
PROPERLY PROXIMAL GROUPS AND THEIR VON NEUMANN

ALGEBRAS
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Abstract. We introduce a wide class of countable groups, called properly proximal, which
contains all non-amenable bi-exact groups, all non-elementary convergence groups, and all
lattices in non-compact semi-simple Lie groups, but excludes all inner amenable groups.
We show that crossed product II1 factors arising from free ergodic probability measure
preserving actions of groups in this class have at most one weakly compact Cartan subal-
gebra, up to unitary conjugacy. As an application, we obtain the first W ∗-strong rigidity
results for compact actions of SLd(Z) for d ≥ 3.

1. Introduction

Countable groups and their measure preserving actions naturally give rise to von Neumann
algebras, via two constructions of Murray and von Neumann [MVN36, MvN43]. This work
is motivated by the following general problem: prove structural results for the von Neumann
algebras associated with the arithmetic groups SLd(Z), d ≥ 3, and their probability measure
preserving (p.m.p.) actions. At present, relatively little is known in this direction. Thus,
nearly all available results regarding the group von Neumann algebras L(SLd(Z)), d ≥ 3, are
either direct consequences of property (T) [Con80], or concern inclusions LΛ ⊂ L(SLd(Z))
for some subgroups Λ < SLd(Z), rather than L(SLd(Z)) itself [BC15]. Moreover, while
several remarkable rigidity results for crossed product von Neumann algebras associated
to actions of SLd(Z) have been obtained in [Pop06b, Pop06c, Ioa11b, Bou13], these are
restricted to specific classes of actions.

In contrast, the structure of von Neumann algebras associated with Γ := SL2(Z) and its
actions is much better understood. Indeed, from the perspective of deformation/rigidity
theory there has been a lot of work in this direction, starting with two seminal results ob-
tained in the early 2000s. First, Popa used his deformation/rigidity theory to show that the
crossed product von Neumann algebra L∞(X)oΓ associated to any free ergodic p.m.p. ac-
tion Γ y (X,µ) has at most one Cartan subalgebra with the relative property (T) [Pop06a].
Second, Ozawa employed C∗-algebraic techniques to prove that LΓ is solid: the relative
commutant, A′ ∩LΓ, of any diffuse von Neumann subalgebra A ⊂ LΓ is amenable [Oza04].
These results have since been considerably strengthened, also in the context of Popa’s de-
formation/rigidity theory, following two breakthroughs of Ozawa and Popa [OP10a] and
Popa and Vaes [PV14a]:

(1) LΓ is strongly solid : the normalizer of any diffuse amenable von Neumann subalge-
bra A ⊂ LΓ generates an amenable von Neumann algebra. Moreover, L∞(X,µ)oΓ

A.I. was supported in part by NSF Career Grant DMS #1253402 and NSF FRG Grant #1854074.
J.P. was supported in part by NSF Grants DMS #1500998, DMS #1801125, and NSF FRG Grant

#1853989.

1
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admits L∞(X,µ) as its unique Cartan subalgebra, up to unitary conjugacy, for any
free ergodic compact p.m.p. action Γ y (X,µ) (see [OP10a]).

(2) Γ is C-rigid : L∞(X,µ) o Γ admits L∞(X,µ) as its unique Cartan subalgebra, up
to unitary conjugacy, for any free ergodic p.m.p. action Γy (X,µ) (see [PV14a]).
In particular, L∞(X) o Γ entirely remembers the orbit equivalence relation of the
action Γ y (X,µ) [FM77].

Recall that a Cartan subalgebra of a tracial von Neumann algebra M is a maximal abelian
subalgebra A ⊂ M whose normalizer generates M . Proving uniqueness results for Cartan
subalgebras of crossed product von Neumann algebras is of crucial importance as it allows
one to reduce their classification, up to isomorphism, to the classification of the underlying
actions, up to orbit equivalence. Indeed, as shown in [Sin55], two free ergodic p.m.p. actions
Γ y (X,µ) and Λ y (Y, ν) are orbit equivalent precisely when there is an isomorphism
L∞(X)o Γ ∼= L∞(Y )o Λ which identifies the Cartan subalgebras L∞(X) and L∞(Y ).

In fact, in the last 15 years, a plethora of impressive structural results have been obtained
for von Neumann algebras arising from large classes of countable groups Γ and their measure
preserving actions (see [Oza06a, Pop07, Vae10, Ioa18]). However, in most of these results,
some negative curvature condition on Γ is needed, in the form of a geometric assumption
(e.g., Γ is a hyperbolic group or a lattice in a rank one simple Lie group [Oza04, PV14b]), or
a cohomological assumption (e.g., Γ has positive first `2-Betti number, [Pet09, PS12, CP13,
CS13, Vae13]), or an algebraic assumption (e.g., Γ is an amalgamated free product group,
[IPP08, CH10, PV10, Ioa15]). In sharp contrast, lattices in higher rank simple Lie groups,
such as SLd(Z) for d ≥ 3, do not satisfy any reasonable notion of negative curvature.

The results (1) and (2) were generalized in [CS13] and [PV14b] to any group Γ which is
both weakly amenable [CH89, Haa16] and bi-exact (equivalently, belongs to Ozawa’s class
S) [Ska88, Oza04, Oza06b]. The proofs of statements (1) and (2) for such groups Γ split
into two parts. First, one uses the weak amenability of Γ to deduce that any amenable
subalgebra of L(Γ) or L∞(X)o Γ satisfies a certain weak compactness property ([OP10a],
see Definition 2.2). This fact is then combined with the bi-exactness of Γ to prove the desired
conclusions. The weak amenability and bi-exactness properties are enjoyed by hyperbolic
groups and lattices in simple Lie groups of rank one. However, both of these properties fail
dramatically for lattices in higher rank simple Lie groups.

One of the main goals of this paper is to generalize the bi-exactness methods to a broader
class of groups. The class of groups admitting proper cocycles into nonamenable repre-
sentations was already considered in [OP10b, Theorem A], and products of such groups
were considered in [CS13, Section 4], however, the methods therein do not apply to general
higher rank lattices such as SLd(Z) for d ≥ 3. The following is our first main result:

Theorem 1.1. Let G be any connected semi-simple Lie group with finite center and let
Γ be a lattice in G (e.g., take Γ = SLd(Z) and G = SLd(R), for d ≥ 2). Then the von
Neumann algebra of Γ does not admit a weakly compact Cartan subalgebra. Moreover, for
any free ergodic p.m.p. action σ : Γy (X,µ), the crossed product L∞(X,µ) o Γ admits a
weakly compact Cartan subalgebra A if and only if σ is weakly compact and, in this case, A
is unitarily conjugate to L∞(X,µ).

Let us make several comments on the assumptions and conclusions of Theorem 1.1. A
Cartan subalgebra A of a tracial von Neumann algebra M is called weakly compact if the
inclusion A ⊂ M is weakly compact in the sense of [OP10a] (see Definition 2.2). A free
ergodic p.m.p. action Λ y (Y, ν) is called weakly compact if L∞(Y, ν) is a weakly compact
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Cartan subalgebra of L∞(Y, ν)oΛ. Note that the class of weakly compact actions contains
all compact actions, and thus all profinite actions, and is closed under orbit equivalence, see
[OP10a, Ioa11a]. Recall that any ergodic compact p.m.p. action Λ y (Y, ν) is isomorphic to
a left translation action Λ y (K/K0,mK/K0

), where K is a compact group which contains
Λ as a dense subgroup, K0 < K is a closed subgroup, and mK/K0

is the unique K-invariant
probability measure of K/K0.

Thus, the first assertion of Theorem 1.1 implies that LΓ is not isomorphic to any crossed
product L∞(Y, ν) o Λ arising from a compact p.m.p. action Λy (Y, ν) of an arbitrary
group. The moreover assertion implies that if a free ergodic p.m.p. action Γy (X,µ)
is W*-equivalent to a compact action Λy (Y, ν) (in the sense that their crossed product
von Neumann algebras are isomorphic, L∞(X) o Γ ∼= L∞(Y ) o Λ) then these actions are
actually orbit equivalent.

By combining Theorem 1.1 with orbit equivalence rigidity results from [Zim84] or [Ioa11a]
we obtain the following corollary.

Corollary 1.2. Let σ : SLd(Z) y (X,µ) and σ′ : SLd′(Z) y (X ′, µ′) be free ergodic profinite
p.m.p. actions, for some d, d′ ≥ 3. If L∞(X)oSLd(Z) is isomorphic to L∞(X ′)oSLd′(Z),
then d = d′ and the actions σ and σ′ are virtually conjugate.

Remark 1.3. Let us discuss concrete examples.

(1) For d ≥ 3 and a non-empty set of primes P, consider the left translation action
of SLd(Z) on the compact group Kd,P :=

∏
p∈P SLd(Zp) endowed with its Haar

measure, where Zp denotes the ring of p-adic integers. Corollary 1.2 implies that
L∞(Kd,P)oSLd(Z) and L∞(Kd′,P ′)oSLd′(Z) are isomorphic if and only if (d,P) =
(d′,P ′).

(2) Let us mention however that every compact action Γ = SLd(Z) is profinite, see
Corollary 2.6. This is because every finite dimensional unitary representation of
Γ has finite range. Note that this later fact is not true for general lattices. For
example, denote by q the quadratic form on R5 given by

q(x) = x2
1 + x2

2 + x2
3 −
√

2x2
4 −
√

2x2
5, for all x = (x1, x2, x3, x4, x5) ∈ R5.

Then a Galois automorphism trick gives an embedding of the lattice SO(q,Z[
√

2]) in
SO(q,R) inside the compact group SO(5) ' SO(qσ,R), where σ is the automorphism
of Q[

√
2] such that σ(

√
2) = −

√
2. In fact, in view of Margulis’ superrigidity

theorems [Mar91, Section VII.6], we expect this example to be exceptional, in the
sense that every irreducible finite dimensional unitary representation of Γ should
either have finite range or extend to a continuous representation of SO(5).

The proof of Theorem 1.1 is based on topological dynamics. Typically we use the dynamics
of the actions of SLd(Z) on the projective space Pd−1 and other Grassmanian varieties. Note
that these actions are neither topologically amenable nor small at infinity, as required in
the definition of bi-exactness. Instead, we exploit the fact that these actions do not admit
invariant probability measures in combination with their proximality properties. To this
end, we develop a general method to construct a nice compactification (or rather, a piece of
a compactification, see Definition 3.1) of Γ out of a continuous action on a compact space.
We then use the framework developed in [BC15] to exploit this compactification.

It turns out that the above strategy applies to a much larger class of groups, which we call
Properly Proximal Groups. Roughly speaking, we say that a group Γ is properly proximal
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if it admits finitely many “non-trivial” continuous actions ΓyKi on compact spaces such
that any sequence in Γ admits a subsequence which is “proximal” for at least one of the
actions Γ y Ki (see Definition 4.1 for the precise definition).

Generalizing Theorem 1.1, we prove the following result.

Theorem 1.4. Any properly proximal group Γ satisfies the conclusions of Theorem 1.1.

Under the additional assumption that Γ is weakly amenable, we obtain the following
strengthening of Theorem 1.4.

Theorem 1.5. Let Γ be a properly proximal, weakly amenable group. Then LΓ has no
Cartan subalgebra and Γ is C-rigid.

We are not aware of examples properly proximal weakly amenable groups for which the
conclusion of Theorem 1.5 is not covered by the results in [CS13, PV14a, PV14b]. We
speculate that the mapping class groups or the outer automorphism groups of the free
groups are candidates for such examples (see Question 1).

We devote a substantial part of the paper to study the class of properly proximal groups.
In particular we prove the following results.

Proposition 1.6. Groups in the following classes are properly proximal:

• Non-amenable bi-exact groups;
• Non-elementary convergence groups;
• Lattices in connected non-compact semi-simple Lie groups with finite center of ar-

bitrary rank;
• Groups admitting a proper cocycle into a non-amenable representation.

Moreover, the class of properly proximal groups is stable under commensurability up to finite
kernels and under direct products. In contrast, properly proximal groups are never inner
amenable, and therefore no infinite direct product of non-trivial groups is properly proximal.

We conclude the introduction with several questions on properly proximal groups.

Question 1. (a) Are mapping class groups properly proximal? What about outer auto-
morphism groups Out(Fn) of the free groups?

(b) More generally, is the class of properly proximal groups invariant under measure equiv-
alence?

(c) Is there a non inner amenable group which is not properly proximal? As we discuss in
Section 4.3, we suspect that finitely generated linear groups are properly proximal if
and only if they are not inner amenable.

1.1. Organization of the paper. Apart from the introduction, this paper contains five
other sections. Section 2 sets the notations and gives some preliminary facts. In Section 3,
we develop the notion of a boundary piece and give the main constructions from dynamical
systems and from cocycles. In Section 4, we define and study properly proximal groups
and prove the main results cited above. Then, in Section 5 we show that boundary pieces
may be used to define a notion of “directional bi-exactness”, and generalize [BO08, Section
15] to this setting. Some concrete applications to the von Neumann algebras of SLd(Z) are
given in Section 6.
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2. Notation and general facts

Groups, actions and representations. The symbol Γ will always refer to a discrete
group. Given such a group, we denote by λ and ρ its left and right regular representations,
respectively, both of them acting on `2Γ. The canonical basis of `2Γ will be denoted by
{δg}, g ∈ Γ. We will denote by ∆Γ the Stone-Čech compactification of Γ and by ∂Γ := ∆Γ\Γ
its Stone-Čech boundary.

When considering a compact space K we will denote by Prob(K) the set of regular Borel
probability measures on K. We will often consider actions ΓyK. Implicitly we assume
that such actions are continuous. Such actions naturally induce other actions Γy Prob(K)
and ΓyC(K). The latter is an action by automorphisms on the C*-algebra of continuous
functions on K.

The following elementary lemma will be needed later on.

Lemma 2.1. A compact Hausdorff space carries a diffuse Borel probability measure if and
only if it contains a perfect set.

