ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/354634201
On Ransomware Family Attribution Using Pre-Attack Paranoia Activities

Article in IEEE Transactions on Network and Service Management - September 2021

DOI: 10.1109/TNSM.2021.3112056

CITATIONS READS
2 125

7 authors, including:

Elias Bou-Harb Nizar Bouguila
Y University of Texas at San Antonio Concordia University Montreal
120 PUBLICATIONS 1,857 CITATIONS 478 PUBLICATIONS 5,790 CITATIONS
SEE PROFILE SEE PROFILE
Chadi Assi

Concordia University Montreal

443 PUBLICATIONS 8,589 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

poect Master Thesis View project

Project UAV communications View project

All content following this page was uploaded by Elias Bou-Harb on 16 September 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/354634201_On_Ransomware_Family_Attribution_Using_Pre-Attack_Paranoia_Activities?enrichId=rgreq-1fc2ab51bbce4d87f759b99a5afb5bdc-XXX&enrichSource=Y292ZXJQYWdlOzM1NDYzNDIwMTtBUzoxMDY4Njk3NDk4MTY1MjQ4QDE2MzE4MDg3NDcyMTM%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/354634201_On_Ransomware_Family_Attribution_Using_Pre-Attack_Paranoia_Activities?enrichId=rgreq-1fc2ab51bbce4d87f759b99a5afb5bdc-XXX&enrichSource=Y292ZXJQYWdlOzM1NDYzNDIwMTtBUzoxMDY4Njk3NDk4MTY1MjQ4QDE2MzE4MDg3NDcyMTM%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Master-Thesis-625?enrichId=rgreq-1fc2ab51bbce4d87f759b99a5afb5bdc-XXX&enrichSource=Y292ZXJQYWdlOzM1NDYzNDIwMTtBUzoxMDY4Njk3NDk4MTY1MjQ4QDE2MzE4MDg3NDcyMTM%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/UAV-communications-5?enrichId=rgreq-1fc2ab51bbce4d87f759b99a5afb5bdc-XXX&enrichSource=Y292ZXJQYWdlOzM1NDYzNDIwMTtBUzoxMDY4Njk3NDk4MTY1MjQ4QDE2MzE4MDg3NDcyMTM%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1fc2ab51bbce4d87f759b99a5afb5bdc-XXX&enrichSource=Y292ZXJQYWdlOzM1NDYzNDIwMTtBUzoxMDY4Njk3NDk4MTY1MjQ4QDE2MzE4MDg3NDcyMTM%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elias-Bou-Harb?enrichId=rgreq-1fc2ab51bbce4d87f759b99a5afb5bdc-XXX&enrichSource=Y292ZXJQYWdlOzM1NDYzNDIwMTtBUzoxMDY4Njk3NDk4MTY1MjQ4QDE2MzE4MDg3NDcyMTM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elias-Bou-Harb?enrichId=rgreq-1fc2ab51bbce4d87f759b99a5afb5bdc-XXX&enrichSource=Y292ZXJQYWdlOzM1NDYzNDIwMTtBUzoxMDY4Njk3NDk4MTY1MjQ4QDE2MzE4MDg3NDcyMTM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Texas-at-San-Antonio?enrichId=rgreq-1fc2ab51bbce4d87f759b99a5afb5bdc-XXX&enrichSource=Y292ZXJQYWdlOzM1NDYzNDIwMTtBUzoxMDY4Njk3NDk4MTY1MjQ4QDE2MzE4MDg3NDcyMTM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elias-Bou-Harb?enrichId=rgreq-1fc2ab51bbce4d87f759b99a5afb5bdc-XXX&enrichSource=Y292ZXJQYWdlOzM1NDYzNDIwMTtBUzoxMDY4Njk3NDk4MTY1MjQ4QDE2MzE4MDg3NDcyMTM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nizar-Bouguila?enrichId=rgreq-1fc2ab51bbce4d87f759b99a5afb5bdc-XXX&enrichSource=Y292ZXJQYWdlOzM1NDYzNDIwMTtBUzoxMDY4Njk3NDk4MTY1MjQ4QDE2MzE4MDg3NDcyMTM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nizar-Bouguila?enrichId=rgreq-1fc2ab51bbce4d87f759b99a5afb5bdc-XXX&enrichSource=Y292ZXJQYWdlOzM1NDYzNDIwMTtBUzoxMDY4Njk3NDk4MTY1MjQ4QDE2MzE4MDg3NDcyMTM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Concordia_University_Montreal?enrichId=rgreq-1fc2ab51bbce4d87f759b99a5afb5bdc-XXX&enrichSource=Y292ZXJQYWdlOzM1NDYzNDIwMTtBUzoxMDY4Njk3NDk4MTY1MjQ4QDE2MzE4MDg3NDcyMTM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nizar-Bouguila?enrichId=rgreq-1fc2ab51bbce4d87f759b99a5afb5bdc-XXX&enrichSource=Y292ZXJQYWdlOzM1NDYzNDIwMTtBUzoxMDY4Njk3NDk4MTY1MjQ4QDE2MzE4MDg3NDcyMTM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chadi-Assi?enrichId=rgreq-1fc2ab51bbce4d87f759b99a5afb5bdc-XXX&enrichSource=Y292ZXJQYWdlOzM1NDYzNDIwMTtBUzoxMDY4Njk3NDk4MTY1MjQ4QDE2MzE4MDg3NDcyMTM%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chadi-Assi?enrichId=rgreq-1fc2ab51bbce4d87f759b99a5afb5bdc-XXX&enrichSource=Y292ZXJQYWdlOzM1NDYzNDIwMTtBUzoxMDY4Njk3NDk4MTY1MjQ4QDE2MzE4MDg3NDcyMTM%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Concordia_University_Montreal?enrichId=rgreq-1fc2ab51bbce4d87f759b99a5afb5bdc-XXX&enrichSource=Y292ZXJQYWdlOzM1NDYzNDIwMTtBUzoxMDY4Njk3NDk4MTY1MjQ4QDE2MzE4MDg3NDcyMTM%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chadi-Assi?enrichId=rgreq-1fc2ab51bbce4d87f759b99a5afb5bdc-XXX&enrichSource=Y292ZXJQYWdlOzM1NDYzNDIwMTtBUzoxMDY4Njk3NDk4MTY1MjQ4QDE2MzE4MDg3NDcyMTM%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elias-Bou-Harb?enrichId=rgreq-1fc2ab51bbce4d87f759b99a5afb5bdc-XXX&enrichSource=Y292ZXJQYWdlOzM1NDYzNDIwMTtBUzoxMDY4Njk3NDk4MTY1MjQ4QDE2MzE4MDg3NDcyMTM%3D&el=1_x_10&_esc=publicationCoverPdf

On Ransomware Family Attribution Using
Pre-Attack Paranoia Activities

Ricardo Misael Ayala Molina*, Sadegh Torabi', Khaled Sarieddine*, Elias Bou-Harb¥, Nizar Bouguila*, and Chadi Assi*
*The Security Research Centre, Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Canada
TThe Center for Secure Information Systems, George Mason University, Fairfax, VA, United States
The Cyber Center For Security and Analytics, University of Texas at San Antonio, San Antonio, United States

Abstract—Ransomware attacks are among the most disruptive
cyber threats, causing significant financial losses while impacting
productivity, accessibility, and reputation. Despite their end
goals (encryption/locking), ransomware are often designed to
evade detection by executing a series of pre-attack API calls,
namely ‘“paranoia” activities, for determining a suitable execution
environment. In this work, we present a first-of-a-kind effort to
utilize such paranoia activities for characterizing ransomware
distinguishable behaviors. To this end, we draw-upon more
than 3K samples from recent/prominent ransomware families to
fingerprint their uniquely leveraged paranoia activities. Specif-
ically, by leveraging techniques rooted in Natural Language
Processing (NLP) such as Occurrence of Words (OoW), we model
ransomware-generated evasion API calls while tailoring various
machine and deep learning algorithms to perform ransomware
classification. The thoroughly conducted evaluations demonstrate
the effectiveness of the implemented approach, with the Ran-
dom Forest (RF) and OoW techniques producing an optimal
classification accuracy (94.92%). The insights/findings from this
work not only shed light on contemporary ransomware-specific
evasion methods, but also (i) indicates that such tactics could be
employed effectively as features for ransomware family attribu-
tion while (ii) laying the foundation for implementing proactive
and portable countermeasures for further ransomware attack
detection/mitigation by solely utilizing ransomware-generated
paranoia activities.

Index Terms—Ransomware API, Ransomware analysis, Cyber
forensics, Machine/deep learning.

I. INTRODUCTION

ANSOMWARE is an extortion-type of malware that is

designed to encrypt user information and/or lock targeted
devices [1-3]. The main objective of such attacks is to request
a ransom in exchange for releasing/decrypting user data and/or
unlocking the affected devices. The past few years have proved
ransomware as a major threat towards electronic assets (e.g.,
data and machines), where individuals, governments, compa-
nies, hospitals, and various industries have fallen victims of
this menace [2]. For instance, recently, in May 2021, Colonial
Pipeline, which is one of the most important companies in
the US, operating the most extensive US fuel pipeline on
the east coast, suffered a ransomware attack [4, 5], forcing
this organization to stop its normal operations, work offline,
and pay 4.4 M to free their hijacked resources. Furthermore,
in the same month, JBS, the world’s largest meat company
and which supplies more than 20% of all beef in America,
had to pause their typical operations in the US due to a
ransomware attack [4], besides paying 11M to liberate their

captured resources. Moreover, during the ongoing COVID
pandemic, several hospitals across the U.S. were targeted by
ransomware attacks, which were noted as an imminent and
increased cybercrime threat by the U.S. Cybersecurity and
Infrastructure Security Agency (CISA) [6].

Further, such attacks have been targeting various industries
in the U.S. and around the world, causing huge security
implications and concerns for involved parties [7, 8]. More im-
portantly, the introduction of Ransomware-as-a-Service (RaaS)
along with digital cryptocurrencies (e.g., bitcoins), which
preserve attackers’ anonymity [2], have turned ransomware
into a lucrative tool for attackers who look for financial gains.
Consequently, the frequency and cost incurred by ransomware
attacks have been on the rise in recent years, resulting in bil-
lions of dollars worth of losses throughout the data-dependent
industries and users [9, 10].

Researchers have proposed several approaches to de-
tect and prevent ransomware attacks by applying different
static/dynamic analysis methods to understand ransomware’s
code structure, actions that are done during its life cycle, and
its post-infection behaviors [1, 2, 11]. Meanwhile, researchers
leveraged several machine learning and deep learning tech-
niques to stop this menace [12-15]. Despite the previous
work, defending against the increasing number of ransomware
attacks is considered as a challenging task due to the lack
of knowledge about the newly detected ransomware and the
constantly evolving families/variants [15, 16]. Indeed, the
frequency and impact of such attacks demonstrate the lack of
effective measures for ransomware detection and mitigation.
Therefore, to address these challenges, there is a need to
investigate effective approaches for detecting and mitigating
ransomware attacks by analyzing their behavioral characteris-
tics and attributing them to known malicious families/variants
whenever possible.

The analysis of recently detected ransomware families
showed that they are programmed to evade detection by
executing a sequence of functions and operations, which aim
at sensing the execution environment prior to executing the
malicious payload [12, 16]. Such detection evasion techniques
are devised by performing a series of pre-attack API calls
to fingerprint the environment and avoid execution in a
virtual environment. These pre-attack activities, which are
known as “paranoia” activities, are hypothesized to present
distinguishable behavioral characteristics that can be used to
classify ransomware families, and thus, achieving the first
steps towards identifying and mitigating such threats.

Motivated by the prevalence of the pre-attack paranoia activ-
ities among the detected ransomware, in this paper, we analyze
over 3,000 real instances of ransomware belonging to five
prominent families. We execute these malicious executables in
a controlled environment to capture their pre-attack behavioral
characteristics, namely paranoia activities [17]. It is important
to note that the analyzed ransomware might not execute their
full attack in the deployed analysis environment. Nevertheless,
their pre-attack paranoia activities can still be captured and
recorded for further analysis. We leverage Natural Language
Processing (NLP) techniques to represent the obtained activi-
ties and extract behavioral features. Indeed, our analysis of the
invoked evasion API calls indicates that ransomware families
produce distinguishable fingerprints in terms of the invoked
API calls and their sequence/frequencies.

