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ABSTRACT. We introduce a wide class of countable groups, called properly proximal, which
contains all non-amenable bi-exact groups, all non-elementary convergence groups, and all
lattices in non-compact semi-simple Lie groups, but excludes all inner amenable groups.
We show that crossed product II; factors arising from free ergodic probability measure
preserving actions of groups in this class have at most one weakly compact Cartan subal-
gebra, up to unitary conjugacy. As an application, we obtain the first W*-strong rigidity
results for compact actions of SLq(Z) for d > 3.

1. INTRODUCTION

Countable groups and their measure preserving actions naturally give rise to von Neumann
algebras, via two constructions of Murray and von Neumann [MVN36, MvN43|]. This work
is motivated by the following general problem: prove structural results for the von Neumann
algebras associated with the arithmetic groups SLy(Z), d > 3, and their probability measure
preserving (p.m.p.) actions. At present, relatively little is known in this direction. Thus,
nearly all available results regarding the group von Neumann algebras L(SL4(Z)), d > 3, are
either direct consequences of property (T) [Con80], or concern inclusions LA C L(SL4(Z))
for some subgroups A < SL4(Z), rather than L(SLy4(Z)) itself [BC15]. Moreover, while
several remarkable rigidity results for crossed product von Neumann algebras associated
to actions of SL4(Z) have been obtained in [Pop06b, [Pop06c, Toallbl Bould], these are
restricted to specific classes of actions.

In contrast, the structure of von Neumann algebras associated with I' := SLy(Z) and its
actions is much better understood. Indeed, from the perspective of deformation/rigidity
theory there has been a lot of work in this direction, starting with two seminal results ob-
tained in the early 2000s. First, Popa used his deformation/rigidity theory to show that the
crossed product von Neumann algebra L (X) x I" associated to any free ergodic p.m.p. ac-
tion I' ~ (X, 1) has at most one Cartan subalgebra with the relative property (T) [Pop06a].
Second, Ozawa employed C*-algebraic techniques to prove that LI is solid: the relative
commutant, A’ N LT, of any diffuse von Neumann subalgebra A C LI" is amenable [Oza04].
These results have since been considerably strengthened, also in the context of Popa’s de-
formation/rigidity theory, following two breakthroughs of Ozawa and Popa [OP10a] and
Popa and Vaes [PV14a]:

(1) LT is strongly solid: the normalizer of any diffuse amenable von Neumann subalge-
bra A C LT generates an amenable von Neumann algebra. Moreover, L>° (X, pu) x T’
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admits L>°(X, u) as its unique Cartan subalgebra, up to unitary conjugacy, for any
free ergodic compact p.m.p. action I' ~ (X, p) (see [OP10a]).

(2) T is C-rigid: L*°(X,u) x I’ admits L*>°(X, u) as its unique Cartan subalgebra, up
to unitary conjugacy, for any free ergodic p.m.p. action I' ~ (X, u) (see [PV14a]).
In particular, L*°(X) x I' entirely remembers the orbit equivalence relation of the
action I' ~ (X, p) [EMT77].

Recall that a Cartan subalgebra of a tracial von Neumann algebra M is a maximal abelian
subalgebra A C M whose normalizer generates M. Proving uniqueness results for Cartan
subalgebras of crossed product von Neumann algebras is of crucial importance as it allows
one to reduce their classification, up to isomorphism, to the classification of the underlying
actions, up to orbit equivalence. Indeed, as shown in [Sin55], two free ergodic p.m.p. actions
I' ~ (X,u) and A ~ (Y,v) are orbit equivalent precisely when there is an isomorphism
L>®(X) x T = L*®(Y) x A which identifies the Cartan subalgebras L*°(X) and L>®(Y).

In fact, in the last 15 years, a plethora of impressive structural results have been obtained
for von Neumann algebras arising from large classes of countable groups I'' and their measure
preserving actions (see [Oza06al, Pop07, [Vael0l Toal8]). However, in most of these results,
some negative curvature condition on I' is needed, in the form of a geometric assumption
(e.g., I' is a hyperbolic group or a lattice in a rank one simple Lie group [Oza04, [PV14h]), or
a cohomological assumption (e.g., I' has positive first 2-Betti number, [Pet09] [PS12] [CP13)|,
CS13, [Vael3d]), or an algebraic assumption (e.g., I' is an amalgamated free product group,
[IPPO8, [CH10, PV10, Toal5]). In sharp contrast, lattices in higher rank simple Lie groups,
such as SLy(Z) for d > 3, do not satisfy any reasonable notion of negative curvature.

The results (1) and (2) were generalized in [CS13] and [PV14b] to any group I' which is
both weakly amenable [CH89, Haal6] and bi-exact (equivalently, belongs to Ozawa’s class
S) [Ska88, [0za04, [0za06b]. The proofs of statements (1) and (2) for such groups I' split
into two parts. First, one uses the weak amenability of I' to deduce that any amenable
subalgebra of L(I") or L*>°(X) x I satisfies a certain weak compactness property ([OP10al,
see Deﬁnition. This fact is then combined with the bi-exactness of I' to prove the desired
conclusions. The weak amenability and bi-exactness properties are enjoyed by hyperbolic
groups and lattices in simple Lie groups of rank one. However, both of these properties fail
dramatically for lattices in higher rank simple Lie groups.

One of the main goals of this paper is to generalize the bi-exactness methods to a broader
class of groups. The class of groups admitting proper cocycles into nonamenable repre-
sentations was already considered in [OP10b, Theorem A], and products of such groups
were considered in [CS13| Section 4], however, the methods therein do not apply to general
higher rank lattices such as SL4(Z) for d > 3. The following is our first main result:

Theorem 1.1. Let G be any connected semi-simple Lie group with finite center and let
I' be a lattice in G (e.g., take I' = SL4(Z) and G = SL4(R), for d > 2). Then the von
Neumann algebra of I' does not admit a weakly compact Cartan subalgebra. Moreover, for
any free ergodic p.m.p. action o : I'~ (X, u), the crossed product L>=°(X, ) x I' admits a
weakly compact Cartan subalgebra A if and only if o is weakly compact and, in this case, A
is unitarily conjugate to L=(X, u).

Let us make several comments on the assumptions and conclusions of Theorem A
Cartan subalgebra A of a tracial von Neumann algebra M is called weakly compact if the
inclusion A C M is weakly compact in the sense of [OP10a] (see Definition 2.2). A free
ergodic p.m.p. action A ~ (Y,v) is called weakly compact if L>°(Y,v) is a weakly compact
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Cartan subalgebra of L>°(Y, ) x A. Note that the class of weakly compact actions contains
all compact actions, and thus all profinite actions, and is closed under orbit equivalence, see
[OP10al Toalla]. Recall that any ergodic compact p.m.p. action A ~ (Y, v) is isomorphic to
a left translation action A ~ (K/Ko, mg/k,), where K is a compact group which contains
A as a dense subgroup, Ko < K is a closed subgroup, and mg/f, is the unique K-invariant
probability measure of K /K.

Thus, the first assertion of Theorem implies that LI" is not isomorphic to any crossed
product L°(Y,v) x A arising from a compact p.m.p. action A~ (Y,v) of an arbitrary
group. The moreover assertion implies that if a free ergodic p.m.p. action I' (X, u)
is W*-equivalent to a compact action A~ (Y,v) (in the sense that their crossed product
von Neumann algebras are isomorphic, L>(X) x I' =2 L*>®(Y) x A) then these actions are
actually orbit equivalent.

By combining Theorem [1.1| with orbit equivalence rigidity results from [Zim84] or [oalla]
we obtain the following corollary.

Corollary 1.2. Let o : SLg(Z) ~ (X, ) and o’ : SLy(Z) ~ (X', /') be free ergodic profinite
p.m.p. actions, for some d,d" > 3. If L°°(X) x SLg(Z) is isomorphic to L>(X") x SLy/(Z),
then d = d' and the actions o and o’ are virtually conjugate.

Remark 1.3. Let us discuss concrete examples.

(1) For d > 3 and a non-empty set of primes P, consider the left translation action
of SLq(Z) on the compact group Kqp := [[,cpSLa(Zy) endowed with its Haar
measure, where Z, denotes the ring of p-adic integers. Corollary implies that
L>®(K4p)xSL4(Z) and L (K g pr) x SLg (Z) are isomorphic if and only if (d, P) =
(d',P.

(2) Let us mention however that every compact action I' = SLy4(Z) is profinite, see
Corollary This is because every finite dimensional unitary representation of
I' has finite range. Note that this later fact is not true for general lattices. For
example, denote by ¢ the quadratic form on R> given by

q(z) = 22 + 23 + 22 — V222 — V222, for all = (x1, xo, 23, T4, 75) € R,

Then a Galois automorphism trick gives an embedding of the lattice SO(g, Z[v/2]) in
SO(q, R) inside the compact group SO(5) ~ SO(¢?,R), where o is the automorphism
of Q[v2] such that o(v/2) = —+/2. In fact, in view of Margulis’ superrigidity
theorems [Mar91l Section VIL.6], we expect this example to be exceptional, in the
sense that every irreducible finite dimensional unitary representation of I' should
either have finite range or extend to a continuous representation of SO(5).

The proof of Theorem is based on topological dynamics. Typically we use the dynamics
of the actions of SL4(Z) on the projective space P?~! and other Grassmanian varieties. Note
that these actions are neither topologically amenable nor small at infinity, as required in
the definition of bi-exactness. Instead, we exploit the fact that these actions do not admit
invariant probability measures in combination with their proximality properties. To this
end, we develop a general method to construct a nice compactification (or rather, a piece of
a compactification, see Definition of I' out of a continuous action on a compact space.
We then use the framework developed in [BC15] to exploit this compactification.

It turns out that the above strategy applies to a much larger class of groups, which we call
Properly Proximal Groups. Roughly speaking, we say that a group I' is properly proximal
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if it admits finitely many “non-trivial” continuous actions I' ~ K; on compact spaces such
that any sequence in I' admits a subsequence which is “proximal” for at least one of the
actions I' ~ K; (see Definition for the precise definition).

Generalizing Theorem we prove the following result.
Theorem 1.4. Any properly prozimal group T satisfies the conclusions of Theorem [1.1]

Under the additional assumption that I' is weakly amenable, we obtain the following
strengthening of Theorem

Theorem 1.5. Let I' be a properly proximal, weakly amenable group. Then LI' has no
Cartan subalgebra and T is C-rigid.

We are not aware of examples properly proximal weakly amenable groups for which the
conclusion of Theorem is not covered by the results in [CS13| [PV14al, PV14b]. We
speculate that the mapping class groups or the outer automorphism groups of the free
groups are candidates for such examples (see Question .

We devote a substantial part of the paper to study the class of properly proximal groups.
In particular we prove the following results.

Proposition 1.6. Groups in the following classes are properly prorimal:

e Non-amenable bi-exact groups;

e Non-elementary convergence groups;

e Lattices in connected non-compact semi-simple Lie groups with finite center of ar-
bitrary rank;

e Groups admitting a proper cocycle into a non-amenable representation.

Moreover, the class of properly proximal groups is stable under commensurability up to finite
kernels and under direct products. In contrast, properly proximal groups are never inner
amenable, and therefore no infinite direct product of non-trivial groups is properly proximal.

We conclude the introduction with several questions on properly proximal groups.

Question 1. (a) Are mapping class groups properly proximal? What about outer auto-
morphism groups Out(F,,) of the free groups?

(b) More generally, is the class of properly proximal groups invariant under measure equiv-
alence?

(c) Is there a non inner amenable group which is not properly proximal? As we discuss in
Section [4.3] we suspect that finitely generated linear groups are properly proximal if
and only if they are not inner amenable.

1.1. Organization of the paper. Apart from the introduction, this paper contains five
other sections. Section 2 sets the notations and gives some preliminary facts. In Section 3,
we develop the notion of a boundary piece and give the main constructions from dynamical
systems and from cocycles. In Section 4, we define and study properly proximal groups
and prove the main results cited above. Then, in Section 5 we show that boundary pieces
may be used to define a notion of “directional bi-exactness”, and generalize [BO0S, Section
15] to this setting. Some concrete applications to the von Neumann algebras of SL4(Z) are
given in Section 6.
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2. NOTATION AND GENERAL FACTS

Groups, actions and representations. The symbol I' will always refer to a discrete
group. Given such a group, we denote by A and p its left and right regular representations,
respectively, both of them acting on ¢2I". The canonical basis of £2I" will be denoted by
{64}, 9 € T. We will denote by AT the Stone-Cech compactification of T' and by oI" := AT'\T

its Stone-Cech boundary.

