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In this work, we study the relativistic quantum kinetic equations in 2+1 dimensions from Wigner
function formalism by carrying out a systematic semi-classical expansion up to ~ order. The derived
equations allow us to explore interesting transport phenomena in 2+1 dimensions. Within this
framework, the parity-odd transport current induced by the external electromagnetic field is self-
consistently derived. We also examine the dynamical mass generation by implementing four-fermion
interaction with mean-field approximation. In this case, a new kind of transport current is found to
be induced by the gradient of the mean-field condensate. Finally, we also utilize this framework to
study the dynamical mass generation in an external magnetic field for the 2+1 dimensional system
under equilibrium.

PACS numbers:

I. INTRODUCTION

The study of relativistic quantum kinetic theory has attracted much interest recently, partly motivated by the
theoretical developments and experimental search for anomalous chiral transport phenomena in relativistic nuclear
collisions [1–3]. Such a theory is both theoretically important as a many-body theoretical description and practically
useful for describing relevant transport in a general out-of-equilibrium system. Many interesting results were obtained
in 3+1 dimensions, such as the relativistic kinetic theory for scalar and fermions without external field [4], the
anomalous chiral transport equation in heavy-ion collisions [5–10], the quantum kinetic theory for massive fermions
under external fields [11–20], and the non-relativistic kinetic theory of spin-polarized system [21–23].

The relativistic quantum kinetic theory in 2+1 dimensions is of its own interest. Firstly, it could be a good starting
point for developing a full quantum transport description for the case of massive fermions. At the moment, it is still
a challenge to derive the kinetic equation with the spin evolution of the massive fermions under the external Abelian
gauge field in 3+1 dimensions. One technical reason is that there are 16 independent components of Wigner function
in 3+1 D, which are coupled with each other by the mass term and very complicated to solve. In contrast, there
are just 4 independent components of Wigner function in 2+1 dimensions, and their equations are much simpler.
This could allow a better conceptual and technical understanding of the finite mass effects in the quantum transport
equations [24]. Secondly, the Quantum ElectroDynamics in 2+1 D (QED3) has attracted recent physical interest,
e.g. in the studies of the high-Tc superconducting systems [25, 26] and the graphene [27–30]. Other interesting
phenomena in 2+1 dimensions include e.g. the fermion condensation in the massless limit induced by the magnetic
fields 〈ψ̄ψ〉 ∝ |eB| [31–34].

In this work, we will study the relativistic quantum kinetic equations in 2+1 dimensions within the Wigner function
formalism. The starting point is a Dirac theory with massive fermions coupled to external electromagnetic fields
and with dynamical four-fermion interactions, i.e. the Nambu–Jona-Lasinio (NJL) model in 2+1 D which allows
considering the dynamical mass generation in the external electromagnetic field. To systematically derive the kinetic
equation of the NJL model in 2+1 D, we will adopt the strategy in our previous work [9], starting from the Lagrangian
of NJL model in 2+1 D and carrying out the semi-classical expansion by keeping the equations up to ~ order. In doing
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so, we will self-consistently derive the well-known parity-odd transport current, jµ ∝ εµρσFρσ, [35–41]. Furthermore,
we will study the dynamical mass generation in this general framework by deriving and consistently solving the gap
equation and the kinetic equations together. The results will provide useful insights about the quantum effects beyond
the mean-field as well as the role of the external magnetic field in dynamical mass generation. As we shall show later,
the massive fermions in 2+1 D demonstrate certain quantum features that would emerge in 3+1 D only for massless
chiral fermions. The case here is similar to the study of Weyl fermions. For massless fermions, one usually study
particles with parallel or anti-parallel spin and momentum in two dimensional spin space. It may be noted that in
general, a physical fermion state in (2+1)D could be the superposition of two inequivalent irreducible representations
as mirror images of each other. In the present work, we choose to focus one sector composed of the particles with
“spin-up” and the anti-particles with “spin-down” (— see Appendix A for further definitions). Our study would help
provide useful theoretical understanding for physical systems typically containing both sectors, and it might also be
possible that certain future (2+1)D quantum materials might realize an isolated sector.

The paper is organized as follows. In Sec.II, we will give a simple review on Wigner function formalism and derive the
full quantum kinetic equations in this approach without collision term. In Sec.III, we focus on deriving the covariant
transport equations in 2+1 D and the equal-time transport equations by carrying out the semi-classical expansion
method, as well as self-consistently deriving the parity-odd transport currents. In Sec. IV, we will further obtain the
covariant and equal-time quantum transport equations with collision term in relaxation time approximation. In Sec.V,
we will investigate the dynamical mass generation under the external field from the gap equation that incorporates
quantum effects. Finally, we conclude in Se.VI.

II. EQUATION OF MOTION FOR THE WIGNER FUNCTION

To study the dynamical mass generation for fermions in 2+1 Dimensions, let’s consider the NJL model in 2+1 Di-
mensions, which can be written as the following form [31, 42–45]

L = ψ̄ (i~γµDµ −m0)ψ +
G

2
(ψ̄ψ)2 , (1)

where Dµ = ∂µ + iQAµ/~ is the covariant derivative, and the dimension of the charge Q is [m]1/2, which is different
from the case in 3+1 D. Besides, there are some other differences between the 2+1 D and the 3+1 D, although the
Lagrangian density takes the same formula. Firstly, the Dirac matrices γ in 2+1 D are different from those in 3+1
D. There are two nonequivalent irreducible representations of the Dirac matrices in 2+1 D, which are characterized
by i

2Tr(γ0γ1γ2) = s, s = ±1 [46]. In this work, we choose the Jackiw representation [47]

γ0 = τ3, γ1 = iτ1, γ2 = iτ2, γµγν = gµν − iεµναγα. (2)

