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Abstract

Measuring the escape velocity of the Milky Way is critical in obtaining the mass of the Milky Way, understanding
the dark matter velocity distribution, and building the dark matter density profile. In Necib & Lin, we introduced a
strategy to robustly measure the escape velocity. Our approach takes into account the presence of kinematic
substructures by modeling the tail of the stellar distribution with multiple components, including the stellar halo
and the debris flow called the Gaia Sausage (Enceladus). In doing so, we can test the robustness of the escape
velocity measurement for different definitions of the “tail” of the velocity distribution and the consistency of the
data with different underlying models. In this paper, we apply this method to the Gaia eDR3 data release and find
that a model with two components is preferred, although results from a single-component fit are also consistent.
Based on a fit to retrograde data with two bound components to account for the relaxed halo and the Gaia Sausage,
we find the escape velocity of the Milky Way at the solar position to be = -

+v 445esc 8
25 km s−1. A fit with a single

component to the same data gives = -
+v 472esc 12
17 km s−1. Assuming a Navarro−Frenck−White dark matter profile,

we find a Milky Way concentration of = -
+c 19200 7
11 and a mass of = ´-

+M M4.6 10200 0.8
1.5 11 , which is

considerably lighter than previous measurements.

Unified Astronomy Thesaurus concepts: Milky Way dynamics (1051); Stellar kinematics (1608)

1. Introduction

Since the initial discovery of dark matter (DM; Zwicky 1933),
estimating the total mass and density profile of the Milky Way has
been of crucial importance, providing a window into estimating
the mass of the unseen DM. Various methods have been
suggested to tackle this question, from modeling the density
distributions of the different Galactic components (Caldwell &
Ostriker 1981), to the study of the fastest-moving stars
(Alexander 1982), to fitting the local escape velocity of
the stars as a way to constrain the local gravitational
potential (Leonard & Tremaine 1990), to more complex methods
that involve using large stream structures such as the Sagittarius
stream to constrain the Milky Way potential at large distances
(Gibbons et al. 2014; Dierickx & Loeb 2017).

In recent years, a number of new phase-space structures have
been discovered, which speaks to the success of hierarchical
structure formation (White & Rees 1978) and also suggests the
need to reexamine methods to extract the Milky Way mass. One
of the many discoveries pioneered by Gaia was the Gaia Sausage
or Gaia Enceladus (Belokurov et al. 2018; Helmi et al. 2018),
which we will refer to as the Sausage in the remainder of this
paper. The Sausage is the remnant of a merger that occurred 6–10
billion years ago between a galaxy with a stellar mass
of∼108−109 Me and the Milky Way (Deason et al. 2018;
Lancaster et al. 2019; Myeong et al. 2018). This substructure is
kinematically distinct from the stellar halo, with stars on extremely

radial orbits (Deason et al. 2018), and shifts the peak of the stellar
speed distribution to lower values compared to the Standard Halo
Model (Necib et al. 2019a).
In Necib & Lin (2022), we introduced a method to account for

the presence of kinematic substructures in measurements of the
escape velocity. Our work builds on the approach of Leonard &
Tremaine (1990), which modeled the tail of the stellar speed
distribution as

( ) ( ) ( )µ - < <g v v v v v v, , 1k
esc min esc

where vesc is the escape velocity, k is the slope, and vmin is an
arbitrary speed above which we define the “tail” of the
distribution. Many papers have used this formulation to infer
the local escape velocity by fitting for the parameters vesc and k
with various data sets and assumptions (Smith et al. 2007; Piffl
et al. 2014; Monari et al. 2018; Deason et al. 2019; Koppelman
& Helmi 2021). These studies have found large correlations
between vesc and k and subsequently large errors on the escape
velocity measurements. In order to reduce the error bars
associated with vesc, works such as Leonard & Tremaine
(1990), Smith et al. (2007), Piffl et al. (2014), Monari et al.
(2018), and Deason et al. (2019) argue for imposing prior
ranges on k based on simulations. However, Grand et al. (2019)
and Necib & Lin (2022) showed that this approach can lead to
biased results for vesc if the prior range is incorrect compared to
the Milky Way, or if the data are not well described by a single
power law above vmin.
In Necib & Lin (2022, hereafter Paper I) we developed an