When considering a compact space K we will denote by Prob(K) the set of regular Borel
probability measures on K. We will often consider actions I' ~ K. Implicitly we assume
that such actions are continuous. Such actions naturally induce other actions I' ~ Prob(K)
and I' ~ C(K). The latter is an action by automorphisms on the C*-algebra of continuous
functions on K.

The following elementary lemma will be needed later on.

Lemma 2.1. A compact Hausdorff space carries a diffuse Borel probability measure if and
only if it contains a perfect set.

Proof. The support of a diffuse measure is obviously a perfect set. Conversely, assume that
X contains a perfect set Y. Then after replacing X by Y, we may assume that X itself is
perfect. Observe that any perfect compact Hausdorff space contains two non-empty disjoint
closed subsets which are again perfect. Indeed, this can be deduced from the following fact:
if U is open subset of a perfect set X, then U is perfect. Therefore we may construct by
induction a family of closed subsets K j, i > 0, 1 < j < 2¢ such that for every i, K; j, and
K; j, are disjoint whenever ji; # j2 and such that K;y12; U K;y12j41 C K;; for all ¢ > 0,
1 < j < 2% For all 4, we denote by

2i

K; =] Kij and K := [ Ki.

j=1 i
Since K; is a decreasing sequence of compact sets, K is non-empty. Define a map 7 : K —
{0, 1} by the formula 7(z); :== j mod 2, where j is the unique index such that z € K; ;.
By the construction of K this map is onto and continuous. So we may pull back any diffuse
measure v on {0, 1} to a measure on K, which will also be diffuse. Specifically, we define
a state 1 : C({0,1}) — C by ¥(f) = [ f dv. Viewing C({0,1}) as a C*-subalgebra of
C(K), we extend ¢ to a state ¢ : C(K) — C. The measure u on K given by o(f) = [ f du,
for every f € C(K), satisfies m,u = v. Since v is diffuse, p is also diffuse. O
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We will often consider unitary representations (m, H) of I'. We will denote by (7, H) the
conjugate representation, that is, H is the complex conjugate Hilbert space of H and the
representation 7 is such that 7(g)(€) = 7(g)(€) for all g € T, € € H. Also following [Bek90]
we say that a representation (m, H) is amenable if there exists an Ad(7(T"))-invariant state
on B(H). This is equivalent to the representation 7 ® 7 having almost invariant vectors
[Bek90, Theorem 5.1].

Von Neumann algebras. A tracial von Neumann algebra is a pair (@, 7) consisting of a
von Neumann algebra ) and a tracial faithful normal trace 7 : Q — C. We consider the
corresponding 2-norm given by ||z||2 = \/7(x*z), * € M and denote by L?(Q) the associated
GNS Hilbert space. If P C @ is a von Neumann subalgebra, we denote by Ep : () — P the
trace-preserving conditional expectation and by ep € B(L?(Q)) the orthogonal projection
onto L?(P) C L?*(Q). Jones’ basic construction is denoted by (Q, ep).

We write U(Q) the group of unitaries of Q). For any set S C @ is which closed under
the adjoint *-operation, we denote by S” its double commutant, which, by von Neumann’s
double commutant theorem is precisely the von Neumann algebra generated by S.

The von Neumann algebra of a discrete group I' is denoted by LT' = \(T")” C B(¢*(I)).
We endow LI" with the canonical trace 7 : x — (xde, 0¢), making it a tracial von Neumann
algebra. The canonical unitaries A(g) € LT" will be often denoted by u4, g € I.

Inside B(¢?(T')), we also consider the abelian von Neumann algebra ¢>°(T'), acting by point-
wise multiplication.

Given a representation (7, H) of I" we will consider the corresponding LI-bimodule, whose
underlying Hilbert space is H ® ¢2(T') and the left and right actions are characterized by
the formula

Us - (E®0y) - up = (5)(§) @ bgqt, for all g,s,t €T',€ € H.

We recall two notions which will play a key roles in our main results and their proofs: weak
compactness and Popa’s intertwining-by-bimodules.

Definition 2.2. [OP10a] A trace preserving action o : I' ~ (Q, 7) on a tracial von Neumann
algebra (Q,7) is weakly compact if there exists a state ¢ on B(L*(Q)) such that ¢ = 7
and ¢ o Ad(u) = ¢, for every u € U(Q) Uo(I'). A regular inclusion of tracial von Neumann
algebras Q C M is weakly compact if the action Ny (Q) ~Q is weakly compact, where
Ny (Q) ={ueU(M) | uQu* = Q} denotes the normalizer of Q in M.

The following definition/theorem is due to Popa [Pop06al, [Pop06b].

Definition 2.3. Consider a tracial von Neumann algebra M with two von Neumann sub-
algebras P,Q C M. We say that a corner of P embeds into () inside M, and write P <35 Q
if one of the following equivalent statements holds.

(i) There exists projections p € P, ¢ € @, a *x-homomorphism ¢ : pPp — ¢Qq and a
non-zero element v € ¢Mp such that p(z)v = v for all z € pPp;

(ii) There exists no net of unitaries (u,) C U(P) such that lim, ||Eq(zu,y)||2 = 0 for all
z,y € M;

In practice we will use the following characterization, which comes from J[OP10b, Lemma
3.3] (see also [BH1S8, Theorem 2] for a general version).
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Lemma 2.4. Consider a tracial von Neumann algebra M with two von Neumann subalge-
bras P,QQ C M. Then P <y Q if and only if there exists a P-central state ® : (M, eq) — C
which is normal on M and does not vanish on MegM .

Compact actions of SLj(Z). Before moving on to the core of the paper, let us close
this section by proving a side fact that we mentioned in Remark We are grateful to
Jean-Francois Quint for providing us with a short proof of the next lemma.

Lemma 2.5. Every finite dimensional unitary representation of I' = SLy4(Z), d > 3, has
finite range.

Proof. Fix a finite dimensional unitary representation 7 of I'. By Margulis normal subgroup
theorem, it suffices to shows that 7 has infinite kernel. Restricting 7 to a copy of SL3(Z)
inside I', we may as well assume that d = 3. Denote by A < I' the unipotent subgroup
consisting of upper triangular matrices with 1’s on the diagonal. Then A is a copy of the
Heisenberg group, generated by three elements g, h, k such that & = [g, h] and k is central
in A. Since k has infinite order, the next claim implies that 7 has infinite kernel.

Claim. 7(k™) is trivial for some n > 1.

If m(A) is finite then the claim is obviously true. Otherwise, view 7 as a morphism from I'
into SU(d), d > 1, and denote by K < SU(d) the closure of 7(A). Since K is a compact
Lie group, K/Z(K) is semi-simple. But K/Z(K) is abelian, since it is generated by the
images of g and h and [7(g),w(h)] = w(k) € Z(K). This forces K/Z(K) to be finite. In
this case there exists some finite integer ¢ > 1 such that 7(g)¢ € Z(K), and in particular,
[7(9)f, m(h)] = e. But one checks that [¢°, h] = [g, h]* = k¢, so m(k*) = e, which proves the
claim. ([l

Corollary 2.6. Every compact p.m.p. action of I' = SL4(Z), d > 3, is profinite.

Proof. First, note it suffices to prove that every ergodic compact p.m.p. action of I is
profinite. As we recalled in the introduction, every such action is obtained by embedding I"
densely in a compact group K, and considering the translation action I' ~ K/ Ky, for some
closed subgroup Ky < K. So we only need to argue that K is profinite. Denote by m,,
n > 1, the list of all irreducible representations of K. By Lemma we get that 7, (T")
is finite. Since 7, is continuous and I is dense in K, we conclude that m,(K) = m,(T) is
finite, for every n > 1. This shows that ker(m) N --- Nker(m,), n > 1, are open subgroups
which form a basis of neighborhoods of 1 in K. So K is indeed a profinite group. O

3. BOUNDARY PIECES OF DISCRETE GROUPS

Definition 3.1. Given a discrete group I', a boundary piece is a closed subset X C JI'
which is invariant under the left and right I'-actions.

Notation 3.2. Given a discrete group I and a boundary piece X C JI' we define the ideal
In(X) C (') ~ C(AT") consisting of functions that vanish on X. We also denote by
px € ()™ the support projection of this ideal, namely py is the unit of Io(X )™ inside
¢°°(T")*™. For convenience we will denote by gx = 1—px, so that ¢x¢>°(T) ~ £°(T")/Io(X) ~
C(X). It is easily seen that gx = 1x, the indicator function.

Since X is left and right I'-invariant, so is In(X) and hence A\ggx A = pggxpy, = gx for all
g € T. These equalities are meant inside B(¢2T")™" (which contains ¢>°(I")**).

Let us give a first example of a boundary piece, taken from [BO0S8| Section 15.1].
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Example 3.3. Take a discrete group I' and a family G of subgroups of I'. A subset Q C T’
is small relative to G if it is contained in a finite union of sets of the form sAt with s,t € T,
A € G. The C*-subalgebra co(I',G) C ¢°°(I") generated by functions whose support is a
small set in I' is an ideal in ¢>°(T") which is globally left and right I'-invariant and contains
co(I"). In particular, it is of the form I(X) for some boundary piece X = X(G) C IT.
Alternatively, X (G) is described as the intersection of all AT\ €, where Q ranges over all
sets that are small relative to G.

In [BOOS, Section 15], the ideal ¢o(T', G) is used to construct an ideal of “relatively compact”
operators of B(¢%*(T")). We will do the same here for general boundary pieces. This will
allow us later to generalize the notion of relative bi-exactness to our setting.

3.1. Compact operators towards a boundary piece. For a discrete group I' and a set
U C AT, we denote by Py : £2(T') — ¢*(I') the orthogonal projection onto the subspace
(L' NU), that is, Py(dy) = 1gepdy for all g € T.

Definition 3.4. Fix a discrete group I', a closed set X C OI' and a bounded net of vectors
&, € £2(T'). We say that (£,), has

e positive mass on X if there exists ¢ > 0 such that for any neighborhood U of X
inside AI', we have || Py (&,)|| > € for all n large enough;
o full mass on X if for any neighborhood U of X inside ATL', we have

limsup ||, — Py (&)|| = 0.

Definition 3.5. In the above setting, an operator T' € B(¢2I') is said to be compact towards
X if for any bounded net of vectors &, € £2T" with full mass on X, we have lim,, || T¢,| = 0.
We denote by K(T'; X) the set of all operators T' € B(¢2T") such that T and T* are compact
towards X, and note that it is a hereditary C*-subalgebra of B(¢°T).

Fix a group I' and a boundary piece X C 9T'. Recall that Ip(X) C ¢>°(I") denotes the ideal
of functions on AT that vanish on X. Consider the following C*-algebra acting on ¢°T":

Ap == C*(¢=(I), \(I), p(T')) © B(¢2T).
Denote by I(X) C Ar the ideal generated by In(X). Since ¢y(I") C Ip(X), we get that I(X)

contains the ideal of compact operators, by irreducibility. In fact, we have the following
characterization.

Lemma 3.6. Any approzimate unit (e;);c; of Io(X) is an approximate unit for 1(X). In
particular,

I(X) = Ar nK(T; X).

Proof. Recall that Io(X) is by definition the set of continuous functions on AI' which
vanish on X. Since X is left and right I-invariant, it is clear that AyIo(X)A; C Ip(X) and
pglo(X)p; C Io(X) for all g € I'. In particular, the ideal 1(X) may be described as the norm
closure of the linear span of {\pnf, f € Io(X),g,h € T'}, or alternatively, as the norm
closure of the linear span of {fAspp, f € Io(X),g,h € I'}. With these two descriptions it
is now clear that any approximate unit for Ip(X) is indeed an approximate unit for I(X).