Proof. The support of a diffuse measure is obviously a perfect set. Conversely, assume that
X contains a perfect set Y . Then after replacing X by Ȳ , we may assume that X itself is
perfect. Observe that any perfect compact Hausdorff space contains two non-empty disjoint
closed subsets which are again perfect. Indeed, this can be deduced from the following fact:
if U is open subset of a perfect set X, then Ū is perfect. Therefore we may construct by
induction a family of closed subsets Ki,j , i ≥ 0, 1 ≤ j ≤ 2i such that for every i, Ki,j1 and
Ki,j2 are disjoint whenever j1 6= j2 and such that Ki+1,2j ∪Ki+1,2j+1 ⊂ Ki,j for all i ≥ 0,
1 ≤ j ≤ 2i. For all i, we denote by

Ki :=

2i⋃
j=1

Ki,j and K :=
⋂
i

Ki.

Since Ki is a decreasing sequence of compact sets, K is non-empty. Define a map π : K →
{0, 1}N by the formula π(x)i := j mod 2, where j is the unique index such that x ∈ Ki,j .
By the construction of K this map is onto and continuous. So we may pull back any diffuse
measure ν on {0, 1}N to a measure on K, which will also be diffuse. Specifically, we define
a state ψ : C({0, 1}N) → C by ψ(f) =

∫
f dν. Viewing C({0, 1}N) as a C∗-subalgebra of

C(K), we extend ψ to a state ϕ : C(K)→ C. The measure µ on K given by ϕ(f) =
∫
f dµ,

for every f ∈ C(K), satisfies π∗µ = ν. Since ν is diffuse, µ is also diffuse. �



6 RÉMI BOUTONNET, ADRIAN IOANA AND JESSE PETERSON

We will often consider unitary representations (π,H) of Γ. We will denote by (π,H) the
conjugate representation, that is, H is the complex conjugate Hilbert space of H and the
representation π is such that π(g)(ξ) = π(g)(ξ) for all g ∈ Γ, ξ ∈ H. Also following [Bek90]
we say that a representation (π,H) is amenable if there exists an Ad(π(Γ))-invariant state
on B(H). This is equivalent to the representation π ⊗ π having almost invariant vectors
[Bek90, Theorem 5.1].

Von Neumann algebras. A tracial von Neumann algebra is a pair (Q, τ) consisting of a
von Neumann algebra Q and a tracial faithful normal trace τ : Q → C. We consider the
corresponding 2-norm given by ‖x‖2 =

√
τ(x∗x), x ∈M and denote by L2(Q) the associated

GNS Hilbert space. If P ⊂ Q is a von Neumann subalgebra, we denote by EP : Q→ P the
trace-preserving conditional expectation and by eP ∈ B(L2(Q)) the orthogonal projection
onto L2(P ) ⊂ L2(Q). Jones’ basic construction is denoted by 〈Q, eP 〉.
We write U(Q) the group of unitaries of Q. For any set S ⊂ Q is which closed under
the adjoint ∗-operation, we denote by S′′ its double commutant, which, by von Neumann’s
double commutant theorem is precisely the von Neumann algebra generated by S.

The von Neumann algebra of a discrete group Γ is denoted by LΓ = λ(Γ)′′ ⊂ B(`2(Γ)).
We endow LΓ with the canonical trace τ : x 7→ 〈xδe, δe〉, making it a tracial von Neumann
algebra. The canonical unitaries λ(g) ∈ LΓ will be often denoted by ug, g ∈ Γ.

Inside B(`2(Γ)), we also consider the abelian von Neumann algebra `∞(Γ), acting by point-
wise multiplication.

Given a representation (π,H) of Γ we will consider the corresponding LΓ-bimodule, whose
underlying Hilbert space is H ⊗ `2(Γ) and the left and right actions are characterized by
the formula

us · (ξ ⊗ δg) · ut = π(s)(ξ)⊗ δsgt, for all g, s, t ∈ Γ, ξ ∈ H.

We recall two notions which will play a key roles in our main results and their proofs: weak
compactness and Popa’s intertwining-by-bimodules.

Definition 2.2. [OP10a] A trace preserving action σ : Γy (Q, τ) on a tracial von Neumann
algebra (Q, τ) is weakly compact if there exists a state ϕ on B(L2(Q)) such that ϕ|Q = τ
and ϕ ◦Ad(u) = ϕ, for every u ∈ U(Q)∪ σ(Γ). A regular inclusion of tracial von Neumann
algebras Q ⊂ M is weakly compact if the action NM (Q)yQ is weakly compact, where
NM (Q) = {u ∈ U(M) | uQu∗ = Q} denotes the normalizer of Q in M .

The following definition/theorem is due to Popa [Pop06a, Pop06b].

Definition 2.3. Consider a tracial von Neumann algebra M with two von Neumann sub-
algebras P,Q ⊂M . We say that a corner of P embeds into Q inside M , and write P ≺M Q
if one of the following equivalent statements holds.

(i) There exists projections p ∈ P , q ∈ Q, a ∗-homomorphism ϕ : pPp → qQq and a
non-zero element v ∈ qMp such that ϕ(x)v = vx for all x ∈ pPp;

(ii) There exists no net of unitaries (un) ⊂ U(P ) such that limn ‖EQ(xuny)‖2 = 0 for all
x, y ∈M ;

In practice we will use the following characterization, which comes from [OP10b, Lemma
3.3] (see also [BH18, Theorem 2] for a general version).
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Lemma 2.4. Consider a tracial von Neumann algebra M with two von Neumann subalge-
bras P,Q ⊂M . Then P ≺M Q if and only if there exists a P -central state Φ : 〈M, eQ〉 → C
which is normal on M and does not vanish on MeQM .

Compact actions of SLd(Z). Before moving on to the core of the paper, let us close
this section by proving a side fact that we mentioned in Remark 1.3. We are grateful to
Jean-François Quint for providing us with a short proof of the next lemma.

Lemma 2.5. Every finite dimensional unitary representation of Γ = SLd(Z), d ≥ 3, has
finite range.

Proof. Fix a finite dimensional unitary representation π of Γ. By Margulis normal subgroup
theorem, it suffices to shows that π has infinite kernel. Restricting π to a copy of SL3(Z)
inside Γ, we may as well assume that d = 3. Denote by Λ < Γ the unipotent subgroup
consisting of upper triangular matrices with 1’s on the diagonal. Then Λ is a copy of the
Heisenberg group, generated by three elements g, h, k such that k = [g, h] and k is central
in Λ. Since k has infinite order, the next claim implies that π has infinite kernel.

Claim. π(kn) is trivial for some n ≥ 1.

If π(Λ) is finite then the claim is obviously true. Otherwise, view π as a morphism from Γ
into SU(d), d ≥ 1, and denote by K < SU(d) the closure of π(Λ). Since K is a compact
Lie group, K/Z(K) is semi-simple. But K/Z(K) is abelian, since it is generated by the
images of g and h and [π(g), π(h)] = π(k) ∈ Z(K). This forces K/Z(K) to be finite. In
this case there exists some finite integer ` ≥ 1 such that π(g)` ∈ Z(K), and in particular,
[π(g)`, π(h)] = e. But one checks that [g`, h] = [g, h]` = k`, so π(k`) = e, which proves the
claim. �

Corollary 2.6. Every compact p.m.p. action of Γ = SLd(Z), d ≥ 3, is profinite.

Proof. First, note it suffices to prove that every ergodic compact p.m.p. action of Γ is
profinite. As we recalled in the introduction, every such action is obtained by embedding Γ
densely in a compact group K, and considering the translation action ΓyK/K0, for some
closed subgroup K0 < K. So we only need to argue that K is profinite. Denote by πn,
n ≥ 1, the list of all irreducible representations of K. By Lemma 2.5 we get that πn(Γ)
is finite. Since πn is continuous and Γ is dense in K, we conclude that πn(K) = πn(Γ) is
finite, for every n ≥ 1. This shows that ker(π1) ∩ · · · ∩ ker(πn), n ≥ 1, are open subgroups
which form a basis of neighborhoods of 1 in K. So K is indeed a profinite group. �

3. Boundary pieces of discrete groups

Definition 3.1. Given a discrete group Γ, a boundary piece is a closed subset X ⊂ ∂Γ
which is invariant under the left and right Γ-actions.

Notation 3.2. Given a discrete group Γ and a boundary piece X ⊂ ∂Γ we define the ideal
I0(X) ⊂ `∞(Γ) ' C(∆Γ) consisting of functions that vanish on X. We also denote by
pX ∈ `∞(Γ)∗∗ the support projection of this ideal, namely pX is the unit of I0(X)∗∗ inside
`∞(Γ)∗∗. For convenience we will denote by qX = 1−pX , so that qX`

∞(Γ) ' `∞(Γ)/I0(X) '
C(X). It is easily seen that qX = 1X , the indicator function.

Since X is left and right Γ-invariant, so is I0(X) and hence λgqXλ
∗
g = ρgqXρ

∗
g = qX for all

g ∈ Γ. These equalities are meant inside B(`2Γ)
∗∗

(which contains `∞(Γ)∗∗).

Let us give a first example of a boundary piece, taken from [BO08, Section 15.1].
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Example 3.3. Take a discrete group Γ and a family G of subgroups of Γ. A subset Ω ⊂ Γ
is small relative to G if it is contained in a finite union of sets of the form sΛt with s, t ∈ Γ,
Λ ∈ G. The C*-subalgebra c0(Γ,G) ⊂ `∞(Γ) generated by functions whose support is a
small set in Γ is an ideal in `∞(Γ) which is globally left and right Γ-invariant and contains
c0(Γ). In particular, it is of the form I(X) for some boundary piece X = X(G) ⊂ ∂Γ.

Alternatively, X(G) is described as the intersection of all ∆Γ \ Ω, where Ω ranges over all
sets that are small relative to G.

In [BO08, Section 15], the ideal c0(Γ,G) is used to construct an ideal of “relatively compact”
operators of B(`2(Γ)). We will do the same here for general boundary pieces. This will
allow us later to generalize the notion of relative bi-exactness to our setting.

3.1. Compact operators towards a boundary piece. For a discrete group Γ and a set
U ⊂ ∆Γ, we denote by PU : `2(Γ) → `2(Γ) the orthogonal projection onto the subspace
`2(Γ ∩ U), that is, PU (δg) = 1g∈Uδg for all g ∈ Γ.

Definition 3.4. Fix a discrete group Γ, a closed set X ⊂ ∂Γ and a bounded net of vectors
ξn ∈ `2(Γ). We say that (ξn)n has

• positive mass on X if there exists ε > 0 such that for any neighborhood U of X
inside ∆Γ, we have ‖PU (ξn)‖ > ε for all n large enough;
• full mass on X if for any neighborhood U of X inside ∆Γ, we have

lim sup
n
‖ξn − PU (ξn)‖ = 0.

Definition 3.5. In the above setting, an operator T ∈ B(`2Γ) is said to be compact towards
X if for any bounded net of vectors ξn ∈ `2Γ with full mass on X, we have limn ‖Tξn‖ = 0.
We denote by K(Γ;X) the set of all operators T ∈ B(`2Γ) such that T and T ∗ are compact
towards X, and note that it is a hereditary C*-subalgebra of B(`2Γ).

Fix a group Γ and a boundary piece X ⊂ ∂Γ. Recall that I0(X) ⊂ `∞(Γ) denotes the ideal
of functions on ∆Γ that vanish on X. Consider the following C*-algebra acting on `2Γ:

AΓ := C∗(`∞(Γ), λ(Γ), ρ(Γ)) ⊂ B(`2Γ).

Denote by I(X) ⊂ AΓ the ideal generated by I0(X). Since c0(Γ) ⊂ I0(X), we get that I(X)
contains the ideal of compact operators, by irreducibility. In fact, we have the following
characterization.

Lemma 3.6. Any approximate unit (ei)i∈I of I0(X) is an approximate unit for I(X). In
particular,

I(X) = AΓ ∩K(Γ;X).

Proof. Recall that I0(X) is by definition the set of continuous functions on ∆Γ which
vanish on X. Since X is left and right Γ-invariant, it is clear that λgI0(X)λ∗g ⊂ I0(X) and
ρgI0(X)ρ∗g ⊂ I0(X) for all g ∈ Γ. In particular, the ideal I(X) may be described as the norm
closure of the linear span of {λgρhf , f ∈ I0(X), g, h ∈ Γ}, or alternatively, as the norm
closure of the linear span of {fλgρh , f ∈ I0(X), g, h ∈ Γ}. With these two descriptions it
is now clear that any approximate unit for I0(X) is indeed an approximate unit for I(X).

Let us prove the second part of the statement. Observe that AΓ∩K(Γ;X) is an ideal inside
AΓ and contains I0(X). So I(X) ⊂ AΓ∩K(Γ;X). Conversely, let T ∈ AΓ∩K(Γ;X). Let N
be the set of open neighbourhoods of X in ∆Γ, ordered by inverse inclusion. For U ∈ N , let
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eU ∈ C(∆Γ) such that 0 ≤ eU ≤ 1, eU ≡ 0 on X, and eU ≡ 1 on ∆Γ \ U . Then (eU )U∈N is
an approximate unit of I0(X), and for any net of unit vectors (ξU )U , the net ((1− eU )ξU )U
has full mass on X. Since T is compact towards X, limU ‖T (1− eU )ξU‖ = 0. This is easily
seen to imply limU TeU = T . Hence T ∈ I(X), by the first part of the lemma. �

Let us now provide several classes of examples of boundary pieces arising from various kinds
of data: geometric, cohomological, and representation theoretic.

3.2. Proximal pieces. Consider a discrete group Γ with a continuous action on a compact
space ΓyK and take a probability measure η ∈ Prob(K).

Definition 3.7. A point ω ∈ ∆Γ (i.e. an ultrafilter on Γ) is called an η-proximal element
if for all h ∈ Γ, we have limg→ω((gh) · η − g · η) = 0, in the weak-* topology. We denote by
∂ηΓ ⊂ ∆Γ the set of η-proximal elements.

The term proximal refers to the fact that the action of Γ on Prob(K) pushes the whole
orbit Γη to a single point (namely limg→ω gη) when going in the direction of ω.

Lemma 3.8. The set ∂ηΓ enjoys the following properties.

(1) It is a closed subset of ∆Γ.
(2) It is left and right Γ-invariant.
(3) If η is Γ-invariant, then ∂ηΓ = ∆Γ. Otherwise, ∂ηΓ ⊂ ∂Γ.

