
Dynamic Router’s Buffer Sizing using Passive

Measurements and P4 Programmable Switches

Elie Kfoury∗, Jorge Crichigno∗, Elias Bou-Harb† and Gautam Srivastava‡
∗Integrated Information Technology, University of South Carolina, Columbia, U.S.A

†The Cyber Center For Security and Analytics, University of Texas at San Antonio, San Antonio, U.S.A
‡Department of Mathematics and Computer Science, Brandon University, Canada

Email: ekfoury@email.sc.edu, jcrichigno@cec.sc.edu, elias.bouharb@utsa.edu, srivastavag@brandonu.ca

Abstract—The router’s buffer size imposes significant impli-
cations on the performance of the network. Network operators
nowadays configure the router’s buffer size manually and stat-
ically. They typically configure large buffers that fill up and
never go empty, increasing the Round-trip Time (RTT) of packets
significantly, and decreasing the application performance. Few
works in the literature dynamically adjust the buffer size, but are
implemented only in simulators, and therefore cannot be tested
and deployed in production networks with real traffic.

Previous work suggested setting the buffer size to the
Bandwidth-delay Product (BDP) divided by the square root of
the number of long flows. Such formula is adequate when the
RTT and the number of long flows are known in advance. This
paper proposes a system that leverages programmable switches
as passive instruments to measure the RTT and count the number
of flows traversing a legacy router. Based on the measurements,
the programmable switch dynamically adjusts the buffer size
of the legacy router in order to mitigate the unnecessary large
queuing delays. Results show that when the buffer is adjusted
dynamically, the RTT, the loss rate, and the fairness among long
flows are enhanced. Additionally, the Flow Completion Time
(FCT) of short flows sharing the queue is greatly improved.
The system can be adopted in campus, enterprise, and service
provider networks, without the need to replace legacy routers.

Index Terms—Buffer size, packet switching, programmable
data planes, P4 language, congestion control, bandwidth-delay
product, passive measurement.

I. INTRODUCTION

Due to the bursty nature of Internet traffic, routers and

switches are designed to include packet buffers. A buffer

is essential to accommodate transient bursts and to absorb

traffic fluctuations. By buffering traffic, bursts are smoothed

and packet drop rates are significantly reduced [1].

The size of buffers imposes significant implications on

the performance of the network (e.g., [2–5]). Based on the

aforementioned observations and facts, one might think that

large buffers are generally favorable to improve the network

performance. This intuition is however incorrect; large buffers

incur unnecessary delay since incoming packets must wait in

the output buffer. The size of the buffer has to be appropriately

selected so that packets are not suffering from long delays,

This work was supported by the U.S. National Science Foundation,
Office of Advanced Cyberinfrastructure, Awards #1925484 and #2118311.
The authors recognize J. Gomez for his help with the network topology.

while transient bursts are absorbed and packet drops are

prevented. For a long time, the general rule-of-thumb was

to configure the buffer size equal to the C · RTT , where C

is the capacity of the port and RTT is the average round-

trip time (RTT) [6]. The quantity C · RTT is referred to as

the bandwidth-delay product (BDP) hereon. Appenzeller et al.

[7] then demonstrated that the buffer size can be reduced to

BDP/
√
N , where N is the number of long (persistent over

time) flows traversing the port.

The Internet is largely dominated by the Transmission

Control Protocol (TCP) as the transport protocol to establish

reliable end-to-end sessions. TCP has several variations of

Congestion Control Algorithms (CCA) that employ different

rate adaptation techniques. A class of CCA follows the Ad-

ditive Increase Multiplicative Decrease (AIMD) model where

TCP increases the congestion window by approximately one

maximum segment size (MSS) every RTT until a packet loss

event is detected. When packet loss is detected, the flow

decreases its congestion window by half, and the cycle is

repeated again. This class of CCA is referred to as loss-

based CCA, and CUBIC, which is the default algorithm

used in multiple Linux distributions and in recent versions

of Windows and MacOS, falls under this category [8]. While

the recommended buffer sizes apply particularly to loss-based

CCA, experiments in this paper show that CCAs from various

categories (e.g., delay-based, rate-based, etc.) still achieve the

the full link utilization when the buffer size is set to BDP/
√
N .