Here, τ i are the Pauli matrices and ε012 = ε012 = 1, gµν = diag(1,−1,−1). Particularly, {I2×2, γ
0, γ1, γ2} form a

complete, linearly independent basis of 2 × 2 matrices, and the chirality γ5 = iγ0γ1γ2 = −1 has a fixed value in
the Jackiw representation [24]. The other nonequivalent irreducible representations is obtained by flipping the sign
of γµ, γ̃µ = −γµ, and γ̃5 = +1. Secondly, unlike in 3+1 D, the spinor ψ in Eq.(1) just represents the particle
with spin up or the anti-particle with spin down in the irreducible representations of Dirac matrices Eq.(2), as
discussed in A, while the spin-down particles and spin-up anti-particles are represented by the other irreducible
representations characterized by γ̃µ [48]. Thirdly, as discussed in Ref. [47], the Lagrangian density in Eq.(1) is not
invariant under parity transformation, due to the mass term with the irreducible representations Eq.(2). To see
this, we take the parity transformation corresponding to flipping the sign of one of axes, say x̂, and a spinor under

such parity transformation is P̂xψ(t, x, y)P̂x = −iγ1ψ(t,−x, y), then the mass term will flip the sign under parity

transformation, i.e P̂xψ̄ψ(t, x, y)P̂x = −ψ̄ψ(t,−x, y).
In this work, we choose one of the irreducible representations of Dirac matrices, which means we focus on the

sub-system composed of the particles with spin up and the anti-particle with spin down. Consequently, the properties
of positive charge and negative charge are not necessarily the same. For instance, the dynamical mass is different for
opposite charges. Besides, this system is similar to the chiral system, the spin is locked in both of them. In the chiral
system, the spin is either parallel or anti-parallel to the momentum, while the spin is out-of-plane in this system.

Under the mean field approximation, the Lagrangian density can be reduced as

LMF = ψ̄ (i~γµDµ − (m0 + σ))ψ − 1

2G
σ2 , (3)
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with the effective mass σ = −G〈ψ̄ψ〉. In this work, the flavor structure is not considered for simplification. From the
mean field effective Lagrangian density, one obtains the Dirac equation:

[i~γµDµ − (m0 + σ)]ψ = 0, ψ̄
[
i~γµD+

µ + (m0 + σ)
]

= 0.

Where the operator D+
µ =

←−
∂ µ − iQAµ/~,

←−
∂ µ is the space-time derivative which acts only on the former function.

The covariant and gauge invariant Wigner function for fermions in 2+1 dimensions is [11, 24]

Wαβ(x, p) =

∫
d3y

(2π~)3
e−

i
~p·y

〈
ψ̄β(x+)U(x, y)ψα(x−)

〉
, U(x, y) = e−

i
~Q

∫ x+
x− dzµAz , (4)

where the notation x± = x ± y
2 , and the function U(x, y) is the gauge link ensuring the invariance under gauge

transformation. Combining the above Dirac equations and the definition of Wigner function, we can write down the
equation of motion for Wigner function as [13, 49],(

/K −M
)
W (x, p) = 0 , (5)

where the operator Kµ = πµ + 1
2 i~O

µ, herein these two operators are respectively,

πµ = pµ − 1

2
Q~ j1

(
1

2
~4
)
Fµν∂pν , Oµ = ∂µ −Qj0

(
1

2
~4
)
Fµν∂pν ,

and the function ji(i = 0, 1) is the spherical Bessel function. The mass M operator can be decomposed as the

M = M1 − iM2, M1 = m0 + cos

(
1

2
~4
)
σ, M2 = sin

(
1

2
~4
)
σ. (6)

Here the triangle operator 4 = ∂x · ∂p, in which the spatial derivative ∂x only acts on the effective mass σ, but not
on the Wigner function W .

The Wigner function is a 2 × 2 matrix, and it can be expanded in terms of 4 independent generators of Clifford
algebra,

W (x, p) =
1

2
(F + γµVµ) ,

F = Tr[W ], V µ = Tr[γµW ].
(7)

It is obviously that the Wigner function in 2+1 D has less independent degrees of freedom compared to that in 3+1 D
— the pseudo-scalar, axial-vector and antisymmetric tensor are absent in 2+1 D. These four coefficients correspond
to some physical distributions—the mass density, current density and energy-momentum tensor density:

σ = −G
∫
d3pF (x, p), jµ(x) =

∫
d3pV µ(x, p), Tµν(x) =

∫
d3p pµV ν(x, p). (8)

According to Noether’s theorem, the conserved angular-momentum flux density is

Jλµν = xµTλν − xνTλµ + Sλµν .

Herein, the first two terms represent the orbital part of the angular momentum, which depend on the canonical
energy-momentum tensor density Tµν . While the last term defines the canonical spin tensor density, which can be
written as as [49–51]

Sµαβ ≡ ~
4

〈
ψ̄(x){γµ, σαβ}ψ(x)

〉
=

~
4

∫
d3pTr

[
{γµ, σαβ}W (x, p)

]
=

~
2
εµαβ

∫
d3pF (x, p), (9)

where, the spin information is encoded in the scalar component F (x, p). It is more clearly by the following relation,

S0ij =
~
4
〈ψ̄{γ0, σij}ψ〉 = ~ ε0ij〈ψ†σz

2
ψ〉 =

~
2
ε0ij

∫
d3pF (x, p).
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Substituting Eq. (7) into Eq. (5), one can derive the kinetic equations for the four independent components as
follows.

πµVµ −M1F = 0,

1

2
~OµVµ +M2F = 0,

πµF −M1Vµ +
1

2
~εµρσOρV σ = 0,

1

2
~OµF +M2Vµ − εµρσπρV σ = 0.

(10)

These equations form the complete equation set to describe the evolution of the system. Although they are much
simpler than those in 3+1 D, these equations are still hard to solve. Similar to our previous work [9], for the rest
of this paper, we will take the semi-classical approximation and expand the equations in orders of ~ to simplify the
above equations.

III. TRANSPORT EQUATION WITHOUT COLLISION TERM

Our goal is to derive the quantum kinetic equation of the fermions under external Abelian field from Eq. (10). As
did in [9], we take the semi-classical expansion to the operators and the components of Wigner function as following

πµ = pµ − 1

12
Q~24Fµν∂pν +O(~4), Oµ = ∂µ −QFµν∂pν +O(~2), (11)

M1 = m− 1

2

(
1

2
~4
)2

σ +O(~4), M2 =
1

2
~4σ +O(~3), (12)

F = F 0 + ~F 1 +O(~2), V µ = V µ
0 + ~V µ

1 +O(~2). (13)

In above equations, m = m0 + σ, is the effective mass, while σ = −G
∫
d3pF (x, p). Now, we can solve the Eq. (10)

order by order.

