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4 K e y L a b o r at o r y of N u cl e a r P h y si c s a n d I o n- b e a m A p pli c ati o n ( M O E ),
a n d I n stit ut e of M o d e r n P h y si c s, F u d a n U ni v e r sit y, S h a n g h ai- 2 0 0 4 3 3, P e o pl e’ s R e p u bli c of C hi n a

T h e s e a r c h f o r t h e c hi r al m a g n e ti c e ff e c t ( C M E ) h a s b e e n a s u bj e c t of g r e a t i nt e r e s t i n t h e fi el d
of hi g h- e n e r g y h e a v y-i o n c olli si o n p h y si c s, a n d v a ri o u s o b s e r v a bl e s h a v e b e e n p r o p o s e d t o p r o b e t h e
C M E. E x p e ri m e nt al o b s e r v a bl e s a r e of t e n c o nt a mi n a t e d wi t h b a c k g r o u n d c o nt ri b u ti o n s a ri si n g f r o m
c oll e c ti v e m o ti o n s ( s p e ci fi c all y elli p ti c fl o w ) of t h e c olli si o n s y s t e m. We p r e s e nt a m e t h o d s t u d y of
e v e nt- s h a p e e n gi n e e ri n g ( E S E ) t h a t p r oj e c t s t h e C M E- s e n si ti v e γ 1 1 2 c o r r el a t o r a n d i t s v a ri a ti o n s
( γ 1 3 2 a n d γ 1 2 3 ) t o a cl a s s of e v e nt s wi t h mi ni m al fl o w. We di s c u s s t h e r e ali z a ti o n of t h e z e r o- fl o w
m o d e, t h e s e n si ti vi t y o n t h e C M E si g n al, a n d t h e c o r r e s p o n di n g s t a ti s ti c al si g ni fi c a n c e f o r A u + A u,
R u + R u, a n d Z r + Z r c olli si o n s a t

√
s N N = 2 0 0 G e V wi t h a m ul ti p h a s e t r a n s p o r t ( A M P T ) m o d el, a s

w ell a s a n e w e v e nt g e n e r a t o r, E v e nt- B y- E v e nt A n o m al o u s- Vi s c o u s Fl ui d D y n a mi c s ( E B E- A V F D ).

I. I N T R O D U C T I O N

A m aj o r g o al of t h e e x p e ri m e nt s o n hi g h- e n er g y h e a v y-
i o n c olli si o n s i s t o p r o d u c e a d e c o n fi n e d n u cl e a r m att er,
k n o w n a s t h e Q u ar k- Gl u o n Pl a s m a ( Q G P), a n d t o st u d y
it s p r o p e rti e s. T h e cr e ati o n of a Q G P p r o vi d e s a t e st
t o t h e t o p ol o gi c al s e ct o r of q u a nt u m c h r o m o d y n a mi c s
( Q C D), t h e f u n d a m e nt al t h e o r y of st r o n g i nt er a cti o n s.
A c c or di n g t o Q C D, q u a r k s i n a Q G P c o ul d o bt ai n a
c hi r alit y i m b al a n c e vi a t h e c hir al a n o m al y [ 1, 2], f o r m-
i n g l o c al d o m ai n s wit h fi nit e c hir al c h e mi c al p ot e nti al s
(µ 5 ) [ 3 – 8]. T h e s e c hi r al q u ar k s c o ul d m a nif e st a n el e c-
t ri c c u r r e nt al o n g t h e di r e cti o n of t h e str o n g m a g n eti c

fi el d (
−→
B ∼ 1 0 1 4 T) g e n e r at e d b y t h e i n ci d e nt p r ot o n s i n

t h e h e a v y-i o n c olli si o n s:
−→
J e ∝ µ 5

−→
B , w hi c h i s t h e o ri z e d

a s t h e c hi r al m a g n eti c e ff e ct ( C M E) [ 3, 4]. S o m e r e c e nt
r e vi e w s o n t h e C M E ar e a v ail a bl e i n R ef s. [ 9 – 1 2].

O n a v e r a g e,
−→
B i s e x p e ct e d t o b e p e r p e n di c ul a r t o t h e

r e a cti o n pl a n e ( R P), w hi c h i s s p a n n e d b y t h e i m p a ct p a-
r a m et er a n d t h e b e a m m o m e nt a of a c olli si o n. T h e C M E
will t h e n gi v e ri s e t o a n el e ct ri c c h a r g e s e p ar ati o n a cr o s s
t h e R P. I n t h e st u d y of t h e C M E-i n d u c e d c h a r g e s e p ar a-
ti o n a s w ell a s ot h er c oll e cti v e m oti o n s i n t h e Q G P, t h e
a zi m ut h al di st ri b uti o n of p r o d u c e d p a rti cl e s i s oft e n e x-
p r e s s e d wit h t h e F o uri e r e x p a n si o n f or gi v e n t r a n s v e r s e
m o m e nt u m ( p T ) a n d p s e u d or a pi dit y ( η ) i n a n e v e nt:

d N α

d φ ∗
≈

N α

2 π
[ 1 + 2v 1 , α c o s( φ ∗ ) + 2 v 2 , α c o s( 2 φ ∗ )

+ 2 v 3 , α c o s( 3 φ ∗ ) + ... + 2 a 1 , α si n( φ ∗ ) + ... ],

( 1)

w h e r e φ ∗ = φ − Ψ R P , a n d φ a n d Ψ R P a r e t h e a zi m ut h al
a n gl e s of a p a rti cl e a n d t h e R P, r e s p e cti v el y. T h e s u b-
s c ri pt α ( + o r − ) d e n ot e s t h e p a rti cl e’ s c h ar g e si g n.