approach for measuring vesc that includes multiple bound
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components following Equation (1) in order to generalize
models of the tail and account for the presence of substructure.
In particular, the choice of a rather low vmin = 300 km s−1 is
standard in the literature in order to increase statistics, but it is
not clear that the speed distribution for >v vmin can be
described by only one power-law component. For instance, in
simulated halos with major mergers, the speed distribution can
deviate significantly from the power-law form owing to
substructure (Grand et al. 2019). Since it is known that the
Sausage contributes a large fraction of nondisk stars in the solar
neighborhood (Necib et al. 2019a, 2020a), there is strong
motivation to include multiple components in modeling the
speed distribution.

To test the idea that vesc measurements might be biased by
kinematic substructures, in Paper I we generated mock data that
contain two components following Equation (1), with a
common vesc but different k. We attributed these to a “relaxed”
stellar halo component, which has a larger slope k∼ 2–4, and
to a Sausage component, with a lower slope kS= 1. These
slopes are based on the analytic arguments of Deason et al.
(2019) for tracer populations with different levels of velocity
anisotropy. When vmin is low, we found that a single-
component fit to the mock data tends to overestimate vesc and
also give larger error bars on vesc, but as vmin is increased, the
single-component fit will converge to the correct value. The
analysis was also applied to simulated data in a galaxy similar
to the Milky Way (Sanderson et al. 2018), obtained from the
LATTE suite (Wetzel et al. 2016) based on the FIRE code
(Hopkins 2015; Hopkins et al. 2018). We similarly found that
the single-component fit could be biased toward high vesc,
while the two-component fit gave results consistent with the
true vesc for different values of vmin.

In this work, we use the methods developed in Paper I to
estimate the escape velocity of the Milky Way at the solar
position. We perform the analysis on the early third data release
of Gaia (Gaia eDR3; Gaia Collaboration et al. 2021), focusing
on the subset of stars with line-of-sight velocity measurements
and that passes the quality cuts of Section 2, as well as the
subset of this sample with stars on retrograde motion. We test
for the dependence of vesc on both vmin and number of
components in order to ensure that the model selection is self-
consistent and that results are robust to changes in data
selection. This paper is organized as follows: we discuss the
data sets used in Section 2, summarize the methodology in
Section 3, present the analysis and discuss best-fit results in
Section 4, and study implications for the mass of the Milky
Way in Section 5.

2. Data

We use Gaia eDR3 (Gaia Collaboration et al. 2016, 2021)
and focus on the subset of stars with radial velocity
measurements such that we can reconstruct the stellar speed.
This release contains updated astrometric solutions but uses
radial velocities from the second data release (DR2) from
Gaia (Gaia Collaboration et al. 2018). Not all radial velocities
from DR2 were included in eDR3, since it was pointed out by
Boubert et al. (2019) that a number of stars have potentially
contaminated radial velocities, giving erroneously large values.
In this work, we use the updated catalog by Marchetti (2021).
While only a small fraction of stars with contaminated radial
velocities were removed in Gaia eDR3 (Seabroke et al. 2021),
this has a significant impact on the high-speed stars relevant for

our analysis. Indeed, we find that there are far fewer outlier or
hypervelocity stars in eDR3.
The subset of stars with radial velocities is already a rather

local sample of stars, but in order to restrict to a local
measurement of the escape velocity, we also implement a
Galactocentric distance cut of rGC ä [7.0, 9.0] kpc on the
Marchetti (2021) catalog, which has already implemented a
20% measurement error cut on the parallax. In addition, it is
assumed that the Galactocentric radial solar position is
r= 8.122 kpc (Gravity Collaboration et al. 2018), the Sun’s
position above the Galactic disk is z= 25 pc (Bland-Hawthorn
& Gerhard 2016), the circular velocity at the position of the
Sun is 235 km s−1, and the Sun’s peculiar velocity vector
ve= (11.1, 12.24, 7.25) km s−1 (Schönrich et al. 2010).
Of the stars passing the cuts above, the majority have