A. The zeroth order

To the zeroth order, Eq. (10) can be written as

pµV (0)
µ −mF (0) = 0,

OµV (0)
µ +4σ(x)F (0) = 0,

pµF
(0) −mV (0)

µ = 0,

εµρσp
ρV σ

(0) = 0.

(14)

From the first and third equations of the above set of equations, one can get the on-shell condition for F ,

(p2 −m2)F (0) = 0. (15)

We can formally write the F (0) as

F (0) = mf (0)(x, p)δ(p2 −m2). (16)

Then the vector V µ
(0) can be represented as

V µ
(0) = pµf (0)(x, p)δ(p2 −m2). (17)

According to the definition of the current density Eq. (8), we can get

jµ0 =

∫
d3pµf (0)(x, p)δ(p2 −m2). (18)
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Then the physical meaning of function f (0)(x, p) now is clear— it can be interpreted as the zeroth order distribution
function of the fermions in 2+1 D.

It might be worth noting that the equation set (14) contains four equations: we obtain the formal solution of F (0)

and V µ
(0) by using the first and third equations, then the fourth equation is automatically satisfied. Meanwhile, the

second equation of (14) leads to the evolution equation of f (0)(x, p), i.e. the zeroth order covariant transport equation:

δ(p2 −m2)
(
p · O +mσν∂

ν
p

)
f (0)(x, p) = 0. (19)

Where the operator Oµ = ∂µ −QFµν∂pν , and herein we have introduced a notation σν = ∂νσ(x). The corresponding
Gap equation can be written as

m−m0 = −Gm
∫

d3p f (0)(x, p)δ(p2 −m2). (20)

These above two equations Eq.(19,20) form a complete, self-consistent kinetic transport equation at zeroth order.
They should be solved concurrently when solving the transport equations numerically. Now the information of zeroth
order is clear. With this, we move on to construct the kinetic equation up to the order of ~.

B. The first order

The ~-order sector of Eq. (10) is

pµV (1)
µ −mF(1) = 0,

OµV (1)
µ +4σ(x)F (1) = 0,

pµF
(1) −mV (1)

µ +
1

2
εµρσO

ρV σ
(0) = 0,

1

2
OµF(0) +

1

2
4σ(x)V (0)

µ − εµρσpρV σ
(1) = 0,

(21)

where the operator Oµ = ∂µ −QFµν∂pν . According to the first and third equation in Eq. (21), one can get

(p2 −m2)F (1) +
1

2
εµρσpµOρV

(0)
σ = 0. (22)

Plugging in the solution of V
(0)
σ (17), the second term of above equation is

1

2
εµρσpµOρV

(0)
σ = −Qp · F̃ f (0)(x, p)δ(p2 −m2).

Herein, F̃µ = 1
2ε
µρσFρσ = (−B,−E2, E1) is the dual field strength, and B = −1/2εijFij , Fij = −εijB, Ei = F i0. It

is interesting that the magnetic field B is a pseudo-scalar rather than a pseudo-vector.
Now Eq. (22) can be further simplified as

(p2 −m2)F (1) = Qp · F̃ f (0)(x, p)δ(p2 −m2). (23)

Utilizing the property of delta function, xδ
′
(x) = −δ(x), the solution of F (1) can be formally written as

F (1) = G(x, p)δ(p2 −m2)−Qp · F̃ f (0)(x, p)δ
′
(p2 −m2). (24)

In addition, we have introduced a new function G(x, p). From the third equation in Eq. (21), we can get the solution
of V µ

1 ,

V µ
(1) =

1

m
pµG(x, p)δ(p2 −m2)− 1

m
Qpµp · F̃ f (0)(x, p)δ

′
(p2 −m2) +

1

2m
εµρσOρV

(0)
σ . (25)

After some calculation, the last term can be reduced as

1

2m
εµρσOρV

(0)
σ

=
1

2m
εµρσpσ

(
Oρf

(0)(x, p)
)
δ(p2 −m2) +

Q

m
pµp · F̃ f (0)(x, p)δ

′
(p2 −m2)−mQF̃µf (0)δ

′
(p2 −m2)

− εµρσpσσρ f (0)(x, p)δ
′
(p2 −m2).
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Here, the Schouten identity in 2+1 D,

pλεµρσ − pµερσλ + pρεσλµ − pσελµρ = 0, (26)

is employed.
Now, Eq. (25) can be further reduced as

V µ
(1) =

1

m
pµG(x, p)δ(p2 −m2) +

1

2m
εµρσpσ

(
Oρf

(0)(x, p)
)
δ(p2 −m2)−mQF̃µf (0)(x, p)δ

′
(p2 −m2)

− εµρσpσσρ f (0)(x, p)δ
′
(p2 −m2) ,

(27)

and the physical meaning of the function G(x, p) becomes clear. According to the definition of current density,
the function G(x, p) can be regarded as first order correction to the distribution function, and it can be formally
decomposed as

G(x, p) = mf (1)(x, p). (28)

Then the solution of F (1) and V µ(1) can now be rewritten as

F (1) = mf (1)(x, p)δ(p2 −m2)−Qp · F̃ f (0)(x, p)δ
′
(p2 −m2),

V µ
(1) = pµf (1)(x, p)δ(p2 −m2) +

1

2m
εµρσpσ

(
Oρf

(0)(x, p)
)
δ(p2 −m2)−mQF̃µf (0)(x, p)δ

′
(p2 −m2)

− εµρσpσσρ f (0)(x, p)δ
′
(p2 −m2).

(29)

Using the formal solution of V µ
(1) , we can get the first order current density

jµ1 =

∫
d3pV µ

(1)

=

∫
d3p pµf (1)(x, p)δ(p2 −m2) +

1

2m
εµρσ

∫
d3p pσ

(
Oρf

(0)(x, p)
)
δ(p2 −m2)

−mQF̃µ
∫
d3p f (0)(x, p)δ

′
(p2 −m2)− εµρσσρ

∫
d3p pσ f

(0)(x, p)δ
′
(p2 −m2).

