses Shapley values [30], which is a con-
cept from game theory. The variable values are represented as
the players in a coalition. Shapley values describe how each
variable contributed to anomaly prediction.

In=IS|=1)
o=y PP Ros v -wsy @
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where ¢; is a Shapley value for #; asset of interest; n is num-
ber of such assets; v(S) is a payoff for coalition §; and N\i
denotes all possible coalitions that do not consists of i.

Finally, we use KernelSHAP [24], which is a model-agnostic
method that uses Shapley values and the Local Interpretable
Model-agnostic Explanations (LIME) technique [23].

We finally use a fusion of the above methods by using a
degree (deg;) of a belief that the method j correctly identified
an asset under attack. Formally, it is defined as follows.

k
score; = Z degj- prj (5)
j=1
were k is a number of combined methods, deg; is calculated
based on the amount of relative support [31] representing a dis-
tance between predictions made by the methods above:

k

deg; = Support(pr))| ) Support(pr)) ©6)
j=1
k
Support(prjy =Y. (1= d(pru, prj) (7)
m=1,j#m

We declare a sensor/actuator as an asset under attack if its ag-
gregated coefficient score; is in the 75" percentile.



3.2. Performance evaluation

To measure the performance, we evaluate the viability of the
model to fingerprint system behavior, the ability to infer attacks
and pinpoint the attacked ICS assets. Our approach heavily re-
lies on the capability of the network to capture the complexity
of the data distribution. The ultimate usage of the generated
sequences is to train a model to detect anomalies in the physi-
cal measurements of a water treatment plant. To evaluate how
firmly our model does so, we employ a discrepancy measure,
known as Energy Distance (ED) [30], a statistic that is based
on the idea that observations should have zero potential energy
only if they originate from the same underlying distribution.
Mathematically,

ED(x,2)* = QEIX - Z|-EX - X |-E|Z-Z) ®)

where X, X and Z,Z are independent random variables of
original and forecasted physical properties, and x and z are their
respective distribution. In addition, we use the Maximum Mean
Discrepancy (MMD), which has proven to be well-suited to
evaluate the quality of generated GAN samples in multivariate
data [32]. Formally, MMD is defined as follows:
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A lower ED and MMD measures indicate the lower discrep-
ancy between two probabilities and suggest, after stabilization,
the high quality of behavioral fingerprinting.

We determine the efficiency of the attack inference function
by testing its ability to pinpoint the attacks (with acceptable
false alarms). To this end, we first measure the sensitivity (or
recall), which is the proportion of the correctly inferred attack
points to the total number of cases when the ICS is under at-
tack. It is formally defined as tp/(tp + fn). Hereafter, tp and
tn stand for the number of true positives and true negatives, re-
spectively; fp and fn denote the number of false positives and
negatives. We further evaluate the precision, which measures
the proportion of correctly identified attack of all the points that
are classified as positive; it is formally defined as tp/(tp + fp).

To evaluate the capacity of the inference function to avoid
false alarms, we estimate the specificity, which is the propor-
tion of the correctly recognized non-attack points to all cases
when the ICS is operating under a regular/normal operation cy-
cle. Mathematically, it equates to tn/(tn + fp). To test the accu-

4. Empirical evaluation
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asset, we compare qualitative results with ground truth anno-
tations from the attack log (in the empirical dataset). In addi-
tion, we compare precision, recall, and F-measure metrics ob-
tained using the proposed approach and those which have been
reported in related prior works; including works from [26] and
[27].

that include sensor measurements (continuous variables) and
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ferent types of cyber attacks targeting one or more ICS assets.
Moreover, the combination of attacked assets can be found on
one, or multiple process stages P1-P6. The duration, as well
as the objectives of these attacks, vary. The time system re-
quires to recover from the attack depends on the attack scenario;
though the exact time is not provided in the dataset description.
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Table 1: The characteristics of SWaT dataset

Characteristics Value
Variables 51
Instances in dataset
Attack-free operation 496, 800
Data with attacks 449,919
Number of attacks 36

Attack duration 100sec-10hrs

In Table 1, we summarize the main characteristics of the used
dataset.

We conducted the following data preprocessing procedure.
First, we trimmed the initial 6 hours from the training (attack-
free) dataset, representing system stabilization which can affect
the behavioral fingerprinting task. We then scaled the original
dataset to optimize computation so that every attribute had a
mean value of 0 and a standard deviation of 1.