fractional errors on the measured speed of (Δv)/v< 5%, while
a small number have fractional errors as large as 10%. In
Paper I, we worked with simulated data that parameter values
could be robustly inferred with data sets where measurement
errors are capped at 5%. In this paper, we therefore place a cut
of (Δv)/v� 5% on the data sample to ensure that the data are
of comparable quality to the mocks tested in Paper I. For the
entire stellar sample where the fractional speed error is �5%,
we find 3932 stars with measured speed greater than or equal to
300 km s−1. This sample size decreases to 110 stars for
v> 400 km s−1. If we consider only stars with retrograde
motion, there are 622 stars above 300 km s−1 and 53 above
400 km s−1. In previous works such as Monari et al. (2018) and
Deason et al. (2019), only retrograde stars were modeled in
order to avoid contamination from the disk. Since disk
contamination can be accounted for by introducing an
additional component in our model, we will therefore consider
analyses either with the full Gaia subset, as discussed above, or
with the subset of retrograde stars only.

3. Method

In this section, we describe the analysis pipeline. Additional
details and studies of the pipeline with simulated data can be
found in Paper I. We model the stellar speed distribution above
vmin with one, two, or three bound components following
Equation (1). The components have a common vesc but
different slopes ki, and we order the components such that
ki> ki+1 when there are multiple components. In general, it is
also possible that not all components are described by the exact
same vesc, for example, if the tail of some distributions is not
entirely populated. In practice, however, the lowest k comp-
onent will dominate the distribution at the highest speeds, so it
is the vesc of this component that we are really constraining.
We account for measurement errors by convolving the true

distributions with Gaussians. Explicitly, the likelihood for a
given star with observed speed vobs and measurement error σ to
be drawn from a given bound component i is given by

( ∣ ) ( ) ( )
( )

ò ps
µ -

-
s

-

p v v k dv
e

v v,
2

. 2i i

v
k

obs esc
0 2

esc

v v

i
esc

obs
2

2 2

We include an overall factor that normalizes the probability
distributions pi to unity for each star, ( ∣ )ò =

¥
dv p v v k,

v i iobs obs esc
min

1. While the true v is restricted to less than vesc, the
measurement error allows for the distribution of vobs to extend
to larger speeds.
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In addition, we include an outlier component that can extend
above vesc to account for possible unbound stars or contamina-
tion from mismeasured stars. The outlier distribution is
modeled as a Gaussian with dispersion σout, and the likelihood
for the star to be drawn from the outlier distribution is given by

⎜ ⎟
⎛
⎝

⎞
⎠

( ∣ )
[ ]

( )s
s s

µ -
+

p v
v

exp
2

, 3out obs out
obs
2

out
2 2

where again we normalize the distribution pout(vobs) to unity.
The total likelihood function for a single star is then given by

a mixture model with

( ∣ ) ( ) ( ∣ ) ( )ås= + - fp v f f p v v k1 , , 4
i

i i iout obs out obs esc

where the mixture fraction f is the fraction of the total stellar
distribution associated with the outliers and fi is the fractional
contribution of the ith component to the bound stars. For a two-
component fit, we refer to the second component as the
substructure component with parameters kS, fS. Although the
three-component fit was not discussed in Paper I, it is a natural
extension to include another component with the same vesc but
a third slope k3 and an associated fraction f3. For the total log-
likelihood, we sum over all the log-likelihood for stars in the
data set.

We used the Markov Chain Monte Carlo emcee (Foreman-
Mackey et al. 2013) to find the best-fit parameters, using 200
walkers, 500 steps for the burn-in stage, and 2000 steps for
each run. For the two-component model, we use the priors
given in Table 1, where kS and fS correspond to the power-law
and fractional contribution of the second component, respec-
tively. For a fit with three components, the priors are modified
to require k ä [0.1, k3] and k3ä [0.1, 20].

4. Results

4.1. All Data

We begin with the entire data set satisfying the quality cuts
of Section 2 and with vmin = 300 km s−1. Because of the
possibility of disk contamination, we consider up to three
bound components. We will refer to the components in order of
decreasing k as the Disk, Halo, and Sausage for convenience.
This is because we expect any contribution from disk stars to
be steeply falling with v, giving the largest k, while the
“relaxed” stellar halo has an expected k∼ 2–4 and the Sausage
has an expected lower slope k∼ 1–2, as discussed in Deason
et al. (2019). However, we emphasize that in this analysis we
cannot empirically determine a physical origin for each of the
bound components.