Proof. Consider the orbit map g ∈ Γ 7→ g · η ∈ Prob(K). Since Prob(K) is compact for the
weak-* topology, this map extends to a continuous map σ : ∆Γ→ Prob(K). Then ∂ηΓ can
be expressed as

⋂
h∈Γ{ω : σ(ωh) = σ(ω)}, which implies (1). Moreover, if ω ∈ ∂ηΓ and

g ∈ Γ then for all h ∈ Γ, we have σ(ωgh) = σ(ω) = σ(ωg). So ∂ηΓ is invariant under the
right action. The left invariance follows from the fact that σ(gω) = gσ(ω) for all g ∈ Γ. So
(2) holds true. Statement (3) is obvious. �

We will refer to the boundary pieces of the form ∂ηΓ as proximal pieces. A key feature of this
construction of boundary pieces is that properties of the initial action ΓyK (for example,
the existence of invariant measures or amenability) can be transferred to properties of the
corresponding boundary piece. This is based on the following lemma.

Lemma 3.9. Assume that the measure η is not Γ-invariant, so that X := ∂ηΓ is indeed
a boundary piece, which we assume to be non-empty. Denote by λ and ρ the left and right
actions of Γ on C(X), respectively. Then there exists a unital completely positive map
θ : C(K)→ C(X) such that for all g ∈ Γ, f ∈ C(K), we have

θ(g.f) = λg(θ(f)) and ρg(θ(f)) = θ(f).

Proof. For f ∈ C(K) and g ∈ Γ, define θ0(f)(g) :=
∫
K fd(g.η). The map θ0 : C(K) →

`∞(Γ) obtained this way is unital and completely positive. Denote by θ the composition
of θ0 with the restriction map `∞(Γ) ' C(∆Γ) → C(X). The following two computations
imply the lemma: for all f ∈ C(K), ω ∈ X = ∂ηΓ and h ∈ Γ, we have

θ(h · f)(ω) = lim
g→ω

θ0(h · f)(g) = lim
g→ω

θ0(f)(h−1g) = θ(f)(h−1ω),

θ(f)(ωh) = lim
g→ω

θ(f)(gh) = lim
g→ω

∫
K
fd((gh) · η) = lim

g→ω

∫
K
fd(g · η) = θ(f)(ω). �
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Lemma 3.10. Assume that η is not Γ invariant and write X := ∂ηΓ. Assume that X is
non-empty. Denote by C(X)Γr the C*-algebra of right-Γ-invariant continuous functions on
X. We have the following two facts:

• If there is no Γ-invariant probability measure on K, then there is no left-Γ-invariant
state on C(X)Γr ,
• If the action ΓyK is topologically amenable, then the left Γ- action ΓyC(X)Γr is

amenable. We refer to [BO08, Section 4.3] for the definition of amenable actions.

Proof. The map θ : C(K) → C(X) given by Lemma 3.9 ranges into C(X)Γr and is left-Γ-
equivariant. So if there exists a left-Γ-invariant state ϕ on C(X)Γr , then ϕ◦θ is a Γ-invariant
state on C(K), so there exists a Γ-invariant probability measure on K. This proves the first
fact.

Note that θ induces a Γ-equivariant continuous map from the Gelfand spectrum X̃ of
C(X)Γr to the state space S(C(K)), which is nothing but Prob(K). If the action of Γ on K

is topologically amenable then so is the action on X̃. Hence ΓyC(X)Γr is amenable. �

The next lemma shows that every boundary piece is a proximal piece, and the involved
action can be chosen so that the converse of the previous lemma holds true.

Lemma 3.11. For every boundary piece X ⊂ ∂Γ there exists a continuous action of Γ on
a compact space K, with a probability measure η ∈ Prob(K) such that X = ∂ηΓ. Moreover
the action ΓyK may be chosen so that:

• If there is no left Γ-invariant state on C(X)Γr then there is no Γ-invariant probability
measure on K;
• If the action ΓyC(X)Γr is amenable then ΓyK is topologically amenable.

Proof. Denote by φ : `∞(Γ) ' C(∆Γ) → C(X) the restriction map, by A := C(X)Γr ⊂
C(X) and by B := φ−1(A) ⊂ `∞(Γ). Note that φ is Γ × Γ-equivariant and B is globally
Γ×Γ-invariant. By dualyzing the Γ×Γ-embeddings ker(φ) ⊂ B ⊂ `∞(Γ), we find a compact
Γ × Γ-space K and a continuous Γ × Γ-equivariant map π : ∆Γ → K which restricts to
a homeomorphism on ∆Γ \ X and such that B ' C(K) and the embedding B ⊂ `∞(Γ)
corresponds to the map

f ∈ C(K) 7→ f ◦ π ∈ `∞(Γ).

Since the right Γ-action on A is trivial, one easily verifies that π(ωh) = π(ω) for all ω ∈ X,
h ∈ Γ.

We are interested in the left action of Γ on K, and the measure η := δπ(e) ∈ Prob(K), the
Dirac mass at the image of the neutral element e ∈ Γ. For ω ∈ X and h ∈ Γ we have

lim
g→ω

(gh) · η = lim
g→ω

δπ(gh) = δπ(ωh) = δπ(ω) = lim
g→ω

g · η.

This shows that X ⊂ ∂ηΓ. Conversely, if ω ∈ ∂Γ \X, we may take h ∈ Γ such that ωh 6= ω.
Then since π|∆Γ\K is a homeomorphism, we have π(ωh) 6= π(ω). The above computation
then shows that limg→ω(gh) · η 6= limg→ω g · η. Hence ω /∈ ∂ηΓ. This proves that X = ∂ηΓ.

Now let us verify the two properties of this action. If there is no left-Γ-invariant state on
C(X)Γr , then in particular, Γ is non-amenable. If µ is an invariant probability measure on
K, then µ has zero mass on π(∆Γ \X), because Γ is non-amenable and the restriction of π
to ∆Γ \X is a Γ-equivariant homeomorphism. In particular, the state on B = C(K) given
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by integration with respect to µ vanishes on ker(φ). It thus induces a Γ-invariant state on
A, which was excluded. We conclude that there is no such measure µ.

Let us now assume that the action ΓyC(X)Γr is amenable, and show that the action on
K is amenable. By [BO08, Theorem 4.4.3], it suffices to check that the reduced crossed
product by the left action Bor Γ is nuclear. We will show that it is an extension of nuclear
C*-algebras.

Recall that I0(X) ⊂ `∞(Γ) denotes the ideal corresponding to the boundary piece X, i.e.
I0(X) = C0(∆Γ\X). It is left and right Γ-invariant and hence the reduced crossed product
by the left Γ-action I0(X)or Γ is an ideal inside the uniform Roe algebra `∞(Γ)or Γ. Since
Γ is exact [BO08, Theorem 5.1.7], the uniform Roe algebra is nuclear and hence I0(X)or Γ
is nuclear as well.

On the other hand we have an exact sequence 0 → I0(X) → B → A → 0 of left Γ C*-
algebras. Using again the fact that Γ is exact, we get that the following sequence is exact

0→ I0(X)or Γ→ B or Γ→ Aor Γ→ 0.

Since the action of Γ on A is amenable, the C*-algebra Aor Γ is nuclear. We conclude from
[BO08, Proposition 10.1.3] that B or Γ is nuclear, as wanted. �

3.3. Boundary pieces from arrays. Consider a discrete group Γ and a unitary represen-
tation π : Γ→ U(H) into a Hilbert space H. We recall the following definition from [CS13,
Definition 1.1, Proposition 1.5].

Definition 3.12. A two-sided array of Γ into π is a map b : Γ→ H such that

sup
g∈Γ
‖b(sgt)− πs(b(g))‖ <∞, for all s, t ∈ Γ.

Of course this notion is interesting only if b is unbounded. If this is the case, we can
construct a boundary piece.

Lemma 3.13. If b : Γ → H is an unbounded array then X := {ω ∈ ∆Γ | limg→ω ‖b(g)‖ =
+∞} is a non-empty boundary piece. Moreover there exists a unital completely positive map
θ : B(H)→ C(X) such that

θ ◦Ad(π(g)) = λg ◦ θ and ρg ◦ θ = θ, for all g ∈ Γ.

Proof. The set X is obviously closed and contained in ∂Γ. The left and right invariance of
X follow from the fact that b is a two sided array.

For all T ∈ B(H) and g ∈ Γ, set θ0(T )(g) := 〈Tξg, ξg〉, with ξg := b(g)
‖b(g)‖ . The resulting

map θ0 : B(H) → `∞(Γ) is unital and completely positive. Define θ as the composition
of θ0 with the restriction map `∞(Γ) → C(X). As in the proof of Lemma 3.9, the desired
properties of θ easily follow from the fact that limg→ω ‖πs(ξg) − ξsgt‖ = 0, for all ω ∈ X,
and all s, t ∈ Γ. �

As emphasized in [CS13], cocycles and quasi-cocycles are examples of two-sided arrays.
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3.4. Mixing pieces. Although we won’t need it in the sequel, we present here a very
natural example of boundary piece, which is of independent interest.

Let π : Γ→ U(H) be a unitary representation. Recall that π : Γ→ U(H) is weakly mixing
if 0 is a weak operator topology accumulation point of π(Γ), while π is mixing if this is the
unique accumulation point. The unit ball (B(H))1 is compact with respect to the weak
operator topology and hence we may extend π continuously to a map from ∆Γ into (B(H))1.
The set X(π) = π−1({0}) ⊂ ∂Γ is easily seen to be a boundary piece which records all the
directions in which π is mixing. We call it the mixing piece of π.

Lemma 3.14. Let π : Γ → U(H) be a representation. Let U be a neighborhood of X(π).
Then there exists a weak operator topology neighborhood O of 0 ∈ B(H) such that π−1(O) ⊂
U .

Proof. For each point ω ∈ ∆Γ \ U there exists a WOT-neighborhood O of 0 in (B(H))1

such that π(ω) 6∈ O, and hence ω is not in the closure of π−1(O). By compactness of ∆Γ\U
it then follows that there is a WOT-neighborhood Õ such that π−1(Õ) ⊂ U . �

Lemma 3.15. Let π : Γ→ U(H) be a representation. Let (cn) be a uniformly bounded net
in LΓ. The following conditions are equivalent:

(i) (cn) has full mass on X(π)1.
(ii) For all other representation (ρ,K), all ξ, η ∈ H⊗K⊗`2(Γ) and all uniformly bounded

net (dn) ⊂ LΓ we have limn→∞〈cnξdn, η〉 = 0.
(iii) limn→∞〈cn(ξ ⊗ δe)c∗n, η ⊗ δe〉 = 0 for all ξ, η ∈ H ⊗H.
(iv) limn→∞〈cn(ξ ⊗ δe)c∗n, η ⊗ δe〉 = 0 for all vectors ξ, η ∈ H ⊗H of the form ξ = ξ0 ⊗ ξ0,

η = η0 ⊗ η0, with ξ0, η0 ∈ H.

Proof. Suppose (i) holds. Note that for any representation (ρ,K) we have X(π) ⊂ X(π⊗ρ).
So (i) implies that (cn) has full mass on X(π ⊗ ρ). So in order to prove (ii) we may as
well replace π with π ⊗ ρ and assume that (ρ,K) is trivial. As (cn) and (dn) are uniformly
bounded it suffices for (2) to consider ξ and η of the form ξ = ξ0 ⊗ δe, η = η0 ⊗ δe with
ξ0, η0 ∈ H. Take ε > 0 and let O = {T ∈ (B(H))1 | |〈Tξ0, η0〉| < ε}. We then compute as
in Lemma 2.5 of [CP13]

|〈cnξdn, η〉| ≤ ‖ξ0‖‖η0‖‖dn‖2‖Pπ−1(O)c(cn)‖2 + ε‖cn‖2‖dn‖2.

As (cn) has full mass on X and as ε > 0 was arbitrary condition (ii) then follows.

The implications (ii) ⇒ (iii) ⇒ (iv) are obvious. Suppose now that (iv) holds. Fix ε > 0
and take a neighborhood U of X(π). By Lemma 3.14 there is a weak operator topology
neighborhood O of 0 so that π−1(O) ⊂ U . We may take O of the form

O = {T ∈ (B(H))1 |
k∑
i=1

|〈Tξi, ηi〉|2 < ε}.

1Here we view (cn) as a bounded net in `2(Γ) so Definition 3.4 makes sense.
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Then from (iv) we have limn→∞
∑k

i=1〈cn(ξi ⊗ ξi ⊗ δe)c∗n, ηi ⊗ ηi ⊗ δe〉 = 0, whereas, writing
cn =

∑
g∈Γ cn,gug for the Fourier expansion, we also have

lim
n→∞

k∑
i=1

〈cn(ξi ⊗ ξi ⊗ δe)c∗n, ηi ⊗ ηi ⊗ δe〉 = lim
n

k∑
i=1

∑
g∈Γ

|cn,g|2|〈π(g)ξi, ηi〉|2

≥ ε lim sup
n→∞

‖Pπ−1(O)c(cn)‖22

≥ ε lim sup
n→∞

‖PUc(cn)‖22.

Thus, (cn) has full mass on X(π). �

The gain in (iv) above compared to (iii) is that the inner product 〈u(ξ ⊗ δe)u
∗, η ⊗ δe〉

becomes non-negative for all u as soon as ξ and η are as in (iv). This will be used in the
proof of the following standard weak mixing/compact dichotomy (see, e.g. [Pop06a]).

Proposition 3.16 (Weak mixing/compact dichotomy). Let B ⊂ LΓ be a von Neumann
subalgebra, and G ⊂ U(B) a group which generates B as a von Neumann algebra. The
following are equivalent:

(i) Some net of unitaries (un) ⊂ G has full mass on X(π).
(ii) The LΓ-bimodule H ⊗H ⊗ `2Γ has no non-zero B-central vectors.

Proof. If some net of unitaries (un) ⊂ G has full mass on X(π) then from condition (ii) of
Lemma 3.15 we see that H ⊗H ⊗ `2Γ can have no non-zero B-central vectors.