Let us prove the second part of the statement. Observe that Ap NK(T'; X) is an ideal inside
Ap and contains Iy(X). So I(X) € ApNK(T'; X). Conversely, let T € ApNK(T; X). Let N
be the set of open neighbourhoods of X in AT, ordered by inverse inclusion. For U € N, let
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ey € C(AT) such that 0 < ey <1,ey =0on X, and ey =1 on AT'\ U. Then (ey)yen is
an approximate unit of Ip(X), and for any net of unit vectors (£¢)y, the net ((1 —ey)év)u
has full mass on X. Since 7' is compact towards X, lim ||T(1 — e)éy|| = 0. This is easily
seen to imply limy Teyy = T. Hence T € I(X), by the first part of the lemma. O

Let us now provide several classes of examples of boundary pieces arising from various kinds
of data: geometric, cohomological, and representation theoretic.

3.2. Proximal pieces. Consider a discrete group I" with a continuous action on a compact
space I' ~ K and take a probability measure 1 € Prob(K).

Definition 3.7. A point w € AT (i.e. an ultrafilter on I') is called an n-prozimal element
if for all h € I', we have limg_,,((gh) -1 — ¢ -n) = 0, in the weak-* topology. We denote by
OpI' C AT the set of n-proximal elements.

The term proximal refers to the fact that the action of I' on Prob(K') pushes the whole
orbit I'n to a single point (namely limy_,., gn) when going in the direction of w.

Lemma 3.8. The set 0,I' enjoys the following properties.

(1) It is a closed subset of AT.
(2) It is left and right I'-invariant.
(3) If n is T'-invariant, then 0,I' = AI'. Otherwise, 0,I" C OT".

Proof. Consider the orbit map g € I' — ¢ -7 € Prob(K). Since Prob(K) is compact for the
weak-* topology, this map extends to a continuous map o : AI' = Prob(K). Then 0,I" can
be expressed as (),cr{w : o(wh) = o(w)}, which implies (1). Moreover, if w € 9,I" and
g € I then for all h € I', we have o(wgh) = o(w) = o(wg). So I,I' is invariant under the
right action. The left invariance follows from the fact that o(gw) = go(w) for all g € T'. So
(2) holds true. Statement (3) is obvious. O

We will refer to the boundary pieces of the form 9,I" as prozimal pieces. A key feature of this
construction of boundary pieces is that properties of the initial action I' ~ K (for example,
the existence of invariant measures or amenability) can be transferred to properties of the
corresponding boundary piece. This is based on the following lemma.

Lemma 3.9. Assume that the measure 1 is not I'-invariant, so that X := 0,I' is indeed
a boundary piece, which we assume to be non-empty. Denote by A\ and p the left and right
actions of T' on C(X), respectively. Then there exists a unital completely positive map

0:C(K)— C(X) such that for all g € T, f € C(K), we have
0(9-1) = Ag(6(f)) and py(0(f)) = 6(F).

Proof. For f € C(K) and g € T, define 6y(f)(g) := [, fd(g9-n). The map 6y : C(K) —
¢>°(T") obtained this way is unital and completely positive. Denote by 6 the composition
of 6y with the restriction map ¢*°(I') ~ C(AT') — C(X). The following two computations
imply the lemma: for all f € C(K), w € X = 9,I" and h € T, we have

Ok £)(w) = lim 6o( - )(9) = lim 60(H)(h"g) = 6(4)(h™'w)

O(1)(wh) = lim 6(F)(oh) = lim [ fal(ah)-m) = Jim [ patg-n) =0(1)(w). O

g—w
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Lemma 3.10. Assume that 1 is not I' invariant and write X := 0,I". Assume that X is
non-empty. Denote by C(X)' the C*-algebra of right-I'-invariant continuous functions on
X. We have the following two facts:

e [f there is no I'-invariant probability measure on K, then there is no left-I"-invariant
state on C(X)Ir,

e If the action T ~ K is topologically amenable, then the left T'- action T ~ C(X)I'" is
amenable. We refer to [BOOS, Section 4.3] for the definition of amenable actions.

Proof. The map 6 : C(K) — C(X) given by Lemma [3.9 ranges into C'(X)' and is left-I-
equivariant. So if there exists a left-T'-invariant state ¢ on C(X)I'" then ¢of is a I-invariant
state on C'(K), so there exists a I'-invariant probability measure on K. This proves the first
fact.

Note that 6 induces a [-equivariant continuous map from the Gelfand spectrum X of
C(X)"'" to the state space S(C(K)), which is nothing but Prob(K). If the action of I on K
is topologically amenable then so is the action on X. Hence I' ~» C(X)'" is amenable. [

The next lemma shows that every boundary piece is a proximal piece, and the involved
action can be chosen so that the converse of the previous lemma holds true.

Lemma 3.11. For every boundary piece X C OI' there exists a continuous action of I' on
a compact space K, with a probability measure n € Prob(K) such that X = 0,I". Moreover
the action I' ~ K may be chosen so that:

e Ifthere is no left I'-invariant state on C(X)'" then there is no I'-invariant probability
measure on K;
o If the action T ~ C(X)' is amenable then T ~ K is topologically amenable.

Proof. Denote by ¢ : (°(T') ~ C(AI') — C(X) the restriction map, by A4 := C(X)' C
C(X) and by B := ¢~ 1(A) C £°(I'). Note that ¢ is I' x I'-equivariant and B is globally
I’ x I-invariant. By dualyzing the I x I'-embeddings ker(¢) C B C ¢>°(T"), we find a compact
I' x I'-space K and a continuous I" x I'-equivariant map =« : AT' — K which restricts to
a homeomorphism on AT \ X and such that B ~ C(K) and the embedding B C ¢>(I")
corresponds to the map
feC(K)— fore ™).

Since the right I'-action on A is trivial, one easily verifies that m(wh) = w(w) for all w € X,
hel.

We are interested in the left action of I' on K, and the measure 1 := d,(.) € Prob(K), the

Dirac mass at the image of the neutral element e € I'. For w € X and h € I' we have
glgrolj(gh) = glgr&) 57r(gh) = 57r(wh) = 57r(w) = glgl;ljg R

This shows that X C 9,I". Conversely, if w € OI' \ X, we may take h € I' such that wh # w.

Then since mar\ g is a homeomorphism, we have 7(wh) # m(w). The above computation

then shows that limg_,,,(gh) - n # limy—,, g - . Hence w ¢ 9,I'. This proves that X = 9,

Now let us verify the two properties of this action. If there is no left-I'-invariant state on
C(X)', then in particular, I' is non-amenable. If 4 is an invariant probability measure on
K, then p has zero mass on m(AI'\ X), because I' is non-amenable and the restriction of 7
to AT'\ X is a I'-equivariant homeomorphism. In particular, the state on B = C'(K) given
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by integration with respect to p vanishes on ker(¢). It thus induces a I'-invariant state on
A, which was excluded. We conclude that there is no such measure p.

Let us now assume that the action I' ~ C(X)I'" is amenable, and show that the action on
K is amenable. By [BOO0S, Theorem 4.4.3], it suffices to check that the reduced crossed
product by the left action B x,. I' is nuclear. We will show that it is an extension of nuclear
C*-algebras.

Recall that Ip(X) C ¢°°(T") denotes the ideal corresponding to the boundary piece X, i.e.
In(X) = Co(AT'\ X). It is left and right I'-invariant and hence the reduced crossed product
by the left I'-action Ip(X) %, I' is an ideal inside the uniform Roe algebra ¢>°(T") %, I". Since
I is exact [BOOS|, Theorem 5.1.7], the uniform Roe algebra is nuclear and hence Ip(X) %, T’
is nuclear as well.

On the other hand we have an exact sequence 0 — Ip(X) — B — A — 0 of left I" C*-
algebras. Using again the fact that I' is exact, we get that the following sequence is exact

0= I(X)x, T =-Bx, ' > Ax, T —0.

Since the action of I on A is amenable, the C*-algebra A x,.I" is nuclear. We conclude from
[BOOS, Proposition 10.1.3] that B x, I' is nuclear, as wanted. O

3.3. Boundary pieces from arrays. Consider a discrete group I' and a unitary represen-
tation 7 : I' — U(H) into a Hilbert space H. We recall the following definition from [CS13|
Definition 1.1, Proposition 1.5].

Definition 3.12. A two-sided array of I' into 7 is a map b : I' — H such that

sup ||b(sgt) — ms(b(g))|| < oo, for all s,t € T'.
gel

Of course this notion is interesting only if b is unbounded. If this is the case, we can
construct a boundary piece.

Lemma 3.13. Ifb: ' = H is an unbounded array then X = {w € AI' | limy_, [|b(9)| =
+oo} is a non-empty boundary piece. Moreover there exists a unital completely positive map
0:B(H)— C(X) such that

§oAd(m(g)) =Ag08 and pgo 8 =0, forallgeT.

Proof. The set X is obviously closed and contained in OI'. The left and right invariance of
X follow from the fact that b is a two sided array.

For all T € B(H) and g € T, set 05(T)(g) := (T, &), with & = & The resulting

map 6y : B(H) — ¢°°(I") is unital and completely positive. Define 6 as the composition
of 8y with the restriction map ¢*°(I') — C(X). As in the proof of Lemma the desired
properties of 6 easily follow from the fact that limg_,, ||75(&y) — &sgel| = 0, for all w € X,
and all s,t €T. O

As emphasized in [CS13], cocycles and quasi-cocycles are examples of two-sided arrays.
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3.4. Mixing pieces. Although we won’t need it in the sequel, we present here a very
natural example of boundary piece, which is of independent interest.

Let 7 : I' — U(H) be a unitary representation. Recall that 7 : I — U(H) is weakly mizing
if 0 is a weak operator topology accumulation point of (I"), while 7 is mizing if this is the
unique accumulation point. The unit ball (B(H)); is compact with respect to the weak
operator topology and hence we may extend 7 continuously to a map from AT into (B(H));.
The set X(7) = 7~1({0}) C T is easily seen to be a boundary piece which records all the
directions in which 7 is mixing. We call it the mizing piece of .

Lemma 3.14. Let 7 : I' — U(H) be a representation. Let U be a neighborhood of X ().
Then there exists a weak operator topology neighborhood O of 0 € B(H) such that 7=1(0) C
U.

Proof. For each point w € AI' \ U there exists a WOT-neighborhood O of 0 in (B(H))1
such that 7(w) ¢ O, and hence w is not in the closure of 771(0). By compactness of AI'\U
it then follows that there is a WOT-neighborhood O such that 7=(O) C U. O

Lemma 3.15. Let 7 : T' — U(H) be a representation. Let (c,) be a uniformly bounded net
in LI". The following conditions are equivalent:

(i) (¢n) has full mass on X(’/T)H.
(ii) For all other representation (p,K), all &,n € H® K ®*(T) and all uniformly bounded
net (dy) C LT we have lim,_,oo{c,€dy,n) = 0.
(iii) limy, oo (cn (€ ® 8e)ct,n @ 6e) =0 for all &,m € H® H.
(iv) limy, o0 (cn (€ ® be) e, n @ 8e) = 0 for all vectors £, € H® H of the form £ = & ® &,
1N = 1o ® Mo, with £0a770 €H.

Proof. Suppose (i) holds. Note that for any representation (p, K') we have X (7) C X (7®p).
So (i) implies that (c¢y) has full mass on X (7 ® p). So in order to prove (ii) we may as
well replace m with ™ ® p and assume that (p, K) is trivial. As (¢,) and (d,,) are uniformly
bounded it suffices for (2) to consider £ and 7 of the form £ = & ® de, n = Mo @ Je With
&,m0 € H. Take ¢ > 0 and let O = {T € (B(H))1 | |{T¢0,m0)| < €}. We then compute as
in Lemma 2.5 of [CP13]

[{en€dn, )| < [[€olllInolllldnll2]l Pr-1(0)e (¢n)ll2 + €llenll2]ldnll2-
As (¢p) has full mass on X and as € > 0 was arbitrary condition (77) then follows.

