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Summary  14 

Our overall objective is to synthesize mast-seeding data on North American Pinaceae to detect 15 
characteristic features of reproduction (i.e., development cycle length, serotiny, dispersal 16 
agents), and test for patterns in temporal variation based on weather variables. We use a large 17 
dataset (n=286 time series; mean length=18.9 years) on crop sizes in four conifer genera 18 
(Abies, Picea, Pinus, Tsuga) collected between 1960 and 2014. Temporal variability in mast 19 
seeding (CVp) for two-year genera (Abies, Picea, Tsuga) was higher than for Pinus (three-year) 20 
and serotinous species having lower CVp than non-serotinous species; there were no 21 
relationships of CVp with elevation or latitude. There was no difference in family-wide CVp 22 
across four tree regions of North America. Across all genera, July temperature differences 23 
between bud initiation and the prior year (∆T) was more strongly associated with reproduction 24 
than absolute temperature. Both CVp and ∆T remained steady over time, while absolute 25 
temperature increased by 0.09°C per decade. Our use of the ∆T model included a modification 26 
for Pinus, which initiates cone primordia two years before seedfall, as opposed to one year. 27 
These findings have implications for how mast seeding patterns may change with future 28 
increases in temperature, and the adaptive benefits of mast seeding.  29 

Introduction 30 

Mast seeding is the spatially synchronous and highly temporally variable production of seed 31 

crops by a population of perennial plants [1–4], and is widespread both taxonomically and 32 

geographically [5,6]. In the most variable species, very large amounts of seed are produced 33 

infrequently, with few seeds produced in other years [7]. Strong temporal variation in seed-crop 34 
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production has important consequences for forest regeneration [8] and pulses of seed 35 

production have cascading effects in ecosystems [9,10]. For instance, mast seeding pulses in 36 

New Zealand lead to increases in non-native mammal populations that prey on native birds [10]; 37 

and obligate seed-eating birds in North America show widespread irruptions as a response to a 38 

lack of conifer seed during years of poor seed production [11]. Despite the critical role of mast 39 

seeding for an array of taxa, there is still a limited understanding of how mast seeding varies 40 

geographically and across species. 41 

There are multiple hypotheses for the adaptive benefits of mast seeding (e.g., predator 42 

satiation and pollination efficiency) that suggest species with specific life history strategies will 43 

have greater temporal variability in seed crops [3]. High temporal variability is hypothesized to 44 

satiate seed-predators when seed production is high, enhancing pre-germination survivorship, 45 

and reduce seed-predator population numbers in the interval between resource pulses [12–14]. 46 

Conversely, species that are animal pollinated or animal dispersed are hypothesized to have 47 

lower temporal variability (measured as the coefficient of variation of the time series, CVp) to 48 

ensure sufficient populations of animal pollinators or dispersers [15,16]. Serotiny is a common 49 

life history strategy among fire-adapted conifers that also influences the adaptive benefits of 50 

mast seeding. Serotinous species retain their cones for years after seed maturation and their 51 

population persistence requires prompt regeneration after episodic, stand-replacing fire [17]. 52 

Because these species store their seeds aerially, with viable seeds as old as 20 years, there are 53 

fewer adaptive benefits of high CVp due to animal dispersal or to seed predation [18], and 54 

reproduction in serotinous species might vary due to resource matching [15]. 55 

It is generally agreed that the primary proximate cause of mast seeding is related to 56 

meteorological variables [19–23], especially temperature, and thus the temporal variability in 57 

seed crops may vary in relation to weather patterns in a given region. Specifically, for plants 58 

with two year reproductive cycles, seed crop size may not actually be driven by absolute 59 

summer temperature, but rather by the difference in temperature from the two previous 60 
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summers, referred to as the ΔT model [20]. In this model, the cue determining the number of 61 

initiated reproductive buds is the difference in temperature between the summer before the crop 62 

(year ‘t-1’) and the temperature in the preceding summer (year ‘t-2’), with the resulting crop size 63 

(in year ‘t’) a response to the sign and magnitude of the difference in those two earlier summer 64 

temperatures [20,24,25]. Simply, for those two-year reproductive cycle species that are cued by 65 

the temperature difference, a cool summer followed by a very warm summer induces a larger 66 

seed crop one year later [20,24,25]. The cues appears to be different for species in arid climates 67 

such as the US southwest, with cool and wet summers during bud initiation associated with 68 

large, subsequent seed crops in dryland forested ecosystems [26–28]; i.e. absolute 69 

temperature-regime matters [29]. Whether absolute temperature values or relative temperature 70 

compared to the previous year (ΔT) drive reproduction is critical to forecasting future mast 71 

events under a warming climate; if ΔT is the main driver then mast-seeding variability is not 72 

expected to change [20], whereas direct climate warming would lead to an increased cueing 73 

frequency that may induce a breakdown in mast seeding patterns over time [30]. While 74 

temperature appears to play a key role, the depletion of endogenous resources by a large 75 

reproductive event diminishes the number of reproductive buds the following year even when 76 

the conditions are favourable, such that high levels of reproduction do not happen in 77 

consecutive years [24,31].  78 

Much of our knowledge on mast-seeding patterns comes from studies on one or a few 79 

species at relatively local scales. Compilations of mast-seeding databases have allowed for 80 

data across large areas and over long time periods to be used to answer questions about 81 

spatio-temporal dynamics [14,15,24,25,32,33], with massive global databases used to examine 82 

patterns broadly based on phylogenetic relationships and/or processes related to global change 83 