Conversely, assume that there is no net of unitaries (un) ⊂ G which has full mass on X(π).

Claim. There exist ε > 0 and vectors ξ1, . . . , ξk ∈ H, η1, . . . , ηk ∈ H such that

k∑
i=1

〈u(ξi ⊗ ξi ⊗ δe)u∗, ηi ⊗ ηi ⊗ δe〉 ≥ ε, for all u ∈ G.

Indeed since each term in the above sum is non-negative, if we find u ∈ G such that the
reverse inequality holds, then 〈u(ξi ⊗ ξi ⊗ δe)u∗, ηi ⊗ ηi ⊗ δe〉 < ε for all i. So if the claim
did not hold we could easily construct a net (cn) of elements of G satisfiying (iv) of Lemma
3.15. This would contradict our assumption.

Now, denote by ξ := ⊕ki=1ξi⊗ ξi and η := ⊕ki=1ηi⊗ ηi in (H ⊗H)⊕k. The claim amounts to

〈u(ξ ⊗ δe)u∗, η ⊗ δe〉 ≥ ε, for all u ∈ G.

Denote by ξ̃ ∈ (H⊗H)⊕k⊗`2(Γ) the unique element of minimal norm in the convex closure

of ({u(ξ ⊗ δe)u∗ , u ∈ G}). Then ξ̃ is B-central (since G generates B as a von Neumann

algebra) and satisfies 〈ξ̃, η ⊗ δe〉 ≥ ε, hence ξ̃ 6= 0. Identifying (H ⊗ H)⊕k ⊗ `2(Γ) with

(H ⊗H ⊗ `2(Γ))⊕k, we find that some coordinate of ξ̃ is a non-zero B-central vector inside
H ⊗H ⊗ `2(Γ). �

4. Properly proximal groups and Cartan subalgebras

In this section, we exploit proximal pieces of a group Γ to study its von Neumann algebra
LΓ. This relies on the following definition.
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Definition 4.1. We say that a discrete group Γ is a properly proximal group if it admits
a finite family of continuous actions on compact spaces ΓyKi, i ≥ 0, and probability
measures ηi ∈ Prob(Ki), i ≥ 0, such that:

• For all i, there is no Γ-invariant Borel probability measure on Ki;
•
⋃
i ∂ηiΓ = ∂Γ.

Let us mention that amenable groups are never properly proximal, since they obviously
never satisfy the first condition above. As we will show, properly proximal groups are in
fact never inner amenable (see Proposition 4.11).

Remark 4.2. One may define an, a priori, more general notion of proper proximality
by using actions on arbitrary, not necessarily commutative, C∗-algebras. However, as we
explain below, this leads to the same notion. More precisely, assume that a discrete group
Γ admits a finite family of continuous actions on C∗-algebras ΓyAi, i ≥ 0, and states
ϕi ∈ S(Ai), i ≥ 0, such that:

• For all i, there is no Γ-invariant state on Ai;
•
⋃
i ∂ϕiΓ = ∂Γ, where ∂ϕiΓ = {ω ∈ ∂Γ | limg→ω(ghϕi − gϕi) = 0, ∗-weakly, ∀h ∈ Γ}.

Define Ki := S(Ai) and ηi = δϕi ∈ Prob(Ki), for i ≥ 0. Then Ki is compact in the weak-∗

topology, and the action Γ y Ki is continuous. Since ∂ηiΓ = ∂ϕiΓ, we have
⋃
i ∂ηiΓ = ∂Γ.

Moreover, there is no Γ-invariant probability measure on Ki, for all i. If η ∈ Prob(Ki) were
Γ-invariant, then ϕ =

∫
Ki
ψ dη(ψ) would be a Γ-invariant state on Ai. This shows that Γ

is properly proximal.

4.1. Equivalent formulations. The aim of this section is to prove the following result,
which asserts among other things that proper proximality can always be observed with a
single action. The main implication (iv) ⇒ (iii) is due to Narutaka Ozawa. We warmly
thank him for allowing us to include his argument here.

Theorem 4.3. Consider a discrete countable group Γ, and let X ⊂ ∂Γ be a boundary piece.
The following facts are equivalent.

(i) There are continuous actions ΓyKi, i = 1, . . . , k on compact spaces Ki with proba-
bility measures ηi ∈ Prob(Ki) such that there is no Γ-invariant probability measure on
any Ki and such that X ⊂ ∪ki=1∂ηiΓ.

(ii) There is a single continuous action ΓyK on a compact space K with a probability
measure η ∈ Prob(K) such that there is no Γ-invariant probability measure on K and
X = ∂ηΓ.

(iii) There is no left-Γ-invariant state on C(X)Γr ;
(iv) There is no left-Γ-invariant state on (C(X)∗∗)Γr .

In particular, if X = ∂Γ, all these conditions are equivalent to proper proximality of Γ.

Proof. (i)⇒ (iv). Consider finitely many actions ΓyKi with measures ηi ∈ Prob(Ki), as
in (i). For each i, set Xi := ∂ηiΓ. By Lemma 3.10, we know that for each i, there is no
left-Γ-invariant state on C(Xi)

Γr . In particular there is no Γ-invariant state on (C(Xi)
∗∗)Γr .

Denote by pi ∈ C(X)∗∗ the support projection of the ideal C0(X \Xi) and by qi := 1−pi, so
that C(Xi)

∗∗ = qiC(X)∗∗. Since X ⊂ ∪iXi, we see that ∨qi = 1. Moreover, the projections
qi are left and right Γ-invariant, and in particular, (C(Xi)

∗∗)Γr = qi(C(X)∗∗)Γr . If ϕ is a
left-Γ-invariant state on (C(X)∗∗)Γr , then there exists some i such that ϕ(qi) 6= 0. Then
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the restriction of ϕ to qi(C(X)∗∗)Γr is a non-zero left Γ-invariant positive linear functional
on (C(Xi)

∗∗)Γr , which contradicts the previous paragraph.

(iv) ⇒ (iii). Denote by A := (C(X)∗∗)Γr . If there is no Γ-invariant state on A then
there is no non-zero Γ-invariant linear functional at all. This follows for instance from the
uniqueness of the polar decomposition of normal linear functionals on A∗∗. It therefore
follows from the Hahn-Banach theorem that the linear span of {x− g · x | x ∈ A, g ∈ Γ} is
norm dense inside A. We may thus find g1, . . . , gd ∈ Γ and x1, . . . , xd ∈ A such that

(1) ‖1−
d∑

k=1

(xk − gk · xk)‖ < 1/2.

The elements xk belong to C(X)∗∗, so we may find for each k, a net (xik)i∈I in C(X) which
converges to xk in the weak-* topology of C(X)∗∗. By Goldstine’s theorem, we may assume
that for each i and k, we have ‖xik‖ ≤ ‖xk‖. Since the elements xk are right-Γ-invariant,
we have the weak-* convergence limi x

i
k − xik · g = 0 for all k and g ∈ Γ. Thus we may

replace the xik by convex combinations to assume that this convergence holds in norm:
limi ‖xik−xik · g‖ = 0, for all k and g ∈ Γ. Better, we may further take convex combinations
to assume that, in addition,

‖1−
d∑

k=1

(xik − gk · xik)‖ < 1/2, for all i ∈ I.

This last assertion follows from a classical fact on Banach spaces recorded in Lemma 4.4
below.

The task is now to combine the elements xik to produce elements zk ∈ C(X) which are
actually right Γ-invariant and such that (1) holds with zk’s in the place of xk’s. Recall that
C(X) is naturally identified with `∞(Γ)/I0(X).

For each i, we may take lifts yik ∈ `∞(Γ) of xik, k = 1, . . . , d, such that ‖yik‖ ≤ ‖xk‖, and we

may also take a lift bi ∈ `∞(Γ) of
∑d

k=1(xik − gk · xik) so that ‖1− bi‖ < 1/2.

Let Bn ⊂ Γ be an increasing sequence of finite sets such that Γ = ∪nBn. For each n ≥ 1 we

may find an index i(n) ∈ I such that ‖xi(n)
k −xi(n)

k ·g‖ < 2−n for all g ∈ Bn, and k = 1, . . . , d.

By Lemma 4.5 below there exists an increasing sequence αn ∈ I0(X) so that 0 ≤ αn ≤ 1,
αn → 1 pointwise, and such that for all g ∈ Bn and k = 1, . . . , d we have

(2) ‖(1− αn)(y
i(n)
k − yi(n)

k · g)‖ < 2−n; ‖αn − αn · g‖ < 2−n;

(3) ‖(1− αn)(bi(n) −
d∑

k=1

(y
i(n)
k − gk · y

i(n)
k ))‖ < 2−n; ‖αn − gk · αn‖ < 2−n.

For k = 1, . . . , d we define yk :=
∑

n≥1(αn+1−αn)y
i(n)
k , and we define b := α1+

∑
n≥1(αn+1−

αn)bi(n). Note that ‖1− b‖ ≤ 1/2, since α1 +
∑

n≥1(αn+1 − αn) = 1.
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If g ∈ Bm, then from (2) we have

‖(
∑
n≥m

(αn+1 − αn)y
i(n)
k )− (

∑
n≥m

(αn+1 − αn)y
i(n)
k ) · g‖

≤
∑
n≥m
‖(αn+1 − αn)− (αn+1 − αn) · g‖‖xk‖+

∑
n≥m
‖(αn+1 − αn)(y

i(n)
k − yi(n)

k · g)‖

≤ 2
∑
n≥m

2−n‖xk‖+
∑
n≥m
‖(1− αn)(y

i(n)
k − yi(n)

k · g)‖

≤ 2−m+2(‖xk‖+ 1).

Thus, yk − yk · g ∈ I0(X) for all g ∈ Γ, k = 1, . . . , d.

Similarly, from (3) we have

‖
∑
n≥m

(αn+1 − αn)bi(n) −
d∑

k=1

(
∑
n≥m

(αn+1 − αn)y
i(n)
k )− gk · (

∑
n≥m

(αn+1 − αn)y
i(n)
k )‖

≤
d∑

k=1

∑
n≥m
‖(αn+1 − αn)− gk · (αn+1 − αn)‖‖xk‖

+
∑
n≥m
‖(αn+1 − αn)(bi(n) −

d∑
k=1

(y
i(n)
k − gk · y

i(n)
k ))‖

≤ 2
∑
n≥m

2−n
d∑

k=1

‖xk‖+
∑
n≥m
‖(1− αn)(bi(n) −

d∑
k=1

(y
i(n)
k − gk · y

i(n)
k ))‖

≤ 2−m+2(1 +
d∑

k=1

‖xk‖).

Thus, b−
∑d

k=1 yk − gk · yk ∈ I0(X).

Hence, for each k, if we denote by zk ∈ `∞(Γ)/I0(X) the projection of yk ∈ `∞(Γ), then

each zk is right Γ-invariant and ‖1 −
∑d

k=1(zk − gk · zk)‖ ≤ 1/2. This then rules out the
existence of a left-Γ-invariant state on C(X)Γr .

(iii)⇒ (ii). This follows from Lemma 3.11.

(ii)⇒ (i). This is trivial. �

In the previous proof, we used the following lemmas:

Lemma 4.4. If X is a Banach space and (xi) is a net of elements in X which converges
*-weakly to an element x ∈ X∗∗, then we have inf{‖y‖ | y ∈ conv({xi})} ≤ ‖x‖.

Proof. If x = 0, then x ∈ X and the result is known. So let us assume that x 6= 0. Assume
that there is ε > 0 such that inf{‖y‖, y ∈ conv({xi})} ≥ ‖x‖(1 + ε). Then by Hahn-Banach
separation theorem, there exists a non-zero linear functional ϕ ∈ X∗ that separates the
open ball BX(0, ‖x‖(1 + ε)) from conv({xi}) in the following sense:

(4) sup{ϕ(a) | ‖a‖ < ‖x‖(1 + ε))} ≤ inf{ϕ(y), y ∈ conv({xi})}.
Note that the left term in the above equation is nothing but ‖x‖(1 + ε)‖ϕ‖, which is non-
zero since x and ϕ are non-zero. By Goldstine’s theorem, we know that x belongs to the
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weak* closure of {a ∈ X | ‖a‖ ≤ ‖x‖}. So (1 + ε)x belongs to the weak-* closure of
BX(0, ‖x‖(1 + ε)). In particular

(1 + ε)ϕ(x) ≤ inf{ϕ(y), y ∈ conv({xi})} ≤ ϕ(x).

This implies that ϕ(x) = 0 and hence both terms in (4) are equal to 0, a contradiction. �

Lemma 4.5. Let A be a unital C∗-algebra with a closed ideal I ⊂ A. Suppose Γ is a
countable group which acts on A by ∗-automorphisms which preserve I. If I0 ⊂ I is a
countable set, then there exists an increasing sequence αn ∈ I, with 0 ≤ αn ≤ 1, such that
‖(1− αn)a‖ → 0 for all a ∈ I0, and such that ‖αn − g · αn‖ → 0 for all g ∈ Γ.

Proof. This is essentially contained in the proof of Theorem 1 in [Arv77] (see also Theorem
I.9.16 in [Dav96]). Fix an approximate unit {υλ}λ∈Λ for I, and note that this is also an
approximate unit for J = I o Γ. The proof of Theorem 1 in [Arv77] then shows that after
passing to convex combinations we may obtain an approximate unit {αλ}λ∈Λ of I which is
quasi-central in Ao Γ. In particular it follows that ‖αλ − g · αλ‖ → 0 for all g ∈ Γ.

Since Γ and I0 are countable we may then take a subsequence {αn}n∈N such that ‖(1 −
αn)a‖ → 0 for all a ∈ I0, and such that ‖αn − g · αn‖ → 0 for all g ∈ Γ. �

4.2. First examples and properties.

Example 4.6. Recall that a group Γ is called a convergence group if there exists a contin-
uous action ΓyK on a compact space K having at least three points such that the action
induced on the (locally compact) space of distinct triples of K is proper. Γ is said to be
non-elementary if it is infinite and the action on K does not preserve (set-wise) a set with
at most two elements. Non-elementary convergence groups are properly proximal.

