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Abstract: The numerical solution of relativistic hydrodynamics equations in conservative form
requires root-finding algorithms that invert the conservative-to-primitive variables map. These
algorithms employ the equation of state of the fluid and can be computationally demanding for
applications involving sophisticated microphysics models, such as those required to calculate accurate
gravitational wave signals in numerical relativity simulations of binary neutron stars. This work
explores the use of machine learning methods to speed up the recovery of primitives in relativistic
hydrodynamics. Artificial neural networks are trained to replace either the interpolations of a
tabulated equation of state or directly the conservative-to-primitive map. The application of these
neural networks to simple benchmark problems shows that both approaches improve over traditional
root finders with tabular equation-of-state and multi-dimensional interpolations. In particular, the
neural networks for the conservative-to-primitive map accelerate the variable recovery by more than
an order of magnitude over standard methods while maintaining accuracy. Neural networks are thus
an interesting option to improve the speed and robustness of relativistic hydrodynamics algorithms.

Keywords: relativistic hydrodynamics; machine learning; conservative-to-primitive

1. Introduction

Relativistic hydrodynamics is often written as a set of conservation laws (with source
terms)

∂u
∂t

+
∂Fi(u)

∂xi = s , (1)

where the state vector u = (D, Si, τ) is composed of the conserved variables: rest-mass
density, momentum density and the energy density relative to D, τ := E−D, all measured
in the laboratory frame [1] (i = 1, 2, 3) (we focus here on Cartesian coordinates and
special relativity, although the main results of the paper are directly applicable to arbitrary
coordinate system and general relativistic hydrodynamics). Conserved variables are related
to primitive variables, w =

(
ρ, vi, ε, p

)
, defined in the local rest frame of the fluid through

(in units of light speed c = 1)

D = ρW, Si = ρhW2vi, τ = ρhW2 − p− D, (2)

where ρ is the rest-mass density, vi the fluid’s 3-velocity, ε the specific internal energy (the
total energy is e = ρ(1 + ε)), p is the pressure, h = 1 + ε + p/ρ is the specific enthalpy
and W = (1 − v2)−1/2 is the Lorentz factor between the two reference frames. Fi =
(Dvi, S1vi + pδ1i, S2vi + pδ2i, S3vi + pδ3i, Si − Dvi) are the flux vectors. The conservative-
to-primitive transformation w(u) inverting (2) cannot be written in closed form. The
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system (1) is closed with an equation of state (EOS). In its simplest form, the EOS is the
thermodynamical relation connecting the pressure to the fluid’s rest-mass density and
internal energy, p = p̄(ρ, ε). If more particle species are considered, then the EOS also
includes additional thermodynamical potentials. For example, the Helmholtz and Lattimer–
Swesty EOS used in various relativistic astrophysics simulations [2,3] return the pressure
as function of the rest-mass density (or baryon number density), the temperature and the
electron fraction, i.e., p = p̄(ρ, T, Ye). In this case, Equation (1) can also contain additional
continuity equations for the rest-mass or number densities of the different species (e.g.,
for the variable DYe). For a causal EOS, the system (1) is hyperbolic [4]. The conservative
form of the equations allows the application of robust mesh-based numerical methods that
correctly capture weak solutions, e.g., shocks [5,6]. In an astrophysical context, these high-
resolution shock-capturing (HRSC) methods are routinely employed for the simulation of
relativistic jets [1,7], supernova explosions [8] and binary neutron star mergers in general
relativity [9–11].

A central algorithmic step in hydrodynamics codes is the computation of the
conservative-to-primitive (C2P) inversion. This calculation is performed by applying
root finders at each mesh point and for each r.h.s. evaluation during the time evolution
and it involves an evaluation of the EOS. In multi-dimensional simulations including
microphysics, this procedure can become cumbersome and can lead to numerical errors
and failures, see e.g., discussions in [12–14]. For example, general relativistic simulation of
neutron star mergers with microphysics typically employ a C2P procedure composed of
two nested root finders (Newton–Raphson algorithms) during which 3D interpolations of
EOS tables are performed to find the searched-for variable (e.g., the pressure p̄(ρ, T, Ye)),
e.g., [15–17]. This procedure is called at each grid point for each time subcycle, resulting in
more than 109 calls per millisecond of evolution in simulations that currently span up to
hundreds of milliseconds [17–19]. The computational cost of the C2P amounts up to ∼18%
of the total cost for computing the r.h.s. of general relativistic equations in hyperbolic form.
The C2P also impacts parallel computations and produces load imbalances since different
mesh points (ranks) require different workloads. Moreover, the C2P computation is mem-
ory intensive as about 300 MB of EOS data must be loaded for these operations. A key goal
of numerical relativity is to use such simulations to generate highly accurate gravitational
wave signals. These are used to detect binary neutron star mergers in gravitational wave
detectors such as the Laser Interferometer Gravitational Wave Observatory (LIGO) and
then to perform parameter estimation to extract the parameters of the neutron stars from
the wave signal. Improving the performance of simulations such as those detailed above
will allow numerical relativity codes to generate more accurate gravitational waveforms
more efficiently.