[5,6,34,35]. Global-scale studies have been useful in identifying broad patterns of mast seed 84 

production of plants, such as latitudinal gradients and associations with pollination and dispersal 85 

traits [6,15]. However, by combining information from such disparate plant taxa, these studies 86 
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struggle to understand the consequences of other plant traits. As a result, a more focused 87 

analysis of seed production among closely related species can help for understanding how plant 88 

life history strategies influence spatio-temporal patterns of mast seeding [6]. Here, we focus on 89 

North American conifers to identify broad patterns of seed production. In doing so, we limit our 90 

analyses to a geographic area and a phylogenetically-related collection of species to facilitate 91 

understanding of life-history strategies, including serotiny, types of seed dispersal, and the 92 

timing of seed development.  93 

Pinaceae are common in North America across a range of habitats and environmental 94 

conditions, from hot and humid to cold and dry, and span a wide range of latitudes, and altitudes 95 

[36]. Pinaceae dominate the boreal forest and high altitudes, regions anticipated to be 96 

particularly vulnerable to climate change, as well as sandy, fire-prone terrain in the Southeast, 97 

and the coastal region of the Pacific Northwest. Conifer seeds are a key food resource for 98 

numerous species of animals, including birds, insects, and small mammals [37–39]. Most 99 

members of this family lack any capacity to asexually recruit from dormant basal buds following 100 

death of the crown, and thus we suspect that selection for higher or lower temporal variation in 101 

crop production will lead to stronger associations between traits and a measure of that variation. 102 

There are large numbers of long term datasets on conifer reproduction [5] as these species are 103 

key players in the forestry sector of the economy, and thus climate trends affecting temporal 104 

variability in crop production may be discerned. 105 

Our overall objective is to synthesize mast-seeding data on North American Pinaceae to 106 

i) quantify relationships between CVp (the coefficient of variation of conifer reproduction data for 107 

the time series of a population) with life-history strategies and location, ii) to test for relationships 108 

between CVp between genera and tree regions; iii) assess changes in CVp over time across 109 

genera, and iv) examine the generality of the ΔT model relative to the absolute T model for 110 

Pinaceae in North America. We restrict the analysis to four genera with a large number of 111 

records (Pinus, Tsuga, Picea, and Abies), leading to a resulting data set of 286 time series 112 
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(mean = 18.9 years of data) spanning much of the continent of North America across 55 years 113 

(1960-2014). This dataset has a broader spatial distribution of sites, approximately 2,000 more 114 

years of data, and is an increase of nearly 50% in the number of continuous datasets since the 115 

last synthetic studies on mast-seeding in multiple genera of conifers [34,40]. 116 

 Variation in CVp has been predicted to either increase at higher latitudes [15], or to peak 117 

and then decline at higher latitudes [6]. Elevation is also predicted to impact plant reproduction, 118 

with high elevation sites reducing reproductive potential and leading to lower CVp [22]. In 119 

addition to variability in CVp as a function of geographic location, we predict that CVp will vary 120 

among plants with different life history strategies, with animal-dispersed species and serotinous 121 

species predicted to have a lower CVp. We also compare CVp across four tree regions of North 122 

America (northern forests, Pacific coast, Rocky and western mountains, southeast coast [41]) 123 

and predict that more northern areas will have higher CVp. Given our data compilation extends 124 

back to 1960, we will also look for temporal trends in CVp. We also extend the ∆T model to 125 

temporal patterns of mast seeding for groups with contrasting seed developmental timing, and 126 

to groups within Pinus that occur in hot (low altitude, southern latitude) environments versus 127 

cool (high altitude /northern latitude) environments. For plant species with a 2-year cycle of 128 

development, reproductive bud primordia are initiated in year t-1, with the sequence of 129 

pollination through seed maturation completed in year t. By contrast, Pinus establishes the bud 130 

primordia in the summer of t-2, with pollination in t-1, and completion of seed maturation in year 131 

t. Thus, we reframe the ΔT model for Pinus with a suitable modification of the predictor variable 132 