Proof. Take a non-elementary continuous action ΓyK on a compact space K such that
the action induced on the set of distinct triples of K is proper. Using the fact that the
action is non-elementary, it follows that there is no Γ-invariant measure on K. Moreover,
as mentioned in [Bow99, Section 2], if Γ is non-elementary then its limit set is perfect. So
we can apply Lemma 2.1 to find a diffuse measure η on K.

We now check that ∂Γ = ∂ηΓ. By [Bow99, Proposition 1.1], we know that for every infinite
set Φ ⊂ Γ there exists a sequence (gn)n≥1 of elements in Φ and two points a, b ∈ K such that
gn(x) converges to b for all x ∈ K \ {a}. Since η is diffuse and Γ is countable, η(Γa) = 0,
and we deduce by the dominated convergence theorem that gnhη converges to the Dirac
measure δb at b for all h ∈ Γ.

Take now an arbitrary free ultrafilter ω ∈ ∂Γ. For all h ∈ Γ, denote by ηh := limg→ω ghη.
Assume by contradiction that there exist two elements h, h′ ∈ Γ such that ηh 6= ηh′ . Take
disjoint neighborhoods U,U ′ of ηh and ηh′ , respectively. By definition, the set Φ of elements
g ∈ Γ such that ghη ∈ U and gh′η ∈ U ′ is infinite. By the previous paragraph, we may
then find a sequence (gn) ⊂ Φ and a point b ∈ K such that limn gnhη = limn gnh

′η = δb.
This shows that δb ∈ U ∩ U ′, while U and U ′ are supposed to be disjoint, a contradiction.
We conclude that ∂Γ = ∂ηΓ. �

Proposition 4.7. If Γ admits a proper two-sided array into a non-amenable representation
then it is properly proximal.
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Proof. Denote by π a unitary representation of Γ and assume that there exists a proper
two-sided array b into π. Since b is proper, the corresponding boundary piece, as defined in
Lemma 3.13, is equal to ∂Γ. Then from Lemma 3.13 there exists a unital completely positive
map θ : B(H)→ C(∂Γ)Γr which is equivariant, in the sense that θ ◦ Ad(π(g)) = λg ◦ θ for
all g ∈ Γ. Assuming that ϕ is a left Γ-invariant state on C(∂Γ)Γr , we obtain that ϕ◦ θ is an
Ad(π(Γ))-invariant state on B(H), showing that π is amenable. So if π is non-amenable,
condition (iii) of Theorem 4.3 is satisfied, showing that Γ is properly proximal. �

Example 4.8. A group with a proper cocycle into a non-amenable representation is prop-
erly proximal.

Example 4.9. Recall from [BO08, Section 15] that a group Γ is said to be bi-exact if it
is exact and admits a proper two-sided array into its left regular representation, see also
[PV14b, Proposition 2.7]. Thus we see that non-amenable bi-exact groups are properly
proximal. Alternatively, bi-exactness is characterized by the property that the left Γ-action
on C(∂Γ)Γr is topologically amenable. So there is no Γ-invariant state as soon as Γ is
non-amenable.

The above examples show that the following classes of groups are properly proximal:

• Non-elementary hyperbolic groups (being both convergence groups and bi-exact);
• Arbitrary free products (being convergence groups);

• The wreath product Z(Γ) o Γ, for any bi-exact group Γ (being again bi-exact by
[Oza04], although it is not a convergence group).

All these classes of groups admit some hyperbolicity properties. Even though Theorem 4.3
shows that only one action is needed to define properly proximal groups, the flexibility of
allowing several distinct actions significantly increases the class of examples for which we
can prove this property. For instance we will prove in the next section that all lattices in
all real semi-simple Lie groups with trivial center (e.g. SLn(Z) for all n ≥ 2) are properly
proximal groups.

Proposition 4.10. We have the following stability properties.

(1) A direct product of finitely many properly proximal groups is again properly proximal;
(2) A co-amenable subgroup (e.g. a finite index subgroup) of a properly proximal group

is properly proximal.
(3) The class of properly proximal groups is stable under commensurability up to finite

kernels.

Proof. (1). Consider two properly proximal groups Γ1 and Γ2 and denote by Γ = Γ1 × Γ2.
Extend the quotient maps Γ → Γi to a continuous maps πi : ∆Γ → ∆Γi, i = 1, 2, on the
Stone-Čech compactifications. Then we have ∂Γ = π−1

1 (∂Γ1) ∪ π−1
2 (∂Γ2) (going to infinity

inside Γ amounts to having at least one coordinate going to infinity).

Of course any action σ of Γi on a compact space K gives rise to an action σ ◦ πi of Γ on K.
Note that σ ◦ πi admits a Γ-invariant measure if and only if σ has a Γi-invariant measure.
Moreover, for any measure η ∈ Prob(K) we have ∂ηΓ = π−1

i (∂ηΓi), where the left-hand
expression refers to the Γ-action πi ◦ σ while the right-hand side refers to the Γi-action σ.
So the statement holds true.

(2). Assume that Γ is properly proximal and take a co-amenable subgroup Λ < Γ. By
Theorem 4.3, there is no left-Γ-invariant state on C(∂Γ)Γr . The restriction map C(∂Γ) →
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C(∂Λ) is left and right Λ-equivariant, so the existence of a left Λ-invariant state on C(∂Λ)Λr

implies the existence of a left Λ-invariant state on C(∂Γ)Γr . By co-amenability of the
inclusion Λ < Γ, this would further imply the existence of a Γ-invariant state on C(∂Γ)Γr ,
which is not the case. It follows that Λ is properly proximal.

(3). It follows from (2) that a finite index subgroup of a properly proximal group is properly
proximal. Conversely assume that Λ < Γ is a finite index inclusion of groups with Λ properly
proximal. Replacing Λ with a finite index subgroup if necessary, we may assume that it is
normal inside Γ.

First note that the inclusion C(∂Γ)Γr ⊂ C(∂Γ)Λr admits a left-Γ-equivariant conditional
expectation E. Indeed, denote by F := Γ/Λ and observe that the right Γ-action ρ on
C(∂Γ)Λr factorizes to an action of the finite group F , and that C(∂Γ)Γr is exactly the
subalgebra of fixed points for this action of F . So the averaging map x 7→

∑
g∈F ρg(x) is a

left-Γ-equivariant conditional expectation.

Choose a set F̃ ⊂ Γ of representatives of the cosets of Λ inside Γ. The equality `∞(Γ) =⊕
g∈F̃ ρg`

∞(Λ) implies C(∂Γ) =
⊕

g∈F̃ ρgC(∂Λ), and further C(∂Γ)Λr =
⊕

g∈F̃ ρgC(∂Λ)Λr ,

because each g normalizes Λ. The ucp map φ : f ∈ C(∂Λ)Λr 7→
⊕

g ρg(f) ∈ C(∂Γ)Λr is
left-Λ-equivariant.

To conclude we use that characterization from Theorem 4.3.(iii). If there is a left-Γ-invariant
state ϕ on C(∂Γ)Γr , then ϕ ◦ E ◦ φ is left-Λ-invariant on C(∂Λ)Λr contradicting the fact
that Λ is properly proximal. We thus deduce that proper proximality is stable under
commensurability.

Take two discrete groups Γ and Γ′ with a surjective homomorphism π : Γ → Γ′ with finite
kernel. Since π has finite kernel, we have ∂Γ = π−1(∂Γ′), where we also denote by π the
continuous extension π : ∆Γ→ ∆Γ′. The restriction π : ∂Γ→ ∂Γ′ then gives an embedding
C(∂Γ′) ⊂ C(∂Γ). In fact, we have the equality C(∂Γ′) = C(∂Γ)F , where F = ker(π).
Moreover, the left and right Γ-actions leave the subalgebra C(∂Γ′) globally invariant, on

which these actions factor to Γ′-actions. In particular, we have C(∂Γ′)Γ′r = C(∂Γ)Γr , where

the left-Γ-action restricted to C(∂Γ)Γr factors to the left-Γ′-action on C(∂Γ′)Γ′r . So there

is a left-Γ-invariant state if and only if there is a left-Γ′-invariant state on C(∂Γ′)Γ′r . So we
conclude from Theorem 4.3 that Γ is properly proximal if and only if Γ′ is. �

Proposition 4.11. Properly proximal groups are not inner amenable.

Proof. Assume that Γ is an inner amenable amenable group. Then there exists a state
m : `∞(Γ) → C which is invariant under the conjugation action of Γ and which vanishes
on c0(Γ). So m factorizes to a conjugation-invariant state on C(∂Γ) = `∞(Γ)/c0(Γ). Its
restriction to C(∂Γ)Γr is then left-Γ-invariant. Applying Theorem 4.3, we conclude that Γ
is not properly proximal. �

Proposition 4.11 implies that the direct product of an infinite amenable group with an
arbitrary group is never properly proximal. It also follows that an infinite direct sum of
non-trivial groups is never properly proximal. Hence, proper proximality is not invariant
under inductive limits.

4.3. Linear properly proximal groups. In this section we study properly proximal linear
groups. Even if we are only interested in results for discrete countable groups, we will need
to employ general Lie groups and algebraic groups. So before turning to the concrete
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examples of linear groups let us first mention a few facts about boundary pieces in locally
compact groups.

Given a locally compact group G, we define its Stone-Čech compactification ∆G to be
the Gelfand spectrum of the algebra Cb(G) of bounded continuous functions on G and its
boundary ∂G is then the spectrum of the quotient Cb(G)/C0(G), where C0(G) is the ideal
of continuous functions going to 0 at infinity.

Given a continuous action GyK on a compact space and a measure η ∈ Prob(K), we may
define ∂ηG in a similar way as for the discrete case. However, in order to avoid the use of
ultrafilters in this topological setting, we proceed as follows instead: since the action GyK
is continuous, the function fη : g 7→

∫
K f(gx)dη is in Cb(G) for all f ∈ C(K). Then define

∂ηG := {ω ∈ ∆G | ω(fη) = (ωh)(fη), for all h ∈ G, f ∈ C(K)}.

Lemma 4.12. Take a subgroup Γ < G and denote by π : ∆Γ → ∆G the continuous
map extending the embedding. Assume that G acts continuously on a compact space K
and consider also the restricted Γ action on K. Then for any η ∈ Prob(K), we have
∂ηΓ ⊃ π−1(∂ηG). In the case where Γ is discrete inside G, then π is an embedding and the
formula can be read as ∂ηΓ ⊃ ∂ηG ∩∆Γ.

Proof. Let us prove that if Γ is discrete inside G then π is an embedding. Note that it
is enough to prove that the restriction map π∗ : Cb(G) → `∞(Γ) is surjective. Since Γ is
discrete we may find a neighborhood U of the trivial element e such that for all distinct
elements γ, γ′ ∈ Γ, we have γU ∩ γ′U = ∅. Take an arbitrary function F ∈ Cb(G) such
that F (e) = 1 and F is supported on U . Then if f ∈ `∞(Γ) one verifies that the function

f̃ ∈ Cb(G) defined below satisfies π∗(f̃) = f :

f̃(g) =

{
f(γ)F (γ−1g) if g ∈ γU , γ ∈ Γ,

0 otherwise.

This proves that π∗ is surjective. All the other assertions of the lemma are easy. �

Let us now prove the main lemma about proximality in linear groups over local fields. The
rest of this section uses heavily the language of algebraic groups. We refer to Section 6
below for a direct argument in the special case of SLd(R).

Lemma 4.13. Consider an almost k-simple, connected, simply connected algebraic group
G over a local field k. Then there are finitely many proper parabolic k-subgroups Pi < G
and measures ηi ∈ Prob(G(k)/Pi(k)) such that ∂G =

⋃
i ∂ηiG.

Proof. We use Cartan decomposition of simple groups over local fields as presented in
[Mar91, Theorem I.(2.2.1)]

Denote by d the k-rank of G. If d = 0, then G(k) is compact and there is nothing to prove.
Assume that d ≥ 1 and denote by S ⊂ G a maximal k-split torus, and denote by Φ the
corresponding set of roots and by Φ+ the set of positive roots with respect to some order.
Denote by Φ0 = {α1, . . . , αd} ⊂ Φ+ the set of simple roots.

Set k̂ := {x ∈ R | x ≥ 1} if k ' R or C, and k̂ = {β−n | n ∈ N} if k is non-archimedean

(here β is a uniformizer of k). Denote by S+ := {s ∈ S(k) | χ(s) ∈ k̂ for all χ ∈ Φ+}. Then
according to [Mar91, Theorem I.(2.2.1)], there exists a compact subset M ⊂ G(k) such that
G(k) = MS+M .
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For each i, denote by θi := Φ0\{αi}, and by Pi = Pθi the corresponding parabolic subgroup,
see [Mar91, Section I.1.2] and by by V−i the unipotent radical of the opposite parabolic

subgroup of Pi. For simplicity we set G := G(k), S = S(k), Pi := Pi(k), V −i := V−i (k).

The projection map pi : G → G/Pi is continuous, and G-equivariant. We consider its
restriction to V −i . Since S ⊂ Pi, we have

(5) pi(svs
−1) = pi(sv) = s · pi(v), for all s ∈ S, v ∈ V −i .

It follows from [Mar91, Lemma IV.2.2] that the restriction of pi to V −i is an open map from

V −i into G/Pi. Moreover, if we take any probability measure νi ∈ Prob(V −i ) equivalent to
the Haar measure, its push-forward ηi ∈ Prob(Gi/Pi) under pi is a quasi-invariant measure
for the G-action.

The lemma will follow from the Cartan decomposition and the next three claims. The first
claim is in the spirit of [Mar91, Lemma II.3.1].

Claim 1. For any compact set C ⊂ V −i and any neighbourhood O of the neutral element
1V −i

, there exists a constant A > 0 such that every s ∈ S+ for which |αi(s)|k ≥ A, we have

sCs−1 ⊂ O.

Since we may apply the exponential map, see [Mar91, Proposition I.1.3.3], it suffices to
prove the analogous statement for the Lie algebra L consisting of the k-points of the Lie
algebra of V−i . See also [Mar91, Proposition I.2.1.1].