(30)

A couple of interesting physical phenomena can be seen in this equation. Firstly, let us focus on the third term,
which is originated from the external electromagnetic field. In this term, the vacuum contributes a conserved vector
current [35–40],

jµv = ~mQF̃µ
2

(2π)2

∫
d3pθ(−p0)δ

′
(p2 −m2) = ~

Q

8π
εµαβFαβ . (31)

However, it is different form the normal electric current. Writing down different components explicitly, j0
v ∝ B,

j1
v ∝ E2, j2

v ∝ E1, we find the current is perpendicular to the electric field. Also, it explicitly violates parity

symmetry since F̃µ ≡ εµαβFαβ is an axial-vector.
Secondly, the last term in Eq. (30) is a novel current, which is induced by the space-time gradient of the condensation,

jµσ = −~εµρσσρ
∫
d3p pσ f

(0)(x, p)δ
′
(p2 −m2) = −~ εµρνσρuνIm,

Im =

∫
d3p (u · p) f (0)(x, p)δ

′
(p2 −m2) = −

∑
ε=±1

ε

∫
d2p

(2π)22E
(0)
p

d

dE
(0)
p

f
(0)ε
fluid(x,p),

(32)

where uν is the fluid velocity, and ffluid is the distribution function in the fluid co-moving frame. Unlike Eq. (31),
there is no vacuum contribution here, but only the medium contribution. However, it is similar to the current in
Eq. (31) in terms of its direction. Taking the rest frame of fluid, i.e. uµ = (1, 0, 0), one can find j0

σ ∝ 0, j1
σ ∝ σ2, and

j2
σ ∝ σ1. Such current is perpendicular to the gradient of condensation function σ(x). It is clear that this gradient

current vanishes when the condensation is homogeneous or when there is not net particle number. This new gradient
current may be the special case in 2+1 D. It is a natural and interesting question to ask whether and how these
nontrivial currents would also emerge in a fluid dynamic description of the same 2+1D massive fermion systems.
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Fluid dynamics with anomalous currents is known in the case of 3+1D chiral fermion systems [52] and has important
phenomenological applications [53, 54]. It will be tempting to construct a fluid dynamics for 2+1D massive fermions
in a future study.

Next, we move on to discuss the transport equation for f (1)(x, p), which is determined by the second equation of
Eq. (21). Substituting the solution for V µ

(1) into the second equation of Eq. (21, and applying appropriate simplifica-

tions, we find the equation of motion

δ(p2 −m2)

[
p · O f (1)(x, p) +

1

2m
Q(∂νp · F̃ )

(
∂νpf

(0)(x, p)
)
− 1

2m2
εµρσσµpσ

(
Oρf

(0)(x, p)
)

+mσ · ∂pf (1)(x, p)

]
− δ

′
(p2 −m2)

[
Q

m
p · F̃

(
p · O f (0)(x, p)

)
+Qp · F̃ σ · ∂pf (0)(x, p)

]
= 0. (33)

C. Covariant transport equation up to ~ order

Now, let’s combine the zeroth order and the first order transport equations, i.e Eq. (19) and Eq. (33), as well as
the gap equation, we can get the complete covariant transport equation for fermions in 2+1 D as follows:

δ

(
p2 −m2 − ~

Q

m
p · F̃

)[
p · O +mσν∂

ν
p + ~

Q

2m

(
∂νp · F̃

)
∂νp − ~

1

2m2
εµρσσµpσOρ

]
f(x, p) = 0 ,

m−m0 = −G
[
m

∫
d3p f(x, p)δ(p2 −m2)− ~Q

∫
d3p p · F̃ f (0)(x, p)δ

′
(p2 −m2)

]
,

(34)

where the distribution function f(x, p) = f (0)(x, p) + ~ f (1)(x, p), and we have used the Taylor expansion to the delta
function in the transport equation with keeping to the first order. It is worth noting that the on-shell condition has
been modified by the quantum effect. The correction is originated from the coupling between fermion’s magnetic
moment and the external electromagnetic field. According to the modified on-shell condition, we can get the shifted
energy

p0 = εEp, Ep = E(0)
p + ~

εQ

2m

p̃ · F̃
E

(0)
p

. (35)

Herein, p̃µ = (E
(0)
p , ε ~p), and E

(0)
p =

√
p2 +m2 is the classical energy; ε = ±1 denotes the positive and negative

energy respectively, which also means that the distribution now can be decomposed of two branches as follows,

f(x, p) =
2

(2π)2

∑
ε=±1

θ(ε p0)f̃ ε(x, ε p),

f̃+(x, p) = f+(x, p), f̃−(x,−p) = f−(x,−p)− 1.

(36)

In these equations, we have included the vacuum contribution, because it contributes to the physics we are interested
in, and f ε(x, ε p) is the particle (ε = 1) or anti-particle (ε = −1) distribution function.

The quantum correction in energy is caused by the interaction between the fermion’s magnetic moment and the
external field. This is more clear in the particle co-moving frame, in which p̃µ = (p0, 0, 0), and the energy becomes

Ep = E(0)
p − ~

εQ

2m
B = E(0)

p − ~µB B. (37)

µB = εQ
2m is the Bohr magneton. This is the Zeeman effect in 2+1 Dimension. It is interesting that the above shifted

energy can also be treated as modification of the effective mass

Ep =
√
p2 +M2, M = m+ δ m, δ m = ~

εQ

2m2
p · F̃ E=0−−−→ −~µB

E
(0)
p

m
B, (38)

where M is the effective mass of the fermions under external field, while δ m is the mass correction which is at ~ order,
and proportional to the magnetic field in the absence of electric field E.
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D. Equal-time transport equation

In practical calculations of solving the transport equation numerically, we need the equal-time transport equation.
The equal-time transport equation can be obtained by integration over p0 to covariant transport equation in Eq. (34).
After integration over p0 and using the chain rule to the space-time and momentum derivatives (because of the energy
Ep no longer an independent variable), as well as replacing p by εp, we can get

∑
ε=±1

ε

2
Ep

{( 1

Ep
+ ~

1

2mE
(0)2
p

εijσipj

)
∂0 +

[
pi

E2
p

+ ~
1

2m2E
(0)
p

εij (σ0vi − σi)

]
∂i

+ εQ

[
Ẽj
Ep

+ εij
pi

E2
p

B + ~
m

E
(0)2
p

b0B σj + ~
1

2m2E
(0)2
p

σ · F̃ pj

]
∂jp

}
f ε(x,p) = 0,

(39)

where vi = −∂ipE
(0)
p = pi/E

(0)
p is the zeroth oder group velocity, Ẽj = Ej + 1

εQ∂jEp is the effective electric field. The

effective energy is Ep = E
(0)
p + ~ εQ2m

p·F̃
E

(0)
p

.