4.2. QI: Behavioral fingerprinting

As a prerequisite for anomaly detection, the proposed ap-
proach should carefully model system behavior under regular
éperation. Figure 3 shows that the largest decrease in both ED
agd MMD value occurred after 32 epoch. It is reasonable to
suggest that the quality of the generated data is stabilized after
this epoch.
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Figure 3: Discrepancy metrics: maximum mean discrepancy (MMD) and en-
ergy distance (ED) as a function of epoch for the proposed architecture

To evaluate how accurately does the proposed model per-
ceive sensor readings’ distribution in 2-dimensional space, we
apply t-SNE [34] analysis on both the original sensor measure-
ments and actuators’ states. In Figure 4, we observe the signifi-
cant overlap between the original (blue color) and the perceived
data (orange color), which indeed indicates that the proposed
model was able to grasp the system behavior quite closely.

-20 -15 -10

Figure 4: t-SNE visualization. Blue color denotes the original data, orange
color indicates those that were perceived/projected by the model

4.3. Q2: Anomaly inference

The proposed method inferred 32 out of the 36 labeled at-
tacks. We focus on two attack scenarios with their inference
results for illustration purposes and then provide a comprehen-
sive comparison for all attack scenarios against the related prior
research works proposed in [14, 15, 17]. We selected two attack
scenarios to demonstrate the examples for which the proposed
approach (i) shows equivalent performance as [14, 15, 17], and
(ii) outperforms the respective literature.

In the first scenario (Figure 5), three ICS assets deployed on
two different process stages (P4 and P5) are attacked. A regular
operation cycle is as follows. Water from the reservation unit at
process stage P4 moves to the process stage PS5 via ultraviolet
(UV) and cartridge filter. An attack (Figure 5 highlights the
actual attack window using red color) increased the amount of
water produced at AIT502 and turns off the actuator UV. The
false data forced PLC to stop pump P501.

Scenario #22 Recovery after attack
AIT502 I" -
X

P5
P501 — B
Uv401 -~ P4
RN 0 W

)

Figure 5: An example of sensor measurements and actuators’ states during an
attack (red), and their inference. A red color indicates an attack window. In this
scenario, the amount of water produced at AIT502 is maliciously increased and
the actuator UV401 is turned off. False data forced PLC to stop pump P501.
The high irregularity score, which represents a false alarm after the attack, is
caused by system instability representing a recovery period after the attack.
In addition, the dataset labels the start of the incident with a 22-second delay,
leading to false positives produced by the inference method at the beginning of
the incident.

The inference mechanism precisely isolates the incident by
assigning a high irregularity score. It also shows that the at-
tack’s start is 22 seconds earlier than recorded in the attack log.
We manually confirmed that the dataset labeled an attack with
this specific delay. In addition, the dataset marks recovery time
as a regular operation; however, it is essential to infer a stabi-
lization period for further investigation of a potential impact on
the system since it may take a long time (sometime hours) for
ICS to return to regular operation. These discrepancies lead to
false positives produced by the inference method at the begin-
ning and after the attack.

In the next scenario (Figure 6), the measurement of LIT301
was maliciously decreased by 1mm each second, while the ac-
tual water level was increasing, leading to tank overflow. The
proposed method inferred the incident by assigning a high irreg-
ularity score 21 seconds earlier than the incident was recorded
in the attack log. The reason behind this early inference is that



the actual data change appeared earlier than it was labeled in
the dataset (also manually confirmed).

Recovery after attack
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Figure 6: An example of sensor measurements and actuators’ states during an
attack (red), and their inference. A red color indicates an attack window. In
this scenario, the water level at LIT301 is maliciously decreased by 1mm each
second leading to tank overflow. The high irregularity score, which represents
a false alarm after the attack, is caused by system instability representing a re-
covery period after the attack. In addition, the dataset labels the start of the
incident with a 21-second delay, leading to false positives produced by the in-
ference method at the beginning of the incident.

The thorough comparisons with existing literature is sum-
marized in Table 2. Please note, that we intended to keep the
dataset as close as possible to the actual operational cycle so
that we did not eliminate the stabilization time from the test
dataset as it was suggested in [15]. The stabilization period un-
covers the impact of the attack on system operation and, thus,
will contribute to cyber forensics’ completeness. This discrep-
ancy brings forth a higher number of false positives produced
by the proposed approach, leading to a lower precision and F-
measure. Thus, a direct comparison of the metric should only
be made with this in mind.