This paper explores a new approach to the conservative-to-primitive inversion based
on supervised learning. Specifically, the use of artificial neural networks is investigated
in order to produce fast algorithms that can substitute either a multi-dimensional EOS
interpolation or the entire transformation of variables without affecting the accuracy of the
solution. Section 2 summarizes the construction of simple neural networks for the EOS
and the C2P adopting an analytical Γ-law EOS as a benchmark,

p̄(ρ, ε) = (Γ− 1)ρε . (3)

Section 3 discusses the performances of the neural networks in terms of speed and
accuracy by comparing them against the results of the C2P performed with a standard
inversion algorithm and using both the analytical and a 3D tabulated representation of
the EOS. The performances of the neural networks are also evaluated on two simple test
problems for 1D (special) relativistic hydrodynamics: a relativistic shock tube and a smooth
solution. In Section 4 we conclude that neural network representations of the C2P are
an interesting option to improve the speed and robustness of relativistic hydrodynamics.
Appendix A reviews a standard method to compute the conservative-to-primitive inversion
using root finders.
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2. Method

The basis of any neural network (NN) is the neuron that, just like its biological
counterpart, receives input values, builds a weighted sum over these input values, adds a
bias and then generates an output by applying a (nonlinear) activation function, σ, to the
sum; see e.g., [20–22] for an introduction on NNs. A feedforward NN contains multiple
layers of such neurons. The first and last layers are called the input and output layer
respectively, while the intermediate layers are called hidden layers. In case of a fully
connected NN, the output of each layer becomes the input for all neurons in the next layer.
The output of the output layer is handed back as the output of the neural network.

All NNs used for this work are fully connected feedforward neural networks with two
hidden layers. The NN parameters are the weights and biases and are collectively indicated
as θ. They are determined in the training step by minimizing the difference between the
NN’s output, ŷi(θ), and the exact values (yi), called “labels” of a training dataset. The
minimization is performed iteratively by (i) computing a loss function E, (ii) taking the
gradient of E with respect to all parameters using the chain rule (backpropagation step),
(iii) applying a gradient descent algorithm to adjust all parameters in order to minimize
E. An epoch is completed when steps (i–iii) are performed for all samples of the training
dataset. Here, the training data are split into random mini-batches and the gradients of the
parameters θ are collected for all samples of a mini-batch. The gradient descent algorithm
is then applied after each mini-batch. New mini-batches are created randomly after each
epoch. The specific loss function minimized in the training process is

E(θ) =
1
n

n

∑
i=1

(ŷi(θ)− yi)
2 , (4)

and the Adam optimizer is used for the gradient descent [23].
For the construction of each NN we experimented with different hyperparameters

(e.g., number of layers, layer sizes, activation functions). In particular, we considered
NNs with two and three hidden layers and layer sizes from 100 to 1200. The considered
activation functions are tanh(z) and

ReLU(z) = max(0, z) (5)

Sigmoid(z) =
1

1 + e−z . (6)

The NNs proposed and described below hit a balance between simplicity, accuracy
and size. The measured improvement in accuracy of larger NNs was only marginal in
contrast to a longer evaluation time. Similarly, the use of three hidden layers resulted
in minor improvements over two layers for the same size while increasing training and
evaluation time significantly. The best results were achieved with the Sigmoid activation
function (Equation (6)) as the activation function of the hidden layers and ReLU (5) as the
nonlinearity applied on the output. In order to evaluate the the NNs’ performance, a test
dataset is used which is held back from the training. Note that overfitting the training
data did not occur in our tests, as all our networks have a lower loss (4) on an independent
(smaller) testing dataset than on the training dataset. Thus, e.g., dropout methods do not
improve the training. All algorithms described in this paper are implemented in Python
and NNs are implemented with PyTorch [24]. All implementations are vectorized and
make use of NumPY [25] optimizations. We note, however, that the NN implementations are
expected to be more optimized than, e.g., the root-finding algorithms. For implementations
of this approach within production codes (e.g., those for general relativistic hydrodynamics)
it will be necessary to interface with compiled languages such as C++. The evaluation of
neural networks, however, only requires the computation of the activation functions and
basic linear algebra operations, for which there are several optimized routines available.
The training of the NNs is completed beforehand and can be done in any programming
language, as only the parameter values (i.e., weights and biases) have to be imported to
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later applications. Since PyTorch as well as other widely used libraries such as TensorFlow
have C++ APIs it will also be possible to implement the evaluation of NNs in these codes,
after training them using a Python code. Libraries such as cuDNN can further be used in
codes designed for GPUs.

Throughout this paper, errors on data series are evaluated using the two norms

L1 :=
1
n

n

∑
i=1
|ŷi − yi|, (7)

L∞ := max
i
|ŷi − yi| , (8)

where ŷi are the outputs of the NN (or any derived quantity) and yi are the exact values.

2.1. NN for EOS

As a first approach, NNs are built to represent the EOS in Equation (3). These NNs
output the pressure for given values of the rest-mass density and specific internal energy.
We also consider an example of NN that additionally outputs the derivatives χ := ∂p/∂ρ
and κ := ∂p/∂ε. The latter are usually necessary to compute the speed of sound (see
(A6)), which is crucially required for the computation of the numerical fluxes in HRSC
algorithms. The derivatives of pressure (or other thermodynamical potentials) are usually
provided also by microphysical EOS tables and can therefore be used as labels during the
training process.