∗ r mil t o n @ u cl a. e d u
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Tr a diti o n all y, t h e c o e ffi ci e nt s v 1 , v 2 , a n d v 3 a r e c all e d
“ dir e ct e d fl o w ”, “ elli pti c fl o w ”, a n d “tri a n g ul ar fl o w ”,
r e s p e cti v el y. I n t h e s c e n a ri o of fl ui d e v ol uti o n, t h e s e
v n c o e ffi ci e nt s r e fl e ct t h e h y dr o d y n a mi c r e s p o n s e of t h e
Q G P t o t h e i niti al c olli si o n g e o m etr y a n d t o it s fl u ct u-
ati o n s [ 1 3]. Fi g u r e 1 s k et c h e s t h e t r a n s v e r s e pl a n e, p er-
p e n di c ul a r t o t h e b e a m di r e cti o n (t h e z l a b a xi s), i n a n
o ff- c e nt e r h e a v y-i o n c olli si o n. I n p r a cti c e, a n e v e nt pl a n e
o bt ai n e d f r o m t h e c oll e cti v e m oti o n of d et e ct e d p arti cl e s
i s u s e d i n st e a d of t h e t r u e R P. F o r si m pli cit y, w e still
u s e t h e R P n ot ati o n i n t h e f oll o wi n g di s c u s si o n s, a n d R P
c o ul d r e pr e s e nt a s p e ci fi c e v e nt pl a n e.

l a bx

l a b
y

P P

R P

R PΨ P PΨ

B

φ

Fi g. 1: S c h e m a ti c di a g r a m of t h e t r a n s v e r s e pl a n e f o r a
t w o- n u cl e u s c olli si o n, wi t h t h e l ef t o n e e m e r gi n g f r o m a n d t h e
ri g ht o n e g oi n g i nt o t h e p a g e. P a r ti cl e s a r e p r o d u c e d i n t h e
o v e rl a p r e gi o n ( g r e e n- c ol o r e d p a r ti ci p a ti n g n u cl e o n s ). T h e

a zi m u t h al a n gl e s of t h e r e a c ti o n pl a n e ( Ψ R P ), t h e p a r ti ci p a nt
pl a n e ( Ψ P P ), a n d a p r o d u c e d p a r ti cl e ( φ ) a r e d e pi c t e d h e r e.

T h e a 1 c o e ffi ci e nt ( wit h a 1 ,+ ≈ − a 1 ,− i n a c h ar g e-
s y m m etri c s y st e m) q u a nti fi e s t h e C M E-i n d u c e d c h a r g e
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{ P P}3v

Fi g. 2: A M P T si m ul a ti o n s of v 2 v s q 2
2 ( a ) a n d v 3 v s q 2

3 ( b ) f o r
3 0 – 4 0 % A u + A u c olli si o n s a t

√
s N N = 2 0 0 G e V.

p a rt o ni c e v ol uti o n, t h e s p ati al q u a r k c o al e s c e n c e i s i m-
pl e m e nt e d t o att ai n t h e q u ar k- h a d r o n p h a s e tr a n siti o n
i n t h e st ri n g m elti n g ( S M) v e r si o n of A M P T. Fi n all y,
t h e h a dr o ni c i nt e r a cti o n s a r e m o d ell e d b y A R el ati vi sti c
Tr a n s p o rt c al c ul ati o n s ( A R T) [ 3 8].

T h e S M v er si o n of A M P T r e a s o n a bl y w ell r e p r o d u c e s
p a rti cl e s p e ct r a a n d elli pti c fl o w i n A u + A u c olli si o n s at
2 0 0 G e V a n d P b + P b c olli si o n s at 2. 7 6 Te V [ 3 9]. I n
t hi s st u d y, t h e S M v 2. 2 5t 4 c u of A M P T h a s b e e n u s e d
t o si m ul at e 2 .4 × 1 0 7 e v e nt s of 0 – 8 0 % A u + A u c olli si o n s
at

√
s N N = 2 0 0 G e V. T hi s v e r si o n c o n s er v e s el e ctri c

c h ar g e, w hi c h i s p a rti c ul a rl y i m p o rt a nt f o r t h e C M E-
r el at e d a n al y s e s. T h e m o d el p a r a m et e r s a r e s et i n t h e
s a m e w a y a s i n R ef. [ 2 7]. O nl y π ± , K ± , p a n d p̄ a r e
i n cl u d e d i n t h e f oll o wi n g si m ul ati o n s.

Fi g u r e 2 d e m o n str at e s t h e e ff e cti v e n e s s of q 2
2 a n d q 2

3 i n
c h ar a ct e ri zi n g t h e e v e nt s h a p e wit h A M P T c al c ul ati o n s
of v 2 (q 2

2 ) ( a) a n d v 3 (q 2
3 ) ( b), r e s p e cti v el y, f or t h e 3 0 – 4 0 %

c e nt r alit y i nt er v al i n A u + A u c olli si o n s at
√

s N N = 2 0 0
G e V. Alt h o u g h t h e v 2 v al u e s wit h r e s p e ct t o t h e R P a n d
t h e P P a r e di ff er e nt b e c a u s e of t h e fl u ct u ati o n of t h e
i niti al n u cl e o n s, t h e y b ot h a p p r o a c h z e r o at q 2

2 = 0. I n a
si mil a r w a y, t h e z e r o- v 3 m o d e i s al s o r e ali z e d at v a ni s hi n g
q 2

3 . T h e q 2
2 a n d q 2

3 r a n g e s u n d e r st u d y h a v e c o v e r e d 8 6. 2 %
a n d 9 8. 5 % of t h e w h ol e e v e nt s a m pl e, r e s p e cti v el y.

Fi g u r e s 3 a n d 4 ill u st r at e h o w t h e z e r o- fl o w m o d e i s
a c c o m pli s h e d f o r ∆ γ 1 1 2 a n d ∆ γ 1 3 2 , r e s p e cti v el y, vi a q 2

2

( a), v 2 ( b), a n d v 2 ∆ δ ( c) wit h A M P T e v e nt s of 3 0 – 4 0 %
A u + A u c olli si o n s at

√
s N N = 2 0 0 G e V. E a c h p a n el c o n-

t ai n s r e s ult s wit h r e s p e ct t o b ot h t h e R P a n d t h e P P,
w hi c h a r e fit wit h s e c o n d- o r d e r p ol y n o mi al f u n cti o n s i n
p a n el ( a), a n d wit h li n e a r f u n cti o n s i n p a n el s ( b) a n d ( c).
T h e s oli d ( d a s h e d) li n e s r e pr e s e nt t h e fit f u n cti o n s t o t h e
r e s ult s wit h r e s p e ct t o t h e R P ( P P). I n p a n el ( a), t h e
s oli d a n d d a s h e d li n e s a r e si g ni fi c a ntl y di ff e r e nt, si n c e
t h e fl o w- r el at e d b a c k g r o u n d i s pr o p o rti o n al t o v 2 , a n d
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Fi g. 3: A M P T c al c ul a ti o n s of ∆ γ 1 1 2 a s a f u n c ti o n of q 2
2 ( a ), v 2

( b ), a n d v 2 ∆ δ ( c ) f o r 3 0 – 4 0 % A u + A u c olli si o n s a t
√

s N N = 2 0 0
G e V. T h e r e s ul t s a r e fi t wi t h s e c o n d- o r d e r p ol y n o mi al f u n c ti o n s

i n p a n el ( a ), a n d wi t h li n e a r f u n c ti o n s i n p a n el s ( b ) a n d ( c ).

v 2 { R P } i s di ff e r e nt fr o m v 2 { P P } , a s s h o w n i n Fi g. 2( a).
I n p a n el s ( b) a n d ( c), w h e r e v 2 e x pli citl y a p p e a r s o n
t h e h o ri z o nt al a xi s, t h e di ff e r e n c e b et w e e n t h e s oli d a n d
d a s h e d li n e s i s s u p p r e s s e d. T h e v erti c al i nt e r c e pt s of all
t h e fit f u n cti o n s a r e cl o s e t o z e r o, b ut sli g htl y n e g ati v e,
i n di c ati n g a p ot e nti al o v e r- c or r e cti o n of t h e fl o w- r el at e d
b a c k gr o u n d. T h e c e nt r alit y d e p e n d e n c e of t h e s e i nt e r-
c e pt s will b e di s c u s s e d l at e r i n Fi g u r e 6.