Figure 1 shows the best-fit distributions obtained with one,
two, or three bound components. First, we see that the single-
component fit (left panel) is not sufficient to describe the data.
This is due to the fact that the fit for the bound component is
anchored at the low end ∣ ∣ ~v 300 km s−1, where there is a
steep slope or high k. This leads to an underestimate of the
number of stars at v∼ 400 km s−1, which is partially
compensated for by increasing the outlier fraction, ultimately
leading to an overestimate of the number of stars at
∣ ∣ >v 500 km s−1. In Paper I, we showed that when the
underlying model contains multiple bound components, a
single-component fit will bias vesc toward larger values. Indeed,
for this fit we found = -

+v 703esc 12
11 km s−1.

Meanwhile, we see that the two- and three-component
models do provide good fits to the data and consistent results.
The two-function fit yields = -

+v 466esc 5
6 km s−1, and the three-

function fit yields = -
+v 440esc 2
20 km s−1, which are consistent

within two standard deviations. In both fits, we expect that the
first component, or the highest k component, will correspond to
any disk contamination that drops steeply in v. In fact, we find
that the result for k= k1 pushes up against our default prior of
ki ä [0.1, 20] on the upper end. This can be seen in the corner
plots for the single, two, and three component fits, provided in
Appendix A.1 as Figures A1, A2, and A3 respectively. While it
is expected that the disk distribution drops sharply for

∣ ∣v 300 km s−1, it might be concerning to have a fit pushing
against the prior here. Therefore, we next turn to the
dependence of our results on vmin.
Our analysis is repeated for [ ]Îv 325, 350, 375, 400min km

s−1. As shown in Paper I, this provides a consistency test for
the underlying model; a vesc posterior that drifts with vmin
suggests that the model is not an accurate representation for the
data. In this case, we find that with larger vmin the fit results for
vesc and k become degenerate, with large error bars on the
resulting vesc. For example, for vmin = 350 km s−1, we find

= -
+v 780esc 150
140 km s−1 with the two-component model. While

this is still consistent with the fit for vmin = 300 km s−1 within
two standard deviations, it suggests that even the multi-
component model is not sufficient to accurately describe the
data. This is likely because our simple Gaussian outlier model
is not a good description of outliers coming from hypervelocity
stars or data contamination. Indeed, the outlier model must fit
both the single star with speed above 700 km s−1 and potential
outliers with speeds of 500–600 km s−1, as can be seen
Figure 1. This issue cannot be eliminated with more stringent
cuts on vmin, and instead we next impose a cut on retrograde
stars to reduce the outlier population.

4.2. Retrograde Data

We next perform the same analysis with the subset of the
stars with retrograde motion only. This significantly reduces the
potential outlier population, as can be seen in Figure 2.
Previous studies have also applied this cut on the data to avoid
disk contamination. Similarly, here we consider a fit with up to
two bound components since we do not expect any disk
contribution for vmin = 300 km s−1.
The resulting fits are shown in Figure 2. Given the absence

of any hypervelocity stars, in this case the outlier model does
not contribute at all, averting the issue with outliers appearing
in the full data set. We see that both single- and two-component
models provide a good fit to the data, with best fits of

= -
+v 472esc 12
17 km s−1 and = -

+v 445esc 8
25 km s−1 , respectively.

Table 1
List of the Priors Used in the Analysis with a Two-component Model

Parameter Prior Range Prior

vesc [ ]v , 1000min km s−1 v1 esc
2

k [0.1, 20] 1
f [10−6, 1] 1/f
σout [3, 3000] km s−1 1/σout

kS [0.1, k] 1
fS [0, 1] 1

3
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These results are largely consistent with each other and with the
fit results obtained in the previous section with vmin = 300 km
s−1. The corner plots for the fits are provided in Appendix A.2
as Figures A4 and A5.

Similar to before, we repeat the fit for vmin = [300, 325, 350,
375, 400] km s−1. Unlike the fits with the entire data set, we
now find consistent results for all vmin for both single- and two-
component fits. The goodness of fit between different numbers
of bound components is shown in Figure 3, while Figure 4
shows the best-fit vesc as a function of vmin.