The implications (i7) = (ii7) = (iv) are obvious. Suppose now that (iv) holds. Fix ¢ > 0
and take a neighborhood U of X (7). By Lemma there is a weak operator topology
neighborhood O of 0 so that 771(0) C U. We may take O of the form

k

O ={T ¢ (B(H)); | Z (TE&,m)|* < e}

i=1

Here we view (¢n) as a bounded net in £*(T") so Definition makes sense.
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Then from (iv) we have lim,_,oo Zf:1<cn(§i ® & @ be)ck,m @M ® 0e) = 0, whereas, writing
h=>. el Cn,glg for the Fourier expansion, we also have

N k
. o * o M =i 2 i) 2
Tim > (en(& @ & @ 0)ch, 1 @ @ 6e) = him > > Jeny P(w(9)Gi,mi)
pat i=1 gel’
> slimjtﬂ) |1 Pe-1(0ye (cn) 3
> elimsup HPUC(Cn)”%-
n—oo
Thus, (c,) has full mass on X (7). s

The gain in (iv) above compared to (7i7) is that the inner product (u(§{ ® de)u*,n ® de)
becomes non-negative for all u as soon as £ and 7 are as in (iv). This will be used in the
proof of the following standard weak mixing/compact dichotomy (see, e.g. [Pop06a]).

Proposition 3.16 (Weak mixing/compact dichotomy). Let B C LI' be a von Neumann
subalgebra, and G C U(B) a group which generates B as a von Neumann algebra. The
following are equivalent:

(i) Some net of unitaries (u,) C G has full mass on X (7).
(ii) The LI'-bimodule H ® H ® *T" has no non-zero B-central vectors.

Proof. If some net of unitaries (u,) C G has full mass on X () then from condition (ii) of
Lemma we see that H ® H ® £?T can have no non-zero B-central vectors.

Conversely, assume that there is no net of unitaries (u,) C G which has full mass on X (7).

Claim. There exist ¢ > 0 and vectors &1,...,& € H, m,...,nr € H such that

k

ZW(@ ®E R F)u™,m; @M ®5e) > ¢, for all u € G.
i=1

Indeed since each term in the above sum is non-negative, if we find v € G such that the
reverse inequality holds, then (u(& ® & ® 6c)u*,m; @ M; @ d.) < € for all i. So if the claim
did not hold we could easily construct a net (¢,,) of elements of G satisfiying (iv) of Lemma
This would contradict our assumption.

Now, denote by & := @lefi ®& and 1 = EBf’:lm ®7; in (H ® H)®*. The claim amounts to
(u(§ ® de)u*,n® ) > e, for all u € G.

Denote by € € (H® H)®* @ %(I') the unique element of minimal norm in the convex closure
of ({u(é ® 6)u*, u € G}). Then € is B-central (since G generates B as a von Neumann
algebra) and satisfies (€,7 ® d.) > ¢, hence £ # 0. Identifying (H ® H)®* @ (*(T) with
(H® H® 2(T))®*, we find that some coordinate of € is a non-zero B-central vector inside
H® H® ((T). O

4. PROPERLY PROXIMAL GROUPS AND CARTAN SUBALGEBRAS

In this section, we exploit proximal pieces of a group I' to study its von Neumann algebra
LT'. This relies on the following definition.
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Definition 4.1. We say that a discrete group I' is a properly proximal group if it admits
a finite family of continuous actions on compact spaces I' ~ K;, ¢ > 0, and probability
measures 7; € Prob(Kj;), ¢ > 0, such that:

e For all ¢, there is no I'-invariant Borel probability measure on Kj;
e |J,0,'=0I.

Let us mention that amenable groups are never properly proximal, since they obviously
never satisfy the first condition above. As we will show, properly proximal groups are in
fact never inner amenable (see Proposition |4.11]).

Remark 4.2. One may define an, a priori, more general notion of proper proximality
by using actions on arbitrary, not necessarily commutative, C*-algebras. However, as we
explain below, this leads to the same notion. More precisely, assume that a discrete group
I" admits a finite family of continuous actions on C*-algebras I' ~ A;, ¢ > 0, and states
i € S(4;), i >0, such that:

e For all ¢, there is no I'-invariant state on A;;
o |J; 0,1 = 0I', where 0,,I' = {w € O | limy—,.,(ghe; — gpi) = 0, *-weakly, Vh € T'}.

Define K; := S(4;) and 7; = 0y, € Prob(Kj;), for i > 0. Then K; is compact in the weak-*
topology, and the action I' ~ K; is continuous. Since 0,,I" = 0,,T', we have | J,; 9,,I" = oI
Moreover, there is no I'-invariant probability measure on K, for all i. If n € Prob(K;) were
T'-invariant, then ¢ = f K, ¥ dn(y) would be a I'-invariant state on A;. This shows that T’
is properly proximal.

4.1. Equivalent formulations. The aim of this section is to prove the following result,
which asserts among other things that proper proximality can always be observed with a
single action. The main implication (iv) = (¢i7) is due to Narutaka Ozawa. We warmly
thank him for allowing us to include his argument here.

Theorem 4.3. Consider a discrete countable group I', and let X C OI" be a boundary piece.
The following facts are equivalent.

(i) There are continuous actions I' ~ K;, i = 1,...,k on compact spaces K; with proba-
bility measures n; € Prob(K;) such that there is no I'-invariant probability measure on
any K; and such that X C UF_,9,.T.

(i) There is a single continuous action I' ~ K on a compact space K with a probability
measure 11 € Prob(K') such that there is no I'-invariant probability measure on K and
X =0,I.

(iii) There is no left-I'-invariant state on C(X)'r;
(iv) There is no left-T'-invariant state on (C(X)**)'r.

In particular, if X = O, all these conditions are equivalent to proper proximality of I.

Proof. (i) = (iv). Consider finitely many actions I' ~ K; with measures n; € Prob(Kj;), as
in (i). For each i, set X; := 0,,I". By Lemma we know that for each 4, there is no
left-T-invariant state on C'(X;)!. In particular there is no I'-invariant state on (C'(X;)**)!".

Denote by p; € C(X)** the support projection of the ideal Cy(X \ X;) and by ¢; := 1—p;, so
that C'(X;)™ = ¢;C(X)**. Since X C U;X;, we see that Vg; = 1. Moreover, the projections
q; are left and right T-invariant, and in particular, (C(X;)** )" = ¢;(C(X)*)Ir. If p is a
left-T-invariant state on (C(X)**)''", then there exists some i such that ¢(g;) # 0. Then
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the restriction of ¢ to ¢;(C(X)**)I'" is a non-zero left I'-invariant positive linear functional
on (C(X;)**)I'", which contradicts the previous paragraph.

(iv) = (iii). Denote by A := (C(X)**)I. If there is no I'-invariant state on A then
there is no non-zero I'-invariant linear functional at all. This follows for instance from the
uniqueness of the polar decomposition of normal linear functionals on A**. It therefore
follows from the Hahn-Banach theorem that the linear span of {x —g-x |z € A,g € T'} is
norm dense inside A. We may thus find ¢1,...,94 € I' and z1,...,24 € A such that

d

(1) 1= (k= g - )] < 1/2.

k=1

The elements x, belong to C(X)**, so we may find for each k, a net (2% );cs in C(X) which
converges to zj in the weak-* topology of C(X)**. By Goldstine’s theorem, we may assume
that for each i and k, we have ||z¢| < - Slnce the elements xzj are right-I'-invariant,
we have the weak-* convergence lim; xj, — xk, g = 0 for all £k and ¢ € I'. Thus we may
replace the x}c by convex combinations to assume that this convergence holds in norm:
lim; ||z}, — x4 - g|| = 0, for all k and g € I. Better, we may further take convex combinations
to assume that, in addition,

d

11— (ah — g )l < 1/2, for all i € 1.
k=1

This last assertion follows from a classical fact on Banach spaces recorded in Lemma
below.

The task is now to combine the elements m}c to produce elements z; € C(X) which are
actually right I'-invariant and such that holds with z;’s in the place of x;’s. Recall that
C(X) is naturally identified with ¢>°(T")/Io(X).

For each i, we may take lifts yi € ¢>°(T) of 2%, k = 1,...,d, such that ||y%|| < ||z||, and we
may also take a lift b* € £°°(T") of Zi:ﬁxi — gr - ) so that [|1 —b'|| < 1/2.

Let B,, C I be an increasing sequence Qf finite sets such that I' = U, B,,. For each n > 1 we
may find an index i(n) € I such that Hx;g(”) - Z(n gl <2 forallg € By,andk=1,...,d.

By Lemma below there exists an increasing sequence oy, € Ip(X) so that 0 < a, < 1,

an, — 1 pointwise, and such that for all g € B,, and k =1,...,d we have
(2) 10— e =™ )l <27 llan —an-gll <27
d
3) (1 = ) (B — Z —geu NN <27 an — i om <27

k=1

For k =1,...,d we define y; := anl(anﬂ—an)y;}n), and we define b := 041+Zn21(04n+1_
an)b"™ . Note that ||1 — b|| < 1/2, since a; + Y ons1(@ng1 —an) = 1.
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If g € B, then from we have
10" (@t — an)yl™) = (O (aner — an)yi™) - gl

n>m n>m
<3 @t — an) = (@t — an) - glllzel + 3 s — an) @™ =™ - 9)|
n>m n>m
<23 2|+ D011 - )@ — i - )l
n>m n>m

< 272y | + 1),
Thus, yp —yx - g € [p(X) forallge ', k=1,...,d.
Similarly, from we have

d ' .
1D (g = )™ =373 (a1 = an)yi™) = g - (3 (ans1 — an)yi™)|

n>m k=1 n>m n>m
d
<Y ent1 — om) = gk - (ngr — an)ll|zk]
k=1n>m
+ 3 Manis = a6 = S = gy
n>m k=1
<23 2N el + Y 1 - an) 0 = ST — gy ™))l
n>m k=1 n>m k=1

d
<274 Y )
k=1
Thus, b — Zzzl Yk — 9k - Yk € Io(X).
Hence, for each k, if we denote by z;, € ¢>°(I')/1p(X) the projection of y, € ¢>°(T"), then
each zj is right T-invariant and ||1 — Zzzl(zk — gk - 2k)|| < 1/2. This then rules out the
existence of a left-I-invariant state on C'(X)I".

(73i) = (4i). This follows from Lemma
(74) = (7). This is trivial. O

In the previous proof, we used the following lemmas:

Lemma 4.4. If X is a Banach space and (x;) is a net of elements in X which converges
*-weakly to an element x € X**, then we have inf{||y|| | y € conv({z;})} < ||z||.

Proof. If x =0, then & € X and the result is known. So let us assume that = # 0. Assume
that there is € > 0 such that inf{||y||,y € conv({x;})} > ||z||(1 +¢). Then by Hahn-Banach
separation theorem, there exists a non-zero linear functional ¢ € X* that separates the
open ball Bx(0, ||z|/(1 +¢)) from conv({z;}) in the following sense:

(4) sup{p(a) | [la]l < |[z[|(1 +€))} < inf{(y),y € conv({w})}.

Note that the left term in the above equation is nothing but ||z||(1 + €)||¢]|, which is non-
zero since x and ¢ are non-zero. By Goldstine’s theorem, we know that = belongs to the
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weak* closure of {a € X | |la|| < ||z||}. So (1 + &)z belongs to the weak-* closure of
Bx (0, ||z||(1 +¢)). In particular

(1+e)p(x) < infl{e(y),y € conv({z;})} < p(z).

This implies that ¢(z) = 0 and hence both terms in (4] are equal to 0, a contradiction. [

Lemma 4.5. Let A be a unital C*-algebra with a closed ideal I C A. Suppose T is a
countable group which acts on A by x-automorphisms which preserve I. If Iy C I is a
countable set, then there exists an increasing sequence oy, € I, with 0 < a,, < 1, such that
(1 — ap)al| = 0 for all a € Iy, and such that ||aym — g - an|| — 0 for all g € T

Proof. This is essentially contained in the proof of Theorem 1 in [Arv77] (see also Theorem
1.9.16 in [Dav96]). Fix an approximate unit {vy}aea for I, and note that this is also an
approximate unit for J = I x I'. The proof of Theorem 1 in [Arv77] then shows that after
passing to convex combinations we may obtain an approximate unit {a}xep of I which is
quasi-central in A x I". In particular it follows that ||ay — ¢ - ay|| — 0 for all g € T".

Since I" and Ip are countable we may then take a subsequence {ay}nen such that |[(1 —
ap)all — 0 for all a € Iy, and such that ||, — g - ay| — 0 for all g € T O

4.2. First examples and properties.

Example 4.6. Recall that a group I' is called a convergence group if there exists a contin-
uous action I' ~» K on a compact space K having at least three points such that the action
induced on the (locally compact) space of distinct triples of K is proper. I is said to be
non-elementary if it is infinite and the action on K does not preserve (set-wise) a set with
at most two elements. Non-elementary convergence groups are properly proximal.

