ON SOFIC APPROXIMATIONS OF F; x Fo

ADRIAN IOANA

ABSTRACT. We construct a sofic approximation of Fa x F5 that is not essentially a “branched cover”
of a sofic approximation by homomorphisms. This answers a question of L. Bowen.

1. INTRODUCTION

A countable group I' is called sofic if it admits a sequence of almost actions on finite sets which are
asymptotically free. To make this precise, endow the symmetric group Sym(X) of any finite set X
with the normalized Hamming distance: dy(o,7) = |X|™ - [{z € X | o(z) # 7(z)}|.

Definition 1.1. A sequence of maps o, : I' — Sym(X,,), for finite sets X, is called an asymptotic
homomorphism if lim dy(oy,(g)on(h),on(gh)) =0, for all g, h € T'. An asymptotic homomorphism
n—oo

on : ' = Sym(X,,) is called a sofic approzimation of I if it satisfies that li_)m di(on(g),Idx) =1,
n—oo
for all g € '\ {e}. The group I is called sofic if it has a sofic approximation.

In recent years, the study of sofic groups has received a lot of attention. It is now understood
that soficity has a number of important consequences (see, e.g., [Bol8,[Th18|). This is particularly
interesting because sofic groups form a broad class, which includes all amenable and all residually
finite groups. Moreover, it is a longstanding open problem whether every countable group is sofic.

This note is motivated by the problem of classifying the sofic approximations of a given sofic group.
For amenable groups I', a satisfactory classification of sofic approximations was found in [ES11]:
any sofic approximation of I' is equivalent to one constructed from a disjoint union of Fglner sets.
Here, we say that two sofic approximations o,, : I' = Sym(X,,) and 7, : I' = Sym(X,,) are equivalent
if nh_)nolo du(on(g), 7(g)) = 0, for all g € T' [Bol7|. If I' is a residually finite group, then it admits

a sofic approximation o, : I' = Sym(X,), where each o,, is a homomorphism. Conversely, given
a residually finite group I', one would ideally like to show that any sofic approximation of I' is
equivalent to one consisting of homomorphisms, and thus arises from the finite quotients of I'. In
this case, I is called weakly stable [AP15] EI The class of weakly stable groups includes all residually
finite amenable groups [AP15] and the free groups. As shown in [LLM19|, surface groups satisfy
a flexible variant of weak stability. On the other hand, we proved in [lo19b, Theorem D] that the
product of two non-abelian free groups is not weakly stable. Consequently, Fo x Fo admits a sofic
approximation which does not essentially come from a sequence of homomorphisms.

Our goal here is to strengthen this result and show the failure of a more general possible classification
of sofic approximations of Fy X [Fo proposed by L. Bowen. This is formulated using the following;:

Definition 1.2. Let o, : I' — Sym(X,,) and 7, : I' — Sym(Y;,) be asymptotic homomorphisms
of a countable group I". We say that (o,,) is a branched covering of (,,) if there are onto maps
0, : X, — Y, such that 0,,00,(g9) = 7,(g9) 00,, for all g € T, and 6, is a d,,-to-one, for some d,, € N.

The author was supported in part by NSF Career Grant DMS #1253402 and NSF FRG Grant #1854074.
IThis is a weakening of the notion of stability in permutations (or P-stability), requiring that any asymptotic
homomorphism is equivalent to one given by homomorphisms. For a survey of recent progress on stability, see [Io19b].
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Remark 1.3. Assume the setting from Definition Then dy(on(9),1dx,) > du(7a(9),Idy, ),
for every g € I'. Thus, if (7,,) is a sofic approximation of I", then so is (¢;,). The branched covering
construction therefore provides a way of producing new sofic approximations from old ones.

