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Abstract—The router’s buffer size imposes significant impli-
cations on the performance of the network. Network operators
nowadays configure the router’s buffer size manually and stat-
ically. They typically configure large buffers that fill up and
never go empty, increasing the Round-trip Time (RTT) of packets
significantly, and decreasing the application performance. Few
works in the literature dynamically adjust the buffer size, but are
implemented only in simulators, and therefore cannot be tested
and deployed in production networks with real traffic.

Previous work suggested setting the buffer size to the
Bandwidth-delay Product (BDP) divided by the square root of
the number of long flows. Such formula is adequate when the
RTT and the number of long flows are known in advance. This
paper proposes a system that leverages programmable switches
as passive instruments to measure the RTT and count the number
of flows traversing a legacy router. Based on the measurements,
the programmable switch dynamically adjusts the buffer size
of the legacy router in order to mitigate the unnecessary large
queuing delays. Results show that when the buffer is adjusted
dynamically, the RTT, the loss rate, and the fairness among long
flows are enhanced. Additionally, the Flow Completion Time
(FCT) of short flows sharing the queue is greatly improved.
The system can be adopted in campus, enterprise, and service
provider networks, without the need to replace legacy routers.

Index Terms—Buffer size, packet switching, programmable
data planes, P4 language, congestion control, bandwidth-delay
product, passive measurement.

I. INTRODUCTION

Due to the bursty nature of Internet traffic, routers and
switches are designed to include packet buffers. A buffer
is essential to accommodate transient bursts and to absorb
traffic fluctuations. By buffering traffic, bursts are smoothed
and packet drop rates are significantly reduced [1].

The size of buffers imposes significant implications on
the performance of the network (e.g., [2-5]). Based on the
aforementioned observations and facts, one might think that
large buffers are generally favorable to improve the network
performance. This intuition is however incorrect; large buffers
incur unnecessary delay since incoming packets must wait in
the output buffer. The size of the buffer has to be appropriately
selected so that packets are not suffering from long delays,
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while transient bursts are absorbed and packet drops are
prevented. For a long time, the general rule-of-thumb was
to configure the buffer size equal to the C' - RTT, where C'
is the capacity of the port and RTT is the average round-
trip time (RTT) [6]. The quantity C' - RT'T is referred to as
the bandwidth-delay product (BDP) hereon. Appenzeller et al.
[7] then demonstrated that the buffer size can be reduced to
BDP/v/N, where N is the number of long (persistent over
time) flows traversing the port.

The Internet is largely dominated by the Transmission
Control Protocol (TCP) as the transport protocol to establish
reliable end-to-end sessions. TCP has several variations of
Congestion Control Algorithms (CCA) that employ different
rate adaptation techniques. A class of CCA follows the Ad-
ditive Increase Multiplicative Decrease (AIMD) model where
TCP increases the congestion window by approximately one
maximum segment size (MSS) every RTT until a packet loss
event is detected. When packet loss is detected, the flow
decreases its congestion window by half, and the cycle is
repeated again. This class of CCA is referred to as loss-
based CCA, and CUBIC, which is the default algorithm
used in multiple Linux distributions and in recent versions
of Windows and MacOS, falls under this category [8]. While
the recommended buffer sizes apply particularly to loss-based
CCA, experiments in this paper show that CCAs from various
categories (e.g., delay-based, rate-based, etc.) still achieve the
the full link utilization when the buffer size is set to BDP/v/N.

Network operators today configure the router’s buffer size
manually and statically. The buffer size is often configured to
large values, without considering the characteristics of flows
(e.g., RTT) and dynamic traffic patterns. Large values cause
the buffer to fill up and to never drain completely. Essentially,
ping measurements running on the Internet today produce
RTTs much larger than the propagation delay, suggesting that
the networks are using large buffers [5].

Setting the router’s buffer size to BDP/v/N would require
determining the current average RTT and the number of flows,
N. This could be achieved by passively capturing traffic
crossing the router and forwarding it to a general-purpose
CPU. However, such devices cannot cope with high traffic
rates, especially in high-speed networks. Sampling techniques
(e.g., NetFlow [9]) cannot be applied either since they are



not accurate enough and often lose measuring information
(§HI-B). Programmable switches have lately emerged as a
promising approach to customize data plane behavior [10].
Due to their high precision, low cost, and compute power,
recent work [11], [12] has investigated using these switches
as instruments to process traffic measurements at terabits per
second rates.