Note that L is spanned by the eigenvectors in the adjoint representation corresponding to
the negative roots in Φ which admit a non-trivial coefficient at αi. In other words, it is
spanned by (finitely many) vectors vα, such that Ad(s)(vα) = α(s)vα for all s ∈ S(k), where
α ranges over roots α = αn1

1 · · ·α
nd
d for some integers n1, . . . , nd ≤ 0 and ni < 0.

Take a norm ‖ · ‖L on the vector space L compatible a the absolute value | · |k on k. By the
previous paragraph, we may find a constant A1 > 0 such that

‖Ad(s)(v)‖L ≤ A1|αi(s)−1|k‖v‖L, for all v ∈ L, s ∈ S+.

Take a compact subset C ⊂ L and a neighbourhood O ⊂ L of 0 ∈ L. We may assume that
C = {v ∈ L | ‖v‖L ≤ A2} and O = {v ∈ L | ‖v‖L ≤ a} for some constants A2 > 0, a > 0.
Setting A := A1A2/a, we see that Ad(s)(K) ⊂ O for all s ∈ S+ satisfying |αi(s)|k > A.
This concludes the proof of Claim 1.

Claim 2. For any net sn ∈ S+ such that |αi(sn)|k →∞, and all convergent nets (hn)n and
(kn)n in G, with respective limits h and k, we have the following weak-* convergence

lim
n

(hnsnkn) · ηi = δhPi
.

To prove this claim, it suffices to show that for any open neighborhood U ⊂ G/Pi of hPi,
we have limn ηi((hnsnkn)−1U) = 1. Since the G-action on G/Pi is continuous, for any such
U , we may find a neighborhood U0 of Pi ∈ G/Pi such that for all n large enough, we have
hnU0 ⊂ U . So in fact, it is sufficient to prove that for every neighborhood U0 ⊂ G/Pi of
Pi and for every ε > 0 there exists n0 large enough so that ηi(k

−1
n s−1

n U0) ≥ 1 − ε for all
n ≥ n0.

Fix such U0 and ε, and take a relatively compact, open set Ω ⊂ V −i with such that
νi(k

−1pi(Ω)) > 1− ε. Applying Claim 1, we find n1 large enough so that for all n ≥ n1, we
have sn · pi(Ω) ⊂ U0. The set C := pi(Ω) is an open set in G/Pi such that ηi(k

−1C) > 1− ε
and C ⊂ s−1

n U0 for all n ≥ n1.
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Since ηi(k
−1C) > 1− ε, C is open and the measure ηi is regular, a routine argument shows

that there exists n2 such that ηi(k
−1
n C) > 1− ε for all n ≥ n2. Thus for all n ≥ max(n1, n2)

we have

ηi(k
−1
n s−1

n U0) ≥ ηi(k−1
n C) ≥ 1− ε,

as wanted.

Claim 3. For any unbounded net sn ∈ S+, there exists i such that |αi(sn)|k →∞.

This follows from the fact that the map α1×· · ·×αd : S→ (GL1)d is a k-isomorphism, which
restricts to a homeomorphism S(k) onto (k∗)d and maps S+ into the subset {(x1, . . . , xd) |
|xi| ≥ 1 for all i}.

To conclude the proof, let ω ∈ ∆G and take a net (gn)n in G which converges to ω. Then for
each n we may write the Cartan decomposition of gn: gn = hnsnkn, with hn, kn ∈ M and
sn ∈ S+. Taking a subnet if necessary, we may assume that hn and kn converge to elements
h and k respectively. By Claim 3, we may find some i such that limn |αi(sn)|k = +∞. Now
we may apply Claim 2, and we conclude

(ωt)(fηi) = lim
n

∫
fd(gnt) · ηi = f(hPi) = ω(fηi) for all f ∈ C(G/Pi), t ∈ G.

This shows that ω ∈ ∂ηiG. �

Theorem 4.14. Consider finitely many local fields ki, and semi-simple connected ki-groups
Gi. Set Gi := Gi(ki) for each i and take a discrete subgroup Γ in G := ΠiGi whose projection
on each Gi is Zariski dense. Then Γ is properly proximal. In particular, lattices in semi-
simple algebraic groups over local fields are properly proximal.

Proof. Let us start with several reductions to simpler cases.

Step 1. We may assume that each Gi is simply connected.

Indeed, for each i denote by G̃i the simply connected cover of Gi and by pi : G̃i → Gi the
corresponding central isogeny (see [Mar91, Proposition I.1.4.11]). Then pi is defined over

ki, hence p−1
i (Gi) ⊂ G̃i(k̃i) for some finite extension k̃i of ki, see [Mar91, Corollary I.2.1.3].

Setting G̃i := G̃i(k̃i), we see that the map p := Πipi : ΠiG̃i → ΠiGi has finite kernel. Hence
by Proposition 4.10 it suffices to check that p−1(Γ) is properly proximal. So replacing Γ

with p−1(Γ), Gi with G̃i and ki with k̃i we have reduced to the case where each Gi is simply
connected.

Step 2. We may assume that each Gi is almost ki-simple.

This is a direct consequence of the fact that a simply connected semi-simple k-group de-
composes into a direct product of almost k-simple k-groups, [Mar91, Proposition I.1.4.10].

For each i denote by Γi the image of Γ inside Gi under the projection map πi : G→ Gi.

Step 3. We may assume that each Γi has non-compact closure with respect to the locally
compact topology on Gi.

Denote by F the set of indices i for which Γi is non-compact in the locally compact topology
of Gi. Then the projection map π : G→ G′ := Πi∈FGi satisfies:

• π(Γ) is discrete in G′ and
• ker(π) ∩ Γ is finite.
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Thanks to Proposition 4.10, the second property above shows that Γ is properly proximal if
and only if π(Γ) is. So, after replacing Γ with π(Γ), we may assume without loss of generality
that each Γi has non-compact closure with respect to the locally compact topology.

In this simplified setting, let us now define the family of actions which witness that Γ is
properly proximal. By Lemma 4.13, for each i, we may find parabolic subgroups Pi,j of
Gi and probability measures ηi,j on the homogeneous spaces Ki,j := Gi/Pi,j(ki) such that
∂Gi =

⋃
j ∂ηi,jGi for all i. Consider the corresponding actions of G on Ki,j obtained by

composing with the projection maps πi. Extend continuously each πi to a map between the
Stone-Čech compactifications πi : ∆G→ ∆Gi. We have the equalities

∂G =
⋃
i

π−1
i (∂Gi) =

⋃
i,j

π−1
i (∂ηi,jGi) =

⋃
i,j

∂ηi,jG.

Since Γ is discrete inside G, ∂Γ ⊂ ∂G and Lemma 4.12 shows that ∂Γ =
⋃
i,j ∂ηi,jΓ.

Moreover, since Γi is Zariski-dense in Gi and has non-compact closure inside Gi, it follows
from Furstenberg’s Lemma [Fur76] that there is no Γ-invariant probability measure on Ki,j

for all i, j ([Zim84, Corollary 3.2.19] for a proof of this precise statement). This concludes
the proof of the first statement. For the second statement, note that if Γ < G(K) is a
lattice in a semi-simple algebraic group G over a local field k, then up to taking a finite
index subgroup we may assume that G is k-connected. Then the result follows from the
first part. �

Thanks to [Zim84, Proposition 3.1.6], the previous proposition implies that lattices in con-
nected semi-simple real Lie groups with trivial center are properly proximal.

Corollary 4.15. A finitely generated subgroup Γ < GLd(Q) with trivial solvable radical is
properly proximal.

Proof. Denote by R ⊂ Q the ring generated by the entries of the elements of Γ and by k
the subfield of Q generated by R. Since Γ is finitely generated, so is R and k is a number
field. Denote by G < GLd(Q) the Zariski closure of Γ. Thus G = G(Q) for some algebraic
group G which is defined over k (because Γ is Zariski dense inside G).

Since Γ has trivial solvable radical, it does not intersect the solvable radical of G. So moding
out by the solvable radical of G if necessary, we may as well assume that G is semi-simple.
Moreover, since the Zariski-connected component of the identity has finite index in G, we
may assume that G is Zariski-connected. So G is a connected semi-simple k-group.

Since R is finitely generated, there are finitely many places kν , ν ∈ S of k such that the
diagonal embedding of R into Πνkν is discrete. Since Γ is contained in G(R), the diagonal
embedding of Γ into the product ΠνG(kν) is discrete.

For all ν, G(kν) is semi-simple, so there exists a kν-map with finite kernel from G(kν) onto
a product of almost simple kν-groups. Again, since Γ has trivial solvable radical, this map
is injective on Γ. So we arrive at the situation of Proposition 4.14, giving the result. �

Question 2. Let us ask now a few related questions.

(1) In the above Corollary, can the finite generation assumption on Γ be removed? Is this
the case if in the definition of proper proximality we allow countably many pieces Xi

(instead of only finitely many)? Note that this softer version of proper proximality
would still be good enough for our applications.
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(2) Can Corollary 4.15 be extended to (finitely generated) subgroups of GLd(R) with trivial
solvable radical? For example, is SLd(Z[t]) properly proximal? Related to this ques-
tion, we point out the reference [GHW05] which proves a generalization of the discrete
embedding R ⊂ Πνkν used in the previous corollary.

(3) As we saw before, properly proximal groups are non-inner amenable. In view of Tucker-
Drob’s results [TD15, Theorem 13 and 14], one may wonder if the converse holds for
linear groups: is any non-inner amenable (finitely generated) linear group properly
proximal? In particular, does this hold for subgroups of GLd(Q)?

4.4. Von Neumann algebraic results on properly proximal groups.

Theorem 4.16. Assume that Γ is a properly proximal group. Consider a trace preserving
action σ : Γy (Q, τ) on a tracial von Neumann algebra. Denote M := Qo Γ

Then any weakly compact von Neumann subalgebra P ⊂M such that NM (P )′′ contains LΓ
admits a corner that embeds into Q inside M .

Proof. Recall that L2(M) ' L2(Q)⊗ `2Γ and that with this identification, M is generated
by Q⊗ 1 and by the unitaries ug := σg ⊗ λg, g ∈ Γ. Then JMJ is generated by JQJ and
1⊗ ρ(Γ), and JQJ ⊂ B(L2(Q))⊗ `∞(Γ).

Assume that P ⊂ M is a weakly compact inclusion such that LΓ ⊂ NM (P )′′. Then there
exists a state ϕ : B(L2(M))→ C with the following properties:

(i) ϕ is the canonical (normal) trace on M and JMJ ;
(ii) ϕ(xT ) = ϕ(Tx) for all T ∈ B(L2(M)), x ∈ P ;

(iii) ϕ(uJuJT ) = ϕ(TuJuJ) for all T ∈ B(L2(M)) and all u ∈ NM (P ).

Assume that P ⊀M Q. Then by Lemma 2.4, (ii) above implies that ϕ vanishes on Q ⊗
K(`2Γ). Denote by π : `∞(Γ) → `∞(Γ)/c0(Γ) ' C(∂Γ) the canonical projection, and by
B := π−1(C(∂Γ)Γr).

Denote by C := C∗(1 ⊗ B, {ug | g ∈ Γ}) ⊂ B(L2(M)) and by D := C∗(JQJ, 1 ⊗ ρ(Γ)) ⊂
JMJ . As explained before, D is strongly dense inside JMJ . Note that [x, y] ∈ Q⊗K(`2Γ)
for all x ∈ C and all y ∈ D.

Claim. For all x ∈ C and all u ∈ NM (P ), we have ϕ(ux) = ϕ(xu).

Proof of the claim. Fix such x and u. Applying property (iii) above to the elements u and
T = xJu∗J gives that ϕ(uJuJxJu∗J) = ϕ(xu). Take a net yk ∈ D which converges to
Ju∗J in the strong topology of JMJ . Since ϕ|JMJ is the normal trace on JMJ , denoting

‖y‖ϕ =
√
ϕ(y∗y) for y ∈ B(L2(M)) and applying the Cauchy-Schwarz inequality, we get

the following two computations:

lim
k
|ϕ(uJuJxJu∗J)− ϕ(uJuJxyk)| ≤ lim

k
‖(uJuJx)∗‖ϕ‖Ju∗J − yk‖ϕ = 0.

lim
k
|ϕ(ux)− ϕ(uJuJykx)| = lim

k
ϕ(JuJ(Ju∗J − yk)ux)| ≤ lim

k
‖JuJ − y∗k‖ϕ‖ux‖ϕ = 0.

As we observed, for all k, xyk − ykx ∈ Q ⊗ K(`2Γ). Since ϕ vanishes on Q ⊗ K(`2Γ), we
get that |ϕ(uJuJykx)−ϕ(uJuJxyk)| ≤ ‖xyk − ykx‖ϕ = 0. Therefore, we may combine the
two computations above and get

ϕ(xu) = ϕ(uJuJxJu∗J) = lim
k
ϕ(uJuJxyk) = lim

k
ϕ(uJuJykx) = ϕ(ux).

This proves the claim.
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Since ϕ is tracial on M , we obtain that ϕ(ux) = ϕ(xu), for all x ∈ C and u ∈ NM (P )′′. In
particular, if LΓ ⊂ NM (P )′′, we obtain ϕ(ugfu

∗
g) = ϕ(f) for all g ∈ Γ and f ∈ 1⊗B(∂Γ)Γr .

Since ugfu
∗
g = λg(f) for all g ∈ Λ and f ∈ 1 ⊗ B. We deduce that the restriction of ϕ

to 1 ⊗ B is a left Γ-invariant state, which vanishes on 1 ⊗ c0(Γ). Hence it factors to a
left invariant state on C(∂Γ)Γr , which contradicts the fact that Γ is properly proximal, by
Theorem 4.3. �

Under the additional assumption that the properly proximal group Γ is weakly amenable,
we may use Popa and Vaes’ result [PV14a, Theorem 5.1] to deduce Cartan rigidity results.
Specifically, we obtain the following theorem.

Theorem 4.17. Assume that Γ is properly proximal and weakly amenable. Consider a
trace preserving action Γy (Q, τ) on a tracial von Neumann algebra. Denote M := QoΓ.

Then for any amenable von Neumann subalgebra P ⊂ M such that NM (P )′′ contains LΓ
we have that P ≺M Q. In particular, Γ is Cartan-rigid.