Taking the Taylor expansion to the 1/Ep and 1/E2
p terms with keeping up to ~ order, one can rewrite the above

equation as

{ (
1 + ~εijσibj

)
∂0 +

1√
G

[(
1− 2~εQ b · F̃

)
vj + ~

E
(0)
p

m
εij (σ0bi − σib0)

]
∂j

+
εQ√
G

[
Ẽj +Bεijv

i − ~εQ(b · F̃ )(Ẽj + 2Bεijv
i) + ~

1

2E
(0)2
p

B σj + ~
E

(0)
p

m
(σ · F̃ )bj

]
∂jp

}
f ε(x,p) = 0

(40)

Herein, for the sake of simplification, we have introduced a new vector bµ = pµ/(2mE
(0)2
p ). The energy Ep and the

factor
√
G now can be written as,

Ep = E(0)
p

(
1 + ~εQb · F̃

)
,
√
G = 1− ~εQb · F̃ . (41)

Accordingly, the corresponding gap equation in Eq. (34) can also be reduced as the following by integration over
p0,

m−m0

= −G
∑
ε=±1

∫
d2p

(2π)22E
(0)
p

[
2mf̃ ε(x,p) + ~ εQ

p · F̃
E

(0)
p

d

dE
(0)
p

f̃ (0)ε(x,p)− ~ εQ
B E

(0)
p + p · F̃
E

(0)2
p

f̃ (0)ε(x,p)

]
− ~

GQB

4π
,

(42)

where f̃+(x,p) = f+(x,p) and f̃−(x,p) = f−(x,p) − 1. The Eq. (40) and Eq. (42) are the complete equal-time
transport equation in 2+1 dimensions.

IV. TRANSPORT EQUATION WITH COLLISION TERM

The quantum transport equation derived in the above section did not consider the collision term. To simply
investigate the effect of the collision term, we will use the well-known relaxation time approximation. As the first
step, the relaxation time approximation for Wigner function can be written as follows [55, 56],

(
/K −M

)
W (x, p) = − i~

2
γ · uW (x, p)−Weq

τ
, (43)

where uµ is the four fluid velocity of the hot medium, which can be determined by the Landau matching condition
(such as u ·Jeq = u ·J, or uµT

µν
eq = uµT

µν), and τ is the relaxation time, which may depend on the space-time. There
is a detailed analysis about the relaxation time approximation for Wigner function in [55].
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Then the kinetic equations for the 4 independent components now can be written as

πµVµ −M1F = 0,

1

2
~OµVµ +M2F = −~

2
u · V − Veq

τ
,

πµF −M1Vµ +
1

2
~εµρσOρV σ = −~

2
εµρσu

ρ
V σ − V σ

eq

τ
,

1

2
~OµF +M2Vµ − εµρσπρV σ = −~

2
uµ

F −Feq

τ
.

(44)

Similarly with the above section, using the semi-classical expansion method to solve this set of equations up to ~
order, we find the formal solution of scalar and vector component as follows

F = mf(x, p)δ(p2 −m2)− ~Qp · F̃ f (0)(x, p)δ
′
(p2 −m2),

V µ = pµf(x, p)δ(p2 −m2) +
~

2m
εµρσpσ

(
Oρf

(0)(x, p)
)
δ(p2 −m2)− ~mQF̃µf (0)(x, p)δ

′
(p2 −m2)

− ~εµρσpσσρ f (0)(x, p)δ
′
(p2 −m2) +

~
2m

εµρσu
ρpσ

f (0) − f (0)
eq

τ
δ(p2 −m2).

These equations are same with the solutions in Eq.(16-17) and Eq.(29), respectively in zeroth order and ~ order,
except the last term of the vector component V µ.

Furthermore, the covariant quantum transport equation can be derived as

δ

(
p2 −m2 − ~

Q

m
p · F̃

)[
p · O +mσν∂

ν
p + ~

Q

2m

(
∂νp · F̃

)
∂νp − ~

1

2m2
εµρσσµpσOρ

]
f(x, p)

= −
(
p · u− ~

2m2
εµρσσ

µuρpσ + ~
p · ω
m
− ~

2m
εµρσ

∂µτ

τ
uρpσ

)
f(x, p)− feq(x, p)

τ
δ

(
p2 −m2 − ~

Q

m
p · F̃

)
,

(45)

where ωµ = (1/2)εµρσ∂ρuσ is the vorticity vector. We find that the collision term in relaxation time approximation
does not modify the on-shell condition. It is also obvious that this equation returns to the traditional relaxation time
formalism of the kinetic equation when σµ, ωµ, ∂µτ → 0. In addition, the corresponding gap equation is irrelevant to
the relaxation time approximation by definition, hence it takes the same formula as that in the above section,

m−m0 = −G
[
m

∫
d3p f(x, p)δ(p2 −m2)− ~Q

∫
d3p p · F̃ f (0)(x, p)δ

′
(p2 −m2)

]
. (46)

Finally, the equal-time transport equation now can be written as{ (
1 + ~εijσibj

)
∂0

+
1√
G

[
ṽj − ~εQb0εijẼi + ~εQ

(
εikẼi bk

)
ṽj + 2~εQB bj +

1

2E
(0)2
p

(
εikṽi σk

)
ṽj + ~

E
(0)
p

m
εij (σ0bi − σib0)

]
∂j

+
εQ√
G

[
Ẽj +Bεij ṽi + ~εQ

(
2b0B + εklẼk bl

)(
Ẽj +Bεij ṽi

)
+ ~

E
(0)
p

m
(σ · F̃ )bj

]
∂pj

}
f ε(x,p)

= − 1

Ep

(
p · u− ~

2m2
εµρσσ

µuρpσ + ~
p · ω
m
− ~

2m
εµρσ

∂µτ

τ
uρpσ

)
f(x,p)− feq(x,p)

τ

(47)

Similar, the corresponding gap equation remains the same:

m−m0

= −G
∑
ε=±1

∫
d2p

(2π)22E
(0)
p

[
2mf̃ ε(x,p) + ~ εQ

p · F̃
E

(0)
p

d

dE
(0)
p

f̃ (0)ε(x,p)− ~ εQ
B E

(0)
p + p · F̃
E

(0)2
p

f̃ (0)ε(x,p)
]

− ~
GQB

4π
.