For later applications in Section 3, we fix the adiabatic exponent in Equation (3) to
Γ = 5/3 and create a training set by randomly sampling the EOS on a uniform distribution
over ρ ∈ (0, 10.1) and ε ∈ (0, 2.02). This range of primitives is specific to the problems
described in Section 3, hence the NNs used are specifically trained for these problems.
When applying these techniques to other problems, where the primitive ranges may differ
considerably, the NN should be trained on appropriately sampled data that matches the
range of primitives expected in that problem. The training dataset has size of 80,000, and it
is split into random mini-batches of 32 samples each. The test dataset has size 10,000.

Two different NN representations of the EOS are investigated:

NNEOSA Type A NN only outputs the pressure. Its gradient can be computed using the
backpropagation algorithm, but the error of the derivatives is not taken into
account during the training process.

NNEOSB Type B NN has three output neurons, for the pressure and its derivatives
respectively. Therefore, the loss of all three values is minimized simultaneously
during training.

The NNEOS layouts for each type are summarized in Table 1 and NNEOSB is vi-
sualized on the left of Figure 1. For the training, an initial learning rate of the Adam
optimizer [23] is set to 1 · 10−4 (6 · 10−4) for the training of NNEOSA (NNEOSB) and
automatically adapted when saturations of the error on the training dataset occurred. The
training is completed when the training error does not continue to decrease even after
learning rate adaptions (see Appendix B for an example of the training of NNEOSA).
Comparing to the test dataset after training, the difference in the error of the returned
pressure p is within the same order of magnitude for both networks, but it is approximately
twice as large for NNEOSA in both the L1 and L∞ norms. As expected, NNEOSB returns
much more accurate values for the derivatives of the pressure as, unlike NNEOSA, it is
specifically trained to return these as outputs. As measured in the L1-norm (L∞-norm), we
find that the error in the derivative χ in NNEOSB is a factor of ∼12 (354) smaller than that
of NNEOSA and a factor of ∼34 (124) smaller for the derivative κ.



Symmetry 2021, 13, 2157 5 of 17

Table 1. Hyperparameters and errors for the NNs considered in this work. All NNs use two hidden layers (H.L.), both
using a Sigmoid activation function, while all output layers use a ReLU activation function. The respective test datasets are
used to evaluate the accuracy of the representations. Both error norms are shown.

Network Size of H.L. Error ∆p Error ∆χ Error ∆κ
H.L. 1 H.L. 2 L1 L∞ L1 L∞ L1 L∞

NNEOSA 600 300 2.13 · 10−4 6.16 · 10−3 6.03 · 10−4 1.81 · 10−1 2.58 · 10−3 1.15 · 10−1

NNEOSB 400 600 1.03 · 10−4 2.52 · 10−3 4.97 · 10−5 5.11 · 10−4 7.66 · 10−5 9.28 · 10−4

NNC2PS 600 200 3.84 · 10−4 8.14 · 10−3 - - - -
NNC2PL 900 300 3.62 · 10−4 9.26 · 10−3 - - - -

𝜖

𝜌
𝑝

𝜒

𝜅

... ...

......
𝑝

𝐷

𝑆𝑥

𝜏

Figure 1. Schematic diagram of NNEOSB (left) and NNC2P (right). Input layers are on the left of
each network and output layers are on the right. NNEOSA is identical to the scheme of NNEOSB but
without the output neurons for χ and κ.

2.2. NN for C2P

As a second approach, NNs are built to represent the entire C2P transformation. These
NNs output the pressure p from the three conserved quantities in u. All the other primitive
quantities are then computed analytically from the conserved variables and the pressure,
see Appendix A.

The EOS parameter is again Γ = 5/3. The training dataset is constructed by uni-
formly sampling the primitive variables over the following intervals ρ ∈ (0, 10.1), ε ∈
(0, 2.02), vx ∈ (0, 0.721), and then calculating the corresponding conservative variables
through Equation (2). The training and test datasets contain 80,000 and 10,000 samples
respectively, and random mini-batches of a size of 32 were used for the training process.

When choosing an NN architecture, a balance between accuracy and speed must
be found. In order to investigate the differences in larger versus smaller NN, two NN
representations of the C2P differing in the number of neurons are considered:

NNC2PS Type S NN outputs the pressure from the conservative variable using a small
number of neurons that still guarantee pressure errors of order ∼10−4, as for
the NNEOS.

NNC2PL Type L NN has a larger size but it is otherwise identical to NNC2PS.

The networks’ architecture is visualized on the right of Figure 1. The NNC2P layout
for each type is summarized in Table 1. They are trained with a learning rate of 6 · 10−4 and
learning rate adaptions until the error on the training dataset is minimized (an example
of the training of NNC2PS can be found in Appendix B). Again we measure the error
in the calculated pressure after the trained NN performs the C2P by comparing to a test
dataset. Here we find that both NNC2PS and NNC2PL perform very similarly, with an
NNC2PL returning an error smaller by a factor of 1.06 in the L1 norm. We also note that
this error is consistent in size with the errors in the pressure produced by NNEOSA and
NNEOSB, being the same order of magnitude, with NNEOSB returning errors a factor ∼4
(3.5) smaller than NNC2PS (NNC2PL) in the L1-norm. Since the NN performs the entire
C2P, we do not need to perform the intermediate step of calculating the derivatives of the
pressure in this case.
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3. Results

In this section we present comparative timing and accuracy tests of the developed
NNs. Section 3.1 directly considers different C2P algorithms using NNs and compares them
against a standard algorithm for the C2P used in current numerical relativity simulations
of neutron stars spacetimes [17–19]. Sections 3.2 and 3.3 consider the use of different
C2P algorithms with NNs in two standard 1D benchmarks for relativistic hydrodynamics
implementations: a relativistic shock tube (problem 1 of [1]) and the evolution of a smooth
density profile.