Network operators today configure the router’s buffer size

manually and statically. The buffer size is often configured to

large values, without considering the characteristics of flows

(e.g., RTT) and dynamic traffic patterns. Large values cause

the buffer to fill up and to never drain completely. Essentially,

ping measurements running on the Internet today produce

RTTs much larger than the propagation delay, suggesting that

the networks are using large buffers [5].

Setting the router’s buffer size to BDP/
√
N would require

determining the current average RTT and the number of flows,

N . This could be achieved by passively capturing traffic

crossing the router and forwarding it to a general-purpose

CPU. However, such devices cannot cope with high traffic

rates, especially in high-speed networks. Sampling techniques

(e.g., NetFlow [9]) cannot be applied either since they are

not accurate enough and often lose measuring information

(§III-B). Programmable switches have lately emerged as a

promising approach to customize data plane behavior [10].

Due to their high precision, low cost, and compute power,

recent work [11], [12] has investigated using these switches

as instruments to process traffic measurements at terabits per

second rates.

A. Contributions

This paper proposes a cost-efficient scheme that dynam-

ically modifies the router’s buffer size based on current

network conditions. The conditions are passively measured

by tapping on the router’s ports and forwarding the traffic to

a programmable switch. The programmable switch tracks the

number of long flows and computes their RTTs, which are

used to modify the router’s buffer to the newly determined

size. The contributions are:

• Devising a scheme that relies on passive measurements,

which can process traffic at terabits per second rates.

• Identifying long flows, tracking their counts, and mea-

suring their RTTs entirely in the data plane.

• Using network measurements to modify the buffer size

of the router on-the-fly, to improve performance.

• Reducing queuing delays and improving the fairness of

flows, regardless of the CCA.

• Improving the flow completion time of short flows shar-

ing the bottleneck link with long flows.

The rest of this paper is organized as follows. Section

II describes the related work. Section III describes the pro-

posed system. Section IV presents the experimental setup and

compares the performance of the proposed system against a

network where the buffer size is fixed. Section V concludes

the paper and describes future work.

II. RELATED WORK

A. Sizing router buffers

Static buffer tuning. Villamizar et al. [6] established the

initial rule-of-thumb, which states that the buffer size is equal

to the BDP. Appenzeller et al. [7] demonstrated that the buffer

size can be reduced to BDP/
√
N , which has been extensively

evaluated using static buffer sizes [4, 5, 13, 14]. Dhamdhere

et al. [15] considered packet loss rates in their formula, and

argued that to limit the maximum loss rate, the buffer should

be proportional to the number of long flows. Spang et al. [3]

reported on measurement of Netflix video traffic to understand

how the buffer size affects the quality of the videos. The au-

thors statically configured different buffer sizes and observed

that buffers that are too small and too large worsen quality.

Beheshti et al. [16] presented buffer sizing experiments at

Facebook. The authors manually modified buffer sizes and

noted that small buffers produce tolerable degradation in some

metrics (e.g., packet drop rates) and significant enhancements

in others (e.g., latency). No conclusive adequate buffer size is

provided.

Dynamic buffer tuning. The idea of dynamically modifying

the buffer started with Flow Proportional Queuing (FPQ)

[17] which adjusts the amount of buffering according to

the number of TCP flows. Further schemes [18–20] also

considered modifying the buffer size based on network traffic.

However, such schemes have a main limitation; they assume

that their methods will be implemented on contemporary

routers. Such process is length and costly and most likely,

router manufacturers will not modify their existing devices

[21]. In fact, such schemes and other Active Queue Manage-

ment (AQM) algorithms have been proposed more than ten

years ago, and are still not implemented on contemporary

routers in the market today, though the problem of buffer

sizing is still being thoroughly researched [5].

B. Measurements using programmable data planes

Ghasemi et al. [11] proposed Dapper, a system that uses

programmable switches to diagnose the cause of congestion.

Metrics estimated in Dapper include the Round-trip Time

(RTT), in-flight bytes, and loss rate. Chen et al. [22] proposed

a system that leverages programmable switches to passively

compute the RTT of TCP traffic. Kagami et al. [12] pro-

posed CAPEST, a method that collects timing information to

estimate the network capacity and the available bandwidth.