(48)

So far, we have developed the theoretical framework, as the combination of Eq. (47) and Eq. (48), to describe the
evolution of distribution function f for fermions with dynamical mass m in 2+1 D. The space-time evolution of such
systems with any initial condition can be studied by solving the equation of motions numerically.
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V. THE GAP EQUATION IN EQUILIBRIUM STATE

An interesting question is how the dynamical mass m changes with temperature, chemical potential, and external
field. In this section, we consider a simple case in which the system is under a constant electromagnetic field, and
close to the global equilibrium state, as well as the condensation σ is constant for space-time, i.e σµ = ∂µσ(x) = 0.
Besides, we set the mass m0 = 0 for a clear physical picture. The transport equation Eq. (40) can be reduced to the
following {

∂0 +
1√
G

(
1− 2~εQ b · F̃

)
vi ∂i

+
εQ√
G

[
Ẽj +Bεijv

i − ~εQ(b · F̃ )(Ẽj + 2Bεijv
i)
]
∂jp

}
f ε(x,p) = 0.

(49)

As discussed in appendix B , the equilibrium distribution function can be written as following,

f ε(x,p) =
1

e(Ep−εµ)/T + 1
= f (0)ε(x,p) + ~

εQ

2m

p · F̃
E

(0)
p

∂
E

(0)
p
f (0)ε(x,p),

f (0)ε(x,p) =
1

e(E
(0)
p −εµ)/T + 1

.

(50)

Herein, f (0)ε(x,p) is the zeroth order equilibrium distribution function and f ε(x,p) is the complete equilibrium
distribution function which include the zeroth and first order contribution. The notations T and µ are the temperature
and effective chemical potential, respectively. It should be noticed that we have let uµ = (1,0) just for convenience,
and the effective chemical potential µ(x) = µ0 − QA0. Where µ0 is the chemical potential of fermions, and A0 the
electric potential. However, this conflicts with the assumption of constant σ. Therefore, the electric field should be
absent and the effective chemical potential µ(x) = µ0. Then, the gap equation Eq. (42) can be written as

m = −G
∑
ε=±1

∫
d2p

(2π)22E
(0)
p

[
2mf̃ ε(x,p)− ~εQB

d

dE
(0)
p

f (0)ε(x,p)

]
− ~

GQB

4π
. (51)

Herein, the the effective chemical potential µ(x) = µ0 in the equilibrium distribution function. It means that there
is no magnetic field effect on the zeroth order distribution function, which can be understood due to the system
as a whole is under a static state because of the fluid velocity uµ = (1,0). It may be noted that taking the zero
temperature of the above result shows explicitly that the vacuum condensate is proportional to the magnetic field
strength.

Substituting Eq. (50) into the gap equation Eq. (51), one can find the analytical expression as

m2

2π
+m

(
1

G
− Λ

2π

)
+
m

2π
T
∑
ε=±1

ln
(

1 + e(−m+εµ)/T
)

+ ~
QB

2π

(
1

e(m−µ)/T + 1
− 1

e(m+µ)/T + 1

)
+ ~

QB

4π
= 0. (52)

It is obviously that the quantum correction is contributed by the magnetic field. The gap equation returns to the
classical case when the magnetic field vanishes. The bare coupling constant G can be fine-tuned, since the NJL model
in 2+1 D is renormalizable. We take the normalization scheme as in Refs. [57–59],

1

G
− 1

Gc
= −M0

2π
sgn(G−Gc), (53)

where the critical coupling Gc = 2π/Λ and M0 > 0 are of finite quantities respectively, and sgn(x) is a sign function
of x. For vacuum state in absence of the magnetic field, i.e. QB = 0, T = 0, and µ = 0, one can get

m2

2π
+m

(
1

G
− Λ

2π

)
=
m2

2π
− mM0

2π
sgn(G−Gc) = 0. (54)

There are two solutions of the above equation, one is m = 0, while another m = M0 sgn(G−Gc). It means that the
dynamical mass generation is only possible for G > Gc, in which the dynamical mass m = M0. The quantity M0 plays
a role as the effective fermion mass in vacuum. The solution m = 0 is a trivial solution. This can be seen by introducing

the thermodynamic potential Ω. Path integral calculations [58, 60] show that ∂Ω/∂ m = m2

2π −
mM0

2π sgn(G−Gc), hence
Eq.(54) is equivalent to the extremization condition of thermodynamic potential. For supercritical case (G > Gc),
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∂2Ω/∂ m2|m=0 < 0 is the maximum value of the effective potential Ω. While ∂2Ω/∂ m2|m=M0
> 0 is the minimum of

it. So m = M0 is the physical mass. Besides, there is one, and only one trivial solution m0 = 0 when the coupling
constant G equals to the critical coupling constant Gc.

