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Abstract

The local escape velocity provides valuable inputs to the mass profile of the galaxy, and requires understanding the
tail of the stellar speed distribution. Following Leonard & Tremaine, various works have since modeled the tail of
the stellar speed distribution as oc(vee — v)¥, Where v is the escape velocity, and k is the slope of the distribution.
In such studies, however, these two parameters were found to be largely degenerate and often a narrow prior is
imposed on k in order to constrain ve,.. Furthermore, the validity of the power-law form can breakdown in the
presence of multiple kinematic substructures or other mis-modeled features in the data. In this paper, we introduce
a strategy that for the first time takes into account the presence of kinematic substructure. We model the tail of the
velocity distribution as a sum of multiple power laws as a way of introducing a more flexible fitting framework.
Using mock data and data from FIRE simulations of Milky Way-like galaxies, we show the robustness of this
method in the presence of kinematic structure that is similar to the recently discovered Gaia Sausage. In a
companion paper, we present the new measurement of the escape velocity and subsequently the mass of the Milky
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Way using GaiaeDR3 data.

Unified Astronomy Thesaurus concepts: Milky Way dynamics (1051); Galaxy stellar halos (598)

1. Introduction

Evidence of the theory of hierarchical galaxy formation (White
& Rees 1978) has been abundant in recent years. The
Gaia mission (Lindegren et al. 2016; Gaia Collaboration et al.
2018, 2020) in particular has found evidence of multiple mergers
in the Milky Way (see e.g., Helmi 2020 for a review). The Milky
Way, and in particular the stellar halo, is a graveyard of disrupted
substructures such as streams (Helmi et al. 1999; Belokurov et al.
2006, 2007; Naidu et al. 2020), clumps (Diemand et al. 2008;
Myeong et al. 2018a), tidally disrupted dwarf galaxies (e.g.,
Belokurov et al. 2006; Zucker et al. 2006; Niederste-Ostholt et al.
2009; Kirby et al. 2013; Collins et al. 2017; Simon et al. 2017),
and debris flow (Belokurov et al. 2018; Helmi et al. 2018; Deason
et al. 2018; Lancaster et al. 2019; Myeong et al. 2018b; Necib
et al. 2019a). The Gaiamission (Lindegren et al. 2016; Gaia
Collaboration et al. 2018) has shed light on some of these
substructures, and in particular led to the identification of a large
debris flow called the Gaia Sausage7 (Belokurov et al. 2018), or
Gaia Enceladus (Helmi et al. 2018). Such a structure extends to
~30kpc, including stars on highly eccentric orbits. It is most
hkely the product of a merging satellite of a stellar mass
1037°M., that was disrupted at about redshift z ~ 1-3 (Deason
et al. 2018; Lancaster et al. 2019; Myeong et al. 2018b).

7 In the remainder of this paper, we will refer to this substructure as the

Sausage.
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In light of these findings, we must revisit the methods built for
investigating properties of the Milky Way, and specifically in
mfemng the local escape velocity. Determining the escape velocity
is important as it is used to (1) constrain the total mass of the Milky
Way, (2) predict signals for dark matter (DM) direct detection, (3)
and build the DM density profile of the Milky Way. For instance,
measurements of the escape velocity and the circular velocity can
be used to constrain the potential of the Milky Way, assuming some
spatial distribution of the disk, bulge, and DM. This has been done
extensively in the literature (e.g., Smith et al. 2007; Piffl et al. 2014;
Williams et al. 2017; Monari et al. 2018; Deason et al. 2019) in
order to obtain a measurement of the Milky Way mass. However,
the presence of many velocity substructures can affect our
measurement of the escape velocity and thus the Milky Way
mass. In this work, we aim to build a robust strategy for
determining the escape velocity accounting for such substructure. In
particular, we build a pipeline that incorporates, for the first time,
multiple components in modeling the tail of the stellar velocity
distribution.

The majority of previous studies of the escape velocity are
based on Leonard & Tremaine (1990), which model the tail of the
stellar velocity distribution as

8W|Vese, k) o< (Vese — V)kG(Vesc —-V) V > Vimin, (1)

where v is the speed in Galactocentric coordinates and the two
fitting parameters are the escape velocity v and the slope of the
distribution k. This model is applied to stars with speeds greater
than the threshold v, and it is assumed that the approximation
holds for vy, well above the local rotation speed.

Following Leonard & Tremaine (1990), studies have inferred

the local escape velocity using line-of-sight velocities with the
Radial Velocity Experiment (Smith et al. 2007; Piffl et al. 2014)
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and Sloan Digital Sky Survey (Williams et al. 2017), and then
using 3D velocities from Gaia (Monari et al. 2018; Deason et al.
2019). In all of these studies, there is a large degeneracy between
Vesc and k, as will be discussed further below. The degeneracy
leads to rather large error bars on v, and subsequently large error
bars on the estimated mass of the Milky Way.