In order to properly evaluate the benefits of NN representation of the EOS and C2P in
a realistic and yet controlled benchmark, the EOS in Equation (3) is stored as a table and
evaluated via an eight point (3D) linear Lagrangian interpolation [26]. The tables contain a
logarithmic grid of 500 values of the density ρ and the temperature T (the specific internal
energy is tabulated from ε = 1/(Γ− 1) NAkBT, where NA is the Avogadro number and kB
the Boltzmann constant) and a linear grid of 500 dummy values of the electron fraction
Ye. The grids are of the same range as the training dataset of the NNs, i.e., with maximum
values 10% over the maxima of the shock tube test problem. The derivatives needed for
the root-finders are taken from the linear interpolation.

The following tests are performed using either a standard C2P procedure based on
Newton–Raphson (NR) algorithm and described in Appendix A (hereafter referred to as
the NR algorithm) with the analytical, tabular, NNEOSA or NNEOSB representation of the
EOS or the NNC2PS and the NNC2PL representation of the C2P procedure. A tolerance
level of 10−8 is employed in the Newton–Raphson algorithm.

3.1. Accuracy and Timing of C2P

The accuracy of the NNs is evaluated on linear sampling (ρ, ε) on ranges ρ ∈ [0.05, 10]
and ε ∈ [0.01, 2] with n = 200, inverting the conservatives with varius C2P algorithms and
comparing to the exact values. The considered C2P algorithms are:

• The NR algorithm with the analytical EOS;
• The NR algorithm with the EOS in tabulated form;
• The NR algorithm with the NNEOSA and NNEOSB representation of the EOS;
• The NNC2PS and NNC2PL algorithms.

Figures 2 and 3 report the absolute errors in the recovery of pressure as a function of
(ρ, ε) in the testing datasets for the NR algorithm with the NN EOS representation and the
NNC2P algorithms respectively.

The best attainable accuracy is given by the tolerance of the NR algorithm, 10−8, when
taken with the analytical EOS. When combined with the tabulated EOS, we find that the
errors grow to an average value of 1.4 · 10−3 for all three velocity values considered in
Figures 2 and 3. The maximum error reaches 1.04 · 10−2 for the highest velocity vx = 0.7,
and it is dominated by the contribution from the table interpolation. The accuracy of the
NNs proves superior to the tabulated EOS. Firstly we consider the NNs for evaluation of
the EOS coupled with the NR algorithm. For the range of velocities shown NNEOSA has an
average error ranging from 2.03 · 10−4 to 3.44 · 10−4, while NNEOSB ranges from 9.80 · 10−5

to 2.34 · 10−4. The latter is an order of magnitude smaller than the error with tabulated
EOS. As expected, NNEOSB performs up to a factor of two better than NNEOSA. The
maximum error of NNEOSA is comparable to the tabulated EOS; however, the maximum
error of NNEOSB is almost an order of magnitude better (2.29 · 10−3). Again, the size of
the errors here demonstrate that the tolerance of the NR algorithm is much lower than
the contribution to the error from the NN evaluation of the EOS. Secondly we consider
the NNs which evaluate the total C2P, NNC2PS and NNC2PL. Here we find the range of
average errors for NNC2PS 3.53 · 10−4–9.73 · 10−4 and NNC2PL 2.99 · 10−4–9.25 · 10−4 to
be up to an order of magnitude superior to the tabulated EOS and at worst a factor of ∼1.4
better. The maximum error for either NN is found for the highest velocity in NNC2PL of
9.66 · 10−3, ∼10% better than the tabulated EOS. As expected we find that NNC2PL has
slightly smaller average errors than NNC2PS, reducing errors between a factor of 1.05 and
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1.18 in the three representative velocities considered. Finally, we compare the two sets of
NNs to each other. As it can be seen from the ranges quoted above, the average errors of all
four NNs are of a consistent order of magnitude ∼ 10−4, with the lowest errors in the EOS,
rather than C2P NNs, with NNEOSB performing between a factor of 1.8 and 9.9 better than
the C2P NNs in terms of average error.