We leverage such fingerprints for large-scale ransomware
classification and family attribution using machine and deep
learning models. Our analysis results demonstrate the effec-
tiveness of the proposed approach with classification accuracy
that is better or comparable to the state-of-art approaches.
Specifically, the implemented RF model produced the highest
accuracy, as compared to other ML/DL models. Finally, while
this work sheds light on a new approach for effective character-
ization and classification of ransomware families, it provides
means for building preemptive defenses against ransomware
attacks using solely their paranoia activities, which is neces-
sary to safeguard devices from the risk of getting infected.

In this context, we frame the main contributions of this
research as follows:

« We perform dynamic malware analysis on a large corpus
of real ransomware extracted from recent prominent fam-
ilies to build a better understanding about their behavioral
characteristics through the analysis of their paranoia ac-
tivities represented by their pre-attack API function calls.
Indeed, our analysis highlights distinguishable behavioral
characteristics in terms of the frequency of API calls, the
sequence of such evasion APIs, and the presence/absence
of them in the majority of ransomware families.

« We motivate, through this work, the need for early
detection of ransomware while the malware sample goes
through its cyber-kill-chain levels, thus mitigating the risk
of encrypting the user’s data. We propose a ransomware
family attribution approach by implementing effective
ML/DL classifier models that utilize the unique character-
istics of the obtained ransomware paranoia activity (pre-
attack evasion API function calls). Our analysis using var-
ious tailored ML/DL models demonstrates the effective-
ness of the approach to attribute suspicious behaviors to
known ransomware families (about 95% accuracy), which
can trigger early detection/mitigation countermeasures.

e We perform an in-depth analysis of the implemented
ML/DL classifiers and evaluate/compare their perfor-
mance using various measures such as processing speed,
accuracy, F-measure, precision and recall.

Additionally, we explore the effectiveness of the imple-
mented model and compare their overall outcomes to
identify the most effective combinations of classifier and
feature representations. Finally, we discuss the practical

implications and cyber-security benefits of our approach,
which can be utilized to build effective countermeasure
for detecting ransomware attacks and preventing them
from causing tangible damage.

The rest of the work is organized as follows:In Section
II, we introduce related works in the context of ransomware
family classification. The proposed methodology is detailed in
Section III, including data collection, dynamic analysis, fea-
ture extraction/selection, classifier implementation/evaluation,
and limitations of the proposed methodology. Section IV
describes the conducted experiments and the results obtained
from each classifier, discussing them simultaneously. Section
IV-D presents a comparison between the classifiers’ attained
outcomes. Section V discusses the main findings, limitations,
future endeavors, applications of our framework in the real
world, and information about the robustness of our approach.
Finally, the work is concluded in Section VI.

II. BACKGROUND AND LITERATURE REVIEW
A. Ransomware Classification

A number of research has utilized static malware analysis
techniques for extracting features that can be used along
with ML/DL methods for the purpose of ransomware de-
tection and classifications. For instance, Zhang et al. [16]
conducted comprehensive experiments on real-world datasets
by calculating the Term Frequency-Inverse document of the N-
grams that are transformed from ransomware opcodes. They
performed analysis with different N-gram feature dimensions
and evaluated their approach using five different machine
learning techniques. Similarly, the authors in [12] leveraged
opcodes for their classification models using extracted N-
grams features. However, while they implemented multiple
ML classification models, they also utilized DL models such as
the Self-Attention Convolutional Neural Network (SA-CNN)
to test their framework, which worked well for long opcode
sequences. From a different perspective, Subedi et al. [13]
utilized static and dynamic analysis techniques to perform
forensic investigation of ransomware families by analyzing
450 ransomware samples. Specifically, they applied data min-
ing techniques to the components derived from reverse engi-
neering processes (i.e., assembly instructions, DLL libraries,
and function calls) to find unique association rules, which
can characterize ransomware samples and perform family
attribution.

Despite the presented results in the aforementioned papers,
they suffer from a number of limitations. For instance, the gen-
eralizability of the results might be hampered by the limited
number of analyzed ransomware samples, which might not
be representative of the overall ransowmare threat landscape
(Table I). We try to address this limitation by analyzing a
more representative number of ransomware samples from 5
predominant families. To the best of our knowledge, our
proposed work represents experimentation with the largest
empirical dataset of ransomware samples. Moreover, Subedi et
al. [13] did not implement any ML/DL classifications, which
may limit their forensic investigation findings to the studied
data. Additionally, their approach might not scale to large

Table I: Summary of the state-of-the-art ransomware classification results from literature (NA: Not Applicable, RF: Random
Forest, DT: Decision Tree, NB: Naive Bayes, LR: Logistic Regression).

Reference Approach Classifier Ransom./ Features Accuracy
Malware
H. Zhang et al. [16] Static DT, KNN, RF, NB, GBDT 1,787 N-grams 91.43%
g g B. Zhang et al. [12] Static DT, KNN, NB, SA-CNN 1,887 N-grams 89.50%
g £ Subedi et al. [13] Static/Dynamic NA 450 Assembly instruction, NA
g8 PE libraries, function calls
§ 2 Hajredin et al. [15] Dynamic NB, J48 DT, KNN 150 12 features extracted from 78%
S S VirusTotal reports
mO Vinayakumar et al. [14] Dynamic LR, NB, DT, RF, KNN, 974 131 APIs and their 98%*
SVM, MLP frequencies
= Onwuzurike et al. [18] Static RF, SVM, 1-NN, 44K 10K API calls 99%
o) £ 2-NN, 3-NN
g E Jiaqi et al. [19] Static DG-CNN 20K Control Flow Graphs 99.25%
=% Suarez et al. [20] Static Extra Trees 100K Obfuscation induced Artifacts 99.26%
= E Dash et al. [21] Dynamic SVM 5,246 System Calls 94%
O (Caietal [22] Dynamic RF, SVM, Naive Bayes 34,343 Method Calls 97%
Decision Trees, KNN
This work Dynamic Bernoulli NB, KNN, RF 3,432 23 evasion APIs 94.92 %

ANN, LSTM, Bi-LSTM

(Paranoia Activities)

* We discuss the main limitations of this work, which affects the reliability of the reported results in Section II.

number of analyzed ransomware samples that represent vari-
ous families. Furthermore, while both approaches implemented
in [12, 16] result in reasonable classification accuracy (91.43%
and 89.50%, respectively), they rely on static malware analysis
techniques to extract N-grams and assembly code features
for their classifiers, which is extremely difficult to obtain
when dealing with the predominantly obfuscated ransomware
samples that are difficult to reverse-engineer. Conversely, in
order to defeat the ransomware’s obfuscation problem, we
use dynamic analysis techniques to capture their pre-attack
environment sensing actions, which represent distinguishable
features for effective classification and threat detection, as
detailed in Section III-B).

In line with that, some researchers relied on dynamic
malware analysis techniques to obtain behavioral character-
istics that are used for further ransomware detection and
classification. For instance, Hajredin et al. [15] proposed a
behavioral classification method by analyzing 150 ransomware
samples from 10 different families. The authors relied on
collected behavioral reports from VirusTotal to extract
12 behavioral attributes/features that were used with three
implemented ML-based classifiers, respectively. Surprisingly,
the authors used a very small number of ransomware samples
to test and evaluate their implemented models, which under-
mines the overall generalizability of the findings. Moreover,
they reported a relatively low classification accuracy (about
78%), which may raise further questions regarding the overall
effectiveness of the approach for ransomware detection and
classification.

Additionally, we found the work done by Vinayakumar et
al. [14] to be closely related to our approach, where they lever-
aged invoked API calls and their frequencies to characterize
ransomware samples while evaluating the effectiveness of a
series of shallow and deep learning techniques for classifying
ransomware families and distinguishing them from benign
applications. Specifically, they collected 974 ransomware from
7 different families, while identifying 131 invoked API calls

and their frequencies to evaluate their implemented classifiers.
Despite their significant reported results (Table I), our thor-
ough analysis of their work highlighted a number of major lim-
itations, which significantly hamper the quality and reliability
of the presented results. For instance, the work lacks adequate
details and justifications about the executed methodology in
terms of the data collection, analysis, feature extraction, and
model evaluation. Moreover, while the relatively small number
of ransomware samples are not representative of the overall
population, it is not clear how the studied samples were
selected among all existing ransomware data. Additionally, the
choice of 131 invoked API calls and their effect in relation
to the selected samples on the overall classification results is
not discussed in the work. As a result, these aforementioned
major limitations raise fundamental questions about the threats
associated to the validity and generalizability of the reported
findings. In other words, the reported significant classification
results might be limited to their dataset and not necessarily be
valid/reliable when used with other datasets/features.

B. Malware Classification

While there is a limited number of previous work related to
ransomware classification, malware detection/classification has
been extensively studied in recent years. For instance, Android
malware classification has been discussed in several previous
work. Specifically, Onwuzurike et. al. [18] developed a static-
analysis-based tool that utilizes Markov chains to represent the
sequences of abstract API calls, which are used in the classifi-
cation process. Jiaqi et. al. [19] utilized semantic and structural
dependencies in the control flow graph (CFGs) to build a deep
graph convolutional neural network for malware classification.
Suarez et. al. [20] proposed a fast, reliable, and obfuscation-
resistant Android malware classifier based on static analysis.
This framework takes advantage of functionality and objects
introduced by obfuscation mechanisms and are obfuscation-
agnostic. Dash et. al. [21] introduced a classification approach

that leverages Support Vector Machines with Conformal Pre-
diction to generate high-accuracy malware family prediction
using features extracted from runtime behaviors. In line with
that, Cai et al. [22] employed dynamically extracted features
such as method calls and inter-component communication to
overcome the challenges associated with previous approaches
and achieved a more robust malware classification outcome.

Despite the promising malware classification outcomes that
were presented in [18-20], the main limitation of such ap-
proaches is when dealing with malware obfuscation, which
hinders the collection of features and thus, affecting the
robustness of such approaches. Moreover, while Suarez et al.
[20] utilize obfuscation artificats in their approach, we cannot
be sure if the mechanism is detecting malicious activity or
just obfuscation, which do not convey the actual intent of
the software sample. Moreover, the amount of data stored
in the continuous features used by their approach leads to
the exponential growth of the dataset, which hampers the
scalability of the approach. Finally, the detection approach
presented in [21] relies on different metrics that are collected
throughout the cyber-kill-chain, which increases the risk mal-
ware (ransomware) execution before its detection.

C. Overall Comparison to Our Approach

In this paper, we highlight the lack of previous work towards
ransomware classification and family attribution using para-
noia activities. More importantly, we demonstrate the overall
effectiveness of the proposed approach towards ransomware
classification and family attribution, as compared to previous
work. Indeed, we show that our approach, which was tested
with a significantly larger number of ransomware samples,
can achieve better or comparable classification accuracy, as
illustrated in Table I. More specifically, we discuss a number
of main limitations that makes our work more practical and
effective towards early detection and mitigation of ransomware
attacks. For instance, the work done in [21] and [22] falls
short in terms of their ability to perform early detection of
ransomware attacks since they rely on system/method calls
that are invoked during or after the execution of the attack.
Moreover, despite the high-level similarity of the approach
presented in [22] to our work in terms of capturing the behav-
ioral characteristics of the malicious executable, their detection
mechanism depends on the whole behavioral characteristics
throughout the cyber-kill-chain. Whereas, our approach re-
quires the pre-attack behavioral characteristics only, which
allows early detection before the execution of the actual attack.

Additionally, as presented in Table I, our classification
approach relies on extracting behavioral features through
observing 23 evasion API calls, which are associated with
malicious ransomware activities. More importantly, we utilize
a significantly smaller number of features as compared to other
approaches such as [14] and [18], which use 131 and 10K API
calls, respectively. This indeed, gives us a competitive advan-
tage over previous work where we can guarantee high accuracy
with fewer behavioral features, which can improve scalability
by reducing training time and the required computational
resources (e.g., memory and CPU). Finally, our approach can

be utilized in practice to detect the ransomware after delivery
and before the execution of the malicious payload. More
importantly, our approach can be leveraged for research and
analysis purposes as it can still capture the pre-attack behaviors
even if the ransomware detects the analysis environment and
abort its intended operations/attacks.

It is worth noting that we make our used dataset and
all the developed methods publicly available to the research
community at large to facilitate reproducibility of the obtained
results.!

III. METHODOLOGY

Given the limited number of previous work, which discussed
ransomware classification and family attribution, in this paper,
we aim at leveraging pre-attack paranoia activities to charac-
terize various ransomware families to implement effective ML
and DL classification approaches. More specifically, the de-
vised methodology attempts to answer the following research
questions (RQs):

1) What are the main behavioral characteristics of different

ransomware families in terms of their paranoia activity?

2) How can we leverage the identified behavioral charac-

teristics to propose an effective ransomware classifica-
tion approach?