In order to overcome these large error bars, many of these
works argued for narrow priors on the slope k; the arguments for
small values of k£ were violent relaxation or collisional relaxation,
both leading to k <2 (Leonard & Tremaine 1990). Meanwhile,
Piffl et al. (2014) (and subsequently Monari et al. 2018) used
cosmological simulations based on the Aquarius suite (Springel
et al. 2008; Scannapieco et al. 2009) to argue for a prior & € [2.3,
3.7], while Deason et al. (2019) used the Auriga simulation
(Grand et al. 2017) to argue that for mergers resembling the
Sausage, k should be small, and therefore ke[l, 2.5]. More
recently, Koppelman & Helmi (2021) used a much larger sample
of stars with only proper motion measurements to reduce the
degeneracy. However, using simulations, Koppelman & Helmi
(2021) estimated a possible 10% bias due to the fact that the tail of
the distribution is not necessarily populated all the way up to Veg.

These studies illustrate some of the difficulties in using
Equation (1) to model the tail. The degeneracy in the parameters
Vese and k is due to the fact that a higher v, can be partially
compensated by a higher slope & in the shape of the distribution.
Because there are very few stars near v, a fit to Equation (1)
could then easily lead to biased results if the model is not a good
description of the data over the entire range of speeds. This could
be the result of additional unbound stars, a mismodeled or
unmodeled component, measurements with large errors that
contaminate the data set, or selection effects in data sample. A
second related issue is that there is no precise definition of the tail
where the model is expected to be a good description. For
example, Grand et al. (2019) studied numerical simulations and
found that those distributions deviate from Equation (1) due to the
presence of substructure, often leading to underestimates of the
Milky Way mass.

In this paper, we argue for an approach that can more
robustly determine the tail of the stellar speed distribution. This
can take into account the presence of kinematic substructure,
which we know to be present, as well as additional effects as
described above. Given what is known about the Sausage, it is
likely that a large fraction of stars in the tail of the distribution
can be attributed to substructure; as argued by Deason et al.
(2019), it will have a different slope & than the rest of the stellar
halo. Including substructure is thus physically motivated. The
tail of the distribution is then the sum of (at least) two
distributions and might not be well described by a single power
law for low vy;,. Not including substructure could then bias v,
measurements.

To address these points, we build a pipeline where we add
additional components to the velocity distribution, also modeled
as in Equation (1) but with a new slope ks. While this is motivated
by substructure, it can also be viewed as a more flexible model for
the steeply falling speed distribution. We show how v can be
obtained more robustly by performing tests on the data as a
function of vy, and the number of bound components. For
instance, it is expected that a single component will be adequate
for large enough vp;,. Performing these tests can ensure that the fit
for ves is not biased by structure in the speed distribution at lower
speeds. In all of these tests, it is important that we keep the priors
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for all parameters as wide as possible so we are not artificially
shaping the results.

In this work, we present the pipeline and perform analyses
with mock data sets containing kinematic substructure. We also
apply our pipeline to a Milky Way realization from the
LATTE suite Wetzel et al. (2016) based on the FIRE code
(Hopkins 2015; Hopkins et al. 2018). This paper is organized
as follows. In Section 2, we first discuss in more depth the
substructure motivation for including additional velocity
components and illustrate the main points. The details of the
pipeline are provided in Section 3. We test the pipeline on
mock data sets containing substructure in Section 4 and on the
Milky Way simulations in Section 5. We compare results when
one or more bound components are used in the fit. In a
companion paper (Necib & Lin 2022), we apply this method on
Gaia eDR3 data for stars in the local neighborhood ([7,9] kpc in
Galactocentric distance), to present the most robust estimate of
the local escape velocity, from which we deduce the mass of
the Milky Way.

2. Motivation from Substructure

In this section, we discuss two broad motivations for
including additional velocity components in modeling the tail
of the velocity distribution. First, kinematic substructure—the
Sausage—is present in the Milky Way (Belokurov et al. 2018;
Helmi et al. 2018) and can comprise a large fraction of stars
(Necib et al. 2019a). However, based on empirical studies of
the kinematic properties of the Sausage from Necib et al.
(2019a), it is not obvious what the substructure slope k and
fractional contribution to the tail of the velocity distribution
should be. Rather than using simulations as a prior on the
slope, we prefer to obtain independent information about the
kinematic substructure from the data.

Second, not accounting for this substructure can lead to
biases in Milky Way mass estimates (Grand et al. 2019). In
particular, the choice of a low vy,;;, = 300 km s~ !is common in
the literature as it increases the statistics. For such low vy,
compared to an expected escape velocity vese ~500km s,
there may be contributions from multiple kinematic structures,
including, for example, the Sausage. Not accounting for these
structures can then pull the fit toward larger vy, depending on
Vmin- By performing a two-component fit over different v;,, we
can demonstrate the robustness of the posterior distributions on
Vese and hence on Milky Way mass estimates.

2.1. The Presence of Substructure in the Tail

The Milky Way recently underwent a major merger, the
Sausage (Belokurov et al. 2018; Helmi et al. 2018), which was
discovered through its distinct chemical and phase space proper-
ties. It was shown that the merger contributes about ~60%—72%
of the non-disk stars in the local neighborhood (Necib et al.
2019a, 2020), which means that it would be expected to strongly
shape the tail of the stellar speed distribution.