A. Contributions

This paper proposes a cost-efficient scheme that dynam-
ically modifies the router’s buffer size based on current
network conditions. The conditions are passively measured
by tapping on the router’s ports and forwarding the traffic to
a programmable switch. The programmable switch tracks the
number of long flows and computes their RTTs, which are
used to modify the router’s buffer to the newly determined
size. The contributions are:

o Devising a scheme that relies on passive measurements,
which can process traffic at terabits per second rates.

o Identifying long flows, tracking their counts, and mea-
suring their RTTs entirely in the data plane.

o Using network measurements to modify the buffer size
of the router on-the-fly, to improve performance.

« Reducing queuing delays and improving the fairness of
flows, regardless of the CCA.

o Improving the flow completion time of short flows shar-
ing the bottleneck link with long flows.

The rest of this paper is organized as follows. Section
IT describes the related work. Section III describes the pro-
posed system. Section IV presents the experimental setup and
compares the performance of the proposed system against a
network where the buffer size is fixed. Section V concludes
the paper and describes future work.

II. RELATED WORK

A. Sizing router buffers

Static buffer tuning. Villamizar et al. [6] established the
initial rule-of-thumb, which states that the buffer size is equal
to the BDP. Appenzeller et al. [7] demonstrated that the buffer
size can be reduced to BDP/v/N. , which has been extensively
evaluated using static buffer sizes [4, 5, 13, 14]. Dhamdhere
et al. [15] considered packet loss rates in their formula, and
argued that to limit the maximum loss rate, the buffer should
be proportional to the number of long flows. Spang et al. [3]
reported on measurement of Netflix video traffic to understand
how the buffer size affects the quality of the videos. The au-
thors statically configured different buffer sizes and observed
that buffers that are too small and too large worsen quality.
Beheshti et al. [16] presented buffer sizing experiments at
Facebook. The authors manually modified buffer sizes and
noted that small buffers produce tolerable degradation in some
metrics (e.g., packet drop rates) and significant enhancements
in others (e.g., latency). No conclusive adequate buffer size is
provided.

Dynamic buffer tuning. The idea of dynamically modifying
the buffer started with Flow Proportional Queuing (FPQ)
[17] which adjusts the amount of buffering according to
the number of TCP flows. Further schemes [18-20] also
considered modifying the buffer size based on network traffic.
However, such schemes have a main limitation; they assume
that their methods will be implemented on contemporary
routers. Such process is length and costly and most likely,
router manufacturers will not modify their existing devices
[21]. In fact, such schemes and other Active Queue Manage-
ment (AQM) algorithms have been proposed more than ten
years ago, and are still not implemented on contemporary
routers in the market today, though the problem of buffer
sizing is still being thoroughly researched [5].

B. Measurements using programmable data planes

Ghasemi et al. [11] proposed Dapper, a system that uses
programmable switches to diagnose the cause of congestion.
Metrics estimated in Dapper include the Round-trip Time
(RTT), in-flight bytes, and loss rate. Chen et al. [22] proposed
a system that leverages programmable switches to passively
compute the RTT of TCP traffic. Kagami et al. [12] pro-
posed CAPEST, a method that collects timing information to
estimate the network capacity and the available bandwidth.
Kfoury et al. [23] proposed a P4-based method to automate
end-hosts’ TCP pacing.

III. PROPOSED SYSTEM

Fig. 1 illustrates an overview of the proposed system. The
scheme can be used in both access and core networks. The
steps to dynamically modify the router’s buffer size are: 1)
a copy of the traffic is forwarded to a programmable switch
by passively tapping on routers’ ports; 2) the programmable
switch identifies, tracks, and computes the RTT of long
flows. Afterwards, the computed statistics are pushed to the
control plane where the buffer size is calculated; and 3) the
programmable switch modifies the legacy router’s buffer size.

It is worth noting that programmable switches are signifi-
cantly cheaper than contemporary switching/routing devices.
This is because they are whiteboxes, and are equipped with
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Fig. 1. High-level system overview. Step (1): a copy of the traffic is forwarded
by the TAP to the P4 switch. Step (2): the RTT of individual flows is computed
at the P4 switch’s data plane. Step (3): The P4 switch’s control plane modifies
the router’s buffer size according to the equation BDP/+/N.
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Fig. 2. RTT calculation in the data plane [22].

a small packet buffer. This makes the proposed system cost-
efficient, especially since a single programmable switch can
be used as a passive instrument for several routers.