Proof. Take a non-elementary continuous action I' ~ K on a compact space K such that
the action induced on the set of distinct triples of K is proper. Using the fact that the
action is non-elementary, it follows that there is no I'-invariant measure on K. Moreover,
as mentioned in [Bow99, Section 2], if I" is non-elementary then its limit set is perfect. So
we can apply Lemma [2.] to find a diffuse measure 1 on K.

We now check that 0I' = 9,I". By [Bow99, Proposition 1.1], we know that for every infinite
set @ C I there exists a sequence (g, ),>1 of elements in ® and two points a, b € K such that
gn(z) converges to b for all x € K \ {a}. Since n is diffuse and I" is countable, n(T'a) = 0,
and we deduce by the dominated convergence theorem that g,hn converges to the Dirac
measure o, at b for all h € T'.

Take now an arbitrary free ultrafilter w € OI'. For all A € I', denote by nj, := limg_,., ghn.
Assume by contradiction that there exist two elements h, h’ € T' such that n, # np,. Take
disjoint neighborhoods U, U’ of n;, and ny,, respectively. By definition, the set ® of elements
g € I' such that ghn € U and gh'n € U’ is infinite. By the previous paragraph, we may
then find a sequence (g,) C ® and a point b € K such that lim,, g,hn = lim, g,h'n = 5.
This shows that &, € U NU’, while U and U’ are supposed to be disjoint, a contradiction.
We conclude that OI' = 9,I. O

Proposition 4.7. IfI' admits a proper two-sided array into a non-amenable representation
then it is properly proximal.
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Proof. Denote by 7 a unitary representation of I' and assume that there exists a proper
two-sided array b into 7. Since b is proper, the corresponding boundary piece, as defined in
Lemma[3.13] is equal to OT'. Then from Lemma[3.13|there exists a unital completely positive
map 6 : B(H) — C(0T)' which is equivariant, in the sense that 6 o Ad(w(g)) = Ay 0 @ for
all g € T. Assuming that ¢ is a left T-invariant state on C'(OT')!", we obtain that p o8 is an
Ad(m(T"))-invariant state on B(H), showing that 7 is amenable. So if 7 is non-amenable,
condition (iiz) of Theorem is satisfied, showing that I" is properly proximal. O

Example 4.8. A group with a proper cocycle into a non-amenable representation is prop-
erly proximal.

Example 4.9. Recall from [BO08|, Section 15] that a group I' is said to be bi-ezact if it
is exact and admits a proper two-sided array into its left regular representation, see also
[PV14b, Proposition 2.7]. Thus we see that non-amenable bi-exact groups are properly
proximal. Alternatively, bi-exactness is characterized by the property that the left I'-action
on C(OI)'" is topologically amenable. So there is no I'-invariant state as soon as I is
non-amenable.

The above examples show that the following classes of groups are properly proximal:

e Non-elementary hyperbolic groups (being both convergence groups and bi-exact);

e Arbitrary free products (being convergence groups);

e The wreath product Z(") x I, for any bi-exact group I (being again bi-exact by
[0za04], although it is not a convergence group).

All these classes of groups admit some hyperbolicity properties. Even though Theorem
shows that only one action is needed to define properly proximal groups, the flexibility of
allowing several distinct actions significantly increases the class of examples for which we
can prove this property. For instance we will prove in the next section that all lattices in
all real semi-simple Lie groups with trivial center (e.g. SL,(Z) for all n > 2) are properly
proximal groups.

Proposition 4.10. We have the following stability properties.

(1) A direct product of finitely many properly proximal groups is again properly proximal;

(2) A co-amenable subgroup (e.g. a finite index subgroup) of a properly proximal group
1s properly proximal.

(8) The class of properly proximal groups is stable under commensurability up to finite
kernels.

Proof. (1). Consider two properly proximal groups I'; and I'y and denote by I' = I'; x T's.
Extend the quotient maps I' — I'; to a continuous maps m; : AI' — AI';, i = 1,2, on the
Stone-Cech compactifications. Then we have 9T = 7, 1(9T1) U my 1 (9T2) (going to infinity
inside I" amounts to having at least one coordinate going to infinity).

Of course any action o of I'; on a compact space K gives rise to an action o om; of I' on K.
Note that o o ; admits a I'-invariant measure if and only if o has a I';-invariant measure.
Moreover, for any measure 17 € Prob(K) we have 9,T = m; 1(9,T;), where the left-hand
expression refers to the I'-action 7; o 0 while the right-hand side refers to the I';-action o.
So the statement holds true.

(2). Assume that I' is properly proximal and take a co-amenable subgroup A < I'. By
Theorem there is no left-T-invariant state on C'(9T')". The restriction map C(9I') —
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C(0A) is left and right A-equivariant, so the existence of a left A-invariant state on C'(GA)Ar
implies the existence of a left A-invariant state on C(0T')'*. By co-amenability of the
inclusion A < T, this would further imply the existence of a I'-invariant state on C(9T)I",
which is not the case. It follows that A is properly proximal.

(3). It follows from (2) that a finite index subgroup of a properly proximal group is properly
proximal. Conversely assume that A < I is a finite index inclusion of groups with A properly
proximal. Replacing A with a finite index subgroup if necessary, we may assume that it is
normal inside T.

First note that the inclusion C(0I")'* c C(AI) admits a left-T-equivariant conditional
expectation E. Indeed, denote by F' := I'/A and observe that the right I'-action p on
C(OT)Mr factorizes to an action of the finite group F, and that C(9I)!" is exactly the
subalgebra of fixed points for this action of F. So the averaging map = — » geF Pg (z)is a
left-I"-equivariant conditional expectation.

Choose a set F' C I of representatives of the cosets of A inside I'. The equality ¢>°(I') =
Gagef pgt>°(A) implies C(0I") = Gageﬁ pgC(OA), and further C(OT)A = Gageﬁ pgC(ON)Ar,
because each g normalizes A. The ucp map ¢ : f € C(OA)N D, ry(f) € C(ar)Ar is
left-A-equivariant.

To conclude we use that characterization from Theorem[4.3](iii). If there is a left-I-invariant
state ¢ on C(OT)'", then ¢ o F o ¢ is left-A-invariant on C(9A)? contradicting the fact
that A is properly proximal. We thus deduce that proper proximality is stable under
commensurability.

Take two discrete groups I and I with a surjective homomorphism 7 : I' — I with finite
kernel. Since 7 has finite kernel, we have OI' = 7~ (0I"), where we also denote by 7 the
continuous extension 7 : AT' — AI"”. The restriction 7 : 9T' — OI" then gives an embedding
C(or") c C(dr). In fact, we have the equality C(9I") = C(dI')F, where F = ker(n).
Moreover, the left and right T'-actions leave the subalgebra C(91”) globally invariant, on
which these actions factor to I'-actions. In particular, we have C(9T")" = C(8I')"", where
the left-T-action restricted to C(OT)!'" factors to the left-I"-action on C(8T")". So there
is a left-T-invariant state if and only if there is a left-I"-invariant state on C'(9T")". So we
conclude from Theorem that I' is properly proximal if and only if I” is. ]

Proposition 4.11. Properly proximal groups are not inner amenable.

Proof. Assume that I' is an inner amenable amenable group. Then there exists a state
m : ¢*°(I') — C which is invariant under the conjugation action of I' and which vanishes
on ¢o(I"). So m factorizes to a conjugation-invariant state on C(9I') = ¢>°(T")/co(T"). Its
restriction to C'(OT')I" is then left-T-invariant. Applying Theorem |4.3| we conclude that T
is not properly proximal. O

Proposition implies that the direct product of an infinite amenable group with an
arbitrary group is never properly proximal. It also follows that an infinite direct sum of
non-trivial groups is never properly proximal. Hence, proper proximality is not invariant
under inductive limits.

4.3. Linear properly proximal groups. In this section we study properly proximal linear
groups. Even if we are only interested in results for discrete countable groups, we will need
to employ general Lie groups and algebraic groups. So before turning to the concrete
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examples of linear groups let us first mention a few facts about boundary pieces in locally
compact groups.

Given a locally compact group G, we define its Stone-Cech compactification AG to be
the Gelfand spectrum of the algebra C,(G) of bounded continuous functions on G and its
boundary 0G is then the spectrum of the quotient Cy(G)/Co(G), where Cy(G) is the ideal
of continuous functions going to 0 at infinity.

Given a continuous action G ~ K on a compact space and a measure 17 € Prob(K), we may
define 9,G in a similar way as for the discrete case. However, in order to avoid the use of
ultrafilters in this topological setting, we proceed as follows instead: since the action G ~ K
is continuous, the function f, : g — [, f(gx)dn is in Cy(G) for all f € C(K). Then define

0,G = {w € AG |w(fy) = (wh)(fy), forall he G, f € C(K)}.

Lemma 4.12. Take a subgroup I' < G and denote by m : A" — AG the continuous
map extending the embedding. Assume that G acts continuously on a compact space K
and consider also the restricted T' action on K. Then for any n € Prob(K), we have
oL D m7Y8,G). In the case where T is discrete inside G, then 7 is an embedding and the
formula can be read as 0,I' O 0,G N AT.

Proof. Let us prove that if I' is discrete inside G then 7 is an embedding. Note that it
is enough to prove that the restriction map m, : Cp(G) — €°°(I") is surjective. Since I is
discrete we may find a neighborhood U of the trivial element e such that for all distinct
elements v,7" € T', we have YU N+'U = (. Take an arbitrary function F € Cy(G) such
that F'(e) = 1 and F is supported on U. Then if f € ¢*°(I") one verifies that the function
f € Cy(G) defined below satisfies 7. (f) = f:

Fg) = f(F(ytg) ifgeqU,yeTl,
g 0 otherwise.
This proves that . is surjective. All the other assertions of the lemma are easy. ]

Let us now prove the main lemma about proximality in linear groups over local fields. The
rest of this section uses heavily the language of algebraic groups. We refer to Section [f]
below for a direct argument in the special case of SLy4(R).

Lemma 4.13. Consider an almost k-simple, connected, simply connected algebraic group
G over a local field k. Then there are finitely many proper parabolic k-subgroups P; < G
and measures 1; € Prob(G(k)/P;(k)) such that 0G = J; 0,,G.

Proof. We use Cartan decomposition of simple groups over local fields as presented in
[Mar91, Theorem I.(2.2.1)]

Denote by d the k-rank of G. If d = 0, then G(k) is compact and there is nothing to prove.
Assume that d > 1 and denote by S C G a maximal k-split torus, and denote by ® the
corresponding set of roots and by ®* the set of positive roots with respect to some order.
Denote by @ = {ay,...,aq} C ®T the set of simple roots.

Set k:={zeR|z>1}if k~Ror C, and k = {7 | n € N} if k is non-archimedean
(here B is a uniformizer of k). Denote by ST := {s € S(k) | x(s) € k for all x € ®*}. Then
according to [Mar91, Theorem I1.(2.2.1)], there exists a compact subset M C G(k) such that
G(k) = MS* M.
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For each i, denote by 6; := ®¢\ {«;}, and by P; = Py, the corresponding parabolic subgroup,
see [Mar91l, Section I1.1.2] and by by V; the unipotent radical of the opposite parabolic
subgroup of P;. For simplicity we set G := G(k), S = S(k), P; :=Pi(k), V" :=V, (k).

The projection map p; : G — G/P; is continuous, and G-equivariant. We consider its
restriction to V. Since S C F;, we have

(5) pi(svs™t) = pi(sv) = s - pi(v), for all s € S,v € V™.

It follows from [Mar91, Lemma IV.2.2] that the restriction of p; to V™ is an open map from
V.~ into G/P;. Moreover, if we take any probability measure v; € Prob(V,”) equivalent to
the Haar measure, its push-forward 7; € Prob(G;/F;) under p; is a quasi-invariant measure

for the G-action.

The lemma will follow from the Cartan decomposition and the next three claims. The first
claim is in the spirit of [Mar91, Lemma I1.3.1].