To illustrate this, in Figure 1 we plot the speed distributions of
the stellar halo and the Sausage (Necib et al. 2019a), normalized
by their relative fractions, where we assume that the Sausage
comprises 70% of the total distribution.® These are the best-fit
distributions that have been built by modeling Galactocentric
velocities and metallicity measurements from a cross match of

8 https://linoush.github.io/DM_Velocity_Distribution/
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Figure 1. Speed distributions of the halo and Sausage components from Necib
et al. (2019a), assuming a total Sausage fraction of 70% of the sum of the
distributions. (Top) Full speed distributions. (Bottom) Fractional contribution
of the Sausage distribution for all speeds above |V| (see Equation (2)).

Gaia DR2 and the Sloan Digital Sky Survey (Ahn et al. 2012)
using a Gaussian mixture model with halo, Sausage, and disk
components. While the halo and disk were modeled as three-
dimensional Gaussian distributions in spherical Galactocentric
coordinates, the Sausage was modeled as a sum of two
Gaussians with opposite-sign means and equal dispersions in
v,, and single Gaussians in vy and v,.

In Figure 1, we plot the full speed distributions of the halo
and Sausage components. In the bottom panel, we plot the
integrated ratio of the Sausage distribution to that of the sum of
the halo and Sausage distributions:

[ gs(hay’

|;lcgs(v’)dv’ + flvflch(v’)dv”

fs(VD = 2

where gg and gy are the speed distributions of the Sausage and
the halo, respectively. The Sausage component peaks at lower
velocities than the halo component, and is a smaller fraction of
the high-speed stars. This is suggestive of a two-component
component where the slope of the Sausage is larger” than that
of of the halo (ks> k), corresponding to a sharper drop at
higher velocities. Of course, the distributions in Figure 1 are the
result of a fit to a Gaussian mixture model; they therefore are
not tuned for accuracy of the tails, nor do they truncate at ve.
Nevertheless, based on this, one can see that for the typical
Vmin = 300 km s~ ! used in analyses, both components will
contribute an O(1) fraction of the stars.

o Using some intuition, k — 0 is a Heaviside function that is truncated at
V = Vese, While k — o0 is a sharply falling function.
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Because the contribution of the Sausage for a given vy, is
a priori unknown but likely sizable, single-component fits to the
tail of the velocity distribution might fail to describe the data
accurately and bias results. Based on studies of the Sausage so far,
there is not enough information to set a strong prior on the slope
or fractional contribution of the Sausage. Deason et al. (2019)
adopts a prior on k € [1, 2.5] based on simulations where the tail
of the velocity distribution is dominated by a substructure like the
Sausage, which might not be true in the case of the Milky Way.
Instead, we find the opposite behavior in Figure 1. Meanwhile,
other works have argued for and used different priors based on
simulations, with Smith et al. (2007) using k € [2.7, 4.7] and Piffl
et al. (2014) arguing that one expects k € [2.3, 3.7]. The choice of
prior thus largely depends on the merger history of the simulations
considered. For a fit with degenerate parameters, the results are
then strongly molded by the priors, and could lead to incorrect
results, as we discuss in Section 5. In this work, we prefer to
remain agnostic as to the interpretation of each velocity
component. Instead, we will show how including additional
components in the fit allows an independent way to measure
properties of the substructure.

2.2. Influence of Substructure on Single-component Fits to
the Tail

Having argued that there could be a large substructure
component, we now show how results could be affected if this
substructure is not included in the model. While we defer the
detailed discussion of our pipeline to Section 3, here we show
the results of some analyses on mock data to illustrate the main
ideas.

We generate two sets of mock data, one with a single bound
distribution drawn from Equation (1) and another containing
two velocity distributions with different slopes k but a common
Vese- For the single bound distribution, we assume k = 2.5 and
Vese = 500 km s~ !. For the mock data set with substructure, we
assume a substructure fraction of fg=0.6 and substructure
slope ks =1, while the other component has k= 3.5. In both
cases, we also include an unbound outlier population, which is
a fraction f= 0.01 of the total stars and described by a Gaussian
with dispersion o, = 1000 km s~ '. To simulate a realistic data
set, we take vy, = 300 km s~ ! and smear the true speeds of the
stars with a random Gaussian error of 5%, which will be further
discussed later.

In Figure 2, we show the result of fitting both these data sets to
a model with a single bound component. The model also includes
the outlier component and accounts for the errors on the velocity
measurements, as will be described in the next section. When the
mock data contains a single component (left), we find that the fit
actually underpredicts v, somewhat, although this is only one
mock data realization.

However, when the mock data contains two components
(right panel of Figure 2), we find two important impacts on the
fit for ves.: the best-fit value of vy is biased higher, and the
degeneracy between k and v, is larger, with larger error bars
on Ve and k. To understand this behavior, we first observe that
the best-fit slope k is in between the values of the individual
slopes of the two components; the best-fit value is
k = 2327023, while the true values are ks=1 and k=3.5.
This is because the tail of the distribution will be described by
the component with lower slope (here k = 1), while the stars at
lower speeds will drive the preferred slope to higher values.
Because of the correlation between the effects of increasing k
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Figure 2. Corner plots of the fit to a single bound component. The 2D contours are the 68%, 95%, and 99% containment regions. The dashed lines in the 1D posteriors

are the median and 1o containment regions. (Left) We use mock data that includes a single component with true values v.,. = 500 km s~ and k = 2.5, which are
indicated by the blue lines. The stars were smeared with a random Gaussian error of 5%. (Right) We use mock data that contains two bound components, as described
in more detail in the text. In this case, there is a larger degeneracy between k and v, compared to the single-component data and v, is biased toward larger values.

and v, the escape velocity will also be driven to larger values
to better fit the tail.