To achieve our objectives, we follow the proposed approach,
which consists of three main components, as presented in
Figure 1. We collect 19,499 ransomware samples from mul-
tiple resources such as VirusShare and VirusTotal.
Furthermore, we perform dynamic malware analysis on a
randomly selected sample, which represents 5 different ran-
somware families. We execute the ransomware in a controlled
environment using Cuckoo sandbox [23] to extract their
behavioral features and characteristics. Finally, we leverage
the extracted/curated features to implement various ML/DL
classification models while evaluating them using de-facto
methods. In what follows, we present further details about
our data collection and analysis methodologies.

A. Data Collection and Preprocessing

In this work, we leveraged multiple resources to obtain
real instances of ransomware. We obtained a total of 129,500
malware samples that were detected between 2010 and 2019.
More specifically, we obtained 90,364 malware samples from
VirusTotal [24] (2017-2018), in addition to 39,136 sam-
ples from VirusShare [25] (2010-2016, and 2019). As
depicted in Figure 2, we utilized AVClass [26] to label
ransomware samples in our data. AVClass is a tool that
leverages the API of VirusTotal to identify malware family
names/labels. The original dataset contains various malicious
software and malware families such as Mirai, Locky, Nemu-
cod, Ramnit, Phish, Pdfka, Redir, and Faceliker, to name a few.
We followed the processes depicted in Figure 1 (i.e, Labeling
Malware Samples and Filtering Samples) to extract 19,499
ransomware samples from the original malware samples that
belong to 21 ransomware families. As shown in Table II,

Uhttps://github.com/Rmayalam/Ransomware_Paranoia.git

https://github.com/Rmayalam/Ransomware_Paranoia.git

Data Collection, Preprocessing, and
Labeling

Dynamic Analysis

Curate Dataset

Collecting Malware Samples
&

[

Finding Evasion APIs Per
Report and Family

Malwarelsamples

Ra nsomwa}e reports

Evasion APIs}Jer family

Labeling Malware Samples
&

Data Processing and
Behavioral API Extraction

Building the Dataset

Labeled|malware

sa|dwies alemwosuey l

Filtering Samples o E—

Behavioral APIs per report

| =

Dataset

ML/DL Algorithms

Known evasion APIs

classification

S|dY UOISEAS MOUY pue S|dY [BJOIARY3] diemwosiiey

Ra nsom\iare family

{ Collecting Evasion APIs

$$32044 uoneayisse|d 1a/1IN

’ Evaluating Models

Performance quality per
classification model

Figure 1: The overall workflow of the proposed methodology.

MaIwareJHashes

VirusTotal API Ma]ware Joining Reports
analysis reports
File to be|processed
Classified malwares 4—[

Figure 2: Initial labeling of the ransomware samples in the
harvested data using AVClass.

AV Class]

the distribution of the identified ransomware samples across
the top 10 families indicates that Reveton, Xorist, and Locky
correspond to the largest number of samples, respectively.

Table II: Distribution of samples across ransomware families.

Family Samples %
Reveton 4,374 22.43
Xorist 3,636 18.65
Locky 2,887 14.81
Teslacrypt 2,846 14.60
Bitman 1,045 5.36
Cryxos 1,020 5.23
Yakes 922 4.73
Cerber 594 3.05
Urausy 570 2.92
Razy 567 291
Others 1,038 5.32

Given the imbalanced nature of the collected data, and
the fact that some ransomware samples have been widely
utilized to perform large-scale attacks [27, 28], we perform
our experiments with the following five main ransomware
families: Reveton, Locky, Teslacrypt, Yakes, and Cerber. Note
that we selected these ransomware families due to the fact
that there is a lack of ransomware repository that manages a
balance distribution with a considerable number of samples for
each possible ransomware family. Consequently, considering

the different number of samples from the selected ransomware
families, we applied an undersampling technique to obtain
a balanced dataset and generate consistent results in our
experiments. It is worth noting that our ransomware dataset
is the largest that has been employed until now to realize ran-
somware family classification. In general, these ransomware
families represent crypto and/or locker ransomware, which en-
crypts data files on a host or locks the targeted device/resources
without encrypting its content/data [3]. Additionally, we ex-
plore and create a benign dataset by collecting over 4.5k
executable samples from a new installation of Windows 10
operating system.”. We leverage Cuckoo Sandbox to explore
possible paranoia activities generated by each sample. Our
analysis resulted in over 1.4k benign samples that perform
some sort of fingerprinting to recognize their execution envi-
ronment. These benign applications/software include utilities
(e.g., Zoom, Windows Media Player, Anydesk, and WinZip),
web browsers (e.g., Google Chrome), and windows drivers
(e.g., msiexec, msconfig, and Netlnstaller). Overall, we use 6
selected classes (5 ransomware families and a benign dataset)
in our experimental analysis throughout the paper.

B. Dynamic Analysis

As shown in Figure 1, we follow a dynamic malware analy-
sis approach to capture the pre-attack paranoia activities gener-
ated by the ransomware. We leverage a common characteristic
of the analyzed ransomware, which tend to evade detection by
invoking a number of API calls (paranoia activities) to realize
the existence of dynamic analyzers (e.g., Cuckoo Sandbox)
before executing its attack payload. In practice, this is consid-
ered as a limitation of existing analyzers. Nevertheless, we take
advantage of such malicious pre-attack activities to detect the
presence of a ransomware and characterize its behaviors, while

2Windows is the most ransomware-targeted OS [1, 29] We collected the
benign samples to distinguish between them and the ransomware families in
the different classification models utilized in this work.

Table III: Different categories of inferred evasion APIs and their description.

Category

Evasion API

Description

Generic OS queries

DeviceloControl
GetComputerNameA
GetDiskFreeSpaceExW
GetComputerNameW
GetSystemInfo
GetSystemMetrics
GetUserNameA
GetUserNameW
NtQuerySystemInformation

Retrieve information concerning a hard disk.

Retrieve the NetBIOS name of the local computer.

Retrieves information about the available space on a disk volume.
Retrieve the NetBIOS name of the local computer.

Retrieve information about the current system.

Retrieve the specified system metric or system configuration setting.
Retrieve the name of the user associated with the current thread.
Retrieve the name of the user associated with the current thread.
Retrieve the specified system information.

Global OS Objects

NtCreateFile

Create a new file or directory, or opens an existing device, file or directory.

NtOpenDirectoryObject Open an existing directory object.

Hooks Readl.’rocessMemory Read memory. o . .
SetWindowsHookExA Installs an application-defined hook procedure into a hook chain.
SetWindowsHookExW Installs an application-defined hook procedure into a hook chain.

Network GetAdaptersAddresses Retrieve the addresses associated with the adapters on the local computer.

OS features

CreateToolhelp32Snapshot

Take a snapshot of the processes, memory heaps, modules, and used threads.

LdrGetProcedureAddress

Retrieve the address of an exported function or variable from the specified

Processes dynamic-link library (DLL).
NtEnumerateKey Enumerate sub keys of an open key.
NtClose Close the specified handle.
Registry NtOpenKey Open a registry key.
NtQuery ValueKey The ValueName, type, and data for any one of a key’s value entries may be
queried with this API.
RegCloseKey Close a handle to the specified registry key.
Ul artifacts EnumWindows Enumerate all top-level windows on the screen.

utilizing extracted features for further family classification and
attribution. More importantly, our analysis completely relies
on capturing the pre-attack activities of the ransomware and
will not be affected by its consequent behaviors, which is key
for building effective tools for early detection/prevention of
ransomware attacks.

We execute the selected ransomware samples and analyze
their behavioral characteristics by configuring Cuckoo Sand-
box 2.0.7 in a virtual environment (e.g., VirtualBox 6.1 with
Windows 7 operating system), leveraging its modularity to
avoid possible crashes. Cuckoo Sandbox [23] is one of the
most widely used tools for analyzing the behaviors of a
diversity of malware. The ransomware is run in a controlled
virtual box to capture all performed activities during its exe-
cution (e.g., API calls, files opened, registry keys, etc.). These
activities, which represent the behavioral dynamics of the
ransomware, are captured in a comprehensive report generated
by Cuckoo. Along with that, the report contains information
about the analysis such as machine name, operating system,
Internet access, along with additional static and signature-
based analysis outcomes. Given the generated reports, we
extract a list of behavioral API calls per analyzed sample (e.g.,
GetNativeSystemInfo, LdrUnloadDIll, NtOpenKey, NtClose,
etc.), which we use for further analysis, as detailed in the
following sub-sections.

C. Inferring Evasion API Calls

As stated by Yan et al. [30], extracting features has a vital
role in a classification malware task. Therefore, one of the
most important phases in this work is to identify API calls that
are used by the ransomware to evade detection (i.e., paranoiac
activities). We postulate that ransomware samples from each
family will generate distinguishable footprints in terms of such

API calls, and thus, can be used as a behavioral feature for
further classification of ransomware samples. Given the list
of behavioral API calls per ransomware sample, we utilized
a number of known/common detection evasion API [31-33]
that are used by malicious executables to identify the sample-
specific evasion API calls. After that, we analyze the reports to
identify all evasion APIs that were invoked across the selected
ransomware families. To this end, we identified 23 unique
evasion APIs that were used by the analyzed samples. As
summarized in Table III, we categorize the identified APIs
into 8 different categories, which reflect API calls (paranoia
activities) that are normally invoked to sense the execution
environment and avoid detection.

D. Feature Extraction

Given the obtained dataset of evasion APIs coupled with
their frequencies per ransomware samples, we adopt three fea-
ture selection/representation approaches: Occurrence of Words
(OoW), Bag of Words (BoW), and Sequence of Words (SoW).

OoW is a flexible technique that can be used to extract
features from text documents and has demonstrated great suc-
cess with machine learning applications to classify documents.
This technique does not take into consideration the order or
the structure of the words. It only contemplates the words’
presence/absence by a binary count, where 1 means present
and 0 means absent. Moreover, we employ the BoW technique
to capture the frequency of the API calls. Both OoW and BoW
were proved to be effective when used with statistical machine
learning models such as the Bernoulli Naive Bayes [34], KNN
algorithms [35], or RF [36].

While these techniques were adopted to capture the fre-
quency and the occurrence of evasion APIs, they do not take
into account the sequence of API calls nor do they conserve

their order. Therefore, we also considered the SoW method.
Since most of the API calls are repetitive, sometimes indefi-
nitely, we ought to choose unique API calls while conserving
the order in which they were called by each sample. Using
this technique, we aim at decreasing our feature space from
millions to a sequence of unique APIs.

E. Classification Models

To this end, we implement and evaluate 5 different ML/DL
classification models. Specifically, we use Bernoulli Naive
Bayes and KNN algorithms to capture the occurrence and fre-
quency of evasion API calls without considering the order and
structure of the calls. Moreover, to capture the order of the API
calls, we chose Artificial Neural Network (ANN), Long Short-
Term Memory (LSTM), and BiDirectional LSTM models to
perform further classification of ransomware samples.

Bernoulli Naive Bayes: First, we adopt the Bernoulli Naive
Bayes, a probabilistic classifier that predicts the probability
of an input belonging to a specific class. It uses binary
variables such as 1/0 or true/false to represent the occurrence
or absence of features, making it quite fast in contrast to other
classification models. Moreover, when the assumption of class
conditional independence is fulfilled, this classifier performs
better than others [34]. Furthermore, it has been demonstrated
that this probabilistic method presents a good performance in
text classification [37].

K-Nearest Neighbors (KNN): Additionally, we use the K-
Nearest Neighbors algorithm, a supervised machine learning
model that can be leveraged for multi-label classification and
has demonstrated its effectiveness in different classification
tasks [38-40]. The KNN algorithm is based on the feature
similarity approach, where it classifies new samples based on
a selected similarity measure (e.g., distance functions) [41, 42].

Random Forest (RF): Moreover, we test random decision
forest which is an ensemble learning method mostly used for
classification. It operates by constructing a multiple decision
trees at training time and then average voting to select the class
of the sample at hand. RF is widely adopted in the malware
classification realm, due to its easily understood structure
while maintaining a high accuracy [14, 16].

Artificial Neural Network (ANN): This method mimics
the biological neural network that constitute the brain and
how it operates. ANN represents a system of interconnected
neurons, or nodes with a nonlinear mapping between the
variable input and the output vector. The nodes are connected
by weights and output signals, which are a function of the
sum of the inputs to the node modified by a simple nonlinear
transfer, or activation function [43]. The ANN is a simple
deep learning algorithm that is used to classify and extract
intelligence from a set of features similar to the works done
in [14, 44].