The goodness of fit is compared using the Akaike
information criterion (AIC; Akaike 1974), which is defined
as ( ˆ )= - sAIC 2 2 log , where s is the number of model
parameters and ( ˆ )log is the maximum log-likelihood. To
compare models, we compute the difference AIC2−AIC1,
where a negative value indicates that a two-component fit is
preferred. For v 350min km s−1, we find some preference for
the two-component model over a single component. As
expected, however, the single function is preferred for

v 375min km s−1. This is because at high ∣ ∣v the distribution
will always be dominated by a single distribution, and extra
model parameters are penalized.

Similarly, Figure 4 shows that the single-component fit tends
to give slightly higher vesc at low vmin, reflecting the slight
preference for the two-component fit. Meanwhile, the vesc
posteriors all converge to the same result at larger vmin.
Therefore, in quoting a single-component fit result, we will use
the result with vmin = 375 km s−1, where the vesc results have
stabilized and converged to the two-component result.

Interestingly, the best-fit slopes for the two-component fit are
= -

+k 2.58 0.41
0.88 and = -

+k 0.64S 0.45
1.22 at vmin = 300 km s−1. This is

similar to the expected slopes for the relaxed Halo component,
k∼ 2−4, and the range of slopes in simulations with Sausage-
like mergers, kSä [1, 2.5], as obtained by Deason et al. (2019).
As mentioned in Paper I, we do not have a priori information
about which component is the Halo and which is the Sausage;
the fit only shows when the data are better modeled by multiple
components with power-law distributions. It cannot show that
each component has a distinct physical origin. Doing so
requires further studies. However, taking this as our interpreta-
tion, the same fit gives a Sausage fraction of = -

+f 0.37S 0.12
0.38.

This is again consistent with the expected Sausage fraction of
nondisk stars at vmin = 300 km s−1, as shown in Figure 1 of
Paper I. These fractional contributions are important in

understanding the composition of the DM distribution and
impact predicted signals in DM searches, which were studied in
Necib et al. (2019b, 2020b).

4.3. Comparison with Previous Results

Given the robustness of the two-component fits with
retrograde data, we will therefore take these as our main
results with vmin = 300 km s−1. A summary of fit results with
different data sets and number of components is given in
Table 2, along with the implied Milky Way mass.
Our results for vesc with Gaia eDR3 are lower than in

previous studies, which all used a single function of the form of
Equation (1) and considered older data sets. Using Gaia DR2,
Deason et al. (2019) find = -

+v 528esc 25
24 km s−1 with a prior

range of k ä [1, 2.5], while Monari et al. (2018) find
vesc= 580± 63 km s−1 with a prior range of k ä [2.3, 3.7].
Note that in order to deal with a large degeneracy in vesc and k,
these studies typically impose a strong prior on the slope k. Piffl
et al. (2014) and Monari et al. (2018) adopt a prior of k ä [2.3,
3.7], obtained using cosmological simulations and finding the
slopes of the tail of the halo stars in their Milky Way
realizations. Meanwhile, Deason et al. (2019) used a lower
prior of k ä [1, 2.5] given that cosmological simulations with
merger events similar to the Gaia Sausage had slopes in that
range. These priors strongly affect the measured escape
velocity, giving rise to nonconvergent results as can be seen
in the corner plot of Deason et al. (2019).
Our results are also lower than a recent study with Gaia DR2

by Koppelman & Helmi (2021). From an analysis including
radial velocities and without imposing a prior in k, they find

= -
+v 497esc 20
53 km s−1, where the quoted errors are the 99%

confidence intervals. Using a larger sample of stars with only
tangential velocities, they report a lower limit of =vesc

-
+497 24
40 km s−1 at the solar radius, again giving the 99%

confidence interval.

5. Mass of the Milky Way

The escape velocity at a certain radius is related to the
gravitational potential Φ. Therefore, measurement of the escape
velocity can translate to a measurement of the mass of the
Milky Way, once profiles of the different mass components are
assumed. There are several potential issues in going from
fitting the tail of the velocity distribution to the Milky Way

Figure 1. Best-fit results obtained from the full Gaia data with one (left), two (middle), and three (right) bound components. The bound components are labeled with
decreasing k as Disk, Halo, and Sausage for convenience and in line with our expectation for how different components might behave, but the specific assignment
cannot be determined from the fit. The solid lines are the best-fit distributions, while the shaded regions are the 68% containment regions obtained from the posteriors
of the model parameters. The single-component model does not give a good fit to the data, while the results of the two- and three-component fits are largely consistent
with each other and fit the data well. Note that there are a few stars at ∼480 km s−1 that are not well fit even by the three-component model, which could explain why
the escape velocity is lower than expected.