Claim 1. For any compact set C' C V,” and any neighbourhood O of the neutral element
1,,-, there exists a constant A > 0 such that every s € ST for which |o;(s)[r, > A, we have

sCs~t c O.

Since we may apply the exponential map, see [Mar91, Proposition 1.1.3.3], it suffices to
prove the analogous statement for the Lie algebra £ consisting of the k-points of the Lie
algebra of V. . See also [Mar91, Proposition 1.2.1.1].

Note that £ is spanned by the eigenvectors in the adjoint representation corresponding to
the negative roots in ® which admit a non-trivial coefficient at «;. In other words, it is
spanned by (finitely many) vectors v,, such that Ad(s)(va) = a(s)v, for all s € S(k), where
o ranges over roots v = o' - - - for some integers ni,...,nq <0 and n; < 0.

Take a norm || - ||¢ on the vector space £ compatible a the absolute value | - [, on k. By the
previous paragraph, we may find a constant A; > 0 such that

| Ad(s)(v)]|e < A1|ei(s) kl|vlle, for allv e £, s € ST.

Take a compact subset C' C £ and a neighbourhood O C £ of 0 € £. We may assume that
C={vel]|v|e<A}and O={ve || v|e < a} for some constants Az > 0, a > 0.
Setting A := Aj1As/a, we see that Ad(s)(K) C O for all s € ST satisfying |a;(s)|r > A.
This concludes the proof of Claim 1.

Claim 2. For any net s, € ST such that |a;(s,)|x — 00, and all convergent nets (hy,), and
(kn)n in G, with respective limits h and k, we have the following weak-* convergence

lim(hpSpkn) - 1 = Onp,.

To prove this claim, it suffices to show that for any open neighborhood U C G/P; of hP;,
we have lim,, 7;((hnspk,) " U) = 1. Since the G-action on G/P; is continuous, for any such
U, we may find a neighborhood Uy of P; € G/P; such that for all n large enough, we have
hnUy C U. So in fact, it is sufficient to prove that for every neighborhood Uy C G/P; of
P; and for every € > 0 there exists ng large enough so that 7;(k, s, 1Uy) > 1 — ¢ for all
n > ng.

Fix such Uy and ¢, and take a relatively compact, open set {2 C V,” with such that
vi(k~'p;i(Q)) > 1 —e. Applying Claim 1, we find ny large enough so that for all n > ny, we
have s, - p;(Q2) C Up. The set C := p;(Q2) is an open set in G/P; such that n;(k~1C) > 1—¢
and C C s;lUg for all n > nq.
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Since n;(k~1C) > 1 —¢, C is open and the measure 7); is regular, a routine argument shows
that there exists ny such that n;(k,;'C) > 1 —¢ for all n > ny. Thus for all n > max(ny,ns)
we have

ni(ky, s, ' Uo) > ik, 'C) > 1 — e,
as wanted.

Claim 3. For any unbounded net s,, € ST, there exists i such that |a;(s,)|x — oco.

This follows from the fact that the map oy x - --xag : S — (GL;)?is a k-isomorphism, which
restricts to a homeomorphism S(k) onto (k*)?¢ and maps ST into the subset {(z1,...,zq) |
|x;| > 1 for all i}.

To conclude the proof, let w € AG and take a net (gy,), in G which converges to w. Then for
each n we may write the Cartan decomposition of g,,: g, = hnSpkn, with h,, k, € M and
sy, € ST. Taking a subnet if necessary, we may assume that h,, and k,, converge to elements
h and k respectively. By Claim 3, we may find some i such that lim,, |«;(s,)|x = +o0o. Now
we may apply Claim 2, and we conclude

(@0)(f) =lim [ fdlgat) -1 = F(RP) = wlfy) for all f € C(G/P)t € G
This shows that w € 9,,G. O]

Theorem 4.14. Consider finitely many local fields k;, and semi-simple connected k;-groups
G;. Set G := Gy(k;) for each i and take a discrete subgroup I' in G := I1;G; whose projection
on each G; is Zariski dense. Then T is properly proximal. In particular, lattices in semi-
stmple algebraic groups over local fields are properly prorimal.

Proof. Let us start with several reductions to simpler cases.
STEP 1. We may assume that each G; is simply connected.

Indeed, for each i denote by G; the simply connected cover of G; and by p; : G; — G, the
corresponding central isogeny (see [Mar91, Proposition 1.1.4.11]). Then p; is defined over

k;, hence pi_l(Gi) C G;(k;) for some finite extension k; of k;, see [Mar91l Corollary 1.2.1.3].
Setting G; := G;(k;), we see that the map p := IL;p; : II;G; — II;G; has finite kernel. Hence
by Proposition it suffices to check that p~1(T") is properly proximal. So replacing T

with p‘l(F), G; with G; and k; with k; we have reduced to the case where each G; is simply
connected.

STEP 2. We may assume that each G; is almost k;-simple.

This is a direct consequence of the fact that a simply connected semi-simple k-group de-
composes into a direct product of almost k-simple k-groups, [Mar91, Proposition 1.1.4.10].

For each i denote by I'; the image of I' inside GG; under the projection map 7; : G — G;.

STEP 3. We may assume that each I'; has non-compact closure with respect to the locally
compact topology on G;.

Denote by F the set of indices i for which I'; is non-compact in the locally compact topology
of G;. Then the projection map 7 : G — G’ := [;c pG; satisfies:

e m(I) is discrete in G’ and
e ker(m) NT is finite.
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Thanks to Proposition the second property above shows that I' is properly proximal if
and only if w(T") is. So, after replacing I with 7(I"), we may assume without loss of generality
that each I'; has non-compact closure with respect to the locally compact topology.

In this simplified setting, let us now define the family of actions which witness that I' is
properly proximal. By Lemma for each 4, we may find parabolic subgroups P; j of
G; and probability measures 7; ; on the homogeneous spaces K; ;j := G;/P; j(k;) such that
0G; = Uj Op, ;G; for all i. Consider the corresponding actions of G' on K ; obtained by
composing with the projection maps 7;. Extend continuously each 7; to a map between the
Stone-Cech compactifications 7; : AG — AG;. We have the equalities

0G =71 (0G:) =7 (0,,,Gi) = Jon,,G.
i ij irj
Since I' is discrete inside G, dI' C 0G and Lemma shows that OI' = (J, ; 9, ;T
Moreover, since I'; is Zariski-dense in GG; and has non-compact closure inside Gj, it follows
from Furstenberg’s Lemma [Fur76] that there is no I'-invariant probability measure on K ;
for all 4,5 ([Zim84, Corollary 3.2.19] for a proof of this precise statement). This concludes
the proof of the first statement. For the second statement, note that if I' < G(K) is a
lattice in a semi-simple algebraic group G over a local field k, then up to taking a finite
index subgroup we may assume that G is k-connected. Then the result follows from the
first part. O

Thanks to [Zim84l, Proposition 3.1.6], the previous proposition implies that lattices in con-
nected semi-simple real Lie groups with trivial center are properly proximal.

Corollary 4.15. A finitely generated subgroup I' < GLg(Q) with trivial solvable radical is
properly prozimal.

Proof. Denote by R C Q the ring generated by the entries of the elements of I' and by &
the subfield of Q generated by R. Since I' is finitely generated, so is R and k is a number

field. Denote by G < GL4(Q) the Zariski closure of I'. Thus G = G(Q) for some algebraic
group G which is defined over k (because I' is Zariski dense inside G).

Since I' has trivial solvable radical, it does not intersect the solvable radical of G. So moding
out by the solvable radical of G if necessary, we may as well assume that G is semi-simple.
Moreover, since the Zariski-connected component of the identity has finite index in G, we
may assume that G is Zariski-connected. So G is a connected semi-simple k-group.

Since R is finitely generated, there are finitely many places k,, v € S of k such that the
diagonal embedding of R into II, k, is discrete. Since I' is contained in G(R), the diagonal
embedding of I" into the product I, G(k,) is discrete.

For all v, G(k,) is semi-simple, so there exists a k,-map with finite kernel from G(k,) onto
a product of almost simple k,-groups. Again, since I has trivial solvable radical, this map
is injective on I'. So we arrive at the situation of Proposition [4.14] giving the result. 0

Question 2. Let us ask now a few related questions.

(1) In the above Corollary, can the finite generation assumption on I' be removed? Is this
the case if in the definition of proper proximality we allow countably many pieces X;
(instead of only finitely many)? Note that this softer version of proper proximality
would still be good enough for our applications.
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(2) Can Corollary [4.15|be extended to (finitely generated) subgroups of GL4(R) with trivial
solvable radical? For example, is SL4(Z[t]) properly proximal? Related to this ques-
tion, we point out the reference [GHWO05] which proves a generalization of the discrete
embedding R C II,k, used in the previous corollary.

(3) As we saw before, properly proximal groups are non-inner amenable. In view of Tucker-
Drob’s results [TD15, Theorem 13 and 14], one may wonder if the converse holds for
linear groups: is any non-inner amenable (finitely generated) linear group properly

proximal? In particular, does this hold for subgroups of GL4(Q)?

4.4. Von Neumann algebraic results on properly proximal groups.

Theorem 4.16. Assume that ' is a properly proximal group. Consider a trace preserving
action o : T'~(Q,T) on a tracial von Neumann algebra. Denote M := @Q x T

Then any weakly compact von Neumann subalgebra P C M such that Nj;(P)"” contains LT
admits a corner that embeds into Q) inside M.

Proof. Recall that L2(M) ~ L?(Q) ® ¢2T" and that with this identification, M is generated
by @) ® 1 and by the unitaries ug := 0y ® Ay, g € I'. Then JMJ is generated by JQ.J and
1® p(T), and JQJ C B(L*(Q)) ® ¢>°(T).

Assume that P C M is a weakly compact inclusion such that LT' C N (P)”. Then there
exists a state ¢ : B(L?(M)) — C with the following properties:

(i) ¢ is the canonical (normal) trace on M and JMJ,

(ii) @(zT) = @(Tx) for all T € B(L?*(M)), = € P;

(iii) p(uJuJT) = p(TuJuJ) for all T € B(L?*(M)) and all u € Ny (P).
Assume that P 4j; Q. Then by Lemma (ii) above implies that ¢ vanishes on Q ®
K(¢£2T"). Denote by 7 : £>°(I') — £>°(T")/co(T") ~ C(AT') the canonical projection, and by
B :=a~1(C(or)).
Denote by C := C*(1® B,{uy | g € T'}) C B(L?*(M)) and by D := C*(JQJ,1® p(T)) C
JMJ. As explained before, D is strongly dense inside JM.J. Note that [z,y] € Q @ K(¢°T)
for all x € C and all y € D.

Claim. For all z € C' and all u € N (P), we have p(uzx) = ¢(zu).

Proof of the claim. Fix such x and u. Applying property (iii) above to the elements u and
T = zJu*J gives that p(uJuJrJu*J) = @(xu). Take a net yp € D which converges to
Ju*J in the strong topology of JM.J. Since |y is the normal trace on JM.J, denoting

lyll, = Ve(y*y) for y € B(L*(M)) and applying the Cauchy-Schwarz inequality, we get
the following two computations:

liin\go(uJquJu*J) — o(uJuJzyg)| < liin |(uJuJz)*|| || Ju*J — yi|l, = 0.
lim [p(uz) — p(uulypr)| = lime(Jud (Ju™J = yp)uz)| < lim [ Ju] = ygllo|luzll, = 0.

As we observed, for all k, zyr — ypz € Q ® K(£2T). Since ¢ vanishes on Q ® K(¢2I'), we
get that |p(uJuJypr) — e(uJuJzyy)| < ||zryr — yrz||, = 0. Therefore, we may combine the
two computations above and get

o(zu) = p(uJuJzJu*J) = lilgn e(uJuJzy) = lilrcn e(uJudypr) = p(ux).

This proves the claim.
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Since ¢ is tracial on M, we obtain that p(uzx) = ¢(xu), for all x € C and u € Ny (P)”. In
particular, if LT' C N/ (P)”, we obtain ¢(ugful) = o(f) for all g € T and f € 1@ B(dr')'".
Since ug fuy = Ag(f) for all g € A and f € 1 ® B. We deduce that the restriction of ¢
to 1 ® B is a left T-invariant state, which vanishes on 1 ® ¢o(I"). Hence it factors to a
left invariant state on C(OI')'", which contradicts the fact that I' is properly proximal, by
Theorem [4.3] O

Under the additional assumption that the properly proximal group I' is weakly amenable,
we may use Popa and Vaes’ result [PV14al Theorem 5.1] to deduce Cartan rigidity results.
Specifically, we obtain the following theorem.