Fi g u r e 5 e x hi bit s ∆ γ 1 2 3 wit h r e s p e ct t o t h e P P v s q 2
3

( a), v 3 ( b), a n d v 3 ∆ δ ( c), c al c ul at e d wit h A M P T e v e nt s
of 3 0 – 4 0 % A u + A u c olli si o n s at

√
s N N = 2 0 0 G e V. T h e

r e s ult s a r e fit wit h a s e c o n d- o r d er p ol y n o mi al f u n cti o n i n
p a n el ( a), a n d wit h li n e a r f u n cti o n s i n p a n el s ( b) a n d ( c).
U nli k e t h e c a s e s of ∆ γ 1 1 2 a n d ∆ γ 1 1 2 , ∆γ 1 2 3 d o e s n ot di-
mi ni s h at t h e z er o- fl o w m o d e, b ut st a y s r at h e r c o n st a nt
a s a f u n cti o n of eit h e r q 2

3 , v 3 , o r v 3 ∆ δ . T hi s i m pli e s t h at
t h e f or m ati o n of t h e fi nit e ∆ γ 1 2 3 a ri s e s f r o m a di ff er e nt
m e c h a ni s m t h a n eit h er ∆ γ 1 3 2 o r t h e fl o w-i n d u c e d b a c k-
g r o u n d i n ∆ γ 1 1 2 .

We h a v e a p pli e d t h e s a m e a n al y si s p r o c e d u r e a s i n
Fi g s. 3, 4, a n d 5 t o di ff er e nt c e nt r alit y cl a s s e s. Fi g ur e 6
s h o w s t h e c e nt r alit y d e p e n d e n c e of ∆ γ 1 1 2 ( a) a n d ∆ γ 1 3 2

( b) wit h r e s p e ct t o t h e R P at t h e z e r o- fl o w m o d e f o r
A M P T e v e nt s of A u + A u c olli si o n s at

√
s N N = 2 0 0 G e V.
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Fi g. 4: A M P T si m ul a ti o n s of ∆ γ 1 3 2 a s a f u n c ti o n of q 2
2 ( a ), v 2

( b ), a n d v 2 ∆ δ ( c ) f o r 3 0 – 4 0 % A u + A u c olli si o n s a t
√

s N N = 2 0 0
G e V. T h e r e s ul t s a r e fi t wi t h s e c o n d- o r d e r p ol y n o mi al f u n c ti o n s

i n p a n el ( a ), a n d wi t h li n e a r f u n c ti o n s i n p a n el s ( b ) a n d ( c ).

T h e o p e n m a r k er s r e p r e s e nt t h e fit i nt e r c e pt s vi a di ff er-
e nt v a ri a bl e s: q 2

2 , v 2 , a n d v 2 ∆ δ . At e a c h c e nt r alit y i nt er-
v al, t h e t h r e e i nt er c e pt s a r e c o n si st e nt wit h e a c h ot h e r,
a n d ar e c o n si st e nt wit h o r l o w e r t h a n z e r o. T h e r ef or e,
t h e z e r o- fl o w p r oj e cti o n i n A M P T e v e nt s d e m o n st r at e s
si mil a r e ffi c a c y i n r e m o vi n g t h e fl o w- r el at e d b a c k gr o u n d
i n ∆γ 1 1 2 a n d ∆ γ 1 3 2 . I n c o m p a ri s o n, t h e e n s e m bl e a v-
e r a g e s a r e al s o d r a w n wit h t h e s oli d m a r k er s.  U si n g
t h e e n s e m bl e a v e r a g e s a s a r ef er e n c e b a s eli n e, w e ill u s-
t r at e h o w m u c h b a c k g r o u n d c o ntri b uti o n s h a v e b e e n s u p-
p r e s s e d wit h t h e E S E t e c h ni q u e, a n d al s o vi s u ali z e t h e
p ot e nti al o v e r- s u btr a cti o n of b a c k g r o u n d i n s o m e c e nt r al-
it y r a n g e s.

Fi g u r e 7 di s pl a y s t h e c e ntr alit y d e p e n d e n c e of ∆ γ 1 1 2

( a), ∆ γ 1 3 2 ( b), a n d ∆ γ 1 2 3 ( c) wit h r e s p e ct t o t h e P P
at t h e z e r o- fl o w m o d e f o r A M P T e v e nt s of A u + A u c ol-
li si o n s at

√
s N N = 2 0 0 G e V. T h e o p e n m a r k er s r e p r e-

s e nt t h e fit i nt er c e pt s vi a di ff er e nt v a ri a bl e s: q 2
n , v n , a n d

v n ∆ δ . T h e e n s e m bl e a v e r a g e s a r e al s o a d d e d wit h t h e
s oli d m a r k e r s i n c o m p a ri s o n. I n g e n er al, t h e r e s ult s f or
∆ γ 1 1 2 { P P } a n d ∆ γ 1 3 2 { P P } q u alit ati v el y r e s e m bl e t h o s e
f o r ∆γ 1 1 2 { R P } a n d ∆ γ 1 3 2 { R P } , r e s p e cti v el y. T h er ef o r e,
t h e E S E m et h o d s e e m s t o w o r k r e g a r dl e s s of t h e e v e nt-
pl a n e t y p e. We will f urt h e r p e rf o r m t h e s e a n al y s e s t o
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3−
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δ∆3v

0. 4−

0. 2−

0
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0. 4

3−
1 0×

1
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3

γ
∆

( c)

Fi g. 5: A M P T c al c ul a ti o n s of ∆ γ 1 2 3 a s a f u n c ti o n of q 2
3 ( a ), v 3