Kfoury et al. [23] proposed a P4-based method to automate

end-hosts’ TCP pacing.

III. PROPOSED SYSTEM

Fig. 1 illustrates an overview of the proposed system. The

scheme can be used in both access and core networks. The

steps to dynamically modify the router’s buffer size are: 1)

a copy of the traffic is forwarded to a programmable switch

by passively tapping on routers’ ports; 2) the programmable

switch identifies, tracks, and computes the RTT of long

flows. Afterwards, the computed statistics are pushed to the

control plane where the buffer size is calculated; and 3) the

programmable switch modifies the legacy router’s buffer size.

It is worth noting that programmable switches are signifi-

cantly cheaper than contemporary switching/routing devices.

This is because they are whiteboxes, and are equipped with

Fig. 1. High-level system overview. Step (1): a copy of the traffic is forwarded
by the TAP to the P4 switch. Step (2): the RTT of individual flows is computed
at the P4 switch’s data plane. Step (3): The P4 switch’s control plane modifies

the router’s buffer size according to the equation BDP/
√
N .

Fig. 2. RTT calculation in the data plane [22].

a small packet buffer. This makes the proposed system cost-

efficient, especially since a single programmable switch can

be used as a passive instrument for several routers.

A. Passive traffic collection

In Step (1), Fig. 1, a copy of the traffic is forwarded

to the switch. The network TAP is a hardware device that

operates at the physical layer and provides full visibility of

data streams. The TAP captures the exact traffic even when

the network is saturated. Computing the RTT (see §III-B)

requires associating packets’ acknowledgment numbers with

sequence numbers. Such process is only achievable by using

bidirectional TAPs. Note that a network TAP does not alter

timing information and packet orders, which may occur with

other schemes such as port mirroring operating at layer 2 and

layer 3 [24].

B. Metrics computation

The proposed system adopts the method presented in [22]

to calculate the RTT1of individual flows. The idea is to

relate the TCP sequence (SEQ) and acknowledgement (ACK)

numbers of incoming and outgoing packets. The RTT can

then be inferred by calculating the time difference between

the two packets. Consider Fig. 2. For each outgoing packet,

the flow identifier (FID) of the packet is computed by hashing

the 5-tuple (source/destination IP, source/destination port, and

protocol), and the expected ACK (eACK) is calculated by

adding the SEQ number to the length of the payload. The

timestamp of the current packet is stored in a table indexed

by the FID and the eACK. Upon receiving an incoming TCP

packet, the FID and the ACK number are used to fetch

the table for an existing record. If there is a match, the

timestamps are subtracted, and an RTT sample is produced. In

reality, devices might not acknowledge every packet (e.g, with

delayed ACK, a device might send a single ACK for multiple

packets). Since the memory on programmable switches is

limited (tens of megabytes), it is not possible to infinitely

store records. The solution is to use a timeout threshold that,

once exceeded, will force the eviction of the corresponding

record. The method further uses multi-stage hash due to the

constraints on accessing the data plane memory.

1The source code for measuring the RTT in Tofino is publicly available
at https://github.com/Princeton-Cabernet/p4-projects/tree/master/RTT-tofino

Algorithm 1: Long flows counting algorithm

input : Packet headers hdr; flow identifier FID; switch timestamp
Ststamp; flows timestamps tstamps, indexed by FID;
packet counts counts, indexed by FID; current flow count
C, time threshold T_THRESH, packet count threshold
C_THRESH

output: Updated long flow count

begin
prev tstamp ← tstamps[FID]
tstamps[FID] ← Ststamp

if tstamps[FID]− prev tstamp < T_THRESH then
if counts[FID] = C_THRESH then

C ← C + 1
else

counts[FID] ← counts[FID] + 1
else

counts[FID] ← 0
if hdr.tcp.flags = FIN then

if counts[FID] = C_THRESH then
C ← C − 1

C. Buffer size modification

Each individual RTT sample is pushed to the control plane

of the switch where a smoothed RTT (SRTT) is calculated.