Table 2: Performance across different anomaly detection methods. The results
of DNN, SVM, DIF, MAD-GAN, and TABOT methods are taken from respec-
tive publications (rounded to the nearest hundredths)

Model Precision Recall F-measure
DNN [14] 0.98 0.68 0.80
SVM [14] 0.93 0.70 0.80
DIF [15] 0.93 0.84 0.88
MAD-GAN [16] 0.99 0.64 0.77
TABOR [17] 0.86 0.79 0.82
This work 0.81 0.84 0.83

The relative performance for each attack is illustrated in Ta-
ble 3, which compares the recall achieved by our approach and
that reported by different detection methods. Please note that
the dataset’s attack scenarios consist of several attacks (5, 9,
12, 15, and 18) that do not affect physical properties and, thus,
are irrelevant to this work. We keep the original scenario num-
bers in the table while we excluded such attacks. The results of
DNN, SVM, Dual-Isolation-Forest (DIF), and TABOR meth-
ods are taken from their respective publications and rounded to
the nearest hundredths. The bold font in the table portrays the
higher recall measure and validates that our approach achieved
a comparative state-of-the-art performance, while surpassing
available methods for several attacks.

Table 3: Recall across different anomaly detection methods. The results of
DNN, SVM, DIF, and TABOT methods are taken from their respective publi-
cations (rounded to the nearest hundredths)

Attack DNN SVM DIF TABOR  This
scenario [14] [14] [15] [17] work

1 - - 0.01 0.05 -

2 - - 0.29 0.93 0.79
3 - - 1.00 - 0.69
4 - - - 0.33 -

6 0.72 0.72 1.00 1.00 0.97
7 - 0.89 1.00 - 0.40
8 0.93 0.92 1.00 0.61 0.28
10 1.00 0.43 1.00 0.99 0.99
11 0.98 1.00 1.00 1.00 1.00
13 - - - - -

14 - - 0.06 - 0.35
16 - - 0.55 - 0.91
17 - - 0.64 0.60 0.33
19 0.12 0.13 0.45 0.01 0.31
20 0.85 0.85 0.45 1.00 0.94
21 - 0.02 - 0.08 0.03
22 0.99 1.00 1.00 1.00 1.00
23 0.87 0.88 0.82 - 0.99
24 - - 0.34 - 0.39
25 - 0.01 1.00 - 1.00
26 - - 0.17 1.00 0.18
27 - - - 0.20 0.97
28 0.94 0.94 1.00 1.00 1.00
29 - - 1.00 - 1.00
30 - - - 1.00 0.60
31 - - 1.00 - 0.24
32 - 0.91 1.00 - -

33 - - 0.43 0.89 0.11
34 - - - 0.99 0.47
35 - - 0.95 0.26 1.00
36 - 0.12 0.93 0.89 0.86
37 1.00 1.00 1.00 1.00 1.00
38 0.92 0.93 1.00 1.00 0.98
39 0.94 - 1.00 0.37 0.91
40 0.93 0.93 1.00 1.00 0.77
41 - 0.36 0.63 - 0.35

4.4. Q3: Attack attribution

We now answer the question about how well does the ap-
proach can attribute the attack. To reduce the computation load,
we apply the attribution methods to five ICS assets that display
the higher reconstruction loss for each attack. Please recall that
we label the ICS asset as an attack point only if the proposed
method assigned a score which falls into the 75" percentile.
Although, we conduct the investigation of each inferred attack,
we illustrate two representative examples and further compare
the overall performance with available prior works.

In the first scenario, the incident log registered the follow-
ing attack points: valve UV401, water level indicator AIT501,
and pump P501. As noted in Table 4, the proposed method
correctly attributes the attack to the respective ICS assets and
outperforms the previously proposed methods.

In the second scenario (Table 5), the incident log recorded
that the level indicator LIT301 as the attack point. The pro-



Table 4: The result of attack attribution for attack scenario 22. Bolt font in-
dicates the correctly attributed ICS assets. Attack points for [26] and [27] are
taken from their respective papers.