4
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mass, however. It is not guaranteed that the tail of the velocity
distribution will be populated all the way up to vesc, whether
due to halo dynamics or data selection effects. As discussed
already, Grand et al. (2019) found that for simulated galaxies
the best-fit vesc from a single power-law model can deviate
substantially from the true values. In Paper I, we also found
that the inferred vesc could be about 10% lower than the true
vesc in simulated galaxies. However, given the large scatter in
vesc bias and the limited number of simulations, we will not
apply a correction factor to our main results, although we will
consider the effect of such a bias below. In addition, while for
an isolated halo ( ) ∣ ( )∣= Fv r r2esc , in practice we must select
an arbitrary limiting radius beyond which stars can become
unbound. A more realistic assumption is that stars are bound
within a few times r200, where r200 is the radius at which the
galaxy’s mass is 200 times the critical mass of the universe. For
ease of comparison, we will adopt the same definition as
Deason et al. (2019) by taking the limiting radius as 2r200,
with ( ) ∣ ( ) ( )∣ = F - Fv r r r2 2esc 200 .

To recover the mass of the Milky Way, we make the
following assumptions on the different baryonic and DM

components, similarly to Deason et al. (2019), who assume
model I of Pouliasis et al. (2017):

1. The bulge is modeled as a Plummer profile (Plummer
1911) of mass Mbulge= 1.067× 1010 Me and a scale
radius b= 0.3 kpc.

2. The thin disk is modeled as a Miyamoto−Nagai
profile (Miyamoto & Nagai 1975) of mass Mthin disk=
3.944× 1010 Me, a scale radius rthin disk= 5.3 kpc, and a
height radius of zthin disk= 0.25 kpc.

3. The thick disk is modeled as a Miyamoto−Nagai profile
of mass Mthick disk= 3.944× 1010 Me, a scale radius
rthick disk= 2.6 kpc, and a height radius of zthick disk=
0.8 kpc.

4. The DM profile is modeled as a Navarro–Frenk–White
(NFW; Navarro et al. 1996) profile of mass M200 and
concentration parameter c200, which we will fit for. We
take the Hubble constant H= 70 km s−1 Mpc−1, the
matter abundance ΩM= 0.3 (Ade et al. 2016), and the
overdensity taken with respect to the critical mass of the
universe.

To translate the posterior distribution of vesc, marginalized
over all other parameters, into a posterior in the enclosed mass
−concentration M200− c200 space, we use GALPY (Bovy 2015)
to compute the escape velocity of the summed potentials
assumed above in a grid of M200 and c200. We then plot the
probability density function of each point in M200 and c200
using the interpolated version of the escape velocity posterior
distribution, and we show in Figure 5 the 68% and 95%
containment regions based on vesc. Similarly, we overlay
constraints based on the circular velocity vcirc= 230± 10 km
s−1 (Eilers et al. 2019).7 This is important because the escape
velocity gives information on the mass of the Milky Way at
large distances, while the circular velocity constrains it within
the solar circle.
We now compare our findings to the literature. We define the

total mass of the Milky Way as the mass contained within r200
of the DM halo, in addition to the baryons, including the bulge,
thin disk, and thick disk as described above. In Figure 6, we

Figure 2. EDR3 results with retrograde stars and vmin = 300 km s−1 for the one-component fit (left) and two-component fit (right). The legend is similar to that of
Figure 1.

Figure 3. We use the ΔAIC to compare goodness of fit between models with
different numbers of bound components. The plot shows results using the
retrograde Gaia data set, and the subscript indicates the number of components
in the fit. When ΔAIC is negative, the first model is preferred.

7 Although this is not the same value that was used to generate the data
sample, it is the one that has been used in the literature, and we therefore
choose to adopt it so that the translation between escape velocity measurements
and total mass of the Milky Way is consistent with other works.

5
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show the results for the total mass based on the three fit results
in Table 2.