In the presence of the magnetic field, QB 6= 0, the situation is different and the dynamical mass generation can
occur for arbitrary coupling constant G. In that case, the gap equation (52) becomes

m2

2π
− mM0

2π
sgn(G−Gc) + ~

QB

4π
= 0⇒ η2

m − ηm sgn(G−Gc) +
1

2
sgn(Q)η2

B = 0, (55)

where we defined the dimensionless variables ηm ≡ m/M0 and ηB ≡
√
|QB|/M0. The corresponding solutions can be

written as

ηm± =
1

2

(
sgn(G−Gc)±

√
sgn(G−Gc)2 − 2sgn(Q)η2

B

)
. (56)

According to this equation, one can find that there is a non symmetry case for the sign of the electric charge Q. As
mentioned before, this is due to the choice of irreducible representation of the Dirac matrices, which limits to the
spin-up particles and spin-down anti-particles. Again, the physical solution of mass can be obtained by minimizing
the effective potential Ω. The left hand side of Eq.(55) equals to ∂Ω/∂ m. Firstly, in the case of negative charge

(Q < 0), the physical solution of mass m scaled by the vacuum mass M0 are ηm+ = 1
2 (1 +

√
1 + 2η2

B) for supercritical

case (G > Gc), ηm+ = 1
2 (−1 +

√
1 + 2η2

B) for subcritical case (G > Gc) and ηm+ = ηB
2 for critical case (G = Gc). It

means that the symmetry breaking can occurs for arbitrary magnetic field strength for these three different critical
cases. Furthermore, the situation is different for the case of positive charge (Q > 0), the physical solution are

ηm+ = 1
2 (1 +

√
1− 2η2

B) for supercritical case (G > Gc) and ηm+ = 1
2 (−1 +

√
1− 2η2

B) for subcritical case (G > Gc).
These shows us that the symmetry breaking can occurs for the case of the supercritical and subcritical in the case of
positive charge, but they are limited to a small magnetic field strength, such as 0 ≤ ηB ≤ 1√

2
. However, there is no

any solution for the case of critical case (G = Gc).
Now we move on to the more general case of finite temperature and chemical potential. With the scheme of Eq.(53),

the gap equation Eq.(52) becomes

m2

2π
− mM0

2π
sgn(G−Gc) +

m

2π
T
∑
ε=±1

ln
(

1 + e(−m+εµ)/T
)

+ ~
QB

2π

(
1

e(m−µ)/T + 1
− 1

e(m+µ)/T + 1

)
+ ~

QB

4π
= 0.

(57)

We can find that there are more rich phenomena of the symmetry breaking in the case of finite temperature. Similarly,
he left hand side of Eq.(57) equals to ∂Ω/∂ m, and physical solutions of this equation minimize the effective potential
Ω.
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FIG. 1: The dynamical mass m as a function of the temperature T , scaled by the vacuum mass M0.

The corresponding numerical results are showed in Fig. 1—3. Firstly, Fig. 1 shows the dynamical mass m is a
function of the temperature, scaled by the vacuum mass M0, for three different magnetic fields. The black solid
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line corresponds to the zero magnetic fields, which can be regarded as the classical results without the quantum
correction. The dashed lines correspond to the results of

√
|QB|/M0 = 0.2 and 0.4, which includes the quantum

correction originated from the interaction between the particle and magnetic field. While both of them correspond
to Q < 0 and G > Gc, the left panel is for neutral systems µ = 0 and the right panel is for a finite chemical potential
µ/M0 = 0.5. We can find that dynamical mass is enhanced by the magnetic field and the finite chemical potential.
We note that while the Lagrangian with m0 = 0 has parity symmetry, the dynamical mass generation m > 0 would
break it spontaneously in the vacuum. Our results without magnetic field show that at high enough temperature the
dynamical mass vanishes and the symmetry restores via a second order transition. Turning on a magnetic field, which
explicitly breaks parity, causes the transition to become a crossover.
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FIG. 2: The dynamical mass m as a function of the magnetic field
√

|QB|, scaled by the vacuum mass M0.

As mentioned previously, the dynamical mass generation is not identical for positive and negative charges, which
can be seen by comparing Fig. 3 and the right panel of Fig. 1. There is no non-trivial solution for the Eq.(57) when
the temperature T beyond a given temperature, denoted by T ∗, and the temperature T ∗ is smaller for the stronger
magnetic field. We can see that the dashed lines suddenly jump to zero beyond the temperature T ∗, this is because
that the left-hand side of Eq.(57) is a monotonically increasing function beyond the temperature T ∗, and the mass
m = 0 is corresponding to the minimum value of the thermal potential.
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FIG. 3: The dynamical mass m is a function of the temperature T , scaled by the vacuum mass M0 in case of Q > 0.
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VI. CONCLUSION

In this work, we have derived the relativistic quantum kinetic equation for massive fermions with NJL interactions in
2+1 D from the Wigner function formalism by carrying out the semi-classical expansion up to ~ order. The equations
are obtained both without and with a collision term. These results have allowed us to examine the quantum effect
from electromagnetic fields on single-particle properties and to self-consistently obtain parity-odd transport currents
induced by these external fields. By deriving the gap equation together with the transport equations, we have also
investigated the dynamical mass generation phenomenon in this non-equilibrium framework. In particular, we’ve
identified interesting quantum effects that are absent in the usual classical mean-field result for the gap equation and
that are induced by the magnetic field and the collision term. We’ve also found a new kind of quantum transport
current that is induced by the gradient of out-of-equilibrium condensate. We’ve computed the mass gap in the special
case of global equilibrium and constant magnetic field and found the nontrivial influence of the magnetic field on
chiral condensate due to the quantum effects included in our results. As we’ve shown, the massive fermions in (2+1)D
demonstrate interesting quantum features that are drastically different from the usual (3+1)D massive fermions. On
the other hand, these features shown in the order-~ transport equations also appear reminiscent of some properties
seen in systems of (3+1)D massless chiral fermions. This may have its origin in the correlation of fermion spin degree
of freedom with other degrees of freedom of the particles: in the (2+1)D massive case with particle/anti-particle due
to dimensionality, while in the (3+1)D massless case with momentum due to chirality. Such an interesting connection
motivates further studies that we plan to carry out and report elsewhere in the future. We end this paper by noting
again that a physical fermion state in (2+1)D could generally be the superposition of two inequivalent irreducible
representations as mirror images of each other. In the present work, we choose to focus on one representation and
understand the consequences of this specific mode alone. Studying physical systems with both sectors is certainly an
interesting question which will be investigated as our next step. It would also be tempting to explore the possibility
that future developments may find certain (2+1)D quantum materials realizing an isolated sector.
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Appendix A: The definition of spin in the 2+1 D

In the 2+1D systems, the spin operator is defined as σz/2, and there are two ways to show that such operator
has the physical meaning of spin. On one hand, σz/2 is the operator associated with rotational generator. Under a
Lorentz transformation, the spinor transforms as [50]