Model

This work

Wang et al. [26]
Shalyga et al. [27]

Reported attack points
UV401, AITS502, P501
UV401, P501, FIT504
DPIT301, MV302

posed method marked two sensors as attacked, while it assigned
a score for LIT101 into 83" percentile. In contrast, the score
for the correctly pinpointed level indicator LIT301 falls into the
100™ percentile.

Table 5: The result of attack attribution for attack scenario 16. Bolt font in-
dicates the correctly attributed ICS assets. Attack points for [26] and [27] are
taken from the respective papers.

Model

This work

Wang et al. [26]
Shalyga et al. [27]

Reported attack points
LIT301, LIT101

MV301, MV303

The inherent correlation of the elements in the water treat-
ment ICS can cause false alarms using data-driven methods.
Despite this false alarm, the proposed method outperformed
competing algorithms for the single-point attack.

We examine in Table 6 the attack attribution performance
of our approach in contrast to those reported in [26] and [27].

Table 6: A comparison of attack attribution across different methods

Model Precision Recall F-measure
This work 0.38 0.49 0.43
Wang et al. [26] 0.30 0.43 0.35
Shalyga et al. [27]  0.22 0.21 0.21

Indeed, the results produced by the proposed method iso-
lates more ICS assets under attack with fewer false alarms in
contrast to those that were reported in prior literature.

5. Limitations and future perspectives

Broadly, the results of the empirical evaluations demon-
strated the capability of the proposed approach to infer and
attribute the attacks with equivalent or higher performance in
comparison with the state-of-the-art. Thus, this work presents
a motivating step towards cyber forensics in water treatment fa-
cilities.

Although we leveraged a testbed that replicates a small-
scale water treatment plant to fingerprint its behavior, the testbed
might not consist of all required assets and, thus, does not rep-
resent the entire dynamics of a realistic, complex system. The
proposed approach would benefit from an extended evaluation
using different variants of ISC deployed in real-world water fa-
cilities, including pH sensors, consumers tanks, and return wa-
ter grid. While the proposed approach is scalable from a data
analysis perspective, it can only be practical after broader eval-
uation (the same conclusion applies to literature methods). In

addition, we evaluated it on a system that has a quite stable
behavior model. Therefore, we plan to investigate the effect
of pattern instability (e.g., the variation of water consumption).
To this end, we are working towards evaluating the approach on
other empirical data, including those noted in [28].

Further, the identification of attacked ICS assets remains
challenging. Inherent dependencies among sensors/actuators
prevent precise identification of exploited assets. To address
this challenge, we are currently investigating supplementary in-
formation fusion approaches to further calibrate attack point
identification accuracy. Last but not least, in accordance with
ICS security and forensic tactics, we intend to also explore tai-
lored remediation methods, given knowledge about the exact
attacked assets from this work.

6. Conclusion

Aiming to support cyber forensics in the context of ICS de-
ployed in smart water facilities, we complement available con-
tributions and introduce an unsupervised approach that infers
cyber attacks and reveals the attacked assets for forensics’ pri-
oritization. The model is strengthened by BIGAN, RNN, CNN,
and Shapley values of residual error. The former component
is advantageous for learning underlying data in-depth. RNN is
valuable for time series processing, while CNN can learn fea-
tures and extract patterns. Finally, Shapley values provide the
ability to trace the potential attack points from both class-wise
and model-wise perspectives.

The approach has three distinguishing characteristics: (i)
it operates with multivariate data, which is highly desired in
ICS deployed in water treatment plants; (i) it is trained using
only attack-free instances, therefore avoid the problem of im-
balanced data, (iii) it identifies the attack points and thus can
reduce forensics’ overhead in critical infrastructure realms.

We demonstrated the effectiveness of the proposed approach
by employing it to data collected by a testbed representing a
small-scale water treatment plant. Most of the attacks presented
in the empirical data were detected with high sensitivity, while
the inference method maintained a high irregularity score after
the threat has passed. The latter is affected by the time system
required for recovery after an attack. The results of the em-
pirical evaluations demonstrate the capability of the proposed
approach to infer and attribute the attacks with equivalent or
better performance over state-of-the-art methods.

There are several concerns to examine in future work. Given
the direct impact of water on our well being, cyber forensics
would benefit from evaluating the cascading attacks’ impact on
various water plant assets. Another aspect that we are currently
pursuing is the calibration of the approach to improve the in-
ference of the attacked ICS assets. Further, we plan to inves-
tigate how water consumption variability would affect the per-
formance of the proposed method.
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