Long-Short Term Memory (LSTM): We also leverage a
special type of Recurrent Neural Networks, namely the Long
Short Term Memory (LSTM). RNNs represent powerful and
robust artificial neural networks that use sequences to evolve
models that simulate the neural activity in the human brain.
Some of the applications of RNN is to recognize patterns

in sequences of data such as texts and handwriting, to name
a few. However, RNN often suffers from gradient explosion
that occurs through exponential growth by repeatedly mul-
tiplying gradients through the network layers. RNNs apply
weights to the current and previous inputs. They also tweak
their weights through gradient descent and back-propagation.
LSTMs preserve the errors that will be back propagated
through layers. Maintaining a constant error allows LSTMs
to continue learning over many time steps. LSTM is unique
in their capability to learn what information to store in long
term memory. It also uses gates to control the learning and
memorization process (learns what to keep or get rid of).
LSTM also allows the neural network to identify patterns
and sequences in the data by learning spatial and temporal
relationships between features while utilizing memory gates.
To capture the temporal order between the API calls, we adopt
LSTM and its variants, which have been widely used for text-
based data classification [45].

Bidirectional Long Short Term Memory (Bi-LSTM): We
further explore a special type of bidirectional RNN, namely
the bidirectional LSTM, to overcome a major limitation of
the unidirectional RNNs, which rely only on learning from
previous time steps. Note that the Bi-LSTM addresses this
limitation by learning representations from future time steps
along with previous ones. This helps to better understand the
content and eliminate ambiguity. In some cases, we would
need to look ahead to better understand and identify sequences.
The Bi-LSTM will take the input in normal order, and at the
same time it will take the same input and reverse it to allow for
forward and backward learning from the feature space [46].

F. Model Evaluation and Comparison

We follow a number of standard methods to evaluate the
overall effectiveness of the implemented classification models
to compare their outcomes. More specifically, we use metrics
such as accuracy, recall, precision, and F-measure. Further,
we use the confusion matrix, which is a useful method for
discussing the effectiveness of the implemented ML/DL mod-
els, where true positive and true negative specify the number
of samples that the model has classified correctly, while false
positive and false negative state the number of samples that
were misclassified. In addition, we compute the speed of each
model as measure of their computational performance.

G. Limitations

In this work, we encountered (and had to manage) a number
of limitations in terms of data collection and analysis. First,
while we leveraged several public threat repositories (i.e.,
VirusShare and VirusTotal) to obtain a large number
of real ransomware instances from different families, the
obtained dataset was not balanced due to the different number
of ransomware samples per family. To address this, we applied
undersampling by (i) scoping down on 5 ransomware families
with the most recent attack incidents, and (ii) randomly select-
ing a subset of malicious executables from the selected fami-
lies to create a balanced dataset. Second, we rely on AVClass
and VirusTotal APIs to obtain the ransomware family

names and create our labeled dataset. It is important to realize
that such labels might not necessarily reflect accurate class la-
bels, and thus, might hamper the classification results. Despite
that, the internal mechanics of AVClass, and the implemented
majority rule system seems to be effective in identifying
reliable labels, especially when the malicious executables are
detected and analyzed by many AV vendors over time. Finally,
we extract and rely upon a list of known/common evasion
API calls to characterize the behaviors of the ransomware and
capture its paranoia activities. Nevertheless, ransomware could
implement other techniques that might not be reflected within
such API calls, thus hindering the classification accuracy of the
proposed approach. Our empirical evaluation demonstrates that
the analyzed APIs are highly accurate and that they can easily
be extended in the future to mitigate any current shortcomings.

IV. EXPERIMENTAL RESULTS

As described in Section III-A, we focus on 5 main ran-
somware families for our experimental analysis. Furthermore,
as noted, given the imbalance dataset in terms of the sample
distribution per family (Table IV), we applied undersampling
by randomly selecting a subset of samples from the selected
families to create a balanced dataset. Moreover, we chose
benign applications as the sixth family class in our exper-
iments, where 30% of them were shown to invoke one or
more evasion API calls. The remaining benign application,
which did not invoke any evasion API calls were omitted
from further analysis. Similarly, while most of the ransomware
samples (99.5%) in each family invoked one or more evasion
API call, a small percentage of them did not use any evasion
API calls, and thus were also removed from further analysis.
We deem that these small percentage could be easily detected
(and attributed) by other complementary methods, given that
they do not leverage evasive methods. As summarized in Table
IV, the remaining 3,432 executable samples, which belong to
6 groups (5 ransomware families and one benign), were used
for further analysis throughout the work. Note that we select
600 samples from each family, except Carber and benign, were
we ended up with 594 and 438 samples, respectively.

A. Feature Selection via Evasive APIs

Recall that we hypothesize that each ransomware family can
be identified by its paranoia activity, which is represented by
the used pre-attack API calls. To investigate our hypothesis,
we summarize the invoked evasion API calls and their fre-
quencies (on average) for the analyzed ransomware families,
as shown in Figures 3a—3e. It is clear that samples within each
ransomware family use a specified set of evasion API calls and
frequencies, which can possibly be used as a distinguishable
feature for further analysis. Moreover, despite the specificity of
the used evasion API calls per family, some evasion API calls
were common across different families, as shown in Figure
4. For instance, getSystemInfo API call was invoked by
all the analyzed samples. As previously noted, we leverage
three feature selection/representation approaches (OoW, BoW,
and SoW) to represent the obtained behavioral characteristics
in terms of the unique evasion API calls per sample. In what

Table IV: Number of ransomware samples per family (pre-
and post-processing).

Family Name Collected Data Selected Samples

Reveton 4,374 600
Locky 2,887 600
TelesCrypt 2,846 600
Yakes 922 600
Cerber 594 594
Benign 1,419 438

follows, we utilize these three feature representation to test and
assess our hypotheses by performing two sets of experiments:
(i) Frequency and occurrence based, and (ii) Sequence-based.

B. Frequency and Occurrence-Based Experiments

We use Bernoulli Naive Bayes, KNN and, RF machine
learning models with OoW and BoW techniques to capture
the frequency and the occurrence of the evasion API calls
per ransomware family. Moreover, we apply 10-fold cross-
validation to avoid overfitting the models. Furthermore, we
divided our dataset (3,432 samples) into training, valida-
tion, and testing sets. We leverage 80% of the samples for
training purposes, whereas the remaining 20% were utilized
for testing/validating the models. In general, the RF model
produced the highest values for accuracy (94.61%) and F-
measure (94.92%), respectively. In what follows, we present
the analysis results with respect to the implemented machine
learning models:

1) Bernoulli Naive Bayes (BNB): This statistical model was
combined with the OoW technique to test our framework’s
performance to classify each ransomware sample considering
only the presence or absence of the evasion APIs. The in-
put data referred to as the “Training” set represent vectors
composed of Is and Os where each binary value represents
the presence or absence of specific evasion APIs. The length
of these vectors is 23 positions, which correspond to the
number of evasions APIs used in this work to classify each
ransomware family. Numerical measures presented in Table
V show the F-measure, recall, and precision per each family.
The obtained F-measure score indicates that the classifier’s
quality is acceptable in general, because the value associated
with each family is greater than 84%, except for the Benign
and Reveton families.

The Benign family obtained a value of 62.50%; Indeed, this
demonstrates that this family may require special attention, as
its recall and precision measurements recorded 54.54% and
57.69, respectively. An observation concerning the Benign
family was that some samples generate overlapping evasion
APIs, which could explain why the Benign family presents
low values in all their measurements. Moreover, the Reveton
family displayed variations in their evasion APIs patterns,
which also justifies the 72.73% of its F-measure and the 64%
of its recall value. Furthermore, the Locky and Yakes families
showed some differences in their behavioral paranoia activity,
affecting the precision (79.76%) for the Locky family and the
recall (74.07%) for the Yakes family.

NtOpenDirectoryObject
GetUserNameA
GetComputerNameA
GetAdaptersAddresses
DeviceloControl
GetComputerNameW
EnumWindows
ReadProcessMemory
GetUserNameW
CreateToolhelp32Snapshot
GetSystemInfo
GetSystemMetrics
LdrGetProcedureAddress
NtQuerySystemInformation
NtCreateFile

RegCloseKey
NtQueryValueKey
NtOpenKey

NtClose

0 10000

(a) Yakes

20000 30000

EnumWindows
SetWindowsHookExW
GetComputerNameA
GetSysteminfo
NtQuerySysteminformation
CreateToolhelp32Snapshot
NtEnumerateKey

NtCreateFile

NtOpenKey
RegCloseKey

LdrGetProcedureAddress

NtQueryValueKey

GetSystemMetrics

NtClose

0 100 200

W\ Davaton

GetSysteminfo
NtEnumerateKey
GetSystemMetrics
NtQuerySystemInformation
ReadProcessMemory
NtQueryValueKey
NtOpenKey

NtCreateFile

NtClose

RegCloseKey

LdrGetProcedureAddress

0 50

(c) Locky

100

SetWindowsHookExA
CreateToolhelp32Snapshot
GetDiskFreeSpaceExW
GetComputerNameA
GetUserNameW
GetUserNameA
EnumWindows
NtQuerySystemInformation
NtOpenDirectoryObject
GetComputerNameW
GetSystemlInfo
ReadProcessMemory
NtEnumerateKey
NtCreateFile

NtOpenKey
GetSystemMetrics
NtQueryValueKey
LdrGetProcedureAddress
RegCloseKey

NtClose

0 200 400 600 800 1000 1200

(d) Cerber

GetAdaptersAddresses
SetWindowsHookExA
CreateToolhelp32Snapshot
DeviceloControl
GetUserNameW
SetWindowsHookExW
NtOpenDirectoryObject
GetComputerNameW
EnumWindows
GetSystemInfo
ReadProcessMemory
NtEnumerateKey
NtQueryValueKey
NtOpenKey
NtQuerySystemInformation
LdrGetProcedureAddress
GetSystemMetrics
RegCloseKey

NtCreateFile

NtClose

0 5000 10000 15000 20000 25000

(e) TeslaCrypt

Figure 3: Average number of the invoked evasion APIs for the analyzed ransomware families.

On the other hand, the Cerber and TeslaCrypt families
performed well with this model, which is reflected in their
F-measure values. Table VI shows the confusion matrix’s out-
comes derived from this model. It is observed that the numbers
presented in this matrix confirm that the classification model
needs to pay special attention to the Benign and Reveton
families, given that in the context of the Benign family, 14
out of 44 samples (31.82%) were not classified correctly, and
for the Reveton family 18 out of 50 samples (36%) were
not classified correctly. Further, the misclassification in the
Yakes family samples are observed in this matrix, where about
25.9% of them were not classified correctly. Conversely, the re-
maining families demonstrated satisfactory performance. The
Bernoulli Naive Bayes model produced an overall accuracy of
about 85.11%, 256 ransomware samples out of 336 correctly
classified, indicating relatively good classification outcomes.

In addition to the classification accuracy, we evaluated
the performance of this classifier in terms of its speed. Our
results shows that the model needed about 0.195 seconds to
accomplish the ransomware family classification, indicating
a timely process and good performance. Interestingly, this
model was ranked second-best in terms of the speed, as
compared to the rest of the tested models throughout the work
(Figure 5). Nevertheless, Bernoulli Naive Bayes produced the
lowest accuracy and f-score measures compared to the rest
classifiers.

100%
g o0% e
2 8% N
z o ne
s 60% | M |
350% | M |
2 aon e
§30% | M |
g 20% N |
o)0,
o 10% | N |
0%
0O 8 LYY Ec 28222 EBLCCT Y
8 @ 2 <] e SE] I
“_E'Eggu_gggg_:g&ogmo.gbgﬁjxgx
® 50 8 S ® Y O 2 5 O E € E 9 ¢ x QU g«
§33258¢c28828:882835528238¢8s5¢
- < [s 05 5 53> <€ 22 2> = o ©
2 E o 5262993 2% 855552 8T 3 2
2 g Sz T wy £E Q8 2 8092 3 &5 Y < 9
a2 s 2 Z2ccw £ = 2%
§2% =“¢§283282333§853385¢8
O a 38 o O T)mmeEEo-—wg'g-gg’_m
% O = < 2 a o ® 2 0 S € & ¥
< 2 = 3 Z s 9 8 < = s - 2
© 9 I] s 5 9 g 22328
@ > s 08 19 S Q% 50
Q@ [=) s w o O
5 S © =
= [} [
2 S
EVASION APIs

Figure 4: Common evasion APIs invoked by different ran-
somware families.