The smoothed RTT is computed as follows:

SRTTi+1 = αSRTTi + (1− α)RTTi, (1)

where SRTTi+1 is the new smoothed average, α is the

smoothing factor (0 ≤ α ≤ 1), and RTTi is the RTT sample

retrieved from the data plane. The value of α = 0.875 is used

in this work.

The number of flows in the buffer size formula (BDP /
√
N)

is based on the count of long flows sharing the bottleneck

link. Short flows on the other hand are not considered since

they have very small effect on the buffer [7]. Consequently,

there is a need to differentiate between long flows and short

flows in order to determine N . Algorithm 1 outlines the steps

implemented in the proposed system to identify the long flows

in the data plane. The idea is to check whether the number of

packets from the same flow exceeds a predefined threshold

(C_THRESH) in a certain time window. Upon receiving a

packet, the previous timestamp of the flow to which the

Fig. 3. Topology used for the experiments.

packet belongs is fetched and the flow’s current timestamp is

updated. If the difference between the current and the previous

timestamps is below a predefined threshold (T_THRESH),

and if the packet count reaches C_THRESH, then the flow

is identified as a long flow. The counts are incremented if

packets are received within the time window; otherwise, they

are reset to zero. Finally, if the packet has the FIN TCP flag

present (flow is leaving) and if it was a long flow, the counter

C is decremented.

Since the SRTT and N are now identified, the buffer size

is set to BDP/
√
N , where BDP=C · SRTT . Note that the

capacity of the port C is known in advance and can be hard-

coded and configured by the operator.

SRTT can change over time, even when N remains the

same. For instance, a flow might use an alternative path

that has an average RTT significantly different from that

of the initial path. In such scenarios, the buffer size must

be recomputed and reconfigured on the legacy router. Since

SRTT is being computed continuously, the proposed system

computes the difference between the current SRTT and the

SRTT recorded when the buffer size was last modified.

If there is a significant difference between the two (i.e.,

|SRTT − R SRTT | > γ × R SRTT , where R SRTT

is the recorded SRTT , and γ is a configurable fraction of

R SRTT that triggers a buffer size recalculation), the buffer

size is recalculated.

IV. EXPERIMENTAL SETUP AND RESULTS

Fig. 3 shows the topology used to conduct the experiments.

The topology consists of 200 senders (h1, h2, ..., h200),

each opening a TCP connection to a corresponding receiver

(h201, h202, ..., h400). The hosts in the experiments are

network namespaces in Linux started through Mininet [25]

on a physical server. The emulation was carefully designed,

and sufficient resources were allocated (usage of CPUs was at

all times below prudent levels), avoiding misleading results.

The 200 senders are long flows running iPerf3 to conduct the

measurements. The senders are connected to an Open Virtual

Switch (OVS) (S1), which is bridged to the server’s (Server

1) network interface. The server’s interface is connected to

a Juniper router MX-204 (R1). The bandwidth of the link

connecting switch S1 and router R1 is 40Gbps, while the

bandwidth of the link connecting router R1 and router R2

is 1Gbps. Since the former bandwidth exceeds the latter,

the queue will buildup at router R1. The size of the TCP

send and receive buffers on the end-hosts was set to a

large value (200MB). For all the experiments, the assumed

default buffer size of the router is 200ms, which reflects

large buffers configured in production networks [5]. Edgecore

Wedge100BF-32X [26] is the programmable P4 switch used.

It is equipped with a programmable ASIC chip (Intel’s Tofino)

that operates at 3.2 Tbps.

Two scenarios are considered. The first scenario uses the

default buffer size on the router, without any dynamic modifi-

cation. We refer to this scenario as “wo/ buffer modification”.

The second scenario uses the programmable P4 switch to

measure and modify the buffer size of the router. We refer

to this scenario as “w/ buffer modification”.

A. Test 1: Multiple long flows, CCAs, and propagation delays

This experiment evaluates the average Jain’s fairness index

(F), the average link utilization (ρ), and the average RTT

(RTT) of various number of long flows (N) belonging

to the same CCA, considering various propagation delays

(RTTprop). Moreover, the experiment includes results for

overlapped flows belonging to different CCAs.