We also remark that any branched covering (o,) of (73,) arises from a sequence of “almost cocycles”
for (7). Indeed, let Z, = {1,2,...,d,} and identify X,, =Y, x Z, so that 6, : X,, — Y,, is the
projection map. Then o,(g9)(y,2) = (Tw(9)y, cn(g,y)z), where ¢, : I' x Y;, — Sym(Z,) is a map
satisfying lim Yol ™t {y € Ya | en(gh,y) # cn(g, Ta(R)y)en(h,y)} =0, for all g, h € T

At an Oberwolfach workshop in May 2011, Bowen asked (see [OWR11], page 1463, Question 7])
if any sofic approximation o, : I' = Sym(X,,) of I' = Fy x Fy is essentially a branched covering
of some sofic approximation 7, : I' = Sym(Y},) by homomorphisms, in the following sense: there
are sofic approximations (o},) and (77,) of I' such that (o) is equivalent to (o7,), (o7,) is branched
covering of (7)) and (7})) is equivalent to (7).

Remark 1.4. To give a better understanding of the notion of being essentially a branched covering,

we record two equivalent formulations of it. Let o, : I' — Sym(X,) and 7, : I' — Sym(Y;,) be
asymptotic homomorphisms of a countable group I'. Then the following conditions are equivalent:

(i) (on) is essentially a branched covering of (7,).

(ii) there are onto, d,-to-one maps 6, : X, — Y,, for some d, € N, such that we have
lim dg (6, 0 0n(g), (g) 0 0,) = 0, for every g € T.
n—oo

(iii) (o) is equivalent to a branched covering (o7,) of (7,,) (i.e., one can take 7, = 7, in (i)).
It is clear that (i) = (ii) and (iii) = (i). That (ii) = (iii) is a consequence of the following fact: if

X,Y are finite sets, 0 € Sym(X), 7 € Sym(Y), and # : X — Y an onto, d-to-one map, for d € N,
then there is ¢/ € Sym(X) such that o6’ =706 and dy(o’,0) < dg(foo,706).

Our main result settles Bowen’s question in the negative. More precisely, we prove the following:

Theorem 1.5. LetI' = F,,, xFy, for some integers m, k > 2. Then I admits a sofic approximation
on : I' = Sym(X,,) with the following property: there are no homomorphisms 1, : I' — Sym(Y},)
and maps 0, : X,, = Yy, for some finite sets Y,,, such that

(a) h_>m dp (6, 0 00(9), Tn(g) 0 05) = 0, for all g € T, and
n—00
(b) i dgs(0, © 7(9),0) = 1. for all g € T\ {e}.

Here, for finite sets X,Y and 0,7 : X — Y, we denote dy(o,7) = |X|7! - [{z € X | o(z) # 7(x)}|.

Theorem implies that (o,,) is not essentially a branched covering of a sofic approximation by
homomorphisms. This follows by using Remark[1.4] ((i) = (ii)) and noting that if each 6,, : X,, = Y,
is dp-to-one, for some d,, € N, and (7,,) is a sofic approximation of I, then (a) implies (b).

Theorem strengthens part of [lo19b, Theorem D]. More precisely, [lo19b, Theorem D] shows
that I' = F,, x Fy is not weakly very flexibly stable, for any integers m,k > 2, in the sense
of [lo19b, Definition 1.6]. This amounts to the existence of a sofic approximation o, : I' — Sym(X,,)
with the following property: (%) there are no finite sets Y,,, homomorphisms 7,, : I' — Sym(Y,,) and
one-to-one maps 0, : X,, — Y, such that nh_}ngo dg (0, 0 01(g), Ta(g) 0 0,) =0, for every g € T.

As we explain in the comments below, the sofic approximation (o) of I' from the hypothesis of
Theorem is constructed following the strategy introduced in [Io19b]. As such, results from
[lo19b] readily imply that (o) satisfies (x). The main novelty in the proof of Theorem [1.5| consists
of showing that any maps 6, : X,, — Y, as in its statement must be “asymptotically one-to-one”.
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Moreover, we prove that if 7, : ' — Sym(Y},,) are arbitrary maps, then any maps 6, : X,, — Y,
which satisfy conditions (a) and (b) from Theorem must be asymptotically one-to-one. This
implies that (o,) is a minimal sofic approximation of I', in the sense that it is not equivalent to a
proper (i.e., one satisfying d,, > 1, for every n) branched covering of any sofic approximation of T".