2) K-Nearest Neighbors (KNN): We use the KNN model
with BoW to assess our ransomware family classification
framework’s performance, examining the evasion APIs cou-
pled with their frequencies without considering their se-
quences. The input data of this classification model are vec-
tors that contain the frequency of each evasion APIs. Like
Bernoulli Naive Bayes, the length of these vectors is 23
positions, representing the numbers of evasions APIs utilized
in this research.

Table V: Per-family evaluation results for BNB, KNN, and RF machine learning models.

BNB KNN RF
Family \ F-mea.(%) Recall(%) Precis.(%) \ F-mea.(%) Recall(%) Precis.(%) \ F-mea.(%) Recall(%) Presic.(%)
Benign 62.5 54.54 57.69 90.7 88.64 92.8 87.80 81.81 94.73
Cerber 99.08 98.18 100.0 98.15 96.36 100.0 98.14 96.36 100
Locky 88.16 98.53 79.76 94.66 91.18 98.41 94.73 92.64 96.92
Reveton 72.73 64.0 84.21 84.0 84.0 84.0 99.01 100 98.03
TeslaCrypt | 95.45 96.92 94.03 97.67 96.92 98.44 100 100 100
Yakes 84.21 74.07 97.56 89.83 98.15 82.81 88.13 96.29 81.25
Table VI: Confusion matrices’ outcomes for BNB, KNN, and RF machine learning models.
BNB KNN RF
/B ¢ L R T Y|B CcC L R T Y|B C L R T Y
B 30 0 11 3 0 0 39 0 0 2 0 3 36 O 1 0 0 7
C 0 54 0 1 0 0 0 53 0 2 0 0 1 53 0 0 0 1
L 1 0 67 O 0 0 1 0 62 4 0 1 1 0 63 0 0 4
R 17 0 0 32 1 0 2 0 1 42 0 5 0 0 0 50 0 0
T 0 0 1 0 63 1 0 0 0 0 63 2 0 0 0 0 65 0
Y | 4 0 5 2 3 40 | 0 0 0 0 1 53| 0 0 1 1 0 52

B=Benign, C=Cerber, L=Locky, R=Reveton, T=TelesCrypt,Y=Yakes

Table V presents interesting outcomes for this model, its F-
measure, recall, and precision scored over 90% on 3 families.
It is worth mentioning that in this experimental setup the Be-
nign and Reveton Families improved on all the measurement
values compared to the previous model. The Benign family
recorded 90.70% of F-measure, 88.64% of recall, and 92.86%
of precision, while the Reveton family obtained 84% for all
its measurements. In general, all the families showed a per-
formance improvement with this classification model, which
could be due to the fact that we use evasion APIs’ frequencies
instead of their presence/absence. As presented in Table VI,
the KNN’s confusion matrix results demonstrates improvement
in the Benign and Reveton family classification results. For
the Benign family, only 5 out 44 samples (11.36%) were
misclassified, while for the Reventon family, 8 out of 50 (16%)
were misclassified. The Yakes family also exhibits appreciable
improvement because there exist one misclassified instance
related to its labeling samples. Its F-measure and precision
were affected by errors made with other families’ samples clas-
sification. Overall, the implemented model’s accuracy reached
a high value of 92.85%, meaning 312 ransomware samples
classified without mistakes, thus, representing 7.74% more
effective than Bernoulli Naive Bayes’ accuracy, confirming the
effectiveness of the KNN model towards classifying this type
of malware in our experiments.

Moreover, this classifier’s computational performance in
terms of speed was measured to compare it with the previ-
ous one. KNN spent 0.264 seconds to process and classify
the ransomware samples. It means 1.35 times the Bernuille
Naive’s. It is due to Bernoulli Naive Bayes’s feature vector
values, which were binary values (e.g., 0 and 1), while the
KNN’s feature vector values were integers from 0 to over
30,000. Nevertheless, KNN’s performance measures outcomes
are much better than the ones obtained from Bernoulli Naive
Bayes.

3) Random Forest (RF): Like Bernoulli Naive Bayes, RF
was coupled with the OoW technique to obtain a vector of

10

23 binary features (e.g., Is and 0) representing the identified
specific evasion API shown in Table III. We present the
performance analysis results for the RF model in Table V. It
is observed that the F-measure, recall, and precision recorded
values over 94% for four ransomware families (e.g., Cerber,
Locky, Reveton, TeslaCrypt), indicating better accuracy as
compared to the KNN model, which classified three families
with values over 94% (e.g., Cerber, Locky, TeslaCrypt). We
believe that this is due to the simplicity of the RF model and
its internal logic when dealing with uncorrelated models (e.g.,
ensemble prediction) that reduce data variability. Furthermore,
the classification results for Reveton improved notoriously
with values better than KNN in all the three mentioned
evaluation measures, recording 99.01%, 100%, and 98.03%,
respectively. Moreover, the classification results for the Benign
and Yakes families maintain a similar tendency as KNN.

We present the classification results for the RF model in the
confussion matrix, as illustrated in Table VI. It is interesting to
see how the Benign family keeps its trend pattern through the
models analyzed until this moment, with only 8 misclassified
samples out of all 44 benign samples (18%), confirming the
overlapping pattern generated for this type of software. On
the other hand, the rest of the families presented a high
percentage of true positives, representing correctly classified
samples. In general, this model scored an accuracy value
of 94.92%, with 319 correctly labeled ransomware samples,
hence, slightly better than the KNN’s in terms of accuracy.
Finally, as illustrated in Figure 5, the RF model required 0.206
seconds to accomplish the classification process. Therefore,
while RF produced the highest accuracy so far, it was slightly
slower in terms of processing time as compared to the BNB,
but faster than KNN.

C. Sequence-Based Experiment

In this section, we use SoW feature representation by taking
the sequence/order of the generated API calls into consider-
ation. We also implement several deep learning models (e.g.,

Table VII: Optimized hyper-parameters for the implemented models.

Learning Rate Drops Decay Batches Unitsl Units2 Epochs
Neural Network 1 0.00117094 0.143239267 0.000402171 44 289 132 13
Neural Network 2 0.001075841 0.152889602 0.000408151 46 259 115 12
LSTM 1 0.000536543 0.183308741 1.04E-07 48 298 146 19
LSTM 2 0.000490795 0.184130793 1.02E-07 45 326 155 17
Bi-LSTM 1 0.000561684 0.163749935 0.000133455 47 121 294 18
Bi-LSTM 2 0.000582273 0.165189885 0.000143483 42 129 287 17

0.7

0.618

SECONDS

BNB KNN RF ANN LSTM Bi-LSTM

Figure 5: Performance comparison (computational time).

LSTM, Bi-LSTM, and ANN), which are known to be effective
when used with temporal/sequential data.

Data pre-processing. To feed our data to the deep learning
algorithms, we encoded our features by converting them into a
numerical machine-readable form. In this context, we replaced
the categorical value (API calls) with a numeric value between
0 and the number of unique API calls minus 1. If the
categorical variable value contains 5 distinct API calls, we
use (0, 1, 2, 3, and 4). Moreover, we represent our categorical
variables as binary vectors. First, we map categorical classes
to integer values. Then, each integer value is represented as
a binary vector that is all zero values except the index of the
integer, which is marked with a 1. For each label, we created a
new column with binary encoding (0 or 1) to denote whether
a particular row belongs to this category. After that, we split
our data to training (80%) and testing/validation (20%).

Model Selection and Evaluation. We have studied different
deep learning models to classify ransomware families based
on their paranoia activity. The structure and layers of these
models are described in the following sub-sections, along with
the evaluation results. Moreover, we chose RMSprop [47] as
an optimizer for this classification problem, given that it is a
de-facto approach and has shown to be significantly effective
when employed with Recurrent Neural Networks (RNN). To
iteratively enhance the outcomes, we started with simple mod-
els (fewer layers) and systematically added further layers until
we reached a relatively good fit (no under-fitting and over-
fitting). Consequently, we performed hyper-parameter tuning
using the random search algorithm. Finally, we identified the
parameters that yielded the highest F-measure among the runs;
then we refined our random search. As summarized in Table
VII, the parameters that were tuned are the learning rate, the
decay in the RMSprop optimizer, the proportion of drops,
number of neurons in a layer, size of batches, and number
of epochs.

Hyper-Parameter Tuning. It is worth mentioning that
different techniques were applied to decrease over fitting
and achieve a good fit on the training data. First of all,
we use dropping techniques [48], which refers to dropping
out/ignoring units (i.e., neurons) during the training phase with
a certain probability. Moreover, we use batch normalization
technique [49] to standardize the inputs to a layer for each
mini-batch. This helps in stabilizing the learning process and
dramatically reducing the number of training epochs required
to train deep networks. Moreover, we applied hyper-parameter
tuning in order to find the best parameters to achieve a good
fit since there exist a large number of variables that can be
tuned to enhance the training. Moreover, we performed 10-
fold cross-validation, which helps in reducing the number of
training samples and decrease over-fitting. Finally, we use
categorical cross entropy as a loss function.

Applied Random Search. For each model, we applied a
random search and a refined random search, where the hyper-
parameters that we discovered are summarized in Table VII. In
a deep learning model, various parameters contribute to finding
the best fit for the training data (e.g., learning rate, decay, batch
size, etc.). We generate 500 different combinations out of these
parameters. The random search uses a random combination
of these values and performs similar to meta-heuristics and
grid search, however, with a lower computational cost [50].
We performed random searches and several refined searches;
nevertheless, since the values on average were similar for all
trials on the second random search, we opted to apply two
random searches, a general one, and a refined random search
in the realm of -/+ 10% of the best performing parameters
according to the F-measure. This was performed to all the
deep learning models where they showed that two random
searches is sufficient.

In the following sub-sections, we present the analysis of
the performance of the deep learning algorithms that were
implemented to classify ransomware families based on their
evasion API calls. We select the deep learning model which
shows the highest F-measure score, as it is more representative
of minority classes in the data. As a result, our classification
model will utilize the features learned by our best model, to
attribute such ransomware.

1) Artificial Neural Network (ANN): We use the ANN
model because of the scarcity of the data, where a simple
model will be able to generalize better. The developed ANN
architecture depicted in Figure 6 consists of the following
layers:

« Input layer: The input of the network is a 23 array of
encoded API calls.

11

Dropout |a=0.15]|

Softmax
(n=6)

Dense (n = 259) ‘

Dense (n = 115)

Figure 6: Structure of the ANN model.

o Fully-Connected Layer 1: The input is fed to a fully
connected layer with the rectified linear activation func-
tion that overcomes the vanishing gradient problem, while
allowing the models to learn faster and perform better. It
is a piece-wise linear function that will output the input
directly if it is positive, otherwise, it will output zero.
This is followed by a drop layer with o = 0.18 along
with batch normalization that would help in decreasing
over-fitting and handling noise.

o Fully-Connected Layer 2: The output of the first fully
connected layer is inputted to another layer of a fully
connected layer with a ReLu activation function. The
outcome is then fed to a Softmax function to output the
normalized probability distribution over the classes.

Initially, we started by running a random search algorithm
(500 runs). We achieve an accuracy of 86.80% and an F-
measure of 86.71%. To further explore this deep learning
algorithm, we applied random search on the parameters dis-
covered with our initial random search that yielded better F-
measure score, with a rate of -/+ 10%. After applying the
second random search to refine our parameters and improve the
performance, we achieved an F-measure score of 87.74% and
an accuracy of 87.80%, that is, 295 samples tagged correctly
according to their family.

As summarized in Table VIII, the ANN model achieved F-
measure values above 85% for 5 out the 6 studies families,
indicating an overall satisfactory quality and classification ef-
fectiveness. Moreover, the recall and precision values obtained
for classifying these 5 families were also over 85%, confirming
this model’s good performance. However, only the Benign
family was associated with relatively lower F-measure and
recall values (less than 80% for). This could be due to the
smaller number of benign samples used to train the model,
which was 27% less than the number of utilized samples
for other families. Additionally, the ANN confusion matrix
results (Table IX) shows that 25% of the benign samples
were misclassified, thus confirms that the Benign family needs
more in-depth analysis to improve the accuracy of the model.
Moreover, we note that the benign samples generated some
overlapping evasion APIs patterns with other ransomware
samples, which could be the reason for such misclassification.
Despite that, our analysis shows that the majority of the
ransomware samples (> 85%) for the remaining families were

| LSTM™, / Bi- | |
|| ™, |
| IS 25 |
| LSTM, / Bi- ? S C"’ S |
[] w™ 33|/ = |
3 . 2
| . | =g | | EG @
| V158l ! S e !
| 2 3 © g 3 |
- e 8N °8
| =5 es |
| | s/ |
LSTM,
[— —

Dense sy (n = 155)
Densegiism (n = 287)

Softmax
(n=6)

LSTM (n = 326)
Bi-LSTM (n = 129)

Figure 7: Implemented LSTM/Bi-LSTM model architectures.

correctly attributed to the known families.