The results of this test are depicted in Fig. 4. The first row

shows ρ; the second row shows F ; and the third row shows

RTT . Each row is further divided into three sub-rows that

represent the configured RTTprop (20ms, 50ms, and 100ms).

The columns represent N for each CCA. The last column in

each scenario refers to the total number of overlapped flows

belonging to different CCAs (Nmixed). The distribution of

those flows is extracted from [27] which characterized the

CCAs deployed in the wild for the Alexa Top 20,000 websites.

BBR is excluded from the mixed case due to the effect it has

on the performance of other CCAs, regardless of the buffer

size.

As expected, without buffer modification, ρ was 100%
regardless of the experiment settings. This is because the

Fig. 4. Average link utilization (ρ), average fairness index (F), and average RTT (RTT) with various number long flows belonging to different CCAs, and
considering various propagation delays (RTTprop). The results for both scenarios (wo/ buffer modification and w/ buffer modification) are demonstrated.

Fig. 5. CDF of RTT of short flows. (a) w/out buffer modification. (b) w/
buffer modification. The shaded area demonstrates the CDF of the minimum
RTT and the maximum RTT of each connection.

buffer is significantly large (200ms). With buffer modification,

ρ was also ≈ 100% in all settings. This is interesting as the

buffer is significantly smaller than the default setting, and yet,

ρ is ≈ 100%, even with non loss-based CCA. Recall that the

BDP/
√
N was originally designed based on the dynamics of

loss-based CCA. However, it can be seen that this formula also

works well with more recent CCAs (e.g., BBR). Note that this

experiment was also executed for smaller N , and the results

are consistent with the reported ones. The proposed system

also provides a major improvement in F when compared to

the results of a fixed large buffer. Such improvements are valid

regardless of N , or the CCA to which the N flows belong.

Finally, perhaps the most clear improvement is in RTT .

With the exception of TCP Vegas and BBR, all other CCAs

have RTT ≈ 250ms, regardless of the current RTTprop. TCP

Vegas and BBR also suffer from an increased RTT when

RTTprop is large (100ms). With buffer modification, RTT is

only slightly larger than RTTprop. This means that minimal

queueing delay is contributing to RTT . This improvement

is valid regardless of N , or the CCA to which the N flows

belong.

B. Test 2: Performance of short flows sharing the bottleneck

with long flows

This experiment evaluates RTT and the Flow Completion

Time (FCT) of short flows when sharing the bottleneck link

with long flows, in both scenarios. FCT is defined as the

amount of time that elapses from when the first packet is sent

until the last packet reaches the destination. In this test, 1000

short flows are arriving according to a Poisson process, and

the flow size distribution resembles a web search workload.

The flow sizes ranged from 10KB to 1MB. In addition to

the short flows, there are 200 competing long flows with

RTTprop =50ms.

Fig. 5 shows the Cumulative Distribution Functions (CDFs)

of the minimum RTT, maximum RTT, and RTT , for both

scenarios. Without buffer modification (Fig. 5 (a)), RTT

of all CCAs is significantly high. BBRv2 has the lowest

RTT among the CCAs, and the results are aligned with [8].

Nevertheless, approximately 50% of the flows have an RTT

Fig. 6. CDF of the average FCT of short flows. (a) w/out buffer modification.
(b) w/ buffer modification.

> 100ms. On the other hand, when the buffer is modified

(Fig. 5 (b)), the RTT of all flows is < 10ms, indicating a

significant improvement for all CCAs.

Fig. 6 shows the CDF of the FCTs of short flows in both

scenarios. There is an improvement when the buffer size is

automatically adjusted. For example, when the buffer is not

modified, most flows had FCTs between 1 and 3 seconds. On

the other hand, when the buffer is modified, 90% of the flows

had FCTs smaller than ≈ 0.5 seconds.

C. Test 3: Long flows with different emulated propagation

delays

This experiment evaluates the link utilization, RTT, and

packet loss rate of long flows in both scenarios. The experi-

ment consists of 100 long flows, divided into four groups of

each 25 flows each. Each group starts three minutes after the

other. The propagation delays of the flows are as follows:

group1, 20ms; group2, 50ms; group3, 30ms; and group4,

100ms. The CCA used in this test is CUBIC.