( b ), a n d v 3 ∆ δ ( c ) f o r 3 0 – 4 0 % A u + A u c olli si o n s a t
√

s N N = 2 0 0
G e V. T h e r e s ul t s a r e fi t wi t h a s e c o n d- o r d e r p ol y n o mi al f u n c ti o n

i n p a n el ( a ), a n d wi t h li n e a r f u n c ti o n s i n p a n el s ( b ) a n d ( c ).

t h e E B E- A V F D e v e nt s i n t h e f oll o wi n g s u b s e cti o n t o
i n v e sti g at e w h et h e r t h e o v e r- s u btr a cti o n of b a c k g r o u n d
i s m o d el- d e p e n d e nt o r a u ni v e r s al f e at u r e of t hi s E S E
a p p r o a c h. T h e i nt e r c e pt s f o r ∆ γ 1 2 3 { P P } ar e c o n si st e nt
wit h t h e e n s e m bl e a v er a g e f o r t h e c e nt r alit y r a n g e u n d e r
st u d y, i n di c ati n g t h e f ail u r e of t hi s E S E r e ci p e f or t hi s
o b s er v a bl e. T hi s o b s e r v ati o n s e e m s t o e c h o t h e c o n cl u-
si o n i n R ef. [ 2 7] t h at t h e u n d e rl yi n g m e c h a ni s m f or ∆ γ 1 2 3

i s di ff e r e nt f r o m t h at f or t h e fl o w- r el at e d b a c k gr o u n d i n
∆ γ 1 1 2 , a n d t h u s ∆γ 1 2 3 i s n ot a g o o d b a c k gr o u n d e sti m at e
f o r ∆γ 1 1 2 .

It i s r e m ar k a bl e t h at f o r all t h e af or e m e nti o n e d r e s ult s,
t h e i nt e r c e pt s vi a q 2

n a s t h e v a ri a bl e b e a r l ar g er st ati sti-
c al u n c e rt ai nti e s t h a n t h o s e vi a t h e ot h er t w o ( v n a n d
v n ∆ δ ), t h o u g h t h e y a r e all c o n si st e nt wit h e a c h ot h e r.
T hi s m o stl y r e s ult s f r o m t h e di ff e r e nt fit f u n cti o n s t o e x-
t r a ct t h e i nt er c e pt s. T h e r ef or e, v n a n d v n ∆ δ a r e t e c h ni-
c all y pr ef e r r e d o v e r q 2

n i n p r oj e cti o n of t h e s e ∆γ c or r el a-
t o r s t o t h e z e r o- fl o w m o d e.
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Fi g. 6: C e nt r ali t y d e p e n d e n c e of ∆ γ 1 1 2 { R P } ( a ) a n d ∆ γ 1 3 2 { R P }
( b ) a t t h e z e r o- fl o w m o d e f o r A M P T e v e nt s of A u + A u c olli si o n s

a t
√

s N N = 2 0 0 G e V. T h e o p e n m a r k e r s r e p r e s e nt t h e fi t
i nt e r c e p t s vi a di ff e r e nt v a ri a bl e s: q 2

2 , v 2 , a n d v 2 ∆ δ . I n
c o m p a ri s o n, t h e e n s e m bl e a v e r a g e s a r e al s o d r a w n wi t h t h e s oli d

m a r k e r s.
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Fi g. 7: C e nt r ali t y d e p e n d e n c e of ∆ γ 1 1 2 { P P } ( a ), ∆ γ 1 3 2 { P P } ( b ),
a n d ∆ γ 1 2 3 { P P } ( c ) a t t h e z e r o- fl o w m o d e f o r A M P T e v e nt s of

A u + A u c olli si o n s a t
√

s N N = 2 0 0 G e V. T h e o p e n m a r k e r s
r e p r e s e nt t h e fi t i nt e r c e p t s vi a di ff e r e nt v a ri a bl e s: q 2

n , v n , a n d
v n ∆ δ . I n c o m p a ri s o n, t h e e n s e m bl e a v e r a g e s a r e al s o d r a w n wi t h

t h e s oli d m a r k e r s.

B.  E B E - A V F D

T h e E B E- A V F D m o d el [ 2 9 – 3 1] i s a c o m p r e h e n si v e si m-
ul ati o n f r a m e w or k t h at d e s c ri b e s t h e d y n a mi c al C M E
t r a n s p ort f or q u a r k c ur r e nt s i n a d diti o n t o t h e r el ati vi sti-
c all y e x p a n di n g vi s c o u s Q G P fl ui d, a n d p r o p e rl y m o d el s
m aj or s o ur c e s of b a c k g r o u n d c o r r el ati o n s, s u c h a s L C C
a n d r e s o n a n c e d e c a y s.

T h e i niti al c o n diti o n s f or e nt r o p y d e n sit y ( s ) p r o fil e s
a n d t h e i niti al el e ct r o m a g n eti c fi el d a r e fl u ct u at e d a c-
c o r di n g t o t h e e v e nt- b y- e v e nt n u cl e o n c o n fi g u r ati o n i n
t h e M o nt e C a rl o Gl a u b e r si m ul ati o n s [ 4 0]. T h e i niti al
a xi al c h a r g e d e n sit y ( n 5 ) i s i nt r o d u c e d a s b ei n g pr o p o r-
ti o n al t o t h e c o r r e s p o n di n g l o c al e nt r o p y d e n sit y wit h
a c o n st a nt r ati o. T hi s r ati o p ar a m et e r c a n b e v a ri e d t o
c o ntr ol t h e str e n gt h of t h e C M E t r a n s p o rt. F o r e x a m pl e,
o n e c a n s et n 5 / s t o 0, 0 .1, a n d 0 .2, t o si m ul at e s c e n ari o s
of z er o, m o d e st, a n d st r o n g C M E si g n al s, r e s p e cti v el y.

T h e h y d r o d y n a mi c e v ol uti o n i s s ol v e d t hr o u g h t w o
c o m p o n e nt s: t h e b ul k- m att e r c oll e cti v e fl o w a n d t h e d y-
n a mi c al C M E tr a n s p o rt. T h e f o r m e r i s m a n a g e d b y t h e
VI S H 2 + 1 si m ul ati o n p a c k a g e [ 4 1], w hi c h h a s b e e n e x-
t e n si v el y t e st e d a n d v ali d at e d wit h r el e v a nt e x p e ri m e n-
t al d at a. T h e l att e r i s d e s c ri b e d b y a n o m al o u s h y d r o-
d y n a mi c e q u ati o n s f o r t h e q u a r k c hir al c u rr e nt s o n t o p
of t h e b ul k fl o w b a c k gr o u n d. T h e m a g n eti c- fi el d-i n d u c e d
C M E c u rr e nt s l e a d t o a c h a r g e s e p a r ati o n i n t h e fi r e-
b all. A d diti o n all y, t h e c o n v e nti o n al t r a n s p o rt p r o c e s s e s
li k e di ff u si o n a n d r el a x ati o n f o r t h e q u a r k c ur r e nt s a r e
c o h er e ntl y i n cl u d e d, a n d r el e v a nt d et ail s c a n b e f o u n d i n
R ef s. [ 2 9 – 3 1].