For reference, we also show the masses found by Monari
et al. (2018), Deason et al. (2019), and Koppelman & Helmi
(2021), which were all obtained with Gaia DR2. We note that
there is a small difference in convention, where Monari et al.
(2018) and Koppelman & Helmi (2021) define the escape
velocity cutoff as 3r340 and not 2r200 as we do, although we do
not expect more than a few percent difference due to this effect.
We find that our analysis with Gaia eDR3 consistently shows a
lower mass of the Milky Way than previous studies. As
discussed above, fit results using simulated galaxies show that
the true vesc could be higher than the best-fit value by around
10%. Applying this correction to our best-fit vesc, we find
vesc∼ 489 km s−1, which corresponds to a mass of 6.5× 1011

Me. Even this value of the Milky Way mass is lower than those
in the literature. This might be due to the difference between
eDR3 and DR2, where a large fraction of the high-velocity
stars in DR2 have been discarded. This can be seen in Figure 2.
These data could therefore be interpreted as a lower bound to
the mass. Applying the multicomponent fit described in this

work to DR2 led to the result = -
+v 485esc 7
18 km s−1, which is

9% larger than the value found in our analysis with eDR3.
As can be seen in Figure 5, the circular velocity

measurement plays an important role in constraining the mass
of the Milky Way. For example, the current uncertainties on
both the circular and escape velocities introduce a ∼20% error
on the mass estimate. Dropping the error on the circular
velocity from 10 to 5 km s−1 would reduce this error down
to∼ 15%. The choice of baryonic model also affects the
estimate of the total mass and concentration of the Milky Way.
More explicitly, if we were to adopt the baryonic model used in
Piffl et al. (2014) (which is based on Xue et al. 2008), we find a
similar mass of = ´-

+M M4.6 10200,tot 0.6
1.1 11 , but with a much

larger concentration = -
+c 33200 9
10. A better understanding of

the baryonic model of the Milky Way and a more accurate
measurement of the circular velocity are therefore important in
improving the total Milky Way mass estimates. Similarly,
using a contracted NFW profile due to the presence of baryons
(Schaller et al. 2015; Cautun et al. 2020) would also change the
total mass estimate substantially; Piffl et al. (2014) used both
the regular and contracted NFW profiles and found a difference
of ∼50%.

6. Conclusions

In this paper, we applied a new analysis pipeline for
constraining vesc to Gaia eDR3. Our work is motivated by the
discovery of the Gaia Sausage-Enceladus, as well as by the
need to improve the robustness of vesc fits, which can be very
sensitive to the definition of the “tail” of the velocity
distribution. We introduce a forward model including multiple
power-law components, which provides a more flexible fitting
framework for the tail of the stellar velocity distribution.

Figure 4. Posteriors in the escape velocity for different values of vmin, from fitting the data set satisfying quality cuts, fractional speed error �5%, and retrograde
motion only. The posteriors for the single-component fits (shaded blue) are slightly higher for <v 350min km s−1, suggesting the need for an additional component in
the fit. The posterior distributions for the two-component fit (shaded red) are more stable with vmin. The labels N indicate the number of stars in each sample.

Table 2
Best-fit Values of the Escape Velocity at the Solar Position, as Well as the
Total Mass of the Milky Way Obtained through the Assumptions of Section 5

Data Set Functions vmin vesc M200, tot

(km s−1) (km s−1) (1011 Me)

Retrograde 2 300 -
+445 8
25

-
+4.6 0.8
1.5

Retrograde 2 350 -
+438 2
5

-
+4.1 0.6
0.8

Retrograde 1 375 -
+438 2
4

-
+4.1 0.5
0.8

All data 3 300 -
+439 2
20

-
+4.2 0.6
1.1
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Repeating the analysis for different vmin and number of
components, we are able to robustly determine vesc. Additional
details of this pipeline and examples with simulated data sets
were presented in Paper I.

We found that there is a preference for two bound
components in fits to the Gaia data for stars with speeds
v> 300 km s−1. These components are suggestive of a
Sausage-Enceladus component and a relaxed stellar halo
component, but more study is needed to understand whether
the components truly have different physical origins or whether
a multicomponent model simply provides a more flexible fitting
framework. At the same time, we obtain consistent results for
vesc if only a single component is assumed.