Fig. 7(a) shows the results when the buffer size is not

modified. Each vertical gray stripe denotes a new joining

group of flows. The figure shows that the link was fully

utilized and there are some packet losses throughout the test

with high variations. The RTT of all flows is significantly

high, exceeding 200ms, irrespective of per-group RTTprop.

Fig. 7(b) shows the results when the buffer is modified. The

improvements here can be specifically seen in the RTT of each

group of flows which approximates the propagation delay.

Note the sudden increase in packet loss when new flows join.

This is happening because the buffer size is being adjusted

while the buffer is already holding packets. Moreover, since

the buffer is already small, the burstiness of the joining flows

is not absorbed, causing packets to be dropped. Note however

the steadiness in the packet loss variations. While the scheme

(as expected) slightly increases the losses compared to deep

buffers, their effects can be tolerated, especially with the

significant improvements in RTT.

V. CONCLUSION AND FUTURE WORK

This paper presented a scheme that uses passive measure-

ments collected by programmable P4 switches to determine

Fig. 7. Link utilization (ρ), packet loss, and RTT, considering various RTTprop. The reported RTT is computed for each RTTprop group. N̂ is the current
number of joining flows. The CCA used in this experiment is CUBIC. (a) w/out buffer modification. (b) w/ buffer modification.

the RTT and the number of flows crossing a legacy router.

These variables are used to modify the buffer size of the router

based on the well-known formula (BDP/
√
N). Experiments

conducted on real hardware demonstrate the improvements in

the RTT, packet loss rate, fairness, and FCT of flows over

a network where the buffer size is statically configured. The

formula BDP/
√
N was criticized for inducing large packet

losses in some scenarios. For future work, the authors plan

to measure the packet loss rate among other metrics, and use

them in the buffer size selection algorithm. Furthermore, the

authors plan to test the scheme on a production network with

traffic that includes a variety of CCAs, non-TCP streams, and

media traffic.

REFERENCES

[1] G. Huston, “Sizing the buffer, APNIC,” [Online], Available:
https://blog.apnic.net/2019/12/12/sizing-the-buffer/.

[2] N. Beheshti, P. Lapukhov, and Y. Ganjali, “Buffer sizing experiments
at Facebook,” in Proceedings of the 2019 Workshop on Buffer Sizing,
December, 2019.

[3] B. Spang, B. Walsh, T.-Y. Huang, T. Rusnock, J. Lawrence, and
N. McKeown, “Buffer sizing and video QoE measurements at Netflix,”
in Proceedings of the 2019 Workshop on Buffer Sizing, Palo Alto, CA,
USA, December, 2019.

[4] N. Beheshti, Y. Ganjali, M. Ghobadi, N. McKeown, and G. Salmon,
“Experimental study of router buffer sizing,” in Proceedings of the 8th

ACM SIGCOMM conference on Internet measurement, Vouliagmeni,
Greece, October, 2008.

[5] N. McKeown, G. Appenzeller, and I. Keslassy, “Sizing router buffers
(redux),” ACM SIGCOMM Computer Communication Review, vol. 49,
no. 5, pp. 69–74, 2019.

[6] C. Villamizar and C. Song, “High performance TCP in ANSNET,” ACM

SIGCOMM Computer Communication Review, vol. 24, no. 5, 1994.
[7] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”

ACM SIGCOMM Computer Communication Review, vol. 34, no. 4,
August, 2004.

[8] E. F. Kfoury, J. Gomez, J. Crichigno, and E. Bou-Harb, “An emulation-
based evaluation of TCP BBRv2 alpha for wired broadband,” Computer

Communications, vol. 161, pp. 212–224, 2020.
[9] B. Claise, G. Sadasivan, V. Valluri, and M. Djernaes, “RFC 3954: Cisco

systems netflow services export version 9,” October, 2004.
[10] E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “An exhaustive survey

on P4 programmable data plane switches: taxonomy, applications,
challenges, and future trends,” IEEE Access, 2021.