(the temperature difference now based on t-2 minus t-3) to determine if this will lead to results 133 

consistent with two-year species. We tested the prediction that if the ∆T model holds, then rising 134 

temperatures over time will result in no change in ∆T, and subsequently there will be no change 135 

in mast-seeding variability [20] (except insofar as the slightly increased variation in local inter-136 

annual temperatures is expected to increase slightly) [42–44]. 137 

 138 
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Methods 139 

Mast seeding data 140 

Data on annual seed production were obtained from a mast-seeding database [5], augmented 141 

with data from searches of the literature and data repositories, and data from co-authors. All 142 

data included in analyses met the criteria that they i) had at least 6 years of mast seeding data 143 

for a species of coniferous tree in North America, ii) data were collected on a continuous scale 144 

(based on seed traps, visual cone counts, or cone scars), iii) occurred between 1960-2014. 145 

Additionally, iv) for a taxon to be included in the study, there was a minimum of 10 separate time 146 

series at the level of the genus. Data from distinct sites or on different species were included 147 

separately. Based on these requirements, we compiled a total of 286 mast seeding datasets 148 

with a mean time series length of 18.9 years and a total of 5,398 years of data, including four 149 

genera (Abies (n = 54), Picea (n = 87), Pinus (n = 126), and Tsuga (n = 19)) and 25 species (Fig 150 

1; Table S1). This dataset includes a broader distribution of sites with data, approximately 2,000 151 

more years of data, and is an increase of nearly 50% in the number of continuous datasets 152 

since the last synthetic studies on mast-seeding in multiple genera of conifers [34,40]. 153 

Data locations ranged across the continent and included four forest major regions of 154 

North America, northern forests, the Pacific coast region, Rocky and western mountain region, 155 

and the southeast coast region [41] (Fig 1). The 286 datasets cover 3,769 km in latitude and 156 

3,456 m in elevation.  157 

Life-history attributes  158 

Attributes of each conifer species that are predicted to influence temporal variability in conifer 159 

reproduction were assigned to each species. These life-history attributes included: cone 160 

serotiny (no serotiny = 0; semi-serotiny or serotiny = 1), whether animals are recognized as a 161 

key dispersal agent for seeds (no = 0; yes = 1) based on having wingless or functionally 162 

wingless seeds [45], and the number of years required for seed-development, from bud 163 

primordia to seed maturity (2 years or 3 years) (Table S2). Attributes were assigned based on 164 
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the predominant status identified for a species. (e.g. our data set includes several records on 165 

the characteristically serotinous species P. contorta, however there may be some variability 166 

among populations. In a future paper we will show that non-serotinous and serotinous 167 

populations of both P. contorta and P. clausa have similar CVp values.  168 

Climate data 169 

We obtained climate data using ClimateNA v6.30, a software application that provides point-170 

location climate data on a monthly, seasonal, and annual basis for a given year or time period 171 

over the entire continent of North America [46]. ClimateNA is based on the extraction and 172 

downscaling of gridded (4 × 4 km) monthly climate data for the reference normal period (1961–173 

1990) based on PRISM [47] and WorldClim [48], and then using that as a baseline to downscale 174 

historical and future climate variables between 1901 and 2100. Climate data for specific point 175 

locations is accomplished through a combination of interpolation along with an elevation 176 

adjustment. We obtained monthly climate data for all mast seeding dataset locations between 177 

1958 (two years prior to our first year of data) to 2014. 178 

Analysis 179 

Prior to analysis, we standardized each dataset to values between 0 and 100 based on the 180 

range of seed set values within each record because units of seed set varied among studies 181 

[5,24]. We calculated CVp for each dataset using annual values of reproduction across the 182 

duration of the data (standard deviation / overall mean). We built models to test hypotheses of 183 

whether CVp was driven by life-history characteristics or elements of geography (latitude, 184 

elevation). Life-history characteristics included serotiny of cones, animal dispersal of seeds, and 185 

seed-development time (as assigned above) at the species level (Table S2). We built linear 186 

mixed effects models with life-history characteristics, latitude and elevation and their interaction, 187 

and included random intercepts for site and mast-seeding data collection method (e.g., visual 188 

cone counts, seed traps, cone scars) to account for potential differences in the intercepts of 189 

CVp. The global model had five fixed effects and an interaction as described above, and we 190 
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compared all possible models of fixed effects and a null model using AICc model comparisons. 191 

For each model, we weighted the contribution of each dataset by the number of years data were 192 

collected for, as CVp can be influenced by the length of the time series. We ran this analysis for 193 

all 286 conifer datasets combined and the best model(s) was determined using AICc model 194 

selection and AICc weights to construct a 90% confidence-model set [49] and model-averaging 195 

using the MuMin package [50]. All statistical analyses were conducted in RStudio using R 196 

version 4.0.2. 197 

We tested for variation in CVp across genera using a likelihood-ratio test between linear 198 

mixed effects models with and without genera, with site and sampling method as random effects 199 

using the lmtest package [51]. We computed estimated marginal means for each group and did 200 

post-hoc pairwise comparisons using the emmeans package [52]. We also tested for variation in 201 