I n t h e f r e e z e- o ut p r o c e s s, t h e L C C e ff e ct i s i m pl e-
m e nt e d b y pr o d u ci n g s o m e c h a r g e d h a d r o n- a nti h a d r o n
p ai r s f r o m t h e s a m e fl ui d c ell, wit h t h ei r m o m e nt a s a m-
pl e d i n d e p e n d e ntl y i n t h e l o c al r e st f r a m e of t h e c ell. I n
t hi s st u d y, a p a r a m et er of P L C C = 1 / 3 i s s et t o c h a r a c-
t e ri z e t h e f r a cti o n of c h a r g e d h a dr o n s t h at a r e s a m pl e d
i n o p p o sit el y- c h a r g e d p ai r s, w hil e t h e r e st of t h e h a dr o n s
a r e s a m pl e d i n d e p e n d e ntl y. Fi n all y, all t h e h a d r o n s pr o-
d u c e d fr o m t h e fr e e z e- o ut h y p e r s urf a c e ar e f urt h e r s u b-
j e ct t o h a dr o n c a s c a d e s t hr o u g h t h e U r Q M D si m ul a-
ti o n s [ 4 2], w hi c h a c c o u nt f o r v ari o u s h a dr o n r e s o n a n c e
d e c a y p r o c e s s e s a n d a ut o m ati c all y c ar r y t h eir c o ntri b u-
ti o n s t o t h e c h a r g e- d e p e n d e nt c orr el ati o n s.

1.  A u + A u c olli si o n s at
√

s N N = 2 0 0 G e V

Fi g u r e 8 d e pi ct s t h e E B E- A V F D c al c ul ati o n s of
∆ γ 1 1 2 { R P } a n d ∆ γ 1 1 2 { P P } a s a f u n cti o n of v 2 f o r n 5 / s
of 0 ( a), 0. 1 ( b), a n d 0. 2 ( c) i n 3 0 – 4 0 % A u + A u c olli-
si o n s at

√
s N N = 2 0 0 G e V. T h e n u m b er s of e v e nt s a r e

9 .6 × 1 0 7 , 5.9 × 1 0 7 , a n d 7.7 × 1 0 7 f o r t h e c a s e s of n 5 / s = 0,
0. 1, a n d 0. 2, r e s p e cti v el y. N ot e t h at t h e e v e nt s a r e still
bi n n e d wit h q 2

2 a s d o n e i n t h e p r e vi o u s s u b s e cti o n. T h e
s oli d ( d a s h e d) li n e s r e p r e s e nt t h e li n e a r fit f u n cti o n s t o
t h e r e s ult s wit h r e s p e ct t o t h e R P ( P P). I n t h e p u r e-
b a c k gr o u n d c a s e ( n 5 / s = 0), t h e i nt e r c e pt s ar e p o siti v el y
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/ s = 0. 05n

Fi g. 8: E B E- A V F D c al c ul a ti o n s of ∆ γ 1 1 2 a s a f u n c ti o n of v 2 f o r
n 5 / s of 0 ( a ), 0. 1 ( b ), a n d 0. 2 ( c ) i n 3 0 – 4 0 % A u + A u c olli si o n s a t

√
s N N = 2 0 0 G e V. T h e r e s ul t s a r e fi t wi t h li n e a r f u n c ti o n s.

fi nit e, i n di c ati n g t h at t h e fl o w-r el at e d b a c k gr o u n d i n t h e
E B E- A V F D m o d el c a n n ot b e c o m pl et el y r e m o v e d b y t hi s
E S E a p pr o a c h. T h e m a g nit u d e of t h e i nt e r c e pt i n cr e a s e s
wit h i n cr e a si n g n 5 / s , m e eti n g t h e C M E e x p e ct ati o n. At
fi nit e n 5 / s v al u e s, ∆ γ 1 1 2 { R P } i s a b o v e ∆γ 1 1 2 { P P } , a s
t h e R P i s m o r e cl o s el y c o r r el at e d wit h t h e m a g n eti c- fi el d
dir e cti o n, a n d h e n c e ∆ γ 1 1 2 { R P } c o nt ai n s a l a r g er C M E
si g n al t h a n ∆ γ 1 1 2 { P P } . F o r si m pli cit y, w e d o n ot s h o w
t h e si mil ar r e s ult s a s a f u n cti o n of q 2

2 o r v 2 ∆ δ , b ut t h e
c o r r e s p o n di n g i nt e r c e pt s will b e p r e s e nt e d i n Fi g. 1 1.

Fi g u r e 9 d eli n e at e s t h e E B E- A V F D si m ul ati o n s of
∆ γ 1 3 2 { R P } a n d ∆ γ 1 3 2 { P P } a s a f u n cti o n of v 2 f o r n 5 / s
of 0 ( a), 0. 1 ( b), a n d 0. 2 ( c) i n 3 0 – 4 0 % A u + A u c olli-
si o n s at

√
s N N = 2 0 0 G e V. F o r all t h e n 5 / s v al u e s u n d e r

st u d y, t h e i nt e r c e pt of t h e li n e ar fit i s al w a y s c o n si st e nt
wit h z e r o. Si mil a r i nt er c e pt r e s ult s e xt r a ct e d vi a q 2

2 o r
v 2 ∆ δ will b e s u m m ari z e d i n Fi g. 1 2.

Fi g u r e 1 0 p r e s e nt s t h e E B E- A V F D c al c ul ati o n s of
∆ γ 1 2 3 { P P } a s a f u n cti o n of v 3 f o r n 5 / s of 0 ( a), 0. 1 ( b),
a n d 0. 2 ( c) i n 3 0 – 4 0 % A u + A u c olli si o n s at

√
s N N = 2 0 0

G e V. N ot e t h at t h e e v e nt s a r e still bi n n e d wit h q 2
3 a s

d o n e i n t h e p r e vi o u s s u b s e cti o n. T h e i nt e r c e pt of t h e
li n e a r fit s e e m s t o d e cr e a s e wit h i n c r e a si n g n 5 / s , w hi c h
will b e f urt h e r di s c u s s e d i n Fi g. 1 3, t o g et h er wit h si mil a r
i nt e r c e pt r e s ult s e xtr a ct e d vi a q 2

3 a n d v 3 ∆ δ .