Furthermore, our performance analysis shows that the com-
putational time to complete the classification experiments
using the ANN model achieved an outstanding time of 0.085
seconds, with an overall classification accuracy above 85%.
As illustrated in Figure 5, the ANN model outperforms all the
previous machine learning models, with a significantly shorter
time for completing the classification tasks. Therefore, despite
the fact that RF model produces relatively higher classification
accuracy, our analysis indicates that a customised ANN model
can be considered as an effective alternative model, especially
when the number of samples grows significantly.

2) Long-Short Term Memory (LSTM): In this RNN model,
we stacked an LSTM layer, where each cell will output one
hidden state for each input, on top of a fully connected hidden
layer with a ReLu activation function, and a softmax output
layer. Moreover, we use categorical cross entropy as a loss
function since we have more than two classes in which we
want to identify.

The architecture of the LSTM depicted in Figure 7 consists
of the following layers:

o Input Layer: The input of the network is a 23 array of

encoded API calls.

o« LSTM Layer: This is the main building block of an
LSTM deep neural network. It is responsible for learning
order dependency in our evasion API feature space,
followed by a dropout with o = 0.18 to decrease over-
fitting.

o Fully-Connected Layer: After the LSTM layer, we add a
fully connected layer to complete the LSTM architecture.
The output of the LSTM is three dimensional, however,
the fully connected layer expects a one dimensional vec-
tor of numbers. Therefore, we create a copy of the output
collapsed into one dimension. To decrease over fitting,
we apply batch normalization along with a dropout. The
last connected layer combines the features learned in the
previous layers and applies the softmax function to output
the normalized probability distribution over the classes.

After running our first random search, we achieve a
relatively good accuracy (85.71%) and F-measure scores
(85.63%). Consequently, we applied a second random search
in the realm of the random parameters that generated this first
model to check if we can enhance the learning by altering the
parameters with a rate of 10%. By applying the second random

12

Table VIII: Per-family evaluation results for ANN, LSTM and Bi-LSTM models.

ANN LSTM Bi-LSTM
Family \ F-mea.(%) Recall(%) Precis.(%) \ F-mea.(%) Recall(%) Precis.(%) \ F-mea.(%) Recall(%) Presic.(%)
Benign 79.52 75.0 84.62 85.06 84.09 86.05 83.15 84.09 82.22
Cerber 87.85 85.45 90.38 86.0 78.18 95.56 86.87 78.18 97.73
Locky 87.41 86.76 88.06 87.77 89.71 85.92 89.55 88.24 90.91
Reveton 90.72 88.0 93.62 85.44 83.0 83.02 84.62 86.27 83.02
TeslaCrypt | 91.97 96.92 87.5 89.55 92.31 86.96 91.18 95.38 87.32
Yakes 86.73 90.74 83.05 88.07 88.89 87.27 89.29 92.59 86.21

Table IX: Confusion matrices’s outcomes for ANN, LSTM, and Bi-LSTM

ANN LSTM Bi-LSTM

| B C L R T Y | B C L R T Y | B C L R T Y
B |3 4 3 0 0 4 37 0 5 1 1 0 37 0 1 2 1 3
Cc |2 47 1 0 1 4 3 43 1 4 2 2 4 43 1 4 1 2
L |2 0 59 3 4 0 2 0 61 3 1 1 2 0 60 3 2 1
R |0 0 2 4 3 1 0 1 2 4 3 0 0 1 3 43 3 0
T |0 1 0 0 63 1 0 1 0 0 60 4 1 0 0 0 62 2
Y | 2 0 2 0 1 49 | 1 0 2 1 2 48 | 1 0 1 0 2 50

B=Benign, C=Cerber, L=Locky, R=Reveton, T=TelesCrypt,Y=Yakes

search, we were able to improve the F-measure score from
85.63% to 87.17% and the accuracy from 85.71% to 87.20%.
This indicates that 293 out of 336 ransomware samples were
correctly classified.

The per-class performance metrics of the LSTM model
are illustrated in Table VIII. Herein, the F-measure achieved
a value for all the families between 85% and 90%, which
could be interpreted as an acceptable model’s performance.
Furthermore, the recall and precision measurements obtained
values between 84%-96% for 5 out of 6 families, which is
aligned with the F-measure. It is worth noting that the LSTM
model performance is assumed to improve when we increase
the number of training/testing samples since having a complex
feature vector of API calls necessitates more samples to better
capture the relationship between the features.

The confusion matrix analysis results for the LSTM model
presented in Table IX. In general, the LSTM produced an
overall accuracy similar to the ANN model. This is also clearly
reflected in the number of correctly classified samples from
each family when comparing the two model. Nevertheless,
LSTM seems to perform better than ANN in classifying
Benign samples, while producing comparable results for clas-
sifying samples from other families. Further, the LSTM model
required significantly longer time (0.344 seconds) to complete
the classification process as compared to the ANN Model
(Figure 5). This is mainly due to the complex internal structure
of the LSTM model, which tries to find associations between
learned features and thus, requiring more computational time
and resources.

3) Bidirectional Long-Short Term Memory (Bi-LSTM): In
this RNN model, we stacked a Bidirectional LSTM layer,
where each cell will output one hidden state for each input, on
top of a fully connected hidden layer with a ReLu activation
function, and a softmax output layer.

The architecture of the Bi-LSTM that is depicted in Figure
7 consists of the following layers:

o Input layer: The input of the network is a 23 array of

13

encoded API calls.

Bi-LSTM Layer: The main building block of an bidirec-
tional LSTM deep neural network. This layer is responsi-
ble for learning and identifying sequences in the inputted
features, while taking into account forward and backward
order. It is then followed by a dropout with o = 0.17.
Fully-Connected Layer: After the Bi-LSTM layer, we
add a fully connected layer to wrap up the Bi-LSTM
architecture. The output of the Bi-LSTM is three dimen-
sional; we then convert the output of the Bi-LSTM layer
into a 1-dimensional array, since the fully connected layer
expects a one dimensional vector of numbers. Moreover,
we also apply batch normalization along with a dropout.
Finally, we apply a softmax function to output the nor-
malized probability distribution over the classes using the
last connected layer that combines the features learned in
the previous layers.

After applying the first random search and achieving 86.18%
for F-measure score and 86.31% for accuracy, we applied a
second random search in the realm of the random parameters
that resulted in an F-measure of 87.77% and an accuracy of
87.80%, which is similar to the accuracy scored by ANN
and LSTM, representing 295 correctly classified samples. The
per-class performance metrics are reported in Table VIIL
Similar to LSTM, the Bi-LSTM is ideal for cases with a
significantly larger number of ransomware samples, where it
is assumed to perform effective classification with improved
overall performance. This could also hamper the obtained
F-measure values, which were under 90% for most of the
families (Benign, Cerber, Locky, Reventon, Yakes). However,
recall and precision exhibit values over 90%, indicating that
with the increase number of samples, the F-measure score may
increase while improving the overall performance.

The analysis of the confusion matrix outcomes for the
Bi-LSTM model (Table IX) shows that it similar to the
LSTM model, it outperforms the ANN model in classifying
Benign samples. Moreover, the Bi-LSTM model produces high

Table X: Classifiers outcomes.

Classifier Accur.(%) F-mea.(%) Recall(%) Precis.(%)
RF 94.92 94.61 94.44 95.16
KNN 92.85 92.60 92.54 92.75
ANN 87.80 87.74 87.15 87.87
Bi-LSTM 87.80 87.77 87.46 87.90
LSTM 87.20 87.17 86.86 87.46
BNB 85.11 83.69 83.32 85.54

accuracy for most ransomware families. For instance, the 62
samples of the TeslaCrypt family were classified classified
correctly, with about 95% per family classification accuracy.
Moreover, the comparison of the results to the LSTM and
ANN models shows comparable results that are not statisti-
cally significant. On the other hand, the processing time for
the Bi-LSTM model was the longest among all tested models,
with about 0.618 seconds required to classify all the samples
(Figure 5). This is not surprising as the BiLSTM model is an
extended version of LSTM with an internal mechanism that
accounts for finding two-ways relational dependencies in the
analyzed data/features.

D. Evaluation and Comparison

To attribute ransomware to their corresponding families,
we devised and developed different ransomware family clas-
sification models based on the paranoia activity generated
by the ransomware samples, whether they were malicious
or legitimate. Consequently, we tailor three machine learning
algorithms (BNB, KNN and RF) and three deep learning
algorithms (ANN, LSTM, and Bi-LSTM) to classify such
samples. We evaluate and compare the performance of the tai-
lored classification models based on their accuracy/F-Measure
(Table X) along with the overall computational performance
represented by the time required to complete the classification
process (Figure 5).

As shown in Table X, all machine learning models except
BNB produced significantly higher accuracy and F-measure
scores as compared to the deep learning models, with RF
to have the highest accuracy (94.92%) and F-measure values
(94.61%) among all. The KNN model came second with a
score slightly above 92% for both measures, respectively. It
is interesting to see that the BNB scored the lowest among
all tested models (between 83%-85% for accuracy and F-
measures). We attribute these low values to the partial fulfill-
ment of the class conditional independence in the Bernoulli
Naive Bayes model. On the other hand, our analysis indicates
that the tested DL models resulted relatively lower scores
for both accuracy and F-measure (about 87%). Additionally,
while the tested DL models produced similar classification
outcomes, we believe that their classification outcomes may
improve when experimenting with a larger sample size.

The values of the precision and recall for the analyzed
models is presented in Table X. Achieving high values for
these two metrics indicates accurate results, which depicts
how much we can trust these classifiers to identify all the
samples. Our analysis shows that the RF and KNN produced
the highest values for precision and recall, indicating that the

14

proportion of correctly predicted samples is significant and
thus, complementing and confirming the analysis done for the
accuracy and F-measure. These results provide a measure of
the effectiveness and quality of the analyzed models when
attributing ransomware to their corresponding families based
on their paranoia activities.

Further, to compare the computational performances of
the devised classifiers, we measure their speed in terms of
time required to complete the classification experiments. As
illustrated in Figure 5, the ANN model performed significantly
faster than all the other tested models, with 0.085 seconds
to complete the classification. Additionally, the ML models
such as BNB, RF, and KNN performed relatively slower, with
a computational time of 0.195, 0,206, and 0.264 seconds,
respectively. On the other hand, it is interesting to see that the
LSTM-based DL models performed significantly worst, with
0.344 and 0.618 seconds for LSTM and Bi-LSTM models,
respectively.

In general, despite the fact that the RF model produced the
best classification outcomes in terms of F-measure and accu-
racy measures, the ANN could be also considered as a poten-
tial option for our proposed ransomware family classification
due to its computational performance and speed. This could
be especially the case when dealing with a larger number of
analyzed ransomware samples, which may eventually improve
the overall learning outcomes in terms of model accuracy.

V. DISCUSSION

To overcome the problem of ransomware family classifica-
tion, we proposed an approach that leverages their paranoia
activity through the development and application of various
ML/DL models. Such models are capable of identifying a set
of evasion APIs that characterize the behaviors of various
ransomware families. Furthermore, the results demonstrate
that some families invoke a unique set of evasion API calls
with different frequencies. Inline with our previous finding,
the executed experiments reveal that the classification of
ransomware families based on their paranoia activities can
be achieved using three different techniques, one of which
is based on the mere presence and absence of an API calls,
the second one is based on the frequency of the evasion API,
and finally, a technique based on the sequence of API calls.
Furthermore, our best model (RF) was able to identify and
differentiate benign software from the different ransomware
families with high precision and recall values (about 94%), as
summarized in Tables X.

Practical Cyber-Security Benefits. Mitigating ransomware
attacks requires detecting them prior to executing their pay-
load, which typically results in encrypting/locking the targeted
device/data. One way to achieve this is to analyze the be-
havioral characteristics of suspicious applications and identify
adversarial activities, which might be attributed to known
ransomware families while triggering appropriate actions to
defend against them.

In line with that, our dynamic approach utilizes pre-attack
paranoia activities along with tailored ML/DL models to offer
effective and timely ransomware classification and family

attribution. More importantly, given the knowledge about
existing ransomware families, and the fact that the paranoia
activities are captured/analyzed prior to perpetuating the actual
attacks, our approach can be leveraged to develop practical
preventive capabilities to obstruct ransomware attacks at early
stages (e.g., during their paranoia activity). Moreover, the
behavioral characteristics associated with various ransomware
families can be utilized to discover new emerging ransomware
variants and/or detect new unknown families by feeding new
ransomware variants into the ML/DL models and re-training
them accordingly. Additionally, this work contributes toward
identifying new ransomware variants/families by running the
model and findings samples that do not belong/associate to
known families based on their paranoia activity. Such findings
however, require further investigation to confirm the observa-
tion.