CVp across tree regions using a likelihood-ratio test between linear mixed effects models with 202 

and without tree region, with site and sampling method as random effects and weights for the 203 

number of years of data available for each dataset.  204 

To test for changes in CVp over time, we split the 55-year span of the entire database 205 

into three time intervals (1960-1977, 1978-1995, 1996-2014; interval length = 18 years, 18 206 

years, 19 years; Fig. S1). We chose three time intervals because this approach provided an 207 

interval length similar to the 20-year intervals used in [5]. For each time interval, we calculated 208 

CVp for each dataset that had at least six years of data during that interval. We built a linear 209 

mixed effects model with CVp during each time interval as the response variable, time interval, 210 

genus, and their interaction as independent variables, and we included random intercepts for 211 

site and mast seeding data collection method, as above. We also conducted this analysis 212 

across tree regions with the same model setup (tree region replaced genus). We determined the 213 

best model(s) from all possible models using the MuMin package [50] and AICc and AICc 214 

weights for model comparison [49].  215 
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We tested for the influence of weather conditions and lags in reproduction on 216 

standardized reproduction. We reviewed conifer species profiles and found that July has been 217 

identified as a key month both across conifer species and across broad geographic locations 218 

within species [36]. Across North America, July has the hottest mean monthly temperature [53]. 219 

For genera with a two-year seed development time (Abies, Picea, and Tsuga), we used ∆T 220 

calculated from July temperatures in year t-1 minus July temperatures in year t-2 (∆T1), while for 221 

Pinus (three-year seed development, with cone primordia laid two years before seedfall) we 222 

modified ∆T to be based on July temperatures in year t-2 minus July temperatures in year t-3 223 

(∆T2). We tested for general patterns in the influence of summer temperatures and lags in 224 

reproduction on annual reproduction for each genus separately, and for all two-year seed 225 

development time genera together. We built linear mixed effects models using standardized 226 

reproduction over the full datasets as the response variable. Models for genera with seed-227 

development times of two years included each of July temperature in t-1 and ∆T1, both alone 228 

and with reproduction in the previous year (a 1-year lag in reproduction), the 1-year lag in 229 

reproduction alone, and a null model.  230 

For Pinus, the genus with a seed-development time of three years, we first divided up 231 

the mast-seeding records for species based on their general climate conditions, with species 232 

located in ‘hot’ climates (P. edulis, P. palustris, P. ponderosa subsp. scopulorum, and P. taeda) 233 

analyzed separately from Pinus species located in ‘cool’ climates (see Table S1), identified 234 

based on [36]. This was done as we hypothesized that the relationship between temperature 235 

and reproduction may vary among hot and cool pines, with hot pines expected to be negatively 236 

associated with temperature [26,27]. The Pinus models included a term for reproduction two 237 

years prior (a 2-year lag in reproduction), July temperature in t-2 and both ∆T2and ∆T1. For all 238 

the above models, we included random intercepts for site, species, and year (for Tsuga, species 239 

was not included as a random effect because having only three species led to a singular fit), 240 

and weights based on the number of years in a dataset. For each level of analysis we 241 
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determined the best model(s) using the MuMin package [50] and AICc and AICc weights for 242 

model comparison [49]. We calculated variable importance values and model-averaged 243 

parameter estimates (and 95% confidence intervals) for standardized conifer reproduction 244 

patterns over time from the 90% AICc confidence model set for each of set of models run.  245 

Lastly, we tested for temporal changes in July temperature and ∆T at each site for the 246 

duration of the study period. We built linear mixed effects models for each of mean July 247 

temperature and ∆T, with year, geographic region, and their interaction as response variables, 248 

and site as a random effect. We compared these full models to models based on subsets of 249 

these terms and a null model using AICC model comparisons.  250 

 251 

Results 252 

Across the 286 data sets, the interannual variability in seed production within a given population 253 

(CVp) had a mean of 1.57 (median CVp = 1.52). There was a wide distribution in CVp values, 254 

with a minimum of 0.54 and a maximum of 3.56 (Fig 2).  255 

CVp – relationships with life-history attributes and location  256 

Seed development time and serotiny were associated with CVp: the top model for CVp 257 

across all mast seeding data included the fixed effects of seed-development time and serotiny, 258 

which had an AICc weight of 0.723 (Table S3). The next best model included fixed effects of 259 

seed development time, serotiny, and animal dispersal (∆AICc of 4.21, wi = 0.088). Variable 260 

importance values for life-history attributes terms across all of the candidate models were 1.00 261 

for seed-development time, 0.96 for serotiny, and 0.12 for animal dispersal. Importance values 262 

for location-based terms were 0.13 for elevation, 0.05 for latitude, and <0.01 for their interaction. 263 