Theorem 4.17. Assume that I' is properly prozimal and weakly amenable. Consider a
trace preserving action I' ~ (Q,T) on a tracial von Neumann algebra. Denote M := Q x T.

Then for any amenable von Neumann subalgebra P C M such that Ny (P)" contains LT
we have that P <p; Q. In particular, I' is Cartan-rigid.

In order to be able to apply [PV14al Theorem 5.1], we have to first establish the following
statement about tensor products (as opposed to arbitrary crossed-products).

Proposition 4.18. Consider a group I' which is both properly prozimal and weakly amenable.
Consider also any tracial von Neumann algebra B and set M := B® LT.

Let A C M be an amenable von Neumann subalgebra and assume that for any g € ', there
ezists a unitary wy € U(B) such that wg ® ug belongs to Nyr(A)”.

Then A < B.
Before proving Proposition let us deduce Theorem from it.

Proof of Theorem[{.17. As in the statement of the theorem, set M := @ x I' and take
P C M an amenable subalgebra such that N (P)” contains LT

Denote by A : M — M ® LT" the dual co-action of the action I' ~@Q. Namely A is the
*_homomorphism characterized by the formula

Alaug) = aug @uy, foralaecQ,gel.
Set B := M and A := A(P) C B®LI'. By assumption the unitaries A(ug) = uy ® ugy
belong to the von Neumann algebra generated by the normalizer of A. So the proposition

applies and shows that A <p5; B. It is routine to check that this last fact implies that
P < @Q, proving the theorem. O

Proof of Proposition[{.18 Since I' is weakly amenable we may apply [PV14a, Theorem
5.1]. Let us introduce the corresponding notation. Recall that M = B® LI’ and A C M
is amenable. Denote P := Nj(A)”, and recall that there are unitaries w, € B such that
wy®u, € P for all g € T'. Define N as the von Neumann algebra acting on L?(M)®4 L%(P)
generated by B and P°P and define NV := N ® LT". Consider the two natural embeddings

T:aQ@ug e M—a®ugeN and 60:yP e PP —y?PR1eN.

It follows that A is generated by the two commuting subalgebras 7(M) and 6(P°P). With
this notation, [PV14al, Theorem 5.1] tells us that there exists a net of normal states w; € N,
such that

o wi(m(x)) = 7(x) for all x € M;
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e w;i(m(a)f(a)) — 1 for all a € U(A) (here a denotes (a°P)*);
¢ |wioAd(m(u)f(@)) — w;i|| — 0 for all u € Ny(A).

Let us denote by H a standard Hilbert space for N with the corresponding anti-unitary
involution J : H — H. Then N is standardly represented on H ® ¢%(T), the associated
anti-unitary involution J being defined by J({ ® 6,) = JE®6,-1, £ € H, g € T

For all i denote by & € H ® £*(I') the canonical positive (unit) vector implementing the
normal state w;. Then as observed in [PV14al, Section 6], the above properties of the states
w; translate into properties of the vectors & (see [PV14al (6.1)-(6.3)]):

o (m(x)&;,&) — 7(x) for all x € M;
o [m(a)f(a)é; — &l — 0 for all a € U(A);
o ||m(w)f(u)Tm(u)d(a)TE — &l — 0 for all u € Ny(A).

Further, define a state
Q:T € B(H® () — lim(T¢;, &) € C.

Note that by definition, H is the standard space of N = BV §(P°P). Then we see that the
subalgebra B® B(¢*(I")) ¢ B(H ® £%(T")) commutes with §(P°P) and with J(P°)J. The
state €2 is then easily seen to satisfy the following properties

(1) Qn(x)) =7(x) = UTw(x)T) for all z € M; B

(2) Qn(a)T) = Q0(a®®)T) = QTH(aP)) = Q(Tw(a)) for all T € B@ B(L*(I")), a € A;

(3) QAd(m(w) T (u)T)(T)) = QAO(uP)TO(u?P)T)(T)) = UT), for all u € Ny (A)
and all T € B® B(£*(T)).

For the sake of a contradiction, assume that A 4, B.
Claim 1. € vanishes on B @i, K(£2(T)).

Let us forget about the J-map for now and only look at conditions (1) and (2) above. Then
the algebra B® B(¢2(T")) is isomorphic to the basic construction (M, eg) and the embedding
7 corresponds exactly to the canonical embedding M C (M, ep). Then Q becomes an A-
central state on (M, ep), which is tracial on M. The claim then follows from Lemma

Now we continue the proof in a similar fashion to the proof of Theorem Denote by
7 4°() = £2°(T)/co(T) ~ C(OI') the canonical projection, and by A := 7~1(C(9T)!).

We will check that the restriction of 2 to 1 ® A is left I'-invariant, contradicting proper
proximality by Claim 1 and Theorem

Denote by C the C*-subalgebra of B® B({*(T")) generated by 7(M) and by 1 ® A. One
checks that ||[z,y]||, =0 forallz € C and y € D := J7(B Qmin C;(I'))J. Then one proves
the following claim exactly as in the proof of Theorem [4.16)

Claim 2. For all z € C and all u € Ny(A) we have Q(zm(u)) = Q(7(u)z).

From this claim it follows that Q(1 ® A\g(f)) = Q((wg @ ug)(1 ® f)(wg ® ug)*) = U1 @ f)
for all g € T" and f € B(O')'". This concludes the proof. O

Observe now that Theorems and follow from Theorem [.16] applied either in the
case where @@ = C and I' @ is the trivial action or in the case where @ = L*°(X, ) and
the action I' ~ Q) comes from a measure preserving action I' ~ (X, ). This relies on the

fact that two Cartan subalgebras A, B of a II; factor M are unitary conjugate if and only
if A <y B, [Pop06al, Theorem A.1]. Likewise, Theorem follows from Theorem m
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5. BI-EXACTNESS TOWARDS A BOUNDARY PIECE

Proper proximality for groups I' requires the existence of boundary pieces X C OI' which
satisfy the following weak, global property: the left I'-action on C'(X)' does not admit an
invariant state. In this section, we investigate a stronger property for boundary pieces, called
bi-exactness, obtained by assuming that the above action is amenable. This is motivated by
a result from [BOOQS8| Section 15] showing that I' is bi-exact precisely when the left I'-action
on C(AT)I'" is amenable. The results in this section are direct adaptations of [BO0S, Section
15]. Nevertherless, we will recall most of the proofs for the convenience of the reader.

Definition 5.1. [AD87] A continuous action I' ~ K on a compact space is said to be
amenable if there exists a net of continuous maps P, : K — Prob(I") such that

lim sup || P,(gx) — g - Pu(x)|]1 =0, for all g € T
" zeK

Definition 5.2. Given a group I' and a boundary piece X C OI', we say that I" is bi-exact
towards X if the left I'-action on the Gelfand spectrum of C(X)'* is amenable.

Remark 5.3. In [BOOS, Section 15] the notion of bi-exactness relative to a family of
subgroups G of I is considered. One can check that this notion is equivalent to bi-exactness
towards the boundary piece X(G) given in Example

Let us provide several equivalent formulations of this directional version of bi-exactness.
This is reminiscent of [BOOS, Proposition 15.2.3] and related facts. We provide a slightly
different argument, which does not rely on Choi-Effros lifting theorem, nor on Voiculescu’s
theorem.

Theorem 5.4. Take a countable group I' with a non-empty boundary piece X C OI'. The
following assertions are equivalent.

(i) T is bi-exact towards X ;
(it) There exists an amenable action I' ~ K and n € Prob(K) such that X C 0,I';
(iii) T is exact and there exists a map p: I' — Prob(I") such that

lim ||u(sgt) — s - u(g)|i =0, for all s,t €T we X.
g—w

Proof. (i) = (i1). This follows from Lemma

(74) = (¢9i). Assuming that condition (i) holds, we will first prove, for each finite subset
E C T and each ¢ > 0, the existence of a map p : I' — Prob(I") satisfying the following
conditions:

(a) supger [lu(sg) — s - u(g)lh <e, for all s € E;
(b) Forall t € E, the set {g € I' | ||u(gt) — p(g)|[1 > €} is small relative to X := 9,I', in the

sense that its closure inside the Stone-Cech compactification AT’ does not intersect X.

Fix a finite set £ C I and € > 0. Consider maps P, : K — Prob(I') as in Definition
and define for all n, p,, : I' — Prob(I") by the formula p,(g) := [ Pn(gz)dn. By definition
of the net P,, u, satisfies (a) for n large enough. Let us check that u, satisfies condition
(b) for every n.

Fix n. Since K is compact and P, is continuous, we may find a finite set F' such that

sup || P () — Pa(@)yell1 < /3.
zeK
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Here we wrote P, () to denote the restriction of the measure P, (z) to the set F. Note
that we may view any measure on F' as an element in a finite dimensional vector space,
namely the dual of CF.

Fix t € T and denote by A; := {g € I'[||un(gt) — pn(g)ll1 > €}. Assume by contradiction

that X N Ay C AT is non-empty. Then it contains an element w. By the triangle inequality,

we have for all g € A,

(6) H [ Butatayran— [ Putgoyedn| =<3
K K 1

Now, since the function f : 2 € K — P,(x);r € (C)* is a continuous function into a finite
dimensional vector space, and since limg_,,(gt)n—gn = 0 (weakly), we have the convergence

limg, || [5 fd(gtn) — [ fd(gn)|l1 = 0. This clearly contradicts (6]

Having established the existence of the map u, we may now apply, mutatis mutandis, the
procedure described in [BOOS8, Exercise 15.1.1] to deduce (7it).

(7it) = (4). Fix p as in (i97) and consider the map p, : €°(I') — £°°(I") defined by
ps(f) © g = [ fdu(g). From the properties of p it follows that the composition ¢ :=
¢ o py of p, with the restriction map ¢ : £*°(I') — C(X) is a positive map which satisfies
Y(s- f-t) =s-9(f). In particular, 1) ranges into C(X)'" and it is left equivariant. Since
T is exact, the action I' ~ £%°(T") is amenable, and so is the left action T ~ C(X)'. O

We also mention the following generalization of [BO08, Lemma 15.1.4], which relates bi-
exactness to property AO. The proof is the same.

Lemma 5.5. Consider an exact group I' and a boundary piece X C OI'. Then I is bi-exact
towards X if and only if there exists a u.c.p. map

0 : C(I') ®min C(T') = B(£°T)
such that O(x @ y) — xy € K(I'; X) (see Deﬁm’tion for allz € CX(T), y € C5().

As a corollary, we deduce the following solidity type result.

Theorem 5.6. Consider a group I' with a boundary piece X C OU'. Assume that T' is
bi-exact towards X.

For any net of unitaries (u,) C U(LT) with positive mass on X (viewed as a net in (°T),
the relative commutant (uy) N LT has an amenable direct summand.

Proof. Assume that I is bi-exact relative to X. Pick a net of unitaries (u,), € LT' with
positive mass on X and denote by @ its relative commutant, @ = (u,)’ N LT. Define a
state ¢ : B(£?T") — C by the formula (T) = lim, (T, i,), for all T € B(¢£?T). Note that
o(uJuJ) =1 for all u € U(Q), and ¢ is tracial on LI' and RI.

Recall the notation gx = 1x from and the notation I(X) C Ar from subsection
We may extend ¢ to a normal state on B(H )** so that ¢(qx) makes sense. By assumption
©(gx) # 0. Hence we may define a state ¢ : Ar — C by the formula ¢ (a) = p(¢xa)/¢(¢x)
for all a € Ar.

By Lemma since I is bi-exact towards X, the map z @ y € C{(I') @ C;(I') = q(zy) €
Ar/I(X) is min-continuous (we implicitly used that I(X) = Ap NK(I'; X) by Lemma [3.6).
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Here g denotes the quotient map Ar — Ar/I(X). Since ¢ vanishes on I(X), the following
formula defines a continuous state:

Yz @y e CY(T) @min C)(T) = ¢(zy) € C.
Note that % is subtracial on C%(T") and on ().
Since I' is exact, C3(I") has Property C from [BOO0S|, Section 9]. Hence we have an embedding

Cx(T)™ @min C(T)™ C (CX(T) Omin c;(r))**.