As discussed in Section 1, other works have set strong priors on
the slope & in order to reduce the degeneracy seen between k and
Vesee In general, these priors strongly shaped the posterior
distribution, with the slope parameter k piling up at the edge of
the priors. This can potentially lead to incorrect results, especially
if the underlying distribution is not well described by a single
power law. Indeed, Deason et al. (2019) found that the choice of
the priors affects the end result of the Milky Way mass. The
example in Figure 2 shows that a degeneracy in k and v could
be partially due to the presence of multiple stellar components. As
we will show in detail throughout this work, including multiple
components properly leads again to a robust fit. The goal of this
paper is thus to build a robust method that can account for
kinematic substructure and other mismodeled features.

3. Analysis
3.1. Multicomponent Pipeline

We now present the likelihood function for an unbinned
analysis on a sample of stars with minimum observed velocity
Vmin- This analysis will involve either a single bound
component, or two bound components, where by bound
component we mean a stellar velocity distribution following
Equation (1).

The true velocity distribution is smeared out by the
measurement error, modeled by a one-dimensional Gaussian.
We define for each star « the probability to observe it at
velocity Vs

1 V — Vobs)?
P (o) = 76@(—7( be) ] 3)
270,

2
Zo-v,a'

where v is the true velocity of the star, and o, , is the observed
measurement error. Then the likelihood for star a to be drawn
from the distribution defined by Equation (1) is given by

ﬁ(y (Vobs|Veses k) = Colk, Vesc)
X [ dv (ese = M P, (i) O (se — 1), “)

where the lower limit of the integration region is 0 to account
for stars with true speed below vii,. The factor C,(k, vesc) leads
to a normalized PDF in the data region [vpi,, 00], meaning

o0
f AV ﬁa (Vobs|Vese» k) = 1. (5)
Viin
Note that the power law in Equation (1) should approximately
describe stars even with velocities below vy,;,, since some of
these stars may be observed above vy, due to measurement
error. The normalization factor is

Calhs ve) =2 [ dv (e = Wx

-1
1 + erf| L —Ymin . 6
( + er ( \/Eam )] (6)

Studies such as those of Piffl et al. (2014) and Deason et al.
(2019) used bootstrapping methods to take into account the
error distributions. They resampled the stars within their error
bars to quantify the errors on the final values of the escape
velocity. In this paper, we account for individual errors on all
stars in the likelihood function. Although our method is more
computationally intensive, we forward model all errors to
obtain posterior distributions. A similar treatment of the errors
was used by Koppelman & Helmi (2021) (with the difference
that ours includes an outlier model and a second component).
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Beyond the bound component, we also expect a small
fraction of the stars to be either ejected or on unbounded orbits
(e.g., Hattori et al. 2018). To account for such stars, we use an
outlier model similar to that of Williams et al. (2017), where

2
O (1pg) = Aexp| ————s |, 7
pa' ( ObS) p 2[0_‘2““ + U%’a] ( )

Unlike Williams et al. (2017), which fixed the value of
Oou = 1000 km s ™!, we marginalize over the dispersion o, of
the outlier model as well as its fraction f. We also add in
quadrature the measurement error of a particular star, although
we expect it to be subdominant to o,,. We then normalize
Equation (7) over the data region [V, o0], and obtain

_ s Vmin J(z)ul+ ‘7\2'.(\
A = \/;wgm + ot erfc(f). (8)

The likelihood per star « for a single bound component is
therefore

E(I‘t = (1 - f)ij(y (Vo(gslveSCs k) +fp0ut (v(;i)s|0_out)» (9)

while for two bound components it is

L2 =1 = Ol P el Veses ks)
(1 = £ Oslveses K T+ 0" Oeloow),  (10)

where the slopes of the components are k and kg, and the fraction
of the second component is labeled as fs. This can be generalized
to n components. The total log likelihood is given by

log £ =" log L., (11)

with i = {1, 2} the number of bound components assumed in
the analysis. In what follows, we will refer to the two analyses
as the single-component and two-component fits, by which we
are discussing the bound components. In this work, we adopt
the same terminology as in Necib et al. (2019a), where we call
the relaxed component the halo, and the kinematic substructure
the Sausage. We emphasize that we do not know a priori which
component corresponds to which value of k.

We use the Markov Chain Monte Carlo emcee (Foreman-
Mackey et al. 2013) to find the best-fit parameters, using 200
walkers, 500 steps for the burn-in stage, and 2000 steps for
each run. The parameters are initialized to random small
deviations from the following values: the escape velocity
Vese =350km  s7!, the slope k=22, the fraction
f=1og(1079), the outlier dispersion o, = log(800 kms™),
the Sausage’s slope ks=0.7, and the Sausage’s fraction
fs=0.8. We next describe the parameters and priors.