Timing tests are performed in a similar manner to accuracy tests but with building
grids of states of increasing size from n = 100 to n = 3200. The results are summarized
in Table 2. As expected, all NN representations perform significantly slower than the
NR algorithm with analytic EOS. Moreover, the cost of all the algorithms that do not
employ the analytical EOS representation increases proportionally to the grid size. All
the algorithms employing NN representations perform significantly faster than the NR
algorithm with tabulated EOS. This is primarily due to the nested iteration of the NR
scheme, see Appendix A. The NR algorithm using the NNEOSB runs up to two times faster
than the same with NNEOSA, despite the fact that NNEOSB is a larger NN. This is due
to the different computations of the derivatives of p: while NNEOSB returns the pressure
and its derivatives as outputs, NNEOSA returns only the pressure, and then the pressure
derivatives must be calculated from backpropagation. This latter procedure increases
the run time of the evaluation. e.g., for n = 800 gridpoints, generating an output with
NNEOSB takes on average 6.07 · 10−3 s. While NNEOSA only needs 4.61 · 10−3 s to compute
p, an additional 5.68 · 10−3 s are needed to compute the derivatives via backpropagation.
Following expectations, the NNC2PL is slower (by on average a factor of more than 1.5)
than the NNC2PS. While faster NN EOS representations are always achievable by limiting
the network size, this can compromise accuracy. The most significant result is however
the comparison of the NNC2P with the NR algorithm using the interpolated EOS. The
NNC2PL completes the C2P on average ∼13 times faster than the NR algorithm with
interpolated EOS. NNC2PS is instead ∼22 times faster. Thus, these NNs accelerate the
C2P by more than an order of magnitude without significantly compromising the accuracy.
We note also that, for all grid sizes, both NNC2P approaches are always faster than both
NNEOS approaches, with the faster EOS approach (NNEOSB) slower than the slowest C2P
approach (NNC2PL) by at least a factor of 1.7.

Figure 2. Accuracy of the NNEOS. Discrete per point evaluation of the accuracy of the NN EOS
representations on a linear grid of ρ and ε values for three values of the velocity vx. The colors show
the absolute deviation from the exact values (Equation (3)). Top (bottom) panels refer to NNEOSA
(NNEOSB).
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Figure 3. Accuracy of the NNC2P. Discrete per point evaluation of the accuracy of the NN C2P
representations on a linear grid of ρ and ε values for three values of the velocity vx. The colors show
the absolute deviation from the exact values (Equation (3)). Top (bottom) panels refer to NNC2PS
(NNC2PL).

Table 2. Timing test of C2P with different algorithms and for different grid sizes n. The average time per call of different
C2P schemes (analytic 2d EOS, interpolated 3d EOS, NN representation of the EOS, NN representations of the C2P are
given). In addition, the speedup (acc.) with respect to the interpolated EOS is shown. Note that a C2P call transforms all
grid points.

Grid Analyt. Interp. NNEOSA NNEOSB NNC2PS NNC2PL
Size [10−4s] [10−2s] [10−3s] acc. [10−3s] acc. [10−3s] acc. [10−3s] acc.

100 2.45 1.56 4.94 3.15 2.69 5.79 0.98 15.83 1.23 12.71
200 2.79 2.70 6.76 3.99 3.65 7.38 1.12 24.13 1.90 14.17
400 3.33 4.91 12.28 4.00 6.49 7.58 1.82 27.02 3.71 13.23
800 4.58 9.39 22.40 4.19 13.95 6.73 4.16 22.57 6.84 13.73

1600 6.64 18.46 44.05 4.19 25.67 7.19 8.46 21.82 13.96 13.23
3200 10.99 36.10 83.86 4.30 49.06 7.36 16.25 22.21 26.82 13.46

3.2. Shock Tube

We consider here the 1D shock tube problem discussed in [1] where the initial left/right
states are given by p = (13.33, 10−6) and ρ = (10, 1) and the initial velocity is zero. The EOS
is given by Equation (3) with Γ = 5/3. The exact solution of the Riemann problem exists
and can be computed, e.g., with the method given in references [1,27,28]. Initial data are
evolved with a standard HRSC algorithm using the HLLE flux [29], linear reconstruction
of primitive variables with centered monotonized limiters and a third order Runge–Kutta
time integration with Courant–Friedrich–Lewi factor of 0.5.

In the left panel of Figure 4 we demonstrate the numerical evolution of the shock tube
problem using NNEOSA, NNEOSB and an analytical evaluation of the EOS to recover
primitive variables. As a reference, the exact solution of the shock tube problem is also
displayed. Here we observe a close agreement between all three approaches and the exact
solution. Similarly, the right panel of Figure 4 compares the performance of NNC2PS and
NNC2PL with the analytical evaluation of the equation of state, as well as a comparison
with an interpolation of an EOS table. Again the NN approaches provide a close agreement
with the exact solution.
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Figure 4. Solution to the shock tube problem at t=0.4 as computed by different algorithms. Primitive
variables are indicated with different colors; the exact solution is indicated in solid gray lines. The
y axis represents the value of the primitive variables, rescaled by factors shown in the legend for
readability. The left panel compares NNEOSA and NNEOSB to the exact solution and the solution
obtained with the analytical EOS representation. The right panel compares NNC2PS and NNC2PL to
the exact solution, the solution obtained with the NR algorithm and the analytical EOS representation
and the tabular EOS. The numerical solutions are computed at a resolution of n= 100 grid points
with step size of dt= 5·10−3. The close agreement between the results using NNs and the results
obtained with traditional C2P evaluations shows that the dominant source of error arises form the
HRSC scheme used to solve the Euler equations and not the introduction of NNs.