For both the single-component and multicomponent fits, our
result for vesc is lower than previous measurements in the
literature. Using our results for vesc, we determined the total
mass of the Milky Way, finding a value of the concentration of

= -
+c 19200 7
11 and a total mass of = ´-

+M M4.6 10200 0.8
1.5 11 .

Our result for the total mass is lower than those of previous
studies relying on the escape velocity to obtain the mass of the
galaxy. However, they are more consistent with methods based
on the distribution function of globular clusters (e.g., Eadie &
Jurić 2019) and matching satellites of the Milky Way with their
simulation counterparts (e.g., Patel et al. 2018). Wang et al.
(2020) provide a review of all these methods, which shows a
large scatter in the mass estimates in the range of
∼(0.5–2)× 1012 Me. Our results provide the most robust
measurement relying on the escape velocity at the location of
the Sun.

Along with a better understanding of the baryonic
components of the Milky Way, the DM profile, and the local
circular velocity, other effects are important to evaluate in order
to improve Milky Way mass estimates. In particular, many of
the existing estimates assume a relaxed equilibrated halo
between the location of the Sun and the edge of the galaxy. The
presence of satellites, streams, and the evidence of the active
merger history of the Milky Way would suggest otherwise. It is

therefore crucial to pair our pipeline, applied at different
distances from the Galactic center, with a better understanding
of the halo at larger radii. A combined approach will help build
a complete and coherent picture of the Milky Way potential
and constrain the shape of the DM halo.

We are grateful to I. Moult for early discussions and
collaboration on the project and to M. Lisanti for helpful
feedback. We would also like to thank L. Anderson, A.
Bonaca, G. Collin, A. Deason, P. Hopkins, A. Ji, and J.
Johnson for helpful conversations.
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DESC0011632, the Sherman Fairchild fellowship, the Uni-
versity of California Presidential fellowship, and the fellowship

Figure 6. Best-fit values of the escape velocity (top) and total mass (bottom) of
the Milky Way for the different analyses discussed in Section 4. The analysis of
the retrograde data is the most robust and tends to be lower than previous
measurements using DR2 data (gray points). For the escape velocity
measurement of Koppelman & Helmi (2021), we divide their errors by 3, as
they quote 99% confidence intervals while we quote 68%. For the mass
measurement, Koppelman & Helmi (2021) multiply the escape velocity
estimate by 10%, motivated by the findings of Grand et al. (2019) for potential
biases. The mass plotted above is the one including this factor.

Figure 5. Mass and concentration of the DM halo, constrained by the circular
velocity measurement (blue) from Eilers et al. (2019) and by the escape
velocity (red) studied in this work. For vesc we take the posterior from the three-
function fit and vmin = 300 km s−1. The contours are 68% and 95% CL, and the
black lines show the combined constraints.
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et al. 2013), IPython (Pérez & Granger 2007), Galpy
(Bovy 2015).

Appendix
Corner Plots for Analyses in Main Text

A.1. Corner Plots for All Data, vmin= 300 km s−1

In this appendix, we show corner plots for the fits in
Figure 1, obtained with the full Gaia data set satisfying
quality cuts.

A.2. Corner Plots for Retrograde Data, vmin= 300 km s−1

In this section, we show corner plots for the fits in Figure 1
obtained with the retrograde stars in the Gaia data set satisfying
quality cuts.

Figure A1. Corner plot for the single-component fit of the full Gaia data, with vmin = 300 km s−1 and a cap of 5% on the measured fractional error of the speeds. The
contours correspond to 68% and 95% containment.
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Figure A2. Corner plot for the two-component fit of the full Gaia data, with vmin = 300 km s−1 and a cap of 5% on the measured fractional error of the speeds. The
contours correspond to 68% and 95% containment.
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Figure A3. Corner plot for the three-component fit of the full Gaia data, with vmin = 300 km s−1 and a cap of 5% on the measured fractional error of the speeds.The
contours correspond to 68% and 95% containment.
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Figure A4. Corner plot for the one-component fit to the retrograde stars with vmin = 300 km s−1. The contours correspond to 68% and 95% containment.
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Figure A5. Corner plot for the two-component fit to the retrograde stars with vmin = 300 km s−1. The contours correspond to 68% and 95% containment.
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