3.2. Priors

The parameters of the single-component fit are the escape
velocity Ve, the slope k, the fraction of the outlier distribution f,
and the dispersion of the outliers o,,. For the two-component
likelihood function, Equation (10), we add the slope of the second
component, kg, and its relative fraction with respect to the bound
components, fs. Without loss of generality, we assume kg < k, but
we remain agnostic as to the physical interpretation of each
component.

We list these parameters in Table 1 along with their priors.
The prior on the escape velocity is taken to be 1/v2.,
corresponding to a uniform prior in 1/ve,. Note that our
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Table 1
List of the Priors Used in the Analysis

Parameter Prior Range Prior
Vese [Vimin, 1000] km s~ 1/v3
k [0.1, 15] 1
f [107% 1] 1/f
Tout [3, 3000] km s~ 1/Gout
ks [0.1, k] 1
fs [0, 1] 1

choice is slightly unconventional, and most other authors such
as Deason et al. (2019) have taken a prior that is uniform in
log vesc. However, given the narrow posteriors we will obtain,
this choice will not impact results significantly. The fraction
and dispersion of the outlier distribution are taken to have
uniform prior in logf and log oy, respectively, given the large
ranges that they might span. The fraction of the second
component fg and slopes k, kg are all taken to have uniform
prior in their respective ranges. The default prior range on the
slopes is taken to be very wide,'® where k, kg € [0.1, 15], as our
goal to avoid shaping the distribution with restrictive priors.

3.3. Akaike Information Criterion

We will run the pipeline of Section 3.1 with a single-
component model, as is standard in the literature, as well as the
two-component model. In order to compare fits with the two
models, we compute the Akaike information criterion (AIC) of
each distribution, where the AIC is defined as (Akaike 1974)

AIC = 25 — 2log(L), (12)

where s is the number of parameters of the fit, and log(ﬁ) is the
maximum log likelihood of the fit. We compare the AIC of the
single- and two-component fits to the data, where the one with the
lower value of AIC is preferred. Alternative functions, for
example, the Bayes information criterion (BIC) can also be used
(see, e.g., Wit et al. 2012), but the AIC provided the most robust
results when applied to simulations. The difference is in the way
that it penalizes the added number of parameters, where AIC
penalizes the models as 2s, while BIC penalizes them as s log(n),
with 7n the total number of data points in the set (Vrieze 2012).
In this analysis, we will be evaluating

AAIC = AIC, — AIC,, (13)

where AIC; is the AIC of the single (i=1) or double (i =2)
component fit.

4. Results with Mock Data

In this section, we present fit results analyzing mock data that
includes a halo component, a component due to a Sausage-like
merger, and an outlier distribution. The bound components are
drawn from true distributions following Equation (1). We use this
analysis to validate our pipeline and explore how well the true Ve,
can be recovered in a fit, depending on different choices for vy,
and on the number of bound components in the fit.

Throughout this section, we work with fiducial samples of
2000 mock stars. The number of stars was chosen to be

19 We have also verified that our results are unchanged with the prior range &,
ks €[0.1, 20]
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Figure 3. (Top) Mock data drawn from a mixture of two bound components with ves. = 500 km s ', and an outlier component with a fraction of 0.01 and a dispersion
Ooue = 1000 km s~ . The halo component has k = 3.5 and the substructure fraction is fs = 0.6, with kg = 1.0. The colored curves are the true distributions. (Left) We
assume no measurement errors. (Right) We assume a measurement error of 5% on the speeds. The true escape velocity is shown as a pink arrow. (Bottom) Ratio of the
generated distribution to the true distribution. The generated stars follow the true distributions (accounting for errors), with fluctuations at high speeds due to the small

outlier fraction. The missing bins are due to the lack of data in these bins.

comparable to that found in the Gaiadata sample, and we
assume Veee = 500 km s~ ! with the slopes k=3.5 and kg=1.0.
The fraction attributed to the Sausage is fg=0.6 for
Vmin = 300 kms~!. The outliers are sampled from a Gaussian
distribution with zero mean, a dispersion o, = 1000 km s~ ! and
an associated fraction f=0.01. From each fiducial sample, we
generate a data set accounting for possible measurement errors,
where we assume the measurement errors on stars are a
percentage of their true velocity. More explicitly, for each star
with a true speed ||, we sample each star’s observed speed from a
Gaussian distribution with a mean given by the true |[V| and a
dispersion x x |[V|. Here, x is the percentage error, and we will
consider as a representative value of x = 5%. This case is closest
to the Gaia data, discussed in more detail in Necib & Lin (2022).

We show a fiducial sample of stars in Figure 3, where in the
left panel there are no measurement errors and in the right panel
we include percentage errors of 5%. The pink arrow shows the
true escape velocity at 500 km s~ ', but in the right panel, the
tail of the distribution extends out beyond 500km s due to
the errors. It is thus imperative that the likelihood takes into
account the presence of such errors. The true distributions
(solid curves) in the right panel are different from those in the
left panel because we plot Equation (4) instead of Equation (1)
in order to account for the presence of errors.