We e xtr a ct t h e E S E i nt e r c e pt s of ∆ γ 1 1 2 { R P } a n d
∆ γ 1 1 2 { P P } vi a q 2

2 , v 2 , a n d v 2 ∆ δ , f o r E B E- A V F D e v e nt s
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Fi g. 9: E B E- A V F D si m ul a ti o n s of ∆ γ 1 3 2 a s a f u n c ti o n of v 2 f o r
n 5 / s of 0 ( a ), 0. 1 ( b ), a n d 0. 2 ( c ) i n 3 0 – 4 0 % A u + A u c olli si o n s a t

√
s N N = 2 0 0 G e V. T h e r e s ul t s a r e fi t wi t h li n e a r f u n c ti o n s.

of 3 0 – 4 0 % A u + A u c olli si o n s at
√

s N N = 2 0 0 G e V, a n d
p r e s e nt t h e r e s ult s c o rr e ct e d wit h ( 1 − 2 v 2 ) a s a f u n c-
ti o n of n 5 / s i n Fi g. 1 1. T h e c o n v e nti o n al e n s e m bl e a v-
e r a g e v al u e s ar e al s o s h o w n i n c o m p ari s o n. I n t h e p ur e-
b a c k gr o u n d s c e n a ri o ( n 5 / s = 0), alt h o u g h t h e E S E i nt er-
c e pt s d o n ot c o m pl et el y r e m o v e t h e r e si d u e b a c k gr o u n d,
t h e y d o s u p p r e s s t h e b a c k gr o u n d c o nt ri b uti o n r o u g hl y
b y a f a ct o r of 6 r el ati v e t o t h e e n s e m bl e a v e r a g e f o r
b ot h ∆ γ 1 1 2 { R P } a n d ∆ γ 1 1 2 { P P } . I n t h e c a s e s of fi nit e
n 5 / s v al u e s, w e e sti m at e t h e C M E c o nt ri b uti o n i n t w o
w a y s. A s p oi nt e d o ut i n R ef. [ 1 9], wit h Ψ R P k n o w n i n
t h e m o d el, w e c a n di r e ctl y c al c ul at e a 1 ,± , a n d utili z e t h e
f oll o wi n g r el ati o n t o e sti m at e t h e C M E c o ntri b uti o n i n
∆ γ 1 1 2 { R P } :

∆ γ C M E
1 1 2 { R P }

= ∆ γ 1 1 2 { R P } − ∆ γ 1 1 2 { R P }| n 5 / s = 0 ( 9)

= ( a 2
1 ,+ + a 2

1 ,− )/ 2 − a 1 ,+ a 1 ,− . ( 1 0)

I n Fi g. 1 1( a), t h e s oli d li n e st a n d s f o r a s e c o n d- o r d e r
p ol y n o mi al fit t o t h e q u a ntit y i n E q. ( 9), w h e r e a s t h e
d a s h e d li n e d e n ot e s t h at t o t h e q u a ntit y i n E q. ( 1 0). T h e
g o o d c o n si st e n c y b et w e e n t h e t w o e sti m at e s c or r o b o r at e s
t h e r el ati o n i n E q s. ( 9) a n d ( 1 0). I n Fi g. 1 1( b), w h e r e t h e
P P i s u s e d i n t h e a n al y si s, o nl y t h e s oli d li n e i s d r a w n t o
r e p r e s e nt ( ∆ γ 1 1 2 { P P } − ∆ γ 1 1 2 { P P }| n 5 / s = 0 ). I n all t h e
c a s e s, t h e E S E r e s ult s ar e m u c h cl o s er t o t h e t r u e C M E
si g n al t h a n t h e e n s e m bl e a v er a g e.
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Fi g. 1 0: E B E- A V F D c al c ul a ti o n s of ∆ γ 1 2 3 a s a f u n c ti o n of v 3 f o r
n 5 / s of 0 ( a ), 0. 1 ( b ), a n d 0. 2 ( c ) i n 3 0 – 4 0 % A u + A u c olli si o n s a t

√
s N N = 2 0 0 G e V. T h e r e s ul t s a r e fi t wi t h li n e a r f u n c ti o n s.
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Fi g. 1 1: n 5 / s d e p e n d e n c e of ∆ γ 1 1 2 { R P } ( a ) a n d ∆ γ 1 1 2 { P P } ( b )
a t t h e z e r o- fl o w m o d e f o r E B E- A V F D e v e nt s of 3 0 – 4 0 % A u + A u

c olli si o n s a t
√

s N N = 2 0 0 G e V. T h e o p e n m a r k e r s r e p r e s e nt t h e fi t
i nt e r c e p t s vi a di ff e r e nt v a ri a bl e s: q 2

2 , v 2 , a n d v 2 ∆ δ . I n
c o m p a ri s o n, t h e e n s e m bl e a v e r a g e s a r e al s o d r a w n wi t h t h e s oli d
m a r k e r s. T h e s oli d a n d d a s h e d li n e s a r e e s ti m a t e s f o r t h e C M E

si g n al, a n d a r e e x pl ai n e d i n t h e t e x t.

Wit h t h e e sti m at e d ∆ γ C M E
1 1 2 v al u e s, w e c a n e a sil y c al-

c ul at e t h e f r a cti o n of t h e C M E si g n al, f C M E , i n t h e e n-
s e m bl e a v e r a g e of ∆ γ 1 1 2 a s w ell a s i n t h e c o r r e ct e d E S E

T a bl e I: T h e f r a c ti o n of t h e C M E si g n al, f C M E , f o r t h e e n s e m bl e
a v e r a g e of ∆ γ 1 1 2 a n d t h e c o r r e c t e d E S E i nt e r c e p t s i n E B E- A V F D

e v e nt s of 3 0 – 4 0 % A u + A u c olli si o n s a t
√

s N N = 2 0 0 G e V, f o r
n 5 / s = 0 .1 a n d 0 .2.