A. Passive traffic collection

In Step (1), Fig. 1, a copy of the traffic is forwarded
to the switch. The network TAP is a hardware device that
operates at the physical layer and provides full visibility of
data streams. The TAP captures the exact traffic even when
the network is saturated. Computing the RTT (see §III-B)
requires associating packets’ acknowledgment numbers with
sequence numbers. Such process is only achievable by using
bidirectional TAPs. Note that a network TAP does not alter
timing information and packet orders, which may occur with
other schemes such as port mirroring operating at layer 2 and
layer 3 [24].

B. Metrics computation

The proposed system adopts the method presented in [22]
to calculate the RTT'of individual flows. The idea is to
relate the TCP sequence (SEQ) and acknowledgement (ACK)
numbers of incoming and outgoing packets. The RTT can
then be inferred by calculating the time difference between
the two packets. Consider Fig. 2. For each outgoing packet,
the flow identifier (FID) of the packet is computed by hashing
the 5-tuple (source/destination IP, source/destination port, and
protocol), and the expected ACK (eACK) is calculated by
adding the SEQ number to the length of the payload. The
timestamp of the current packet is stored in a table indexed
by the FID and the eACK. Upon receiving an incoming TCP
packet, the FID and the ACK number are used to fetch
the table for an existing record. If there is a match, the
timestamps are subtracted, and an RTT sample is produced. In
reality, devices might not acknowledge every packet (e.g, with
delayed ACK, a device might send a single ACK for multiple
packets). Since the memory on programmable switches is
limited (tens of megabytes), it is not possible to infinitely
store records. The solution is to use a timeout threshold that,
once exceeded, will force the eviction of the corresponding
record. The method further uses multi-stage hash due to the
constraints on accessing the data plane memory.

I'The source code for measuring the RTT in Tofino is publicly available
at https://github.com/Princeton-Cabernet/p4-projects/tree/master/RTT-tofino

Algorithm 1: Long flows counting algorithm

input : Packet headers hdr; flow identifier F'ID; switch timestamp
Ststamp; flows timestamps tstamps, indexed by F'ID;
packet counts counts, indexed by F'ID; current flow count
C, time threshold T_THRESH, packet count threshold
C_THRESH

output: Updated long flow count

begin
prev_tstamp +— tstamps|FID]
tstamps[FID] < Ststamp
if tstamps[FID] — prev_tstamp < T_THRESH then
if counts[FID] = C_THRESH then
| C+C+1
else
| counts[FID] + counts[FID] + 1
else
| counts[FID] «+ 0
if hdr.tcp.flags = FIN then
if counts[FID] = C_THRESH then
| C+C-1

C. Buffer size modification

Each individual RTT sample is pushed to the control plane
of the switch where a smoothed RTT (SRTT) is calculated.
The smoothed RTT is computed as follows:

SRTTiJrl = OéSRTTl + (]. - OL)RTTZ', (1)

where SRTT;.; is the new smoothed average, a is the
smoothing factor (0 < a < 1), and RTT; is the RTT sample
retrieved from the data plane. The value of o = 0.875 is used
in this work.

The number of flows in the buffer size formula (BDP / VN )
is based on the count of long flows sharing the bottleneck
link. Short flows on the other hand are not considered since
they have very small effect on the buffer [7]. Consequently,
there is a need to differentiate between long flows and short
flows in order to determine N. Algorithm 1 outlines the steps
implemented in the proposed system to identify the long flows
in the data plane. The idea is to check whether the number of
packets from the same flow exceeds a predefined threshold
(C_THRESH) in a certain time window. Upon receiving a
packet, the previous timestamp of the flow to which the
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Fig. 3. Topology used for the experiments.



packet belongs is fetched and the flow’s current timestamp is
updated. If the difference between the current and the previous
timestamps is below a predefined threshold (T_THRESH),
and if the packet count reaches C_THRESH, then the flow
is identified as a long flow. The counts are incremented if
packets are received within the time window; otherwise, they
are reset to zero. Finally, if the packet has the FIN TCP flag
present (flow is leaving) and if it was a long flow, the counter
C is decremented.

Since the SRTT and N are now identified, the buffer size
is set to BDP/VN , where BDP=C - SRTT. Note that the
capacity of the port C' is known in advance and can be hard-
coded and configured by the operator.