From Figure 3, we can immediately see that if the minimum
velocity of the data sample vy, is too low, we might see more
than a single distribution in the fit. The total distribution (blue)
is dominated by the distribution with the lower k for high
enough speeds (| > 400 km s™'). Below these values, the

presence of the second distribution starts to dominate and will
affect the fit. Using a single distribution would not produce the
correct fit and slope, as we will explicitly show. Nevertheless,
in order to have sufficient statistics and to obtain a reasonable
fit to the distribution, previous works'!' have used rather low
values of vy, = 250, 300 km s~ ! and obtained a local escape
velocity Vege ~ 520-580 km s~ ! (Monari et al. 2018; Deason
et al. 2019). It is not known a priori where the cut should be,
such that a single power-law distribution is valid. Therefore, in
this paper, we will use different values of v, on mock data to
show how this can provide an additional handle on the
robustness of the result.

We now proceed by implementing the analysis outlined
in Section 3 for different sets of minimum velocities, with
vmin € [300, 325, 350, 375, 400] km s~ '. When increasing Vi,
we hold the data set fixed, which leads to the number of stars
decreasing with v,;,. For example, for the sample with no errors,
the number of stars in the sample is 2000 stars for vy, =
300 km s~ ', while it drops to 408 stars for vy, = 400 km s L
The Gaiadata behaves similarly; thus, we can account for the
effect of decreasing statistics with increased cutoff velocity in this
manner.

We show the results of the fit as a function of vy, in Figure 4
for 10 different mock data sets. In the top panel, the red and blue

1 Earlier studies performed this analysis with just the line-of-sight velocity
measurements, so in order to have a fair comparison, we only compare to
Monari et al. (2018) and Deason et al. (2019) as they have used three-
dimensional velocity measurements.
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Figure 4. Analyses of generated data with 5% errors, assuming the fiducial two-component data set used throughout this section. (Top) For each
Vmin € [300, 325, 350, 375, 400] km s~ !, we show on the vertical axis the obtained ves. and one standard deviation error bars for the single-component fit (red) and
the two-component fit (blue). The true value is indicated by the dashed gray line. (Bottom) The solid lines show the average bias in the single-component and two-
component fits obtained by comparing the best-fit v.,. with the true value. The darker bands are ~ 1o regions for the mock analyses, and the lighter shaded region

shows the maximum and minimum values in the set.

data points are from fits to one or two bound components,
respectively, while the dashed gray line is the true vy value. We
begin by considering the sample with vy, > 300 km s~'. In the
single-component fit, v is biased toward larger values and the
bottom panel shows that the average best-fit v.. is high by about
10% relative to the true value. The v results for the single-
component fit are consistent with the behavior discussed in
Figure 2, where the single-function fit tends to find an average of
slopes for both components and higher v.,.. Meanwhile, for the
two-component fit we find the best fit is consistent with the correct
value of ves. = 500 km s~ . For larger v, as shown in Figure 4,
the average bias in the single-component fit becomes smaller and
the two analyses converge on the correct value. Even though the
bias in the single component persists at a level of 5%—10% for
Vimin = 400 km s~!, the spread becomes much larger and the
range of best-fit values for single- and two-component fits is
similar. This is the expected behavior since the speed distribution
for larger |V| is then dominated by a single component.

In Figure 5, we show an example of one of the data sets with
Vimin = 300 km s, along with the best-fit distribution from both
the one-component and two-component fits. Note that in plotting
the best fit (solid lines) and true distributions (dashed lines),
we have taken into account the presence of errors. To do so, we
average over the errors of the stars in the sample, and use
Equation (4) with these values. While there appear to be good fits
in both panels, with only a single component (right panel) the fit
has to account for both the lower speed stars near [V| ~ 300 km
s~ ! with a larger k, as well as the slope and cutoff near ve.. Doing
so leads to overestimating the slope (since it is averaging the slopes
of the two distributions) and the escape velocity, with best-fit
Vege = 546J_r%gkm s~!. Because of the limited statistics of stars

near Ve, the fit is largely influenced by the distribution at lower
speeds. While the single-component fit appears to perform well,
the preference for higher v and k is revealed in the corner plot in
Figure Al as well as in Figure 4.

In the right panel of Figure 5, we can see that with the two-
component fit, one of the components may be poorly
constrained, in this case the halo component. This is because
the halo component dominates for a relatively small range
(V| € [300, 350]km s~ ', as can be seen in the true distribu-
tions). The corner plot in Figure A2 shows that there is a
degeneracy between the substructure fraction and the halo
slope, where a larger halo slope can be compensated by
increasing fs. The fit, however, is finding the correct model of
the tail of the speed distribution, and subsequently the correct
escape velocity. The outlier distribution is also correctly
recovered.