ψ′(x) = S(ω)ψ(x), S(ω) = e
i
2ωµνJ

µν

, (A1)

where the Jµν = i
4 [γµ, γν ] is the generators of the Lorentz group (i.e SO(1, 2)). Noting that Jµν = −Jνµ, there are

three independent generators:

N1 = J10 =
iσ2

2
, N2 = J20 =

iσ1

2
, M = J12 =

σz
2
. (A2)

While N1 and N2 are related to the boost transformation, M ≡ σz/2 is related to rotation.
On the other hand, σz/2 is related to the magnetic moment of the spinor, which can be seen from its coupling with

the electromagnetic fields. Multiplying the Dirac equation under external fields by the operator (i /D + m), leads to
the Klein-Gordon equation controlling the particle energy,

(i /D +m)(i /D −m)ψ =

[
(iD)

2 − Q

2
σµνFµν −m2

]
ψ =

[
(iD)

2 −Q
(
iσ1E2 − iσ2E1 −Bσz

)
−m2

]
ψ = 0, (A3)

where σµν = i
2 [γµ, γν ]. So we can also define the spin operator as M = σ12/2 = σz/2 by the second term in the first

identity and the magnetic field term in the second identity.
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Then, we move on to clarify the meaning of the statement “the particle with spin up or the anti-particle with spin
down”. Let us start from the free Dirac equation

(i/∂ −m)ψ = 0, (A4)

and work in one of the irreducible representations, named A, in which γ0
A = σz, γ

i
A = iσi. In the momentum space,

the positive and negative solutions to the Dirac equations are(
/p−m

)
u(p) = 0,

(
/p+m

)
v(p) = 0. (A5)

In the particle rest frame, one can find the solutions respectively to be

u(m,0) =

(
1
0

)
, v(m,0) =

(
0
1

)
. (A6)

It is straight-forward to see that they are eigenstates of spin operator,

M u(m,0) = +
1

2
u(m,0), M v(m,0) = −1

2
v(m,0). (A7)

Noting the ± 1
2 eigenvalues for positive/negative solutions, respectively, one can see that the irreducible representation

A represents “the particle with spin up or the anti-particle with spin down”. Similarly, one can perform the same
analysis to other irreducible representation, B, and obtain the states with opposite eigenvalues of the spin operator.

Appendix B: The equilibrium distribution function

In this appendix, we discuss the form of the equilibrium distribution function. The equilibrium distribution function
was obtained in [4, 24] as

f εeq(x,p) =
2

(2π)2

1

ep·β−εα + 1
,

p · β = p0β0 + piβi, βµ = uµβ, α = µβ, β = 1/T,

(B1)

where T , µ and uµ are the temperature, chemical potential and velocity of fluid, respectively. The energy p0 =

E
(0)
p ==

√
p2 +m2 at the classical level, p0 = Ep = E

(0)
p

(
1 + ~εQb · F̃

)
at the quantum level, see Eq.(41). It is

important to point out that the equilibrium distribution function must be a solution of the transport equation Eq.(49).
Let us see what the conditions are for the solution. It can be determined by the zeroth order of this transport equation,
i.e {

∂0 + vi0 ∂i + εQ
(
Ej +Bεijv

i
0

)
∂jp

}
f ε(x,p) = 0 . (B2)

Insertion of the above equilibrium distribution function into this equation yields

pµpν∂µβν − ε pµ(∂µα+QFµνβν) = 0. (B3)

Herein, β = 1/T , βµ = uµβ and α = µβ. From this we can get the following conditions

∂µβν + ∂νβµ = 0,

∂µα+QFµνβν = 0.
(B4)

The first equation is the Killing’s equation. In this work, we consider the case without rotation, ∂µβν − ∂νβµ = 0,
hence the velocity and the temperature are all independent of x. Then the second equation of the above becomes

∂µµ+QFµνuν = 0. (B5)

Taking the derivative with respect to space-time, we can get

∂µ∂νµ+Q∂µF νσuσ = 0,

∂ν∂µµ+Q∂νFµσuσ = 0
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Combining these two equations yields

uσ(∂µF νσ − ∂νFµσ) = 0.

Using the Bianchi identity leads to

DFµν = 0, (B6)

where the derivative operator D = u · ∂. The above equation leads to DAµ = ∂µφ, φ is an arbitrary function, and
we choose a gauge-fixing that φ = 0. Eq. (B6) means that the condition of equilibrium is the electromagnetic field
Fµν is constant in time in the rest frame of the fluid as determined by velocity uµ. As a consequence, (B5) can be
simplified as

∂µ(µ+QA · u) = 0. (B7)

The solution is µ(x) = µ0 −QA · u, where µ0 is a constant. µ0 can be interpreted as the Gibbs function per particle,
or the chemical potential, while µ(x) is the effective chemical potential containing electric potential [4].

According to the above conditions (B3,B4,B6), we can now prove that the distribution function (B1) also satisfy
the transport equation Eq.(49):{

∂0 +
1√
G

(
1− 2~εQ b · F̃

)
vi ∂i

+
εQ√
G

[
Ẽj +Bεijv

i − ~εQ(b · F̃ )(Ẽj + 2Bεijv
i)
]
∂jp

}
f ε(x,p)

=
(

1− 2~εQ(b · F̃ )
)

[pµpν∂µβν − ε pµ(∂µα+QFµνβν)] f
′ε
eq(x,p)

= 0.

In this calculation, we have used the relations DF̃µ = 1/2εµρσDFρσ = 0, and f
′ε
eq(x, p) = df εeq(x, p)/d(p · β). In

semi-classical expansion, the distribution (B1) can also be expanded as the following form.

f ε(x,p) =
1

e(Ep−εµ)/T + 1
= f (0)ε(x,p) + ~

εQ

2m

p · F̃
E

(0)
p

∂
E

(0)
p
f (0)ε(x,p),

f (0)ε(x,p) =
1

e(E
(0)
p −εµ)/T + 1

.

(B8)

Noting that the velocity field is a global constant, we take the local rest frame of the whole system, uµ = (1,0), and
correspondingly the effective chemical potential µ(x) = µ0−QA0, and it will be cast into µ(x) = µ0, when the electric
field is absent.
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