In particular we get that the state ¢ extends to a state on LT ®yin RT which is normal on
LT and RT. Moreover, since the initial state ¢ satisfies p(uJuJ) =1 for all u € U(Q), we
find that ¢(u ® @) = 1 for all u € U(Q). Here @ means u*°P, where we identified RT' with
the opposite algebra of LI'.

Representing LT @min R standardly on /2T’ ® £2T', we may approximate @Z by vector states
(by Glimm’s lemma) : LZJ(.’L‘) = lim,(x&,,&,), © € LT Quin RT, for some unit vectors
&, € 2(I) ® £2(T'). These vectors satisfy lim,((u ® @)&,,&,) = 1, which implies that
lim,, ||(u® 1)&, — (1 ® u®&,|| = 0. Then we see that the state 2 : B(¢?(T')) — C defined by
UT) = lim, (T ® 1&,,&,) is normal on LT and @Q-central, proving that @) has an amenable
direct summand. O

5.1. Patching bi-exactness. Let us conclude this section with a discussion about patching
arguments. At a first glance one may be tempted to proceed as for proper proximality and
define the class of “patched bi-exact groups” of groups whose Stone-Cech boundary can be
covered with finitely many pieces X; such that I' is bi-exact towards each X;. We show here
that such a notion is in fact equivalent to genuine bi-exactness.

This relies on the following generalization of a result of Popa and Vaes, [PV14b, Proposition
2.7]. The proof is exactly the same.

Proposition 5.7. Consider a discrete group I' and a boundary piece X C OU. The following
are equivalent.

(i) There exists a map p : I' — Prob(I") as in Theorem |5.4}.(ii7) ;
(ii) There exists a two-sided array into the reqular representation b : T' — (*(I') which
is proper towards X, meaning that the corresponding boundary piece introduced in

Lemma contains X ;

(iii) There exists a unitary representation p : I' = U(K), weakly contained in the regular
representation of I', and an array q : I' — K which is proper towards X.

Proposition 5.8. Consider a discrete group I' and finitely many boundary pieces X; C 0T,
i=1,...,n. Assume that for each i, I" is bi-exact towards X;. Then I is bi-exact towards

U; Xi.

Proof. By assumption, we have for each i an array ¢; : I' — ¢2(T") which is proper towards
X;. Then the direct sum ¢ : I' — @;¢2(T") defined by q(g) := ®iqi(g), g € T, is an array
which is clearly proper towards | J; X;. O

This allows us to provide some new perspective on the following result of Ozawa, [0za09].

Corollary 5.9 (Ozawa). The group I' := Z? x SLy(Z) is bi-exact.
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Proof. Denote by A := SLg(Z) and by 7m : AT' — AA the continuous extension of the
projection map I' — A. We define

Xy :=71(0A) and X, := 9T N7 1 (A),
so that 0" = X7 U Xs.

First, note that the action ¢ : A ~ P! by homography is topologically amenable and it is a
convergence action in the sense of Example Hence the I'-action obtained by composing
o with the quotient map I' — A is still amenable (because Z? is amenable) and for any
diffuse measure 7; € Prob(P!), X; = 9,,I". Hence T is bi-exact towards X; by Theorem
b4l

Second, embed I' inside G := SL3(R) in the usual way, and denote by P < G the subgroup
of upper triangular matrices, so that G/P is the flag variety. Then I' ~ G/P is amenable
and there exists n € Prob(G/P) such that Xy C 9,I', see the proof of Corollary below.
Hence T is bi-exact towards X», by Theorem

Proposition [5.§ then shows that I' is bi-exact. O

6. APPLICATION TO THE VON NEUMANN ALGEBRAS OF SL4(Z)

In this section, we present a series of applications to the study of the von Neumann algebras
of SLy4(Z). Let us start by specializing Lemma to the case of SLy(Z).

From now on we fix d > 3 and set I' = SL4(Z).

6.1. Description of the canonical boundary pieces. Denote by G := SLy(R) and let
K :=8S0(d) be its maximal compact subgroup.

For all tuple k = (ky,...,k;) of integers 0 = kg < k1 < ka < --- < k; = d denote by
P; < G the parabolic subgroup which stabilizes the subspaces Rk x {0}, i.e., P; consists
of all matrices in SLg(R) of the form

GLyg,—1,(R) * K eee «
0 GLpy—,(R) % --- *
0 0 0 -+ GLp—k,_,(R)

Set Kj, := G/ Py, and denote by 7 € Prob(K7%) the unique K-invariant probability measure
on Kj. The fact that it is K-invariant is not relevant to us, but it implies that n;(Y") = 0 for
every proper algebraic subvariety of Kz. In a sense this condition is similar to the diffuseness
condition appearing in Example and allows to avoid the unstable subvarieties that
appear from the dynamics I' ~ K.

For each such tuple k, denote by Xj := O ' the corresponding boundary piece.

Given g € G, recall that its singular values s;(g), 1 < ¢ < n are the eigenvalues of 1/gtg. We
order them in such a way that s1(g) > s2(g) > -+ > s4(g) > 0. These are easily seen to be
the diagonal values of G in the Cartan decomposition (also called K AK-decomposition).

The following lemma describes the boundary pieces Xj, in terms of the ratios between
singular values of group elements. It essentially goes back to Furstenberg’s proof of Borel’s
density theorem [Fur76].
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Lemma 6.1. Fiz a tuple k = (k1,...,k;). Then for any neighborhood U C AT of Xy, there
exists C' > 0 such that
Skj (g)

Skjp1 (g )
Proof. Fix a neighborhood U of X7 inside the Stone-Céch compactification of I'. By defini-

tion of Xz = 0, I', we may choose a finite set 7 € C(Kp), a finite subset £ C I" and £ > 0
such that

{geT| > C forall j} C U.

Uy := {g el | slmax /fd(gnk) —/fd(ghnk)

If the lemma does not hold for this choice of U, then we may find a sequence (g,,) in I" such
that gn, ¢ U for all n but limy, sy, (gn)/sk;, (9n) = 400 for all j. For each n, we may write

<5}CU.

gn = ap diag(s1(gn)s - - - Sd(gn))bn, with a,,b, € K.

Since K is compact we may replace g, by a subsequence and assume that (a,) and (by,)
converge to elements a and b respectively.

Welet F(ki, ks, ..., k;) denote the flag variety consisting of flags with signature (k1, ko, ..., k),
and we let Gr(k;, d) denote the Grassmannian of k;-dimensional subspaces in R%. We denote
by 7, the projection map from a flag of signature (k1,k2,..., k) onto its kj-dimensional
subspace.

Since 7, is the K-invariant measure it follows that given a subspace V C R? with dimV =
d — kj, we have mp np({W € Gr(k;j,d) [ W NV # {0}}) = 0. On the other hand, if
W € Gr(k;,d) is such that W N ({0} x R9%i) = {0} then we have that

a tg bW = a"Ya, diag(s1(gn), - - . , 5a(gn))bnb TW — R¥ x {0}.

It therefore follows that for all g € G we have a_lgnb_lgwkjn,; — Opk Hence, for all

7 x{0}"
g € G we have that g,gn; — d,r where F is the standard flag of signature (ki, ko, ..., k),

so that g, € Uy for n large enough, which contradicts our assumption. (Il
When the tuple & is a 1-tuple k = (i), we just write X; instead of Xy

Corollary 6.2. For allw € O and 1 < i <n, iflimg_,, 5i(g)/si+1(g) = +00, thenw € X;.
So the sets X; cover the Stone-Céch boundary: OI' = U;i:_ll X;.

Proof. The first fact is an immediate consequence of the previous lemma. To deduce the
second fact, we just need to observe that for every w € 0TI, there exists an index i such that
limg_, $i(9)/si+1(g) = +00. Indeed, since every element of G has determinant 1, for every
C >0, the set {g € G | si(g)/si+1(g) < C for all i} is bounded in G. Hence its intersection
with I is finite. g

In the special case of SL3(Z), we denote by X := X1, X_ := X5 and by X := X 9).

6.2. Applications.
Proposition 6.3. SL3(Z) is bi-exact towards X.

Proof. Since By := Py 9) is an amenable group (it is the upper triangular subgroup), the
action I' v Xy = G/P is topologically amenable, and the result follows from Theorem

54 O
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Corollary 6.4. Denote by A either the top-left copy of SLa(Z) or the copy of Z? inside
I':=SL3(Z):

x *x 0 1 0 =
A=|* % 0] ~SLy(Z) or A=|0 1 *|~Z%
001 00 1

Then for any diffuse subalgebra A of LA the relative commutant A’ N LT is amenable.

Proof. This relies on Theorem In both cases we just have to check that whenever
(gn)n is a sequence of elements in A which goes to infinity, the two ratios si(g,)/s2(g,) and
s2(gn)/s3(gn) go to infinity. In both cases, we actually prove the stronger fact that 1 is a
singular value of every element of A. In the first case, this is obvious. In the second case,
take u € Z2?. We compute

IQO IQU_I_IQ u _I_OQU
ut 1 0 1 37\t 1+ utu 37\t wtu)

This matrix has rank at most 2, which proves the claim. ([l

Remark 6.5. In contrast with the above corollary, we cannot apply directly Proposition
to the subgroup A ~ GL3(Z) x Z? embedded as follows

(A,u) € GLo(Z) x Z2 > (6‘ detle)> .

Indeed for every integer n > 1, define the element g, € A,, as follows

n n—1 n
gn=|n+1 n 0
0 0 1

Then (gn)n is a sequence which goes to infinity inside A, but none of its cluster points in
JI' belongs to Xy. This last fact comes from the fact that (g,/n), converges to a rank 2
matrix (so the two top singular values are equivalent to n). Nevertheless, a similar solidity
property is expected to hold true.

Proposition 6.6. For all d > 3, consider inside I'g := PSL4(Z) the following subgroup Aq

isomorphic to Z41:
Ay e {i (Id()_l 116> ue Zdl} ~ 7d-1

Then L(Ag) is a mazimal abelian subalgebra inside L(T'g) and the inclusion L(As) C L(T'3)
is not isomorphic with the inclusion L(Ag) C L(T'g) for any d > 4.

Proof. The first statement easily reduces to the lemma below which proves a relative ICC
condition. To prove the second part of the statement denote by j : Z%1 — Ay < Ty the
described embedding and denote by e, ..., eq_1 the canonical basis of Z9~ . Then observe
that for d > 4 the subgroup j(Zeq—1) < SL4(Z) is centralized by the (non-amenable)

subgroup
A 0
(4 2 acstim).

Hence this situation is distinct for the case of d = 3 in which Corollary applies. O
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Lemma 6.7. Fiz d > 3 and denote by T := GLg(Z) and by A ~ 71 the subgroup

Sl wu d=1 | . pd—1
n{(f 1) wem)ma

Then for all g € T such that {sgs™', s € A} is finite we have either g € A, or —g € A.

Proof. Take g € I' with coeflicients g; j, 1 < ¢,j7 < d. Denote by j : 741 5 A < T the
embedding described in the statement. Denote by ey, ..., es_1 the canonical basis of Z4 1.
Then for 1 <k <d -1, and any n > 0, we have

[j(ner)gi(ner) ik = grk + ngak-

Therefore, if g4 # 0 for some 1 < k < d — 1, then we may conjugate g by elements j(ney)
with n arbitrarily large and obtain this way elements whose (k, k)-th coefficient is arbitrarily
large. Hence the set {sgs™!, s € A} is infinite in this case.

Otherwise, we may write g = (61 Z) with A € GLg_1(Z), a = det(A) = £1 and u € Z4~ 1.

For all n > 1 and v € Z%!, we then have

j(nv)gj(nv) ! = (‘3 b n(dv - ‘“”) -

If A # +1; ;1 then we may choose v € Z9~! in such a way that Av # det(A)v. Then
the conjugacy class {sgs~!, s € A} is infinite in this case. The remaining case is then
A =+1I; 1 and a = det(A), which is clearly equivalent to either g € A, or —g € A. O
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