The respective errors between these methods are shown in Figures 5 and 6. Firstly in
Figure 5 (left) we demonstrate the L1 norm of the error between the exact solution and the
three EOS evaluation approaches used: analytical, NNEOSA and NNEOSB. Consistent
with the numerical methods used, and the discontinuous nature of the shock tube profile,
we find that the L1 norm converges at first order, as demonstrated by dashed lines. When
comparing the two NNs we find that the error in NNEOSA is consistent with that in
NNEOSB and in fact for the largest grid sizes is slightly superior in the calculation of
the pressure, by ∼17%, despite the superior performance detailed in Table 1. This results
from the error in the NNs in representing the initial data of the shock tube problem, with
NNEOSA representing the initial pressure in the right state with an error of ∼1 · 10−6,
whereas NNEOSB returns a value deviating several orders of magnitude more (error of
∼5 · 10−4). As demonstrated in Figure 5, however, any loss of accuracy in replacing the
analytic EOS evaluation with either NN is minimal.
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Figure 5. Errors of NNEOS algorithms in the shock tube problem. L1 (left) and L∞ (right) norms of
the solutions at t = 0.4 are shown for different primitive quantities. First order convergence in L1

norm is measured in all quantities and for all algorithms.
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Figure 6. Errors of NNC2P algorithms in the shock tube problem. L1 (left) and L∞ (right) norms of
the solutions are shown for different primitive quantities. The slope of a first order convergence is
illustrated by the dashed gray lines in the L1 plot. First order convergence in L1 norm is measured in
all quantities and for all algorithms, up to the precision of the tabulated EOS.

In Figure 5 (right) we observe that, as in the L1-norm, the errors in both NNs and the
analytic EOS evaluation are consistent with each other. Here, however, we fail to see the
error converging at the expected first order as the resolution increases. This is as a result
of the L∞-norm selecting the point of our domain with maximum error, the location of
the shock wave in the shock tube problem (shown at point x ≈ 0.83 in Figure 4), at which
specific point the HRSC algorithm fails to converge.

For the case in which the entire C2P is replaced by an NN, we show the L1-norm of
the errors in Figure 6 (left). Here we again show the expected first order convergence with
dashed lines and include the case of the NR algorithm with the EOS in tabulated form.
For lower resolutions (up to 800 grid points) we see first order convergence for all four
methods. Beyond this resolution we see the interpolated tabulated EOS fails to converge
in all variables due to the resolution of the EOS tables, while both NNC2PS and NNC2PL
continue to converge at higher resolutions. For all primitives other than the pressure, we
see almost identical performances between the remaining three approaches, whereas for
the pressure, we see that, as expected, the analytical evaluation of the EOS is most accurate,
followed by NNC2PL and then NNC2PS.

In Figure 6 (right) we demonstrate the error as calculated in the L∞-norm. As discussed
above for the NNEOS approach, due to the failure of convergence of the HRSC algorithm at
the shock wave, the error fails to converge in this norm. However, we again see a consistent
error between all three schemes demonstrated, and, at the highest resolution, begin to see
that NNC2PS slightly outperforms the other approaches when calculating the density and
pressure. Finally, in Figure 7 we compare the errors of all four NN approaches. In Figure 7
(left), for the L1-norm we observe that the errors in all methods are of a consistent order of
magnitude. For the pressure, we see that at the highest resolution the best performance is
found using NNEOSA, followed closely by NNC2PL, with the performance in all other
variables and at all other resolutions being indistinguishable in terms of accuracy.
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Figure 7. Errors of NNC2P and NNEOS algorithms in the shock tube problem. L1 (left) and L∞

(right) norms of the solutions are shown for different primitive quantities. The slope of a first order
convergence is illustrated by the dashed gray lines in the L1 plot. First order convergence in L1 norm
is measured in all quantities and for all algorithms.

3.3. Smooth Sine-Wave

In addition to the shock tube problem, we also test this approach on a smooth sine
wave profile. In contrast to the shock tube problem, the smooth nature of this test should
allow us to investigate the higher order convergence properties which are absent in the
presence of discontinuities formed in the shock tube problem. The initial profile of the fluid
is given by

p = 1, ρ = 1 + 0.2 · sin(2πx), vx = 0.2 , (9)

over the interval x∈ [−1, 1] and periodic boundary conditions are imposed. The same EOS
and HRSC algorithm as above is employed for the numerical solution.