[11] M. Ghasemi, T. Benson, and J. Rexford, “Dapper: data plane perfor-
mance diagnosis of TCP,” in Proceedings of the Symposium on SDN

Research, April, 2017.
[12] N. Kagami, R. da Costa, and L. Gaspary, “Capest: Offloading network

capacity and available bandwidth estimation to programmable data

planes,” IEEE Transactions on Network and Service Management,
vol. 17, no. 1, March, 2020.

[13] A. Dhamdhere and C. Dovrolis, “Open issues in router buffer sizing,”
ACM SIGCOMM Computer Communication Review, vol. 36, no. 1,
January, 2006.

[14] Y. Ganjali and N. McKeown, “Update on buffer sizing in internet
routers,” ACM SIGCOMM Computer Communication Review, vol. 36,
no. 5, October, 2006.

[15] A. Dhamdhere, H. Jiang, and C. Dovrolis, “Buffer sizing for congested
Internet links,” in Proceedings IEEE 24th Annual Joint Conference of

the IEEE Computer and Communications Societies., vol. 2. IEEE,
2005, pp. 1072–1083.

[16] N. Beheshti, O. Baldonado, and P. Lapukhov, “Buffer sizing experiments
at Facebook,” in 2019 Workshop on Buffer Sizing, 2019.

[17] R. Morris, “Scalable TCP congestion control,” in Proceedings IEEE IN-

FOCOM 2000. Conference on Computer Communications. Nineteenth

Annual Joint Conference of the IEEE Computer and Communications

Societies (Cat. No. 00CH37064), vol. 3. IEEE, 2000, pp. 1176–1183.
[18] C. M. Kellett, R. N. Shorten, and D. J. Leith, “Sizing Internet router

buffers, active queue management, and the Lur’e problem,” in Proceed-

ings of the 45th IEEE Conference on Decision and Control. IEEE,
2006, pp. 650–654.

[19] Y. Zhang and D. Loguinov, “ABS: adaptive buffer sizing for hetero-
geneous networks,” in 2008 16th Interntional Workshop on Quality of

Service. IEEE, 2008, pp. 90–99.
[20] J. Lee, T. Tan, D. Kakadia, E. M. D. Reyes, and M. G. Lam, “Dynamic

setting of optimal buffer sizes in IP networks,” US Patent 8,223,641,
July, 2012.

[21] X. Chen, S. L. Feibish, Y. Koral, J. Rexford, O. Rottenstreich, S. A.
Monetti, and T.-Y. Wang, “Fine-grained queue measurement in the
data plane,” in Proceedings of the 15th International Conference on

Emerging Networking Experiments And Technologies, 2019, pp. 15–29.
[22] X. Chen, H. Kim, J. M. Aman, W. Chang, M. Lee, and J. Rexford,

“Measuring TCP round-trip time in the data plane,” in Proceedings of

the Workshop on Secure Programmable Network Infrastructure, August,
2020.

[23] E. F. Kfoury, J. Crichigno, E. Bou-Harb, D. Khoury, and G. Srivastava,
“Enabling TCP pacing using programmable data plane switches,” in
2019 42nd International Conference on Telecommunications and Signal

Processing (TSP). IEEE, 2019, pp. 273–277.
[24] J. Zhang and A. Moore, “Traffic trace artifacts due to monitoring via port

mirroring,” in 2007 Workshop on End-to-End Monitoring Techniques

and Services, Munich, Germany, May, 2007.
[25] R. De Oliveira, C. Schweitzer, A. Shinoda, and R. Prete, “Using

mininet for emulation and prototyping software-defined networks,”
2014 IEEE Colombian Conference on Communications and Computing

(COLCOM), Bogota, Colombia, June, 2014.
[26] “Wedge 100BF-32X, 100GbE data center switch, Barefoot Networks,

an Intel® company,” [Online], Available: https://tinyurl.com/sy2jkqe.
[27] A. Mishra, X. Sun, A. Jain, S. Pande, R. Joshi, and B. Leong, “The

great Internet TCP congestion control census,” Proceedings of the ACM

on Measurement and Analysis of Computing Systems, 2019.

View publication statsView publication stats

https://www.researchgate.net/publication/354322393