It is also worth noting that our approach implements
lightweight classifiers, which can be portable to other envi-
ronments such as Linux and IoT-centric OSs. Further, this
work can be leveraged to devise ransomware attack mitiga-
tion and prevention methods through learning the behavioral
characteristics of benign application and comparing them to
anomalous behaviors of newly installed applications (e.g.,
possible ransomware). This can be done by instrumenting
a “learning” period for vetting/whitelisting the installation
of default programs, while increasing the accuracy of the
implemented ransomware classifier and its capabilities for
ransomware detection purposes. Consequently, new signatures
can be created for the detected ransomware based on their
paranoia activities, which can be utilized to detect/mitigate
further attacks including possible 0-day using conventional
Intrusion Detection Systems (IDS). Finally, this research can
also be leveraged to function as a defense mechanism inside
a computer network in order to detect paranoia activity that
are produced by different types of malicious software such as
ransomware and/or other types of malware to determine the
origin of this sensing actions and stop possible attacks.

Robustness. Considering that our approach’s scope is only
family classification of known ransomware based on its para-
noia activity, we did not include unknown ransomware or
any other types of malware in our experiment. We used 5
ransomware families in our experiments due to the lack of
a balanced ransomware datasets. However, our approach is
easily reproducible (it is available in GitHub®) to make
it operational with other ransomware datasets given that
they share similar semantics (i.e., paranoia activity). Further,
fingerprinting actions to sense the environment has turned
into a malware’s tendency to detect dynamic analyzers [33].
Therefore, our approach can be tested with any other types
of malware that employed paranoia activity. Moreover, benign
samples can be always included in the experiments as long as
they apply environmental detection actions.

Limitations and Future Work. Although this work con-
tributes towards understanding ransomware and their behavior,
it is realistic to note a few current limitations. For instance,
the work relies on a supervised learning approach, which

3https://github.com/Rmayalam/Ransomware_Paranoia.git

15

cannot classify new, previously unseen ransomware variants.
Therefore, labeling our samples prior to training our ML/DL
models to perform ransomware family classification is vital.
To overcome this limitation, unsupervised learning approaches
(e.g., clustering) can be considered as a complementary ap-
proach, which can be pursued to face the emergence of new
ransomware families. Moreover, this work can be leveraged for
future works by incorporating a combination of static and dy-
namic analysises, which would benefit from the advantages of
these two approaches. Additionally, our classification approach
can be leveraged as a stepping stone to develop new defense
mechanisms that prevent and detect these types of malicious
attacks. In addition, while this work aims at ransomware
classification and family attribution, the proposed approach
can be extrapolated to other types of malware, which invoke
detection evasion API calls in their pre-attack routines.

Finally, our solution does not handle the sustainabil-
ity/deterioration issue that most learning-based detectors suffer
from. The issue is generated by the use of old samples to detect
new samples, and this affects the robustness of the model
[51]. Different approaches have been employed to handle the
deterioration of the machine learning models. In [52] they pro-
posed the use of API graphs, which helped in decreasing the
deterioration of the model, whereas [53] proposed the use of
online learning to handle the evolving nature of malware, along
with an evolving feature sets and pseudo labels. Moreover, in
[54] they assess the deterioration of the models and emphasize
on the importance of the features used. The features should
consistently differentiate malware from benign application for
sustainable learning-based malware detection. And this aligns
with our feature analysis and selection strategy were we
used features that are predominantly associated with malicious
software samples. For future work we will be detailing a study
on our feature set to assess and detect the existence of concept
drift that might affect the performance of the Al-based learning
models using works similar to [55].

VI. CONCLUSION

In this work, we propose a dynamic analysis approach
for attributing ransomware samples based on their pre-attack
paranoia activities. We execute more than 3,000 ransomware
samples that belong to 5 predominant families in a sandboxing
environment to collect their behavioral characteristics/features
in terms of 23 selected pre-attack evasion API calls that are
associated with sensing the execution environment. To this
end, we utilize BoW, SoW, and OoW to build feature vectors
while implementing various ML/DL models such as RF, KNN,
BNB, ANN, LSTM, and BI-LSTM to perform the family
classification based on the collected paranoia activities.

In general, our analysis shows the prevalence of paranoia
activities among ransomware samples. More importantly, our
findings indicate that the paranoia activities can be in fact
used as distinguishable features for classifying ransomware
samples into known families. Moreover, our detailed evalu-
ation and comparison of the deployed models showed that
the RF model obtained the best classification outcomes (i.e.,
accuracy and F-measure), while the ANN model produced the

https://github.com/Rmayalam/Ransomware_Paranoia.git

smallest computational times for completing the ransomware
classification process. Finally, while this work helps towards
building a better understanding of the ransomware threat land-
scape, it introduces a practical approach for building effective
tools for detection and mitigation of ransomware attacks by
monitoring their pre-attack activities and attributing them to
known families during early phases.

ACKNOWLEDGMENT

This work has been supported by Natural Sciences and
Engineering Research Council of Canada (NSERC) and Con-
cordia University. This work was also partially supported by
a grant from the U.S. National Science Foundation (NSF),
Office of Advanced Cyberinfrastructure (OAC), #2104273.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

REFERENCES

E. Berrueta et al., “A survey on detection techniques
for cryptographic ransomware,” IEEE Access, vol. 7, pp.
144 925-144 944, 2019.

B. A. S. Alrimy, M. A. Maarof, and S. Z. M.
Shaid, “Ransomware threat success factors, taxonomy,
and countermeasures: A survey and research directions,”
Jan 2018. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S016740481830004X

Kaspersky, = “What are the different types
of ransomware?’ Dec 2020. [Online]. Avail-
able: https://www.kaspersky.com/resource-center/threats/
ransomware-examples

“Fbi director sees ‘parallels’ between ransomware
threat and 9/11,” Dec 2020. [Online]. Avail-
able: https://amp.theguardian.com/us-news/2021/jun/04/
fbi-christopher-wray-cyberattacks-9-11

Z. Cohen and G. Sands, “Four key takeaways
on the us government response to the pipeline
ransomware attack,” May 2021. [Online]. Available:
https://www.cnn.com/2021/05/11/politics/colonial-
pipeline-cyber-hearing-senate-homeland-security-
committee/index.html

V. Salama, A. Marquardt, and Z. Cohen,
“Several hospitals targeted in new wave of
ransomware attacks,” Oct 2020. [Online]. Avail-

able: https://www.cnn.com/2020/10/28/politics/hospitals-
targeted-ransomware-attacks/index.html

E. M. Lab, “Ransomware statistics for 2020: Q1 report,”
Jun 2020. [Online]. Available: https://blog.emsisoft.com/
en/36303/ransomware-statistics-for-2020-q1-report/
“2020 ransomware statistics, data, & trends,” Nov 2020.
[Online]. Available: https://purplesec.us/resources/cyber-
security-statistics/ransomware/

D. Freeze, “Global ransomware damage costs predicted
to reach $20 billion (usd) by 2021,” Jan 2020. [Online].
Available: https://cybersecurityventures.com/global-
ransomware-damage-costs-predicted-to-reach-20-
billion-usd-by-2021/

B. D. M. M. at phoenixNAP. Researcher et al,
“27 shocking ransomware statistics that every it

16

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

[25]

pro needs to know,” Feb 2021. [Online]. Available:
https://phoenixnap.com/blog/ransomware-statistics-facts
S. Kok et al., “Ransomware, threat and detection tech-
niques: A review,” Int. J. Computer Science and Network
Security, vol. 19, no. 2, p. 136, 2019.

B. Zhang et al., “Ransomware classification using patch-
based cnn and self-attention network on embedded n-
grams of opcodes,” Future Generation Computer Sys-
tems, vol. 110, pp. 708-720, 2020.

K. P. Subedi, D. R. Budhathoki, and D. Dasgupta,
“Forensic analysis of ransomware families using static
and dynamic analysis,” in 2018 IEEE Security and Pri-
vacy Workshops (SPW). 1EEE, 2018, pp. 180-185.

R. Vinayakumar et al., “Evaluating shallow and deep
networks for ransomware detection and classification,” in
Int. Conf. on Advances in Computing, Communications
and Informatics (ICACCI). 1EEE, 2017, pp. 259-265.
H. Daku, P. Zavarsky, and Y. Malik, “Behavioral-based
classification and identification of ransomware variants
using machine learning,” in 17th IEEE Int. Conf. On
Trust, Security And Privacy In Computing And Commu-
nications/12th IEEE Int. Conf. On Big Data Science And
Engineering (TrustCom/BigDataSE), 2018, pp. 1560—
1564.

H. Zhang et al., “Classification of ransomware families
with machine learning based on n-gram of opcodes,”
Future Generation Computer Systems, vol. 90, pp. 211-
221, 2019.

A. AlSabeh et al., “Exploiting ransomware paranoia for
execution prevention,” in [EEE Int. Conf. on Communi-
cations (ICC). 1IEEE, 2020, pp. 1-6.

L. Onwuzurike et al., “Mamadroid: Detecting android
malware by building markov chains of behavioral models
(extended version),” ACM Transactions on Privacy and
Security (TOPS), vol. 22, no. 2, pp. 1-34, 2019.

J. Yan, G. Yan, and D. Jin, “Classifying malware repre-
sented as control flow graphs using deep graph convolu-
tional neural network,” in 2019 49th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN). 1EEE, 2019, pp. 52-63.

G. Suarez-Tangil et al., “Droidsieve: Fast and accurate
classification of obfuscated android malware,” in Pro-
ceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy, 2017, pp. 309-320.
S. K. Dash et al., “Droidscribe: Classifying android
malware based on runtime behavior,” in 2016 IEEE
Security and Privacy Workshops (SPW). 1EEE, 2016,
pp- 252-261.

H. Cai et al., “Droidcat: Effective android malware de-
tection and categorization via app-level profiling,” IEEE
Transactions on Information Forensics and Security,
vol. 14, no. 6, pp. 1455-1470, 2018.

“Automated malware analysis,” Nov 2020. [Online].
Available: https://cuckoosandbox.org/

“VirusTotal,” Nov 2020. [Online]. Available: https:
/Iwww.virustotal.com/gui/

“VirusShare,” Nov 2020. [Online]. Available: https:
/Ivirusshare.com/

https://www.sciencedirect.com/science/article/pii/S016740481830004X
https://www.sciencedirect.com/science/article/pii/S016740481830004X
https://www.kaspersky.com/resource-center/threats/ransomware-examples
https://www.kaspersky.com/resource-center/threats/ransomware-examples
https://amp.theguardian.com/us-news/2021/jun/04/fbi-christopher-wray-cyberattacks-9-11
https://amp.theguardian.com/us-news/2021/jun/04/fbi-christopher-wray-cyberattacks-9-11
https://www.cnn.com/2021/05/11/politics/colonial-pipeline-cyber-hearing-senate-homeland-security-committee/index.html
https://www.cnn.com/2021/05/11/politics/colonial-pipeline-cyber-hearing-senate-homeland-security-committee/index.html
https://www.cnn.com/2021/05/11/politics/colonial-pipeline-cyber-hearing-senate-homeland-security-committee/index.html
https://www.cnn.com/2020/10/28/politics/hospitals-targeted-ransomware-attacks/index.html
https://www.cnn.com/2020/10/28/politics/hospitals-targeted-ransomware-attacks/index.html
https://blog.emsisoft.com/en/36303/ransomware-statistics-for-2020-q1-report/
https://blog.emsisoft.com/en/36303/ransomware-statistics-for-2020-q1-report/
https://purplesec.us/resources/cyber-security-statistics/ransomware/
https://purplesec.us/resources/cyber-security-statistics/ransomware/
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-20-billion-usd-by-2021/
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-20-billion-usd-by-2021/
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-20-billion-usd-by-2021/
https://phoenixnap.com/blog/ransomware-statistics-facts
https://cuckoosandbox.org/
https://www.virustotal.com/gui/
https://www.virustotal.com/gui/
https://virusshare.com/
https://virusshare.com/

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Malicialab, “malicialab/avclass,” Nov 2020. [Online].
Available: https://github.com/malicialab/avclass

L. Loeb, “Cerber ransomware owns the market,” Jan
2021. [Online]. Available: https://securityintelligence.
com/news/cerber-ransomware-owns-the-market/
“Averting ransomware epidemics in corporate
networks with windows defender atp,” Jul 2019.
[Online]. Available: https://www.microsoft.com/security/
blog/2017/01/30/averting-ransomware-epidemics-in-
corporate-networks-with-windows-defender-atp/

J. Johnson, “Major operating systems targeted by
ransomware 2020,” Feb 2021. [Online]. Avail-
able: https://www.statista.com/statistics/701020/major-

operating-systems-targeted-by-ransomware/

G. Yan, N. Brown, and D. Kong, “Exploring discrimi-
natory features for automated malware classification,” in
International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2013,
pp- 41-61.