In the left panel of Figure 8 we demonstrate the agreement between the exact sinewave
data after evolving for a single period and the numerically evolved data after the same time
calculated with an analytic evaluation of the equation of state, compared with NNEOSA
and NNEOSB. Similarly, the right panel of Figure 8 demonstrates the agreement between
the exact sinewave profile and the numerical data obtained through evolution using
NNC2PS, NNC2PL, an analytical evaluation of the EOS and through interpolating a
tabulated EOS.
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Figure 8. Solution to the sine-wave density profile at t = 5 (i.e., after one period) as computed by
different algorithms Primitive variables are indicated with different colors; the exact solution is
indicated in solid gray lines. The left panel compares NNEOSA and NNEOSB to the exact solution
and the solution obtained with the analytical EOS representation. The right panel compares NNC2PS
and NNC2PL to the exact solution, the solution obtained with the NR algorithm and the analytical
EOS representation and the tabular EOS. The numerical solutions are computed at a resolution of
n=100 grid points with step size of dt=10−2.
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We again demonstrate the error properties of these evolved numerical data in further
detail. Firstly the L1-norm of the error for NNEOSA and NNEOSB is shown in Figure 9
(left). In contrast to the shock tube problem above, the smooth nature of the profile leads
us to expect second order convergence, demonstrated by dashed lines. As expected, we
see perfect second order convergence when the EOS is evaluated analytically; however,
for both NNs we see the error saturate at a floor value (note the absolute values of these
errors are considerably smaller than those for the shock tube above). This behavior arises
as the error in the EOS representation is independent of the grid resolution, and so, for
a small enough grid spacing, will eventually dominate the error arising from the HRSC
scheme. The values at which the NN errors dominate, and therefore convergence is lost,
are consistent with the accuracies in Table 1 of ∼ 10−4 accuracy in pressure. In Figure 9
(right) we see similar behavior for the L∞-norm with slightly larger floor values consistent
with the slightly larger values reported in Table 1 for the L∞-norm. Overall we see that
NNEOSB consistently provides smaller errors than NNEOSA. We further note that this
floor value in error could be reduced by enlarging the size of the NN, with the trade-off of
making the EOS calculation slower and more expensive.
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Figure 9. Errors of NNEOS algorithms in the sine-wave density profile problem. L1 (left) and L∞

(right) norms at t = 5 of the solutions are shown for different primitive quantities. Second order
convergence in L1 norm is measured in all quantities and for all algorithms until the NN error
dominates.

For NNC2PS and NNC2PL the L1 norm of the error is shown in Figure 10 (left), again
with second order convergence denoted by a dashed line. As before, we see that the
analytic EOS call converges perfectly, with the NNC2PS and the interpolated tabulated
EOS converging until a floor value in the error is reached. In contrast, however, NNC2PL
performs better than the other NNs, and, while the error in certain quantities such as
the pressure and velocity saturate almost immediately, the error in the internal energy
ε still converges and does not appear to have reached its minimum value at the highest
resolution used, n = 3200. In the L1-norm we find that NNC2PL outperforms NNC2PS
in all primitive variables, and, for n ≥ 400 NNC2PL outperforms the tabulated EOS also.
At the highest resolution we find that NNC2PL outperforms NNC2PS by a factor of ∼2.6
and the tabulated EOS by a factor of ∼2 for the error in the pressure and, for the internal
energy, which is still converging, this factor increases to ∼29 compared to NNC2PS and
∼28 compared to the tabulated EOS.

In Figure 9 we see that even on the coarsest grid used, n = 100, the error in the
NNEOSA representation of the velocity is about a factor three larger than the analytic
EOS representation. In contrast, when replacing the entire C2P with an NN, we see in
Figure 10 that at this resolution the velocity error is now comparable to the analytic value.
In Figure 11 (left) we compare the error between all NN approaches in the L1-norm.



Symmetry 2021, 13, 2157 13 of 17

Here we can see that, once the error has saturated at its floor value for the velocity and
density, NNC2PL provides the lowest errors, performing an order of magnitude better than
NNEOSA. This is also true for the specific internal energy which has not saturated its error
at the highest resolution measured. In contrast, once the error has saturated, NNEOSB
gives the lowest error for the pressure, performing an order of magnitude better than
NNC2PS and a factor ∼4.5 better than NNC2PL.

As above we see a similar picture in the L∞-norm albeit with larger absolute errors.
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Figure 10. Errors of NNC2P algorithms in the sine-wave density profile problem. L1 (left) and L∞

(right) norms at t = 5 of the solutions are shown for different primitive quantities. Second order
convergence in L1 norm is measured in all quantities and for all algorithms until the NN error or
precision of the tabulated EOS dominates.
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Figure 11. Errors of NNC2P and NNEOS algorithms in the sine-wave density profile problem.
L1 (left) and L∞ (right) norms at t = 5 of the solutions are shown for different primitive quantities.

4. Conclusions

In this work, we explored artificial neural networks (NN) for the transformation
of conservative quantities to primitives (C2P) in relativistic hydrodynamics. Working
in a controlled yet complete framework, we demonstrated that the EOS evaluation or,
alternatively, the entire C2P variables transformation can be substituted by simple and
efficient NNs.

Our tests show that an NN representation of the EOS, either outputting the pressure
(NNEOSA) or also including pressure derivatives (NNEOSB), can speed up by a factor
between 3.1 and 7.4 standard C2P algorithms based on root-finders that are called 3D
tabulated EOS. Moreover, the C2P employing NNEOSB runs up to two times faster than
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the same with NNEOSA, despite being a larger NN. This is due to the cost of the backpropa-
gation needed to compute derivatives for NNEOSA and highlights an advantage of an NN
including derivatives as regular output. The average error reached in the pressure recovery
is of order of magnitude 10−4 for NNEOSA and NNEOSB, an order of magnitude smaller
than that obtained with a tabulated EOS of typical size, with NNEOSB also outperforming
NNEOSA and the tabulated EOS by an order of magnitude in its maximum error. These
accuracies allow the use of the NNs in full hydrodynamical evolutions. Standard 1D bench-
marks in special relativity indicate that the error of the NN EOS representation does not
significantly affect solutions of Riemann problems up to very high resolutions of n = 3200
grid points. This result is expected to hold also in multi-dimensional simulations since in
those cases shocks and other elementary waves are resolved with fewer grid points. Note
that at such high resolutions table interpolation errors can instead affect the convergence
of the solution, as demonstrated by our tests. Similar considerations hold for smooth
solutions. The second order convergence of a smooth flow solution is lost as the errors
reach the finite precision of the NN representing the EOS. However, this issue is expected
to arise also when using EOS tables and interpolation. We further note that, since any given
physical EOS model (based for example on tabulated data) will only be accurate up to a
certain error, an NN based on such a model should only be trained to a matching level of
precision.