In order to be able to apply [PV14a, Theorem 5.1], we have to first establish the following
statement about tensor products (as opposed to arbitrary crossed-products).

Proposition 4.18. Consider a group Γ which is both properly proximal and weakly amenable.
Consider also any tracial von Neumann algebra B and set M := B⊗LΓ.

Let A ⊂M be an amenable von Neumann subalgebra and assume that for any g ∈ Γ, there
exists a unitary wg ∈ U(B) such that wg ⊗ ug belongs to NM (A)′′.

Then A ≺M B.

Before proving Proposition 4.18 let us deduce Theorem 4.17 from it.

Proof of Theorem 4.17. As in the statement of the theorem, set M := Q o Γ and take
P ⊂M an amenable subalgebra such that NM (P )′′ contains LΓ.

Denote by ∆ : M → M ⊗LΓ the dual co-action of the action ΓyQ. Namely ∆ is the
*-homomorphism characterized by the formula

∆(aug) := aug ⊗ ug, for all a ∈ Q, g ∈ Γ.

Set B := M and A := ∆(P ) ⊂ B⊗LΓ. By assumption the unitaries ∆(ug) = ug ⊗ ug
belong to the von Neumann algebra generated by the normalizer of A. So the proposition
applies and shows that A ≺B⊗LΓ B. It is routine to check that this last fact implies that
P ≺M Q, proving the theorem. �

Proof of Proposition 4.18. Since Γ is weakly amenable we may apply [PV14a, Theorem
5.1]. Let us introduce the corresponding notation. Recall that M = B⊗LΓ and A ⊂ M
is amenable. Denote P := NM (A)′′, and recall that there are unitaries wg ∈ B such that
wg⊗ug ∈ P for all g ∈ Γ. Define N as the von Neumann algebra acting on L2(M)⊗AL2(P )
generated by B and P op and define N := N ⊗LΓ. Consider the two natural embeddings

π : a⊗ ug ∈M 7→ a⊗ ug ∈ N and θ : yop ∈ P op 7→ yop⊗ 1 ∈ N .
It follows that N is generated by the two commuting subalgebras π(M) and θ(P op). With
this notation, [PV14a, Theorem 5.1] tells us that there exists a net of normal states ωi ∈ N∗
such that

• ωi(π(x))→ τ(x) for all x ∈M ;
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• ωi(π(a)θ(ā))→ 1 for all a ∈ U(A) (here ā denotes (aop)∗);
• ‖ωi ◦Ad(π(u)θ(ū))− ωi‖ → 0 for all u ∈ NM (A).

Let us denote by H a standard Hilbert space for N with the corresponding anti-unitary
involution J : H → H. Then N is standardly represented on H ⊗ `2(Γ), the associated
anti-unitary involution J being defined by J (ξ ⊗ δg) = Jξ ⊗ δg−1 , ξ ∈ H, g ∈ Γ.

For all i denote by ξi ∈ H ⊗ `2(Γ) the canonical positive (unit) vector implementing the
normal state ωi. Then as observed in [PV14a, Section 6], the above properties of the states
ωi translate into properties of the vectors ξi (see [PV14a, (6.1)-(6.3)]):

• 〈π(x)ξi, ξi〉 → τ(x) for all x ∈M ;
• ‖π(a)θ(ā)ξi − ξi‖ → 0 for all a ∈ U(A);
• ‖π(u)θ(ū)J π(u)θ(ū)J ξi − ξi‖ → 0 for all u ∈ NM (A).

Further, define a state

Ω : T ∈ B(H ⊗ `2(Γ)) 7→ lim
i
〈Tξi, ξi〉 ∈ C.

Note that by definition, H is the standard space of N = B ∨ θ(P op). Then we see that the
subalgebra B⊗B(`2(Γ)) ⊂ B(H ⊗ `2(Γ)) commutes with θ(P op) and with J θ(P op)J . The
state Ω is then easily seen to satisfy the following properties

(1) Ω(π(x)) = τ(x) = Ω(J π(x)J ) for all x ∈M ;
(2) Ω(π(a)T ) = Ω(θ(aop)T ) = Ω(Tθ(aop)) = Ω(Tπ(a)) for all T ∈ B⊗B(`2(Γ)), a ∈ A;
(3) Ω(Ad(π(u)J π(u)J )(T )) = Ω(Ad(θ(uop)J θ(uop)J )(T )) = Ω(T ), for all u ∈ NM (A)

and all T ∈ B⊗B(`2(Γ)).

For the sake of a contradiction, assume that A ⊀M B.

Claim 1. Ω vanishes on B ⊗min K(`2(Γ)).

Let us forget about the J -map for now and only look at conditions (1) and (2) above. Then
the algebra B⊗B(`2(Γ)) is isomorphic to the basic construction 〈M, eB〉 and the embedding
π corresponds exactly to the canonical embedding M ⊂ 〈M, eB〉. Then Ω becomes an A-
central state on 〈M, eB〉, which is tracial on M . The claim then follows from Lemma 2.4.

Now we continue the proof in a similar fashion to the proof of Theorem 4.16. Denote by
π : `∞(Γ)→ `∞(Γ)/c0(Γ) ' C(∂Γ) the canonical projection, and by A := π−1(C(∂Γ)Γr).

We will check that the restriction of Ω to 1 ⊗ A is left Γ-invariant, contradicting proper
proximality by Claim 1 and Theorem 4.3.

Denote by C the C*-subalgebra of B⊗B(`2(Γ)) generated by π(M) and by 1 ⊗ A. One
checks that ‖[x, y]‖ϕ = 0 for all x ∈ C and y ∈ D := J π(B⊗minC

∗
r (Γ))J . Then one proves

the following claim exactly as in the proof of Theorem 4.16.

Claim 2. For all x ∈ C and all u ∈ NM (A) we have Ω(xπ(u)) = Ω(π(u)x).

From this claim it follows that Ω(1 ⊗ λg(f)) = Ω((wg ⊗ ug)(1 ⊗ f)(wg ⊗ ug)∗) = Ω(1 ⊗ f)
for all g ∈ Γ and f ∈ B(∂Γ)Γr . This concludes the proof. �

Observe now that Theorems 1.1 and 1.4 follow from Theorem 4.16, applied either in the
case where Q = C and ΓyQ is the trivial action or in the case where Q =  L∞(X,µ) and
the action ΓyQ comes from a measure preserving action Γy (X,µ). This relies on the
fact that two Cartan subalgebras A,B of a II1 factor M are unitary conjugate if and only
if A ≺M B, [Pop06a, Theorem A.1]. Likewise, Theorem 1.5 follows from Theorem 4.17.
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5. Bi-exactness towards a boundary piece

Proper proximality for groups Γ requires the existence of boundary pieces X ⊂ ∂Γ which
satisfy the following weak, global property: the left Γ-action on C(X)Γr does not admit an
invariant state. In this section, we investigate a stronger property for boundary pieces, called
bi-exactness, obtained by assuming that the above action is amenable. This is motivated by
a result from [BO08, Section 15] showing that Γ is bi-exact precisely when the left Γ-action
on C(∂Γ)Γr is amenable. The results in this section are direct adaptations of [BO08, Section
15]. Nevertherless, we will recall most of the proofs for the convenience of the reader.

Definition 5.1. [AD87] A continuous action ΓyK on a compact space is said to be
amenable if there exists a net of continuous maps Pn : K → Prob(Γ) such that

lim
n

sup
x∈K
‖Pn(gx)− g · Pn(x)‖1 = 0, for all g ∈ Γ.

Definition 5.2. Given a group Γ and a boundary piece X ⊂ ∂Γ, we say that Γ is bi-exact
towards X if the left Γ-action on the Gelfand spectrum of C(X)Γr is amenable.

Remark 5.3. In [BO08, Section 15] the notion of bi-exactness relative to a family of
subgroups G of Γ is considered. One can check that this notion is equivalent to bi-exactness
towards the boundary piece X(G) given in Example 3.3.

Let us provide several equivalent formulations of this directional version of bi-exactness.
This is reminiscent of [BO08, Proposition 15.2.3] and related facts. We provide a slightly
different argument, which does not rely on Choi-Effros lifting theorem, nor on Voiculescu’s
theorem.

Theorem 5.4. Take a countable group Γ with a non-empty boundary piece X ⊂ ∂Γ. The
following assertions are equivalent.

(i) Γ is bi-exact towards X;
(ii) There exists an amenable action ΓyK and η ∈ Prob(K) such that X ⊂ ∂ηΓ;

(iii) Γ is exact and there exists a map µ : Γ→ Prob(Γ) such that

lim
g→ω
‖µ(sgt)− s · µ(g)‖1 = 0, for all s, t ∈ Γ, ω ∈ X.

Proof. (i)⇒ (ii). This follows from Lemma 3.11.

(ii) ⇒ (iii). Assuming that condition (ii) holds, we will first prove, for each finite subset
E ⊂ Γ and each ε > 0, the existence of a map µ : Γ → Prob(Γ) satisfying the following
conditions:

(a) supg∈Γ ‖µ(sg)− s · µ(g)‖1 < ε, for all s ∈ E;
(b) For all t ∈ E, the set {g ∈ Γ | ‖µ(gt)− µ(g)‖1 ≥ ε} is small relative to X := ∂ηΓ, in the

sense that its closure inside the Stone-Čech compactification ∆Γ does not intersect X.

Fix a finite set E ⊂ Γ and ε > 0. Consider maps Pn : K → Prob(Γ) as in Definition 5.1
and define for all n, µn : Γ→ Prob(Γ) by the formula µn(g) :=

∫
K Pn(gx)dη. By definition

of the net Pn, µn satisfies (a) for n large enough. Let us check that µn satisfies condition
(b) for every n.

Fix n. Since K is compact and Pn is continuous, we may find a finite set F such that

sup
x∈K
‖Pn(x)− Pn(x)|F ‖1 < ε/3.
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Here we wrote Pn(x)|F to denote the restriction of the measure Pn(x) to the set F . Note
that we may view any measure on F as an element in a finite dimensional vector space,
namely the dual of CF .

Fix t ∈ Γ and denote by At := {g ∈ Γ | ‖µn(gt) − µn(g)‖1 ≥ ε}. Assume by contradiction
that X ∩At ⊂ ∆Γ is non-empty. Then it contains an element ω. By the triangle inequality,
we have for all g ∈ At,

(6)

∥∥∥∥∫
K
Pn(gtx)|Fdη −

∫
K
Pn(gx)|Fdη

∥∥∥∥
1

≥ ε/3.

Now, since the function f : x ∈ K 7→ Pn(x)|F ∈ (CF )∗ is a continuous function into a finite
dimensional vector space, and since limg→ω(gt)η−gη = 0 (weakly), we have the convergence
limg→ω ‖

∫
K fd(gtη)−

∫
K fd(gη)‖1 = 0. This clearly contradicts (6)

Having established the existence of the map µ, we may now apply, mutatis mutandis, the
procedure described in [BO08, Exercise 15.1.1] to deduce (iii).

(iii) ⇒ (i). Fix µ as in (iii) and consider the map µ∗ : `∞(Γ) → `∞(Γ) defined by
µ∗(f) : g 7→

∫
Γ fdµ(g). From the properties of µ it follows that the composition ψ :=

φ ◦ µ∗ of µ∗ with the restriction map φ : `∞(Γ) → C(X) is a positive map which satisfies
ψ(s · f · t) = s · ψ(f). In particular, ψ ranges into C(X)Γr and it is left equivariant. Since
Γ is exact, the action Γy `∞(Γ) is amenable, and so is the left action ΓyC(X)Γr . �

We also mention the following generalization of [BO08, Lemma 15.1.4], which relates bi-
exactness to property AO. The proof is the same.

Lemma 5.5. Consider an exact group Γ and a boundary piece X ⊂ ∂Γ. Then Γ is bi-exact
towards X if and only if there exists a u.c.p. map

θ : C∗λ(Γ)⊗min C
∗
ρ(Γ)→ B(`2Γ)

such that θ(x⊗ y)− xy ∈ K(Γ;X) (see Definition 3.5) for all x ∈ C∗λ(Γ), y ∈ C∗ρ(Γ).

As a corollary, we deduce the following solidity type result.

Theorem 5.6. Consider a group Γ with a boundary piece X ⊂ ∂Γ. Assume that Γ is
bi-exact towards X.

For any net of unitaries (un) ⊂ U(LΓ) with positive mass on X (viewed as a net in `2Γ),
the relative commutant (un)′ ∩ LΓ has an amenable direct summand.

Proof. Assume that Γ is bi-exact relative to X. Pick a net of unitaries (un)n ∈ LΓ with
positive mass on X and denote by Q its relative commutant, Q = (un)′ ∩ LΓ. Define a
state ϕ : B(`2Γ)→ C by the formula ϕ(T ) = limn〈T ûn, ûn〉, for all T ∈ B(`2Γ). Note that
ϕ(uJuJ) = 1 for all u ∈ U(Q), and ϕ is tracial on LΓ and RΓ.

Recall the notation qX = 1X from 3.2 and the notation I(X) ⊂ AΓ from subsection 3.1.
We may extend ϕ to a normal state on B(H)∗∗ so that ϕ(qX) makes sense. By assumption
ϕ(qX) 6= 0. Hence we may define a state ψ : AΓ → C by the formula ψ(a) = ϕ(qXa)/ϕ(qX)
for all a ∈ AΓ.

By Lemma 5.5, since Γ is bi-exact towards X, the map x⊗ y ∈ C∗λ(Γ)⊗ C∗ρ(Γ) 7→ q(xy) ∈
AΓ/I(X) is min-continuous (we implicitly used that I(X) = AΓ ∩K(Γ;X) by Lemma 3.6).
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Here q denotes the quotient map AΓ → AΓ/I(X). Since ψ vanishes on I(X), the following
formula defines a continuous state:

ψ̃ : x⊗ y ∈ C∗λ(Γ)⊗min C
∗
ρ(Γ) 7→ ψ(xy) ∈ C.

Note that ψ̃ is subtracial on C∗λ(Γ) and on C∗ρ(Γ).