“Dynamic malware analysis in the modern era-a state
of the art survey dynamic malware analysis in the
modern era-a state of the art survey,” Mar 2021.
[Online]. Awvailable: https://dl.acm.org/doi/fullHtml/10.
1145/3329786

“Evasion techniques,” May 2021. [Online]. Available:
https://evasions.checkpoint.com/

A. Afianian et al., “Malware dynamic analysis evasion
techniques: A survey,” arXiv preprint arXiv:1811.01190,
2018.

S.-B. Kim er al., “Some effective techniques for naive
bayes text classification,” IEEE transactions on knowl-
edge and data engineering, vol. 18, no. 11, pp. 1457-
1466, 2006.

R. Jodha et al., “Text classification using knn with dif-
ferent features selection methods,” International Journal
of Research Publications, vol. 8, no. 1, pp. 8-8, 2018.
K. Shah et al., “A comparative analysis of logistic regres-
sion, random forest and knn models for the text classifi-
cation,” Augmented Human Research, vol. 5, no. 1, pp.
1-16, 2020.

L. Sayfullina er al., “Efficient detection of zero-day an-
droid malware using normalized bernoulli naive bayes,”
in 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1. 1EEE,
2015, pp. 198-205.

Y. Wang and Z.-O. Wang, “A fast knn algorithm for text
categorization,” in Int. Conf. on Machine Learning and
Cybernetics, vol. 6. 1EEE, 2007, pp. 3436-3441.

“Text classification using knn with different
feature selection methods,” May 2021. [Online].
Available: https://www.researchgate.net/publication/

326893075_Text_Classification_using_ KNN_with_
different_Feature_Selection_Methods

“An improved knn text classification algo-
rithm based on clustering,” Feb 2021. [On-
line]. Available: https://pdfs.semanticscholar.org/59dd/

¢6120c15b4327d675f1da6ff540727078c7a.pdf
C. H. Wan ef al., “A hybrid text classification approach
with low dependency on parameter by integrating k-

17

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

nearest neighbor and support vector machine,” Expert
Systems with Applications, vol. 39, no. 15, pp. 11880-
11888, 2012.

N. Suguna and K. Thanushkodi, “An improved k-nearest
neighbor classification using genetic algorithm,” Int. J.of
Computer Science Issues, vol. 7, no. 2, pp. 18-21, 2010.
M. W. Gardner and S. Dorling, “Artificial neural net-
works (the multilayer perceptron)—a review of applica-
tions in the atmospheric sciences,” Atmospheric environ-
ment, vol. 32, no. 14-15, pp. 2627-2636, 1998.

S. Mitra, R. K. De, and S. K. Pal, “Knowledge-based
fuzzy mlp for classification and rule generation,” IEEE
Transactions on Neural Networks, vol. 8, no. 6, pp. 1338—
1350, 1997.

C. Zhou et al., “A c-1stm neural network for text classi-
fication,” arXiv preprint arXiv:1511.08630, 2015.

R. Alzaidy, C. Caragea, and C. L. Giles, “Bi-lstm-crf se-
quence labeling for keyphrase extraction from scholarly
documents,” in The WWW Conf., 2019, pp. 2551-2557.
K. Team, “Keras documentation: Rmsprop,” May
2021. [Online]. Available: https://keras.io/api/optimizers/
rmsprop/

W. Wang, M. Zhao, and J. Wang, “Effective android
malware detection with a hybrid model based on deep
autoencoder and convolutional neural network,” J.of Am-
bient Intelligence and Humanized Computing, vol. 10,
no. 8, pp. 3035-3043, 2019.

M. A. Kadri, M. Nassar, and H. Safa, “Transfer learning
for malware multi-classification,” in Proc. of the 23rd Int.
Database Applications & Engineering Symposium, 2019,
pp. 1-7.

R. G. Mantovani et al., “Effectiveness of random search
in svm hyper-parameter tuning,” in Int. Joint Conf. on
Neural Networks (IJCNN). leee, 2015, pp. 1-8.

X. Fu and H. Cai, “On the deterioration of learning-based
malware detectors for android,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering: Com-
panion Proceedings (ICSE-Companion). 1EEE, 2019,
pp. 272-273.

X. Zhang et al., “Enhancing state-of-the-art classifiers
with api semantics to detect evolved android malware,”
in Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, 2020, pp.
757-770.

K. Xu et al., “Droidevolver: Self-evolving android mal-
ware detection system,” in 2019 IEEE European Sympo-
sium on Security and Privacy (EuroS&P). 1EEE, 2019,
pp. 47-62.

H. Cai, “Assessing and improving malware detec-
tion sustainability through app evolution studies,” ACM
Transactions on Software Engineering and Methodology
(TOSEM), vol. 29, no. 2, pp. 1-28, 2020.

R. Jordaney et al., “Transcend: Detecting concept drift in
malware classification models,” in 26th USENIX Security
Symposium (USENIX Security 17), 2017, pp. 625-642.

https://github.com/malicialab/avclass
https://securityintelligence.com/news/cerber-ransomware-owns-the-market/
https://securityintelligence.com/news/cerber-ransomware-owns-the-market/
https://www.microsoft.com/security/blog/2017/01/30/averting-ransomware-epidemics-in-corporate-networks-with-windows-defender-atp/
https://www.microsoft.com/security/blog/2017/01/30/averting-ransomware-epidemics-in-corporate-networks-with-windows-defender-atp/
https://www.microsoft.com/security/blog/2017/01/30/averting-ransomware-epidemics-in-corporate-networks-with-windows-defender-atp/
https://www.statista.com/statistics/701020/major-operating-systems-targeted-by-ransomware/
https://www.statista.com/statistics/701020/major-operating-systems-targeted-by-ransomware/
https://dl.acm.org/doi/fullHtml/10.1145/3329786
https://dl.acm.org/doi/fullHtml/10.1145/3329786
https://evasions.checkpoint.com/
https://www.researchgate.net/publication/326893075_Text_Classification_using_KNN_with_different_Feature_Selection_Methods
https://www.researchgate.net/publication/326893075_Text_Classification_using_KNN_with_different_Feature_Selection_Methods
https://www.researchgate.net/publication/326893075_Text_Classification_using_KNN_with_different_Feature_Selection_Methods
https://pdfs.semanticscholar.org/59dd/c6120c15b4327d675f1da6ff540727078c7a.pdf
https://pdfs.semanticscholar.org/59dd/c6120c15b4327d675f1da6ff540727078c7a.pdf
https://keras.io/api/optimizers/rmsprop/
https://keras.io/api/optimizers/rmsprop/

Ricardo Ayala is studying a Ph.D. in Informa-
tion and Systems Engineering at Concordia Uni-
versity, Montreal, Canada. He received his M.Sc.
degree from the Computer Engineering Department,
Universitat Oberta de Catalunya (UOC), Spain, in
2017. Moreover, He obtained a Master of Science
in Finance degree from the University of El Sal-
vador (UES), El Salvador, in 2017. His research
interests focus on cyber security, attacks detec-
tion/characterization, and the Internet of Things.

Sadegh Torabi received the Ph.D. degree in Infor-
mation Systems Engineering from Concordia Uni-
versity, Montreal, Canada. He received the M.Sc.
degree from the Electrical and Computer Engi-
neering Department, University of British Columbia
(UBC), Vancouver, BC, Canada, in 2016, and the
B.Sc./M.Sc. degrees (with Distinction) from the
Computer Engineering Department, Kuwait Univer-
sity (KU), Kuwait, in 2005 and 2009, respectively.
He is currently a postdoctoral research fellow at the
Center for Secure Information Systems (CSIS) at
George Mason University (GMU). His research interests are in the areas of
Internet measurements, network/systems security, usable security/privacy, and
operational cyber security including the security of Internet of Things and
cyber-physical systems.

Khaled Sarieddine is a Ph.D. student at Concordia
University. He was an assistant instructor in the De-
partment of Computer Science at the American Uni-
versity of Beirut (AUB), where he also obtained his
bachelor’s and master’s degree. His research inter-
ests include Vehicular Ad hoc Networks (VANETS),
Fog, Edge, and Cloud Computing. Moreover, his
most recent research interests extend to malware
and ransomware detection/prevention, along with
security of the electric vehicle ecosystem.

Elias Bou-Harb received the Ph.D. degree in com-
puter science from Concordia University, Montreal,
Canada. He was a visiting research scientist at
Carnegie Mellon University (CMU) in 2015-2016
before joining the Department of Computer Science
at Florida Atlantic University (FAU) as an Assistant
Professor in 2016. He is currently an Associate
Professor at the Cyber Center For Security and
Analytics at the Department of Information Systems
and Cyber Security at the University of Texas at San
Antonio (UTSA). His research interests are in opera-
tional cyber security, attacks detection/characterization, Internet measurement,
cyber-physical systems security, and mobile network security.

18

Nizar Bouguila received the engineer degree from
the University of Tunis, Tunis, Tunisia, in 2000,
and the M.Sc. and Ph.D. degrees in computer sci-
ence from Sherbrooke University, Sherbrooke, QC,
Canada, in 2002 and 2006, respectively. He is cur-
rently a Professor with the Concordia Institute for
Information Systems Engineering (CIISE) at Con-
cordia University, Montreal, Quebec, Canada. His
research interests include image processing, machine
learning, data mining,, computer vision, and pat-
tern recognition. Prof. Bouguila received the best
Ph.D Thesis Award in Engineering and Natural Sciences from Sherbrooke
University in 2007. He was awarded the prestigious Prix d’excellence de
I’association des doyens des etudes superieures au Quebec (best Ph.D Thesis
Award in Engineering and Natural Sciences in Quebec), and was a runner-up
for the prestigious NSERC doctoral prize. He was the holder of a Concordia
University research Chair Tier 2 from 2014 to 2019 and was named Concordia
University research Fellow in 2020. He is the author or co-author of more
than 400 publications in several prestigious journals and conferences. He is
a regular reviewer for many international journals and serving as associate
editor for several journals such as Pattern Recognition journal. Dr. Bouguila
is a licensed Professional Engineer registered in Ontario, and a Senior Member
of the IEEE.

Chadi Assi received his Ph.D. from the City Uni-
versity of New York (CUNY). During his PhD
he worked on optical networks, and namely on
lightpath provisioning and survivability. He spent
a year as a visiting researcher at Nokia Research
Center (Boston) where he worked on quality of
service (QoS) in passive optical access networks. He
joined Concordia University in 2003 as an Assistant
Professor where he is currently a Full Professor. He
was a Concordia research chair (Tier 2) between
2012 and 2017, then since 2017 he holds a research
chair, Tier 1. He was elevated to an IEEE Fellow (class 2020) by the
Communications Society for "contributions to resource allocation for optical
and wireless networks". His research interests are in the general area of
networks and telecommunications (both wired and wireless), (IoT) cyber
security and smart grids. He serves or served on the Editorial Board of several
flagship journals of the IEEE. He was the recipient of the Prestigious Mina
Rees Dissertation Award from CUNY in 2002 for his research on wavelength
division multiplexing in optical networks.

https://www.researchgate.net/publication/354634201

	Introduction
	Background and Literature Review
	Ransomware Classification
	Malware Classification
	Overall Comparison to Our Approach

	Methodology
	Data Collection and Preprocessing
	Dynamic Analysis
	Inferring Evasion API Calls
	Feature Extraction
	Classification Models
	Model Evaluation and Comparison
	Limitations

	Experimental Results
	Feature Selection via Evasive APIs
	Frequency and Occurrence-Based Experiments
	Bernoulli Naive Bayes (BNB)
	K-Nearest Neighbors (KNN)
	Random Forest (RF)

	Sequence-Based Experiment
	Artificial Neural Network (ANN)
	Long-Short Term Memory (LSTM)
	Bidirectional Long-Short Term Memory (Bi-LSTM)

	Evaluation and Comparison

	Discussion
	Conclusion
	Biographies
	Ricardo Ayala
	Sadegh Torabi
	Khaled Sarieddine
	Elias Bou-Harb
	Nizar Bouguila
	Chadi Assi