n 5 / s = 0 .1 A v e r a g e E S E { q 2
2 } E S E { v 2 } E S E { v 2 ∆ δ }

f C M E { R P } ( % ) 4 7. 4 ± 0. 5 7 6. 9 ± 1. 7 8 0. 0 ± 1. 6 7 9. 3 ± 1. 5

f C M E { P P } ( % ) 3 5. 4 ± 0. 6 7 1. 7 ± 2. 7 7 6. 2 ± 2. 6 7 5. 1 ± 2. 5

n 5 / s = 0 .2 A v e r a g e E S E { q 2
2 } E S E { v 2 } E S E { v 2 ∆ δ }

f C M E { R P } ( % ) 7 8. 5 ± 0. 2 8 7. 5 ± 0. 5 8 7. 9 ± 0. 4 8 7. 6 ± 0. 4

f C M E { P P } ( % ) 6 9. 1 ± 0. 3 8 7. 7 ± 0. 8 8 8. 1 ± 0. 7 8 6. 9 ± 0. 7
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Fi g. 1 2: n 5 / s d e p e n d e n c e of ∆ γ 1 3 2 { P P } ( a ) a n d ∆ γ 1 3 2 { P P } ( b )
a t t h e z e r o- fl o w m o d e f o r E B E- A V F D e v e nt s of 3 0 – 4 0 % A u + A u

c olli si o n s a t
√

s N N = 2 0 0 G e V. T h e o p e n m a r k e r s r e p r e s e nt t h e fi t
i nt e r c e p t s vi a di ff e r e nt v a ri a bl e s: q 2

2 , v 2 , a n d v 2 ∆ δ . I n
c o m p a ri s o n, t h e e n s e m bl e a v e r a g e s f o r ∆ γ 1 3 2 a n d v 2 ∆ δ a r e al s o

d r a w n.

i nt e r c e pt s. T a bl e I li st s t h e E B E- A V F D c al c ul ati o n s of
f C M E f o r di ff e r e nt o b s er v a bl e s i n 3 0 – 4 0 % A u + A u c olli-
si o n s at

√
s N N = 2 0 0 G e V, f o r n 5 / s = 0 .1 a n d 0 .2. I n g e n-

e r al, f C M E i n c r e a s e s wit h i n cr e a si n g n 5 / s , a s e x p e ct e d.
T h e v al u e s of f C M E { R P } f o r t h e e n s e m bl e a v er a g e s a r e
si g ni fi c a ntl y l ar g e r t h a n t h o s e of f C M E { P P } a s e x pl ai n e d
b ef or e: t h e s m all e r v 2 { R P } v al u e s c a u s e s m all e r fl o w-
i n d u c e d b a c k g r o u n d s, w h e r e a s t h e R P i s m o r e cl o s el y
c o r r el at e d wit h t h e m a g n eti c- fi el d di r e cti o n, l e a di n g t o
l a r g er C M E si g n al s. T h e di ff e r e n c e b et w e e n f C M E { R P }
a n d f C M E { P P } i s r e d u c e d f o r t h e E S E i nt e r c e pt s, si n c e
t h e b a c k g r o u n d i s l ar g el y s u p pr e s s e d. At n 5 / s = 0 .2
w h e r e t h e C M E si g n al i s v e r y st r o n g, f C M E c o ul d r e a c h
a r o u n d 8 8 % f o r t h e E S E i nt er c e pt s, a n d d r o p b y 1 0 – 2 0 %
f o r t h e e n s e m bl e a v e r a g e d e p e n di n g o n w h et h e r t h e R P o r
t h e P P i s u s e d. Wit h w e a k e r C M E si g n al s at n 5 / s = 0 .1,
t h e a d v a nt a g e of t h e E S E i nt e r c e pt s o v e r t h e e n s e m bl e
a v e r a g e b e c o m e s m o r e p r o mi n e nt i n f C M E . O n t h e ot h er
h a n d, t h e di s a d v a nt a g e of t h e E S E a p pr o a c h i s al s o cl e ar:
t h e st ati sti c al u n c ert ai nt y i s a b o ut 2 – 4 ti m e s l a r g e r t h a n
t h at of t h e e n s e m bl e a v e r a g e.
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Fi g. 1 3: n 5 / s d e p e n d e n c e of ∆ γ 1 2 3 { P P } a t t h e z e r o- fl o w m o d e f o r
E B E- A V F D e v e nt s of 3 0 – 4 0 % A u + A u c olli si o n s a t

√
s N N = 2 0 0

G e V. T h e o p e n m a r k e r s r e p r e s e nt t h e fi t i nt e r c e p t s vi a di ff e r e nt
v a ri a bl e s: q 2

3 , v 3 , a n d v 3 ∆ δ . I n c o m p a ri s o n, t h e e n s e m bl e
a v e r a g e s f o r ∆ γ 1 2 3 a n d v 3 ∆ δ a r e al s o d r a w n.

Fi g u r e 1 2 s h o w s t h e n 5 / s d e p e n d e n c e of ∆ γ 1 3 2 { P P }
( a) a n d ∆ γ 1 3 2 { P P } ( b) at t h e z e r o- fl o w m o d e f o r E B E-
A V F D e v e nt s of 3 0 – 4 0 % A u + A u c olli si o n s at

√
s N N =

2 0 0 G e V. T h e e n s e m bl e a v e r a g e v al u e s f or ∆ γ 1 3 2 a n d
v 2 ∆ δ a r e al s o dr a w n i n c o m p a ri s o n. U nli k e t h e c a s e of
∆ γ 1 1 2 , ∆γ 1 3 2 s e e m s t o v a ni s h wit h t h e E S E t e c h ni q u e i n
m o st c a s e s, s u p p orti n g t h e i d e a t h at ∆ γ 1 3 2 i s a p p r o xi-
m at el y e q u al t o v 2 ∆ δ [ 2 7], a n d h e n c e s h o ul d di s a p p e ar
at t h e z e r o- fl o w m o d e. T h e e q ui v al e n c e r el ati o n b et w e e n
∆ γ 1 3 2 a n d v 2 ∆ δ al s o e x pl ai n s w h y t h e e n s e m bl e a v er a g e
of ∆ γ 1 3 2 d e c r e a s e s wit h i n c r e a si n g n 5 / s : v 2 i s b a si c all y
c o n st a nt o v e r n 5 / s , a n d ∆δ i s e x p e ct e d t o d e c r e a s e wit h
i n c r e a si n g n 5 / s [ 3 1]. T h er ef o r e, i n t h e r e al- d at a a n al y s e s,
∆ γ 1 3 2 c a n b e u s e d a s a s y st e m ati c c h e c k o n h o w w ell t h e
E S E a p p r o a c h w or k s i n t e r m s of t h e b a c k g r o u n d r e m o v al.