The example in this section illustrates that if there are kinematic
substructures that not captured by the model, this can lead to
biased results in v that are sensitive to the arbitrary choice of
Vmin- In order to evaluate this possibility in real data, we next turn
to a comparison of models with one or two bound components
using the AAIC, introduced in Section 3.3. We compare the two-
function fit to the single-function fit using Equation (13) for the
different values of vy,;,. Negative values of the AAIC correspond
to the two-component model being favored over the single-
component model. Figure 6 shows the average AAIC (solid line)
and range of values for the analyses on the 10 mock data sets. For
Vmin < 350km s, the two-component fit is on average favored,
although there is a large range and for some realizations a
single-component fit might perform just as well. For higher
Vmin = 350 km s~ L the one-component fit can capture the tail
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Figure 6. AAIC for the two-component fit compared with the one-component
fit. Negative values indicate the two-component fit is favored. The solid line
shows the average over the 10 mock analyses, the darker shaded region indicate
the 16th and 84th percentiles, and the lighter shaded region shows the
maximum and minimum values obtained in this set. For larger vy, single- and
two-component fits give similar results and the AAIC reflects the penalty for
introducing additional parameters.

well, and we see the average AAIC tends toward positive values
since there is a penalty for extra model parameters. From
Equation (13), we would expect AAIC =4 if the maximum
likelihoods were exactly equal. Depending on the data set, the
need for a multicomponent model could be revealed by
performing the fit as a function of v,;, and evaluating the AAIC.
This is the strategy we adopt when studying the Gaia eDR3 results
in Necib & Lin (2022).

4.1. Estimating the Substructure Fraction

It is interesting to see how well we can reconstruct properties
of the substructure component, as it could offer independent
information on the Milky Way merger history from other

studies. Here, we consider whether it is possible to extract the
fraction of the non-outlier distribution associated with the
Sausage, fs. Note that the parameter fs in a given analysis is not
exactly the same as the value of fg= 0.6 used in generating the
mock data set. This is because the fraction changes as a
function of vy,;,, which can be seen for example in Figure 3. We
thus compute the true values of f; (vinin) by integrating the true
distributions in the interval [V, oo]km s~ as shown in
Equation (2). The distributions gg and gy are those with the
average errors convolved in them, i.e., the distributions in the
right panel of Figure 3.

In Figure 7, we show the recovered posteriors of the fraction
fs along with the true values for f; (vyin), indicated by dashed
lines. We find that the posteriors on f are quite wide and it is
difficult to extract a precise value, though the results are
consistent with the true values. The difficulty in obtaining f for
these mock data sets is because the halo component is difficult
to constrain when it dominates for only a narrow range of
speeds. Of course, this statement depends on the differences
between the slopes, but we find similar errors on fs in the
Gaia eDR3 analysis in Necib & Lin (2022).

5. Results with FIRE Simulations

In this section, we implement the previous analysis on
realizations of the Milky Way. We use the hydrodynamic
simulations'? LATTE (Wetzel et al. 2016) as part of the FIRE
simulations'? (Hopkins 2015; Hopkins et al. 2018). We apply
the analysis to the realization m12f, a Milky Way analog with
stellar properties described in Sanderson et al. (2018). This
galaxy was chosen as it underwent multiple mergers past
redshift 1, the most dominant of which is a merger of peak
mass M, = 1.5 x 10'"'M_, between redshifts 0.12 and 0.39
(Necib et al. 2019b). The stars of this merger have a distinct
velocity distribution that peaks at high speeds at redshift zero at
the location of the Sun (Necib et al. 2019b), which will affect

12 https://ananke.hub.yt/
13 https: //fire.northwestern.edu
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Figure 8. Similar to Figure 4, but for the FIRE simulation m12f. Best-fit values and one standard deviation for the results of the fits of the escape velocity v, for
different values of vp,. The circle, stars, and diamond makers correspond to the three positions of the Sun in the simulation (LSR0, LSR1, and LSR2). The gray band
is the true escape velocity, found through computing the minimum and maximum escape velocity from the potential of the stars in the selected [7, 9] kpc region. The
number of stars has been capped at 2000 so it is comparable with the data selection, and a percentage error of 5% has been added to the velocities of the stars, similar

to the treatment in Section 4.

the tail of the velocity distribution that we fit in this paper. We
include a 5% measurement error, similar to the discussion in
Section 4.

Figure 8 shows the results of single- and two-function fits to the
simulated data, for three different solar positions (LSRO, LSRI,
and LSR2). The true escape velocity (gray band) is obtained by
computing the potential over the particles in the region of interest
(r€[7.9] kpc) and computing the corresponding escape velocity
using \/2|®(r) — ®(2r;,)|, with the r.; = 293.2 kpc, as stated in
Sanderson et al. (2018). The band corresponds to the minimum

and maximum inferred escape velocity in this region. We find that
the two-function fit is stable and consistent with the true v, for all
Viin. FOT Vin = 300 km s~ !, the result for Vesc 18 actually lower
than the true value by roughly 10%, similar to what was found in
Grand et al. (2019) and Koppelman & Helmi (2021).

In contrast, the results for the single-function fit are more
variable across the different solar positions. In particular, for
LSRO and vpin = 300km s~ the fit gives vee = 970733 km
s~!, beyond the limits of the plot. The posterior is in fact

peaked at the upper range on the prior, ve,e = 1000 km s~ ', as
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Figure 9. Similar to Figure 5, but for the FIRE simulation m12f, and the solar position LSRO. (Left) is the single-function fit, while (right) is the two-function fit.
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Figure 10. Similar to Figure 6, but for the FIRE simulation m12f.

can be seen in the corner plot of Figure A3 (by comparison,
Figure A4 shows the corner plot for the two-function fit for the
same underlying distribution). The stellar velocity distribution
and best-fit distributions for this solar position are shown in
Figure 9. We see for this case that a single power law is not
able to fit the data well, with an excess of high-speed stars near
the tail in the left panel. These high-speed stars can be fit with a
substructure component with low slope ks = 0.707958  con-
sistent with the expectation for the Sausage.