The CVp of mast-seeding datasets with a three-year seed-development time were 0.37 lower 264 

than those with a two-year development time, and serotiny resulted in a lower CVp by 0.47 265 

(Table 1). The 95% CI of model-averaged parameter estimates for animal dispersal, elevation, 266 
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and latitude all overlapped zero; there was no relationship between animal dispersal, elevation, 267 

or latitude on CVp.  268 

CVp – relationships across genera and tree regions 269 

There was a significant difference in mean CVp across conifer genera (χ2 = 24.28, df = 270 

3, P < 0.001) with the mean CVp of Pinus spp. (1.26 ± 0.50) being significantly lower than both 271 

Abies spp. (1.93 ± 0.50; t = 4.47, P < 0.001) and Picea spp (1.76 ± 0.52; t = 5.24, P < 0.001; 272 

Fig. 3). The mean CVp of Pinus spp. was not significantly different than Tsuga spp. (1.79 ± 273 

0.44; t = 2.24, P = 0.11), and there were no significant differences in mean CVp between other 274 

genera. There were no significant differences in mean CVp across four tree regions of North 275 

America (χ2 = 2.84, df = 3, P = 0.42; Table 2).  276 

CVp – changes over time 277 

We found no evidence for a change in CVp over time at the genus level or across tree 278 

regions (Fig 4; Table S4), suggesting that there was no directional change in temporal variability 279 

in mast seeding between 1960 and 2014. AICc model comparisons, with time interval, genus, 280 

and their interactions as independent variables, showed that the null model was the top model 281 

(AICc weight = 0.810; Table S4). AICc model comparisons based on tree regions, with time 282 

interval and their interaction as independent variables also showed that the null model was the 283 

top model (AICc weight of 0.793; Table S4). There was no difference in these conclusions (no 284 

change over time detected) when the 55-year timeframe was separated into five time intervals 285 

of 11-years, compared to the three longer time intervals shown here. 286 

Modelling mast-seeding dynamics - influence of temperature and lag-reproduction 287 

Across all genera, ∆T variables were most strongly associated with standardized 288 

reproduction, suggesting that ∆T rather than absolute temperature most strongly drives 289 

reproduction. For Abies, Picea, and Tsuga reproduction was associated with ∆T1 and 290 

reproduction the prior year (Reproductiont-1): these two variables were in the most parsimonious 291 

model (AICc weight = 1.000 for Abies, 0.942 for Picea, and 0.715 for Tsuga (Table S5). For 292 
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Tsuga reproduction, the second best model only included ∆T1 (AICc weight = 0.283) (Table S5). 293 

For all two-year development genera combined, the most parsimonious model was ∆T1 + 294 

Reproductiont-1 (AICc weight = 1.000). Regarding the direction of effects of the independent 295 

variables on standardized reproduction, for all two-year genera (i.e. Tsuga, Abies, and Picea), 296 

∆T1 had a positive association with reproduction in year ‘t’, while the lag in reproduction from the 297 

previous year (Reproductiont-1) had a negative association (Table 3). For Abies, Picea, and the 298 

analysis of all two-year genera combined, the 95% confidence intervals of the parameter 299 

estimates did not overlap zero, which for Tsuga, the 95% CI for Reproductiont-1 overlapped zero 300 

(Table 3). 301 

 For Pinus, the genus with a three-year seed-development time, reproduction of both cool 302 

and hot species was associated with ∆T2 (the difference in July temperature during the year of 303 

cone initiation (two years prior to seed maturation) and the year prior); the importance value of 304 

∆T2 was 0.78 for cool species and 0.98 for hot species. Contrary to the patterns in the two-year 305 

development time genera, for both hot and cool Pinus species, increasing values of ∆T2 had 306 

negative effects on standardized reproduction in year ‘t’ (Table 3). In other words, a hot summer 307 

prior to cone initiation followed by a cool summer during the year of cone initiation leads to high 308 

reproduction of Pinus whereas the reverse is true for the other genera. For the hot group, 309 

multiple cooling years may be important (both ∆T2 and ∆T1 are in the top models; Table S5). For 310 

cool groups, the top models have both Reproductiont-1 and ∆T2; note that for the cool group all 311 