Since Γ is exact, C∗λ(Γ) has Property C from [BO08, Section 9]. Hence we have an embedding

C∗λ(Γ)∗∗ ⊗min C
∗
ρ(Γ)∗∗ ⊂

(
C∗λ(Γ)⊗min C

∗
ρ(Γ)

)∗∗
.

In particular we get that the state ψ̃ extends to a state on LΓ⊗min RΓ which is normal on
LΓ and RΓ. Moreover, since the initial state ϕ satisfies ϕ(uJuJ) = 1 for all u ∈ U(Q), we

find that ψ̃(u ⊗ ū) = 1 for all u ∈ U(Q). Here ū means u∗op, where we identified RΓ with
the opposite algebra of LΓ.

Representing LΓ⊗minRΓ standardly on `2Γ⊗ `2Γ, we may approximate ψ̃ by vector states
(by Glimm’s lemma) : ψ̃(x) = limn〈xξn, ξn〉, x ∈ LΓ ⊗min RΓ, for some unit vectors
ξn ∈ `2(Γ) ⊗ `2(Γ). These vectors satisfy limn〈(u ⊗ ū)ξn, ξn〉 = 1, which implies that
limn ‖(u⊗ 1)ξn − (1⊗ uopξn‖ = 0. Then we see that the state Ω : B(`2(Γ))→ C defined by
Ω(T ) = limn〈T ⊗ 1ξn, ξn〉 is normal on LΓ and Q-central, proving that Q has an amenable
direct summand. �

5.1. Patching bi-exactness. Let us conclude this section with a discussion about patching
arguments. At a first glance one may be tempted to proceed as for proper proximality and
define the class of “patched bi-exact groups” of groups whose Stone-Čech boundary can be
covered with finitely many pieces Xi such that Γ is bi-exact towards each Xi. We show here
that such a notion is in fact equivalent to genuine bi-exactness.

This relies on the following generalization of a result of Popa and Vaes, [PV14b, Proposition
2.7]. The proof is exactly the same.

Proposition 5.7. Consider a discrete group Γ and a boundary piece X ⊂ ∂Γ. The following
are equivalent.

(i) There exists a map µ : Γ→ Prob(Γ) as in Theorem 5.4.(iii) ;
(ii) There exists a two-sided array into the regular representation b : Γ → `2(Γ) which

is proper towards X, meaning that the corresponding boundary piece introduced in
Lemma 3.13 contains X;

(iii) There exists a unitary representation ρ : Γ → U(K), weakly contained in the regular
representation of Γ, and an array q : Γ→ K which is proper towards X.

Proposition 5.8. Consider a discrete group Γ and finitely many boundary pieces Xi ⊂ ∂Γ,
i = 1, . . . , n. Assume that for each i, Γ is bi-exact towards Xi. Then Γ is bi-exact towards⋃
iXi.

Proof. By assumption, we have for each i an array qi : Γ → `2(Γ) which is proper towards
Xi. Then the direct sum q : Γ → ⊕i`2(Γ) defined by q(g) := ⊕iqi(g), g ∈ Γ, is an array
which is clearly proper towards

⋃
iXi. �

This allows us to provide some new perspective on the following result of Ozawa, [Oza09].

Corollary 5.9 (Ozawa). The group Γ := Z2 o SL2(Z) is bi-exact.
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Proof. Denote by Λ := SL2(Z) and by π : ∆Γ → ∆Λ the continuous extension of the
projection map Γ→ Λ. We define

X1 := π−1(∂Λ) and X2 := ∂Γ ∩ π−1(Λ),

so that ∂Γ = X1 ∪X2.

First, note that the action σ : ΛyP1 by homography is topologically amenable and it is a
convergence action in the sense of Example 4.6. Hence the Γ-action obtained by composing
σ with the quotient map Γ → Λ is still amenable (because Z2 is amenable) and for any
diffuse measure η1 ∈ Prob(P1), X1 = ∂η1Γ. Hence Γ is bi-exact towards X1 by Theorem
5.4.

Second, embed Γ inside G := SL3(R) in the usual way, and denote by P < G the subgroup
of upper triangular matrices, so that G/P is the flag variety. Then ΓyG/P is amenable
and there exists η ∈ Prob(G/P ) such that X2 ⊂ ∂ηΓ, see the proof of Corollary 6.4 below.

Hence Γ is bi-exact towards X2, by Theorem 5.4.

Proposition 5.8 then shows that Γ is bi-exact. �

6. Application to the von Neumann algebras of SLd(Z)

In this section, we present a series of applications to the study of the von Neumann algebras
of SLd(Z). Let us start by specializing Lemma 4.13 to the case of SLd(Z).

From now on we fix d ≥ 3 and set Γ = SLd(Z).

6.1. Description of the canonical boundary pieces. Denote by G := SLd(R) and let
K := SO(d) be its maximal compact subgroup.

For all tuple k̄ = (k1, . . . , kl) of integers 0 = k0 < k1 < k2 < · · · < kl = d denote by
Pk̄ < G the parabolic subgroup which stabilizes the subspaces Rkj × {0}, i.e., Pk̄ consists
of all matrices in SLd(R) of the form

GLk1−k0(R) ∗ ∗ · · · ∗
0 GLk2−k1(R) ∗ · · · ∗
...

...
...

. . .
...

0 0 0 · · · GLkl−kl−1
(R)

 .
Set Kk̄ := G/Pk̄ and denote by ηk̄ ∈ Prob(Kk̄) the unique K-invariant probability measure
on Kk̄. The fact that it is K-invariant is not relevant to us, but it implies that ηk̄(Y ) = 0 for
every proper algebraic subvariety of Kk̄. In a sense this condition is similar to the diffuseness
condition appearing in Example 4.6, and allows to avoid the unstable subvarieties that
appear from the dynamics ΓyKk̄.

For each such tuple k̄, denote by Xk̄ := ∂ηk̄Γ the corresponding boundary piece.

Given g ∈ G, recall that its singular values si(g), 1 ≤ i ≤ n are the eigenvalues of
√
gtg. We

order them in such a way that s1(g) ≥ s2(g) ≥ · · · ≥ sd(g) > 0. These are easily seen to be
the diagonal values of G in the Cartan decomposition (also called KAK-decomposition).

The following lemma describes the boundary pieces Xk̄ in terms of the ratios between
singular values of group elements. It essentially goes back to Furstenberg’s proof of Borel’s
density theorem [Fur76].
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Lemma 6.1. Fix a tuple k̄ = (k1, . . . , kl). Then for any neighborhood U ⊂ ∆Γ of Xk̄, there
exists C > 0 such that

{g ∈ Γ |
skj (g)

skj+1
(g)
≥ C for all j} ⊂ U.

Proof. Fix a neighborhood U of Xk̄ inside the Stone-Cěch compactification of Γ. By defini-
tion of Xk̄ = ∂ηk̄Γ, we may choose a finite set F ∈ C(Kk̄), a finite subset E ⊂ Γ and ε > 0
such that

U0 :=

{
g ∈ Γ | max

f∈F ,h∈E

∣∣∣∣∫ fd(gηk̄)−
∫
fd(ghηk̄)

∣∣∣∣ ≤ ε} ⊂ U.
If the lemma does not hold for this choice of U , then we may find a sequence (gn) in Γ such
that gn /∈ U for all n but limn skj (gn)/skj+1

(gn) = +∞ for all j. For each n, we may write

gn = an diag(s1(gn), . . . , sd(gn))bn, with an, bn ∈ K.
Since K is compact we may replace gn by a subsequence and assume that (an) and (bn)
converge to elements a and b respectively.

We let F (k1, k2, . . . , kl) denote the flag variety consisting of flags with signature (k1, k2, . . . , kl),
and we let Gr(kj , d) denote the Grassmannian of kj-dimensional subspaces in Rd. We denote
by πkj the projection map from a flag of signature (k1, k2, . . . , kl) onto its kj-dimensional
subspace.

Since ηk̄ is the K-invariant measure it follows that given a subspace V ⊂ Rd with dimV =
d − kj , we have πkjηk̄({W ∈ Gr(kj , d) | W ∩ V 6= {0}}) = 0. On the other hand, if

W ∈ Gr(kj , d) is such that W ∩ ({0} × Rd−kj ) = {0} then we have that

a−1gnb
−1W = a−1an diag(s1(gn), . . . , sd(gn))bnb

−1W → Rkj × {0}.
It therefore follows that for all g ∈ G we have a−1gnb

−1gπkjηk̄ → δRkj×{0}. Hence, for all

g ∈ G we have that gngηk̄ → δaF where F is the standard flag of signature (k1, k2, . . . , kl),
so that gn ∈ U0 for n large enough, which contradicts our assumption. �

When the tuple k̄ is a 1-tuple k̄ = (i), we just write Xi instead of X(i).

Corollary 6.2. For all ω ∈ ∂Γ and 1 ≤ i ≤ n, if limg→ω si(g)/si+1(g) = +∞, then ω ∈ Xi.

So the sets Xi cover the Stone-Cěch boundary: ∂Γ =
⋃d−1
i=1 Xi.

Proof. The first fact is an immediate consequence of the previous lemma. To deduce the
second fact, we just need to observe that for every ω ∈ ∂Γ, there exists an index i such that
limg→ω si(g)/si+1(g) = +∞. Indeed, since every element of G has determinant 1, for every
C > 0, the set {g ∈ G | si(g)/si+1(g) < C for all i} is bounded in G. Hence its intersection
with Γ is finite. �

In the special case of SL3(Z), we denote by X+ := X1, X− := X2 and by X0 := X(1,2).

6.2. Applications.

Proposition 6.3. SL3(Z) is bi-exact towards X0.

Proof. Since P0 := P(1,2) is an amenable group (it is the upper triangular subgroup), the
action ΓyX0 = G/P0 is topologically amenable, and the result follows from Theorem
5.4. �
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Corollary 6.4. Denote by Λ either the top-left copy of SL2(Z) or the copy of Z2 inside
Γ := SL3(Z):

Λ =

∗ ∗ 0
∗ ∗ 0
0 0 1

 ' SL2(Z) or Λ =

1 0 ∗
0 1 ∗
0 0 1

 ' Z2.

Then for any diffuse subalgebra A of LΛ the relative commutant A′ ∩ LΓ is amenable.

Proof. This relies on Theorem 5.6. In both cases we just have to check that whenever
(gn)n is a sequence of elements in Λ which goes to infinity, the two ratios s1(gn)/s2(gn) and
s2(gn)/s3(gn) go to infinity. In both cases, we actually prove the stronger fact that 1 is a
singular value of every element of Λ. In the first case, this is obvious. In the second case,
take u ∈ Z2. We compute(

I2 0
ut 1

)(
I2 u
0 1

)
− I3 =

(
I2 u
ut 1 + utu

)
− I3 =

(
02 u
ut utu

)
.

This matrix has rank at most 2, which proves the claim. �

Remark 6.5. In contrast with the above corollary, we cannot apply directly Proposition
6.3 to the subgroup Λ ' GL2(Z)n Z2 embedded as follows

(A, u) ∈ GL2(Z)n Z2 7→
(
A u
0 det(A)

)
.

Indeed for every integer n ≥ 1, define the element gn ∈ Λn as follows

gn =

 n n− 1 n
n+ 1 n 0

0 0 1

 .

Then (gn)n is a sequence which goes to infinity inside Λ, but none of its cluster points in
∂Γ belongs to X0. This last fact comes from the fact that (gn/n)n converges to a rank 2
matrix (so the two top singular values are equivalent to n). Nevertheless, a similar solidity
property is expected to hold true.

Proposition 6.6. For all d ≥ 3, consider inside Γd := PSLd(Z) the following subgroup Λd
isomorphic to Zd−1:

Λd :=

{
±
(
Id−1 u

0 1

)
, u ∈ Zd−1

}
' Zd−1

Then L(Λd) is a maximal abelian subalgebra inside L(Γd) and the inclusion L(Λ3) ⊂ L(Γ3)
is not isomorphic with the inclusion L(Λd) ⊂ L(Γd) for any d ≥ 4.

Proof. The first statement easily reduces to the lemma below which proves a relative ICC
condition. To prove the second part of the statement denote by j : Zd−1 → Λd < Γd the
described embedding and denote by e1, . . . , ed−1 the canonical basis of Zd−1. Then observe
that for d ≥ 4 the subgroup j(Zed−1) < SLd(Z) is centralized by the (non-amenable)
subgroup {

±
(
A 0
0 I2

)
, A ∈ SLd−2(Z)

}
.

Hence this situation is distinct for the case of d = 3 in which Corollary 6.4 applies. �
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Lemma 6.7. Fix d ≥ 3 and denote by Γ := GLd(Z) and by Λ ' Zd−1 the subgroup

Λ =

{(
Id−1 u

0 1

)
, u ∈ Zd−1

}
' Zd−1.

Then for all g ∈ Γ such that {sgs−1 , s ∈ Λ} is finite we have either g ∈ Λ, or −g ∈ Λ.

Proof. Take g ∈ Γ with coefficients gi,j , 1 ≤ i, j ≤ d. Denote by j : Zd−1 → Λ < Γ the

embedding described in the statement. Denote by e1, . . . , ed−1 the canonical basis of Zd−1.
Then for 1 ≤ k ≤ d− 1, and any n ≥ 0, we have

[j(nek)gj(nek)
−1]k,k = gk,k + ngd,k.

Therefore, if gd,k 6= 0 for some 1 ≤ k ≤ d− 1, then we may conjugate g by elements j(nek)
with n arbitrarily large and obtain this way elements whose (k, k)-th coefficient is arbitrarily
large. Hence the set {sgs−1 , s ∈ Λ} is infinite in this case.

Otherwise, we may write g =

(
A u
0 a

)
with A ∈ GLd−1(Z), a = det(A) = ±1 and u ∈ Zd−1.

For all n ≥ 1 and v ∈ Zd−1, we then have

j(nv)gj(nv)−1 =

(
A u+ n(Av − av)
0 a

)
.

If A 6= ±Id−1 then we may choose v ∈ Zd−1 in such a way that Av 6= det(A)v. Then
the conjugacy class {sgs−1 , s ∈ Λ} is infinite in this case. The remaining case is then
A = ±Id−1 and a = det(A), which is clearly equivalent to either g ∈ Λ, or −g ∈ Λ. �
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