SRTT can change over time, even when N remains the
same. For instance, a flow might use an alternative path
that has an average RTT significantly different from that
of the initial path. In such scenarios, the buffer size must
be recomputed and reconfigured on the legacy router. Since
SRTT is being computed continuously, the proposed system
computes the difference between the current SRTT and the
SRTT recorded when the buffer size was last modified.
If there is a significant difference between the two (i.e.,
|SRTT — R_SRTT| > v x R_SRTT, where R_SRTT
is the recorded SRTT, and + is a configurable fraction of
R_SRTT that triggers a buffer size recalculation), the buffer
size is recalculated.

IV. EXPERIMENTAL SETUP AND RESULTS

Fig. 3 shows the topology used to conduct the experiments.
The topology consists of 200 senders (hl, h2, ..., h200),
each opening a TCP connection to a corresponding receiver
(h201, h202, ..., h400). The hosts in the experiments are
network namespaces in Linux started through Mininet [25]
on a physical server. The emulation was carefully designed,
and sufficient resources were allocated (usage of CPUs was at
all times below prudent levels), avoiding misleading results.
The 200 senders are long flows running iPerf3 to conduct the
measurements. The senders are connected to an Open Virtual
Switch (OVS) (S1), which is bridged to the server’s (Server
1) network interface. The server’s interface is connected to

a Juniper router MX-204 (R1). The bandwidth of the link
connecting switch S1 and router R1 is 40Gbps, while the
bandwidth of the link connecting router R1 and router R2
is 1Gbps. Since the former bandwidth exceeds the latter,
the queue will buildup at router R1. The size of the TCP
send and receive buffers on the end-hosts was set to a
large value (200MB). For all the experiments, the assumed
default buffer size of the router is 200ms, which reflects
large buffers configured in production networks [5]. Edgecore
Wedge00BF-32X [26] is the programmable P4 switch used.
It is equipped with a programmable ASIC chip (Intel’s Tofino)
that operates at 3.2 Tbps.

Two scenarios are considered. The first scenario uses the
default buffer size on the router, without any dynamic modifi-
cation. We refer to this scenario as “wo/ buffer modification”.
The second scenario uses the programmable P4 switch to
measure and modify the buffer size of the router. We refer
to this scenario as “w/ buffer modification”.

A. Test 1: Multiple long flows, CCAs, and propagation delays

This experiment evaluates the average Jain’s fairness index
(F), the average link utilization (p), and the average RTT
(RTT) of various number of long flows (IN) belonging
to the same CCA, considering various propagation delays
(RTTprop). Moreover, the experiment includes results for
overlapped flows belonging to different CCAs.

The results of this test are depicted in Fig. 4. The first row
shows p; the second row shows F; and the third row shows
RTT. Each row is further divided into three sub-rows that
represent the configured RT"T},;.., (20ms, 50ms, and 100ms).
The columns represent N for each CCA. The last column in
each scenario refers to the total number of overlapped flows
belonging to different CCAs (N izeq). The distribution of
those flows is extracted from [27] which characterized the
CCAs deployed in the wild for the Alexa Top 20,000 websites.
BBR is excluded from the mixed case due to the effect it has
on the performance of other CCAs, regardless of the buffer
size.

As expected, without buffer modification, 7 was 100%
regardless of the experiment settings. This is because the
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Fig. 4. Average link utilization (p), average fairness index (F), and average RTT (RTT) with various number long flows belonging to different CCAs, and
considering various propagation delays (RTTprop). The results for both scenarios (wo/ buffer modification and w/ buffer modification) are demonstrated.
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Fig. 5. CDF of RT'T of short flows. (a) w/out buffer modification. (b) w/
buffer modification. The shaded area demonstrates the CDF of the minimum
RTT and the maximum RTT of each connection.

buffer is significantly large (200ms). With buffer modification,
p was also =~ 100% in all settings. This is interesting as the
buffer is significantly smaller than the default setting, and yet,
p is &~ 100%, even with non loss-based CCA. Recall that the
BDP/\/N was originally designed based on the dynamics of
loss-based CCA. However, it can be seen that this formula also
works well with more recent CCAs (e.g., BBR). Note that this
experiment was also executed for smaller NV, and the results
are consistent with the reported ones. The proposed system
also provides a major improvement in 7 when compared to
the results of a fixed large buffer. Such improvements are valid
regardless of N, or the CCA to which the NV flows belong.