95% confidence intervals overlapped zero (Table 3). For the hot group, only ∆T2did not overlap 312 

zero. 313 

Mean July temperature and ∆T – changes over time 314 

 Mixed models indicated mean July temperature across study sites has increased over 315 

time (1960-2014). The top model (weight = 1.000) included only tree region and year as fixed 316 

effects, with no significant region*year interaction. Overall, temperatures increased by an 317 

estimated 0.5°C during the study, at a rate of 0.091 ± 0.008°C (mean ± SE) per decade. The 318 
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southeast region was warmest, with the northern tree region being the coolest, with the Pacific 319 

coast being similar to the northern region, while the Rocky and western mountain region had the 320 

widest range of temperatures (Fig. S2). For ∆T, model selection based on AICc indicated that 321 

the null model was the most parsimonious (weight = 0.974) suggesting no change in ∆T over 322 

time in any of the tree regions. The next best model included year and had a ∆AICc of 7.25 and 323 

a weight of 0.026 (Fig. S3).   324 

 325 

Discussion 326 

The North American conifer species analyzed here displayed nearly as much variability in CVp 327 

values (0.54 to 3.56) as analyses based on mast seeding datasets around the world [6]. Across 328 

four genera representing 25 species of conifers in North America and 286 datasets, temporal 329 

variability in mast seeding was related to seed-development periods, serotiny, and genus. All 330 

species of Pinus included in this study take three years for their seeds to develop, and had a 331 

lower CVp compared to the other genera with two-year seed-development periods; Abies, 332 

Picea, and Tsuga. In addition to highlighting differences in temporal variability in mast seeding 333 

among genera and life history strategies, our study documented widespread support for the ∆T 334 

model across genera as opposed to absolute temperature and found that both CVp and ∆T 335 

remained steady over the time period examined (1960-2014) while absolute temperatures 336 

increased. These findings have important implications for how mast seeding patterns may 337 

change with future projected increases in temperature and the adaptive benefits of mast 338 

seeding. 339 

Serotinous species had lower temporal variability in mast seeding. Rather than selecting 340 

for high CVp to satiate seed predators, these serotinous species are instead more likely to have 341 

temporal patterns of reproduction that reflect resource matching [15], and selection for 342 

enhanced cone and seed defenses to reduce seed predation [54]. We had lower support for 343 

animal dispersal in driving CVp patterns across species, which differs from other studies that 344 
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found seed dispersal by animals was related to lower CVp [6,55]. Our classification of a species 345 

as animal dispersed was based on reports of successful dispersal and growth related to animals 346 

and if the wing was absent or so short to allow for wind dispersal [45]. Other studies have 347 

separated endozoochorus seed dispersal (seeds that are commonly passed through the gut of 348 

animals) and those seeds dispersed by animals that commonly consume cached seeds 349 

(dyszoochorus) [6].  350 

We found no support that CVp varied geographically in relation to elevation and latitude. 351 

While CVp has been predicted to increase with latitude, both Kelly and Sork [15] and Pearse et 352 

al. [6] found a humped-shaped relationship that peaked at approximately 40° latitude and 353 

decreasing towards the poles, our data likely fit the declining portion of that trend. While Pinus 354 

had CVp values significantly lower than the other genera, there were no significant differences 355 

in CVp across regions. This suggests that mast seeding patterns of conifers in northern forests, 356 

which includes the boreal forest of Canada and Alaska, are no more or less variable on average 357 

than in forests in the south, which included data from Florida, USA.  358 

 We found that, as predicted by Kelly et al. [20] there have been no changes in CVp for 359 

North American conifers over the timeframe of 1960-2014. By contrast, Pearse et al. [5] used 360 

20-year intervals from 1900-2014, and with a worldwide dataset found that CVp increased over 361 

time, for the whole dataset and with only Pinaceae. Partly this difference in conclusions might 362 

be traced to the longer time span available to them or their wider spatial coverage. We do point 363 

out however that extending their temporal record back twice as far as ours, entailed risks: e,g, 364 

there would be only 27 data points (5 authors; 5 species; different sites) in the first 40 years, 365 

and 14% of these data (far higher than for the rest of the record) were for a serotinous species, 366 

which, as demonstrated here, has a reduction in CVp of 0.47 compared to non-serotinous 367 

species. Thus, the documented increase in CVp may be a result of the limited data available 368 

that tended to favor a lower CVp in the early part of the record. In fitting models of standardized 369 

reproduction over time, we found that ∆T based on July temperatures was included in top 370 
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models, and that ∆T1was in the most parsimonious model for each of the two-year genera 371 

separately and for all of them combined. Similarly, for Pinus the three-year genera, ∆T2 has 372 

importance values of 0.78 for the cool species and 0.98 for the hot species. With ∆T being a 373 

highly important variable, particularly when compared to the actual absolute July temperature 374 

one or two years prior to seed maturity, our finding of no change in CVp or ∆T over time is 375 

internally consistent. In addition to ∆T, a one-year lag in reproduction had high importance in 376 

reproduction models for Abies, Picea, and Tsuga, with a negative impact on conifer 377 

reproduction. In contrast, for Pinus, there was a slight positive effect of reproduction lags two 378 

years prior in cool species, and a very small negative effect of lagged reproduction in hot 379 

species. Pinus data showed lower variability across years compared to the other genera, 380 

suggesting perhaps that some individuals in those populations may be reproducing most years. 381 