Fi g u r e 1 3 s h o w s t h e n 5 / s d e p e n d e n c e of ∆ γ 1 2 3 { P P }
at t h e z e r o- fl o w m o d e f or E B E- A V F D e v e nt s of 3 0 – 4 0 %
A u + A u c olli si o n s at

√
s N N = 2 0 0 G e V, wit h t h e e n s e m-

bl e a v e r a g e s f or ∆ γ 1 2 3 a n d v 3 ∆ δ d r a w n i n c o m p a ri s o n.
B ot h t h e E S E i nt er c e pt s a n d t h e e n s e m bl e a v er a g e f or
∆ γ 1 2 3 h a v e a st r o n g e r d e p e n d e n c e o n n 5 / s t h a n v 3 ∆ δ .
T h e fl o w- r el at e d c o ntri b uti o n s i n ∆ γ 1 2 3 s e e m t o b e r e-
d u c e d b y t h e E S E t e c h ni q u e, b ut t h e y d o n ot di s a p-
p e a r a s i n t h e c a s e of ∆ γ 1 3 2 . Alt h o u g h a f u rt h e r i n v e s-
ti g ati o n i s n e e d e d t o b ett e r u n d e r st a n d t h e m e c h a ni s m
b e hi n d ∆ γ 1 2 3 , w e c a n d r a w a si mil a r c o n cl u si o n a s i n
R ef. [ 2 7] t h at ∆ γ 1 2 3 i s n ot a p r o p e r b a c k gr o u n d e sti m at e
f o r ∆γ 1 1 2 .

2.  R u + R u a n d Z r + Z r c olli si o n s at
√

s N N = 2 0 0 G e V

R e c e ntl y t h e S T A R C oll a b o r ati o n h a s c o m pl et e d t h e
bli n d a n al y si s of t h e i s o b a r- c olli si o n d at a, wit h o ut o b-
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Fi g. 1 4: n 5 / s d e p e n d e n c e of ∆ γ 1 1 2 { R P } ( a ) a n d ∆ γ 1 1 2 { P P } ( b )
a t t h e z e r o- fl o w m o d e f o r E B E- A V F D e v e nt s of 3 0 – 4 0 % R u + R u

c olli si o n s a t
√

s N N = 2 0 0 G e V. T h e o p e n m a r k e r s r e p r e s e nt t h e fi t
i nt e r c e p t s vi a di ff e r e nt v a ri a bl e s: q 2

2 , v 2 , a n d v 2 ∆ δ . I n
c o m p a ri s o n, t h e e n s e m bl e a v e r a g e s a r e al s o d r a w n wi t h t h e s oli d
m a r k e r s. T h e s oli d a n d d a s h e d li n e s a r e e s ti m a t e s f o r t h e C M E

si g n al, a s e x pl ai n e d i n t h e t e x t.
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Fi g. 1 5: n 5 / s d e p e n d e n c e of ∆ γ 1 1 2 { R P } ( a ) a n d ∆ γ 1 1 2 { P P } ( b )
a t t h e z e r o- fl o w m o d e f o r E B E- A V F D e v e nt s of 3 0 – 4 0 % Z r + Z r

c olli si o n s a t
√

s N N = 2 0 0 G e V. T h e o p e n m a r k e r s r e p r e s e nt t h e fi t
i nt e r c e p t s vi a di ff e r e nt v a ri a bl e s: q 2

2 , v 2 , a n d v 2 ∆ δ . I n
c o m p a ri s o n, t h e e n s e m bl e a v e r a g e s a r e al s o d r a w n wi t h t h e s oli d
m a r k e r s. T h e s oli d a n d d a s h e d li n e s a r e e s ti m a t e s f o r t h e C M E

si g n al, a s e x pl ai n e d i n t h e t e x t.

s e r vi n g a n y pr e d e fi n e d C M E si g n at ur e [ 4 3]. O n e p o s si-
bilit y i s t h at f C M E i s m u c h s m all e r i n R u + R u a n d Z r + Z r
t h a n i n A u + A u at t h e s a m e n 5 / s [ 4 5]. We s h all e x pl o r e
b ot h t h e c o n v e nti o n al e n s e m bl e a v er a g e a n d t h e E S E i n-
t e r c e pt s f or ∆ γ 1 1 2 al o n g t hi s di r e cti o n wit h E B E- A V F D
si m ul ati o n s. Wit h o u r c ur r e nt p r e ci si o n, t h e r e s ult s f or
R u + R u a n d Z r + Zr ar e c o n si st e nt wit h e a c h ot h e r f or all
t h e c a s e s. T h e di ff e r e nti ati o n of t h e t w o i s o b ari c s y st e m s



Table II: fCME for the ensemble average of ∆γ112 and the
corrected ESE intercepts in EBE-AVFD events of 30–40% Ru+Ru

collisions at
√
sNN = 200 GeV, for n5/s = 0.05, 0.1, and 0.2.

n5/s = 0.05 Average ESE{q22} ESE{v2} ESE{v2∆δ}
fCME{RP} (%) 16.3±1.7 51.0±6.7 48.5±5.8 47.2±5.5

fCME{PP} (%) 6.3±2.1 20.2±7.1 21.8±7.5 21.1±7.3

n5/s = 0.1 Average ESE{q22} ESE{v2} ESE{v2∆δ}
fCME{RP} (%) 43.2±1.4 71.9±3.5 73.6±3.1 72.7±3.1

fCME{PP} (%) 14.4±2.2 31.3±5.7 33.7±5.9 33.0±5.7

n5/s = 0.2 Average ESE{q22} ESE{v2} ESE{v2∆δ}
fCME{RP} (%) 75.3±0.5 88.2±0.9 88.0±0.8 87.6±0.7

fCME{PP} (%) 41.3±1.3 65.0±2.8 65.1±2.5 63.9±2.4

Table III: fCME for the ensemble average of ∆γ112 and the
corrected ESE intercepts in EBE-AVFD events of 30–40% Zr+Zr

collisions at
√
sNN = 200 GeV, for n5/s = 0.05, 0.1, and 0.2.

n5/s = 0.05 Average ESE{q22} ESE{v2} ESE{v2∆δ}
fCME{RP} (%) 15.2±1.7 46.9±6.7 51.3±7.0 49.8±6.7

fCME{PP} (%) 6.1±2.2 22.5±8.7 21.7±8.2 21.0±7.9

n5/s = 0.1 Average ESE{q22} ESE{v2} ESE{v2∆δ}
fCME{RP} (%) 40.3±1.1 75.4±2.8 74.7±2.5 73.3±2.4

fCME{PP} (%) 15.5±1.7 45.1±5.9 45.6±5.7 43.7±5.4

n5/s = 0.2 Average ESE{q22} ESE{v2} ESE{v2∆δ}
fCME{RP} (%) 72.9±0.6 89.1±1.0 88.5±0.9 88.0±0.9

fCME{PP} (%) 39.8±1.3 65.8±3.1 67.7±2.9 66.4±2.8
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