Finally, perhaps the most clear improvement is in RTT.
With the exception of TCP Vegas and BBR, all other CCAs
have RTT =~ 250ms, regardless of the current RTT),.,. TCP
Vegas and BBR also suffer from an increased R7TT" when
RTT,,p is large (100ms). With buffer modification, RTT is
only slightly larger than RT"T},,,,. This means that minimal
queueing delay is contributing to RTT. This improvement
is valid regardless of N, or the CCA to which the N flows
belong.

B. Test 2: Performance of short flows sharing the bottleneck
with long flows

This experiment evaluates RT'T and the Flow Completion
Time (FCT) of short flows when sharing the bottleneck link
with long flows, in both scenarios. FCT is defined as the
amount of time that elapses from when the first packet is sent
until the last packet reaches the destination. In this test, 1000
short flows are arriving according to a Poisson process, and
the flow size distribution resembles a web search workload.
The flow sizes ranged from 10KB to 1MB. In addition to
the short flows, there are 200 competing long flows with
RTT)yr0p =50ms.

Fig. 5 shows the Cumulative Distribution Functions (CDFs)
of the minimum RTT, maximum RTT, and RT'T, for both
scenarios. Without buffer modification (Fig. 5 (a)), RTT
of all CCAs is significantly high. BBRv2 has the lowest
RTT among the CCAs, and the results are aligned with [8].
Nevertheless, approximately 50% of the flows have an RTT
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Fig. 6. CDF of the average FCT of short flows. (a) w/out buffer modification.
(b) w/ buffer modification.

> 100ms. On the other hand, when the buffer is modified
(Fig. 5 (b)), the RTT of all flows is < 10ms, indicating a
significant improvement for all CCAs.

Fig. 6 shows the CDF of the FCTs of short flows in both
scenarios. There is an improvement when the buffer size is
automatically adjusted. For example, when the buffer is not
modified, most flows had FCTs between 1 and 3 seconds. On
the other hand, when the buffer is modified, 90% of the flows
had FCTs smaller than = 0.5 seconds.

C. Test 3: Long flows with different emulated propagation
delays

This experiment evaluates the link utilization, RTT, and
packet loss rate of long flows in both scenarios. The experi-
ment consists of 100 long flows, divided into four groups of
each 25 flows each. Each group starts three minutes after the
other. The propagation delays of the flows are as follows:
groupl, 20ms; group2, 50ms; group3, 30ms; and group4,
100ms. The CCA used in this test is CUBIC.

Fig. 7(a) shows the results when the buffer size is not
modified. Each vertical gray stripe denotes a new joining
group of flows. The figure shows that the link was fully
utilized and there are some packet losses throughout the test
with high variations. The RTT of all flows is significantly
high, exceeding 200ms, irrespective of per-group RT7T}qp.
Fig. 7(b) shows the results when the buffer is modified. The
improvements here can be specifically seen in the RTT of each
group of flows which approximates the propagation delay.
Note the sudden increase in packet loss when new flows join.
This is happening because the buffer size is being adjusted
while the buffer is already holding packets. Moreover, since
the buffer is already small, the burstiness of the joining flows
is not absorbed, causing packets to be dropped. Note however
the steadiness in the packet loss variations. While the scheme
(as expected) slightly increases the losses compared to deep
buffers, their effects can be tolerated, especially with the
significant improvements in RTT.

V. CONCLUSION AND FUTURE WORK

This paper presented a scheme that uses passive measure-
ments collected by programmable P4 switches to determine
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Fig. 7. Link utilization (p), packet loss, and RTT, considering various RT T op. The reported RTT is computed for each RTT)0p group. N is the current
number of joining flows. The CCA used in this experiment is CUBIC. (a) w/out buffer modification. (b) w/ buffer modification.

the RTT and the number of flows crossing a legacy router.
These variables are used to modify the buffer size of the router
based on the well-known formula (BDP/v/N). Experiments
conducted on real hardware demonstrate the improvements in
the RTT, packet loss rate, fairness, and FCT of flows over
a network where the buffer size is statically configured. The
formula BDP/y/N was criticized for inducing large packet
losses in some scenarios. For future work, the authors plan
to measure the packet loss rate among other metrics, and use
them in the buffer size selection algorithm. Furthermore, the
authors plan to test the scheme on a production network with
traffic that includes a variety of CCAs, non-TCP streams, and
media traffic.
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