The lag effect of reproduction would be expected to be stronger in those species with higher 382 

CVp. 383 

For all of the two-year development time genera, warmer ∆T1values were related to 384 

greater levels of standardized reproduction. This finding is consistent with other research within 385 

these genera [24,56]. For Pinus, we created a modification of the ∆T model, because the cone 386 

primordia are differentiated two years before seedfall as opposed to the usual one year prior; 387 

while ∆T2 had high importance in model selection; for both the cool and hot locations, higher ∆T2 388 

had a negative impact on the amount of standardized reproduction. In other words, cool years at 389 

the time of cone initiation that were preceded by hot years lead to high reproductive years, 390 

which is the opposite to what we observed with Abies, Picea, and Tsuga. For pine species 391 

adapted for hotter climates, we had hypothesized this negative relationship given these species 392 

are more likely to be water-limited rather than energy-limited and prior research has found 393 

negative relationships with hot temperatures during cone initiation and reproduction within this 394 

group of species [26–28]. Yet for the cooler pines we had hypothesized a positive relationship, 395 

similar to what we observed with all other genera. The observed negative relationship of these 396 
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cool Pinus species similar to the hot Pinus species, may be that the adaptive cue to signal 397 

reproduction was developed early into the evolution, as Pinus tended to occupy seasonally dry 398 

environments [57]. Abnormally hot July temperatures in the year prior to reproductive bud 399 

induction that lead to greater vapor pressure deficits [58] may thus increase water stress and 400 

therefore signal the tree to promote higher cone set for this more drought-adapted genus.  401 

While the data used in our analyses included nearly 300 datasets and spanned vast 402 

distances, from Florida to Alaska (over 3,700 km of latitude) and 3,450 m of elevation, there are 403 

areas where mast-seeding coverage in conifers is sparse to non-existent, which is a limitation of 404 

this study (that being said, much of the interior United States and part of Canada are defined as 405 

prairie ecosystems without dense forests). Different methods of data collection and sampling 406 

regimes (e.g., number of samples, seed trap size, size of trees sampled) influence CVp values 407 

where too small seed traps will rarely catch seed, and small trees that rarely reproduce will both 408 

result in false zeros and elevated CVp values [59,60] and efforts could be made to standardize 409 

sampling. Future data collection should involve increasing the spatial spread of mast seeding 410 

data collection in both the United States and Canada, particularly for Abies, Pinus, and Tsuga. 411 

However, even for Picea, while the coverage may appear better, there are gaps in the data and 412 

some data are historic and are no longer being collected. Also, there are some species within 413 

the genera presented here that were not included due to lack of data, as well as some genera 414 

with only a few records that we could find. Note that there is confounding between the genus 415 

Pinus and three-year development times.  416 

The goal of this study was to examine Pinaceae generally, there may be dramatic 417 

interspecific and intraspecific variation to be explored. For example, in a hot Pinus species, P. 418 

edulis, CVp is highest in more climatically stressful sites (high water deficits and low monsoonal 419 

precipitation) [61]. Thus while we detected no broad patterns in CVp across regions, more 420 

localized patterns may exist within species [24,62]. In addition, increasing data collection across 421 

elevational gradients at different latitudes in mountainous areas will allow for documenting mast 422 
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seeding patterns over time and testing hypotheses related to climate change. While temperature 423 

increases are predicted to be substantial at high latitudes, other components of climate change 424 

include frequency and severity of fires, insect attacks, and extreme weather events [63], and 425 

increasing CO2 has been shown to experimentally impact conifer seed production [64] and could 426 

impact long-term mast seeding patterns.  427 

We found that there were similar temperature and lag-reproduction drivers in genera 428 

with the same seed-development times. This suggests that there could be interspecific 429 

synchrony between species that overlap in their spatial distribution, leading to widespread mast 430 

years (or, alternatively, poor crops) across regions that would have a much greater effect on 431 

vertebrate seed predator abundances than would the seed production dynamics of a single 432 

species. Across all genera examined, we found much greater support for the ∆T model, rather 433 

than absolute temperature, driving reproduction. In addition, we found no evidence of change in 434 

∆T for the study duration, despite increases in mean July temperature. This suggests that recent 435 

and projected increases in temperature will not result in subsequent increases in reproductive 436 

output among Picea, Tsuga, and Abies, or declines in reproductive output among Pinus (but see 437 

[27]). This is also consistent with our finding that variation in mast-seeding patterns (CVp) has 438 

not changed over time for the four genera included here, which has implications for the wide 439 

array of wildlife species whose population dynamics are linked to mast seeding patterns 440 

[10,37,65–67]. 441 
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Tables 631 