Our results indicate that an NN representation of the entire C2P is overall more effec-
tive than an NN representation of the EOS solely. In this case, the acceleration of the C2P
algorithm is significant when compared to root-finding algorithms with multi-dimensional
(3D) table interpolation for the EOS. In the discussed benchmarks, the speedup for the
C2P is about a factor ∼13 for the larger NN (NNC2PL) up to ∼22 for the smaller NN
(NNC2PS), thus depending mainly on the NN size. Our NNs aim to balance speed and
accuracy, though further experimentation may be able to further improve this performance.
NNC2PL significantly exceeded the accuracy of the solutions with EOS table interpola-
tion in both shock-tube and sinewave benchmarks, with all primitives calculated more
accurately up to an improvement by a factor of ∼28 still allowing a speed-up of more than
an order of magnitude. The benchmark tests also show that, for a shock-tube problem
with larger overall errors, the two approaches of NNEOS and NNC2P give similar errors,
with NNEOSA improving the accuracy of NNC2PL by ∼4%. However, for a sinewave
problem with smaller overall errors, NNC2PL gives the most accurate calculation of the
velocity, density and internal energy, outperforming NNEOSB by up to a factor of ∼9.2,
while NNEOSB performs best on the pressure outperforming NNC2PL by a factor of ∼4.5.
We also remark that the time needed for a C2P using a standard root finder also depends
on the problem it is applied on: large and sudden changes, e.g., of shock waves and other
discontinuities, cause more iterations of the root-finding algorithms and thus need more
time. An NN representation of the C2P does not suffer from this drawback and thus can
also improve the robustness of the simulation.

In summary, the results reported in this paper indicate clear advantages in including
machine learning representations of the C2P in relativistic hydrodynamics. Going beyond
these preliminary tests, future work will investigate the applicability of our findings to full
multi-dimensional simulations in relativistic astrophysics.
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Appendix A. Conservative-to-Primitive Transformation

Given an EOS p̄(ρ, ε), the numerical computation of primitive quantities can be
performed by nonlinear root-finders, e.g., a Newton–Raphson algorithm. In the context
of relativistic astrophysics a common general procedure is to determine the pressure p by
searching the zero of the function [1]

f (p) = p̄(ρ∗(p), ε∗(p))− p , (A1)

where from Equation (2) one obtains the expressions

ρ∗(p) =
D

W∗(p)
(A2)

ε∗(p) =
τ + D[1−W∗(p)] + p

[
1−W2∗ (p)

]
DW∗(p)

(A3)

W∗(p) =
1√

1− v2∗(p)
(A4)

vi
∗(p) =

Si

τ + D + p
. (A5)

Derivatives of the pressure χ := ∂p/∂ρ and κ := ∂p/∂ε are required both in the
Newton–Raphson algorithm and for the calculation of the speed of sound,

c2
s =

1
h

(
χ +

p
ρ2 κ

)
, (A6)

entering the numerical fluxes to integrate Equation (1).
In astrophysical applications that employ microphysical EOS like neutron star mergers,

the pressure is interpolated from an EOS table in the form of p̄(ρ, T, Ye), where the specific
internal energy is implicitly given by the temperature T. Hence, each root-finding step
for (A1) includes another root finder for the function

g(T) = ε∗(T)− ε (A7)

in order to find the temperature [30]. It is common to interpolate the three-dimensional
EOS tables using a linear scheme. In order to evaluate the EOS at (ρ, T, Ye), first the nearest
neighbors to the point are determined, then the value p̄(ρ, T, Ye) is determined by linear
Lagrangian interpolation, using an eight-point stencil. For our benchmarks, we adapted
this linear interpolation algorithm from [26].
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Appendix B. Examples of the Training of NN Representations

Figure A1 visualizes the training progress of NN representations of type NNEOSA
(left) and NNC2PS (right) (see Table 1 for hyperparameters). The mean squared error
(MSE, (4)) on the training data is depicted for each epoch as well as the MSE on the testing
data computed after each epoch. The initial learning rate of the Adam optimizer [23] is
set to 1 · 10−4 in case of NNEOSA and 6 · 10−4 for NNC2PS. The learning rate is later
multiplied with a factor of 0.5 whenever the loss of the training data over the last five
epochs does not improve by at least 0.05% with respect to the previous five epochs. Ten
epochs have to be completed before the next possible learning rate adaption. The learning
rate adaptions are marked by the gray vertical lines in Figure A1.

The training of NNEOSB and both NNC2PLs is carried out in a similar manner.
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Figure A1. Training progress of NNs of type NNEOSA (left) and NNC2PS (right). The mean squared
errors (MSE) of the outputs to the training data of each epoch are depicted in blue. In addition,
the MSE on the testing data after each epoch is shown. The gray vertical lines mark learning rate
adaptions.
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