Figure 10 shows the model comparison between single- and
two-component fits, obtained from evaluating the AAIC as a
function of vy,;,. There is a large spread in results, with LSRO
showing a strong preference for a two-component fit for
Vmin < 350km s~!. For the other LSRs, there is little or no
preference for the two-component fit. For these, the inferred veg. is
similar whether one or two components is included, although the
best-fit v.s. may be higher or lower than the true value by up to
2030, depending on vy,;,. Thus, we see that even within one
simulated galaxy, results can vary significantly by location, which
is expected since the Sausage is not a fully mixed structure.
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6. Conclusions

In order to extract sensible results for the local stellar escape
velocity, recent studies have taken low values for vy;,, Where it is
not clear if the power-law distribution of Leonard & Tremaine
(1990) holds, and imposed artificial priors on the slope of the speed
distribution k. These choices can shape the measurement of the
escape velocity and the mass of the Milky Way. In this paper, we
developed a more general framework to fit the escape velocity by
accounting for deviations from the single power-law distribution. In
particular, we account for the presence of multiple kinematic
substructure components in the speed distribution for the first time.
Our pipeline also accounts for individual errors on stellar speeds in
a forward model, as well as the outlier distribution.

A second kinematic component in the speed distribution is
motivated by the presence in our local neighborhood of (at least)
a second kinematic structure besides the stellar halo, called the
Gaia Sausage. To account for this, studies of the tail of the speed
distribution either need to increase the minimum velocity Vipin
above which we define a tail, or make sure that we have the
correct number of components in the model. Thus, including a
second kinematic component is physically motivated.

To model the presence of this substructure, we introduce a
second bound component following Equation (1), with the same
escape velocity but a new slope for the tail k. The approach can
also be generalized to include more components. We then fit for
the escape velocity, the slopes of the structures, and their
fractional contributions. The fit is repeated with different numbers
of components, and different definitions of the tail of the
distribution (i.e., different values of viin).

Using mock data with multiple components, we found that our
pipeline can reconstruct v in the presence of substructure, and is
robust to the presence of observational errors. We have shown
how a single-component fit could be biased for low vy, while at
high vy, the result of the single and two-component fits should
converge. Using the AAIC to compare models, we show that
multiple components are preferred at low vp;,, while a single
function is sufficient as v, increases.

We also applied our pipeline to mock data obtained from
hydrodynamic simulations, focusing on a particular realization of
a galaxy with similar features and merger history as the Milky
Way. We find that a two-component fit performs well and is
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consistent with the true ve,.. A single-component fit gives more
variable results: at some solar positions, it gives results consistent
with the true values, but we found that it can also sometimes give
highly biased and degenerate fit results. This further motivates
goodness-of-fit comparisons on real data with multiple substruc-
ture components.

In a companion paper, Necib & Lin (2022), we use the method
outlined here to measure the escape velocity of the Milky Way. We
apply the single- and two-function fits over the five values of vy,
as was done on the mock data sets. There we show that a two-
component fit does provide a somewhat better fit to Gaia data,
allowing us to extract a robust escape velocity of vese = 44573 km
s~ . The corresponding Milky Way mass inferred from these results
is Magy = 4.6703 x 10"'M,, for the two-component fit.
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Appendix A
Corner Plots

In this appendix, we show example corner plots of the fits of
the main text.

A.1. Mock Data

In Figures Al and A2, we show the corner plots for mock
data generated with 5% observational errors as discussed in
Section 4. The mock data set is the same as that shown in
Figure 5.
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Figure Al. Corner plot of the run with mock data assuming one component and v, = 300 km s~ '. The escape velocity is biased toward larger values compared to
the true vee = 500 km s™'. The true k shown here is that of the component with k = 3.5. See discussion in Section 4.

11



THE ASTROPHYSICAL JOURNAL, 926:188 (15pp), 2022 February 20 Necib & Lin

Vese = 505.0772498

k= 388730

k

log(f)
\S/ AN

AN N
'd’é'}é'\o

log(oout)

+0.72
kSuhs = 1-27_[),70

kSubs

fSubs = 0644:8%%

fSubs

RN

<
D%DQ @9 <D(‘QQ (‘QQQ (‘0@ IR SIS \(J’ /@;.D ;DQ /b:fa /v%.% /OD'D %.b‘ (‘cho (\q’ (\CQ
Vesc k log(f) log(001lt)

Figure A2. Corner plot of the run with mock data assuming two bound components, vy, = 300 km s~ ', and percentage errors of 5%. See discussion in Section 4.

A.2. FIRE Data

In Figures A3 and A4, we show the corner plots for The data is generated with 5% observational errors as discussed
simulated FIRE data at the solar position associated with LSRO. in Section 5. The data set is the same as that shown in Figure 9.
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Figure A3. Corner plot of the run with FIRE data assuming one component and vpi, = 300 km s~'. The escape velocity is biased toward much larger values
compared to the true ves. km s~ ' and the posterior in fact is piled up at the upper bound of the prior range.
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