Table 1: Model-averaged parameter estimates (and 95% confidence intervals) for CVp of North 632 
American conifer trees from the 90% confidence model set (see Table S3). The estimates 633 
represent the expected change in CVp when moving from one value of the life-history attribute 634 
to the next1. 635 

  
Term 

 
Estimate (95% CI) 
 

Life-history 
attributes 

Seed development time (2 or 3 years) 
 

-0.37 (-0.53, -0.21) 
 

Serotiny (0 = no; 1 = yes) 
 

-0.47 (-0.81, -0.13) 

Animal Dispersal (0 = no; 1 = yes) 
 

-0.01 (-0.11,  0.09) 

 
Location Elevation (100m)  0.001 (-0.007, 0.010) 

 Latitude2 -0.0005 (-0.0053, 0.0043) 
1e.g., The CVp associated with a 3-year seed development time is estimated to be 0.37 lower than the CVp 636 
associated with a 2-year seed development time. 637 
2Latitude scale is in decimal degrees  638 
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Table 2: Mast seeding variability (CVp) within four tree regions of North America (as defined by 639 
[41] between 1960-2014. Number of datasets (n) and means ± standard deviation are shown.  640 

 
Region 
 

 
n 

 
CVp 

Northern forests 
 

84 1.53 ± 0.54 

Pacific coast  
 

68 1.75 ± 0.45 

Rocky and western mountain 
 

112 1.44 ± 0.62 

Southeast coast 
 

22 1.86 ± 0.64 

641 

642 
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Table 3: Model importance values and model-averaged parameter estimates (and 95% 643 
confidence intervals) for standardized conifer reproduction patterns over time from the 90% 644 
AICc confidence model set for each of four genera. Models for genera with seed-development 645 
times of two years included a 1-year lag in reproduction and July temperature and ∆T1 646 
(temperature in July of year t-1 minus July of year t-2). When there was only one top model, 647 
there are no importance values for terms. For the seed-development time of three years, the 648 
models included 1 and 2-year lags in reproduction and July temperature and both ∆T1 and ∆T2 649 
(temperature in July of year t-2 minus July of year t-3). 650 

Genus Seed-development 
time Term Importance Estimate (95% CI) 

Abies 2 years ∆T1 na  2.18 ( 1.48 , 2.88) 
Reproductiont-1 na -0.17 (-0.22, -0.13) 
   

Picea 2 years ∆T1 na  2.64 ( 2.03,  3.25) 
Reproductiont-1 na -0.10 (-0.15, -0.05) 
   

Tsuga 2 years ∆T1 1.00  3.21 (2.23, 4.18) 
Reproductiont-1 0.72 -0.09 (-0.21, 0.04) 

     
All 2-year genera ∆T1 na  2.82 ( 2.47 , 3.17) 

Reproductiont-1 na -0.14 (-0.17, -0.11) 
     
     

Pinus 
(cool) 

3 years Reproductiont-2 0.99  0.17 ( 0.09,  0.25) 
∆T2 0.78 -1.49 (-3.32, 0.35) 
∆T1 0.32  0.10 (-0.63,  0.85) 
Temperaturet-2 0.21 -0.34 (-1.67,  0.99) 

     
Pinus 
(hot) 

3 years ∆T2 0.98 -2.72 (-4.22, -1.22) 
∆T1 0.50 -0.38 (-1.75,  0.99) 
Reproductiont-2 0.14 -0.005 (-0.044,  0.034) 
   

  651 
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Figures  652 

 653 

Fig. 1: Mast-seeding time series of North American conifers spanning 55 years (1960 – 2014). 654 
These data include 286 time series with a minimum of six years of data, four genera, a) Abies 655 
(orange squares; n = 55), b) Picea (vermillion circles; n = 87), c) Pinus (bluish-green triangles; n 656 
= 128), and d) Tsuga (blue diamonds; n = 20). Shaded areas represent the tree regions of 657 
northern forests (red), Pacific coast (blue), Rocky and western mountain (orange), southeast 658 
coast (yellow) (adapted from [41]). One Picea dataset in Medicine Hat, Alberta, Canada was 659 
included with northern forests for analysis, as it was a characteristically boreal forest species (P. 660 
glauca).661 
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 662 

Fig 2.  Distribution of CVp across mast seeding datasets by North American conifer tree species 663 
during 1960-2014 (n = 286 datasets).664 

665 
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 666 

Fig. 3: Variability in mast-seeding patterns of North American conifers quantified as the 667 
coefficient of variation. These data include 286 time series with a minimum of six years of data, 668 
spanning 55 years (1960 – 2014). Letters indicate groups based on significant post-hoc tests for 669 
differences between group means; colours for genera match Fig. 1.670 

a a b ab 
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 671 

Fig. 4: Patterns of CVp over time for four genera, a) Abies, b) Picea, c) Pinus, and d) Tsuga. 672 
The entire time period (1960-2014) was split into three time intervals. 673 