Comments on the proof of Theorem We end the introduction with an informal outline
of the proof of our main result. If a group I' satisfies the conclusion of Theorem then any group
containing it as a finite index subgroup also does (see Lemma . Therefore, it suffices to prove
Theorem when m > 5 and k > 3. Fix a free decomposition F,, = F,,_1 * Z. Thus, we have
' =TF,, x Fy = (F;,—1 * Z) x Fi. The proof of Theorem is divided between Sections |3| and

(1) In Section [3] we use the work [ALWO1] of Alon, Lubotzky and Widgerson who proved that
expansion is not a group property. This allows us to define a sequence of finite groups G,
(indexed over primes p =1 (mod 3)) together with onto homomorphisms ¢, : F,,,—1 — G
and py, : F, — G such that F,,_; has property (7) with respect to {ker(y,)}, while [, does
not have property (7) with respect to {ker(p,)}. (A key property of G, is that it has only
one non-trivial normal subgroup. To the best of our knowledge, it is unknown if one can find
such groups G, which are simple; if this were the case, then the proof could be simplified
considerably.) Following closely [lo19b] we then construct an asymptotic homomorphism
op : By X F, — Sym(G,) which satisfies (x) and that o,(g, h)z = ¢p(g9)zpp(h) L, for every
g € Fp_1,h € F and z € G,. Note, however, that the asymptotic homomorphism (o)) is
not a sofic approximation.

(2) We begin Section {4| by augmenting the construction of (o,) to get a sofic approximation
op: Fpy x Fr — Sym(ép) which inherits the properties of (o) listed above. The rest of
Section [4]is devoted to proving that (g,) verifies the conclusion of Theorem Assume by
contradiction that there are homomorphisms 7, : F,, xF, — Sym(Y}), for some finite sets Y},

and maps 6, : CTp — Y}, which satisfy conditions (a) and (b) from Theorem Condition

(b) implies that the partition {6,'({y}) | y € Yp} of G, is 7,(Fy, x Fy)-asymptotically
invariant. By combining the property (7) assumption with a result from [lo19a] (see Section
, we deduce that the partition {6, '{y}) | y € Y, } is asymptotically equal to the coset

partition {gN, | g € ép} of ép, for some normal subgroup N, < ép. Some additional work,
which uses condition (b), allows us to conclude that N, = {e}, and thus 6, is asymptotically
one-to-one. This however contradicts the fact that (7,) satisfies ().

Acknowledgements. I am grateful to Lewis Bowen for helpful discussions clarifying his question
answered here. I would also like to thank Henry Bradford who has kindly informed me that he has
a construction showing that in (1) above it is possible to take {G)} to be a sequence of alternating
groups, which are known to be simple. Finally, I am grateful to the referee for many useful comments
that helped improve the readability of the paper.

2. PROPERTY (7) AND ALMOST INVARIANT PARTITIONS

This section is devoted to a technical lemma which will be needed in the proof of our main theorem.
Let T" be a finitely generated group, S be a finite set of generators of I and {I',}2° ; be a sequence
of finite index normal subgroups. Denote G, = I'/T', and let p, : I' — G, be the quotient
homomorphism. The following lemma asserts that if I" has property (7) with respect to {I';,}52 ;,
then any partition of G, which is almost invariant under the left multiplication action of I' must
essentially come from the left cosets of a subgroup of G,.
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Recall that T is said to have property (t) with respect to {I',}°2, if inf,, k(G,, pp(S)) > 0 [Lu94).
Here, given a finite group G and a set of generators T' C G, the Kazhdan constant k(G,T) denotes
the largest constant x > 0 such that & - ||£]| < maxgzer ||7T(g)£ —&J|, for every £ € H and unitary
representation 7 : G — U(H) of G on a Hilbert space H which has no non-zero invariant vectors.
We record the following remark which will be needed in the proof of Lemma

Remark 2.1. Let 7 : G — U(H) be a unitary representation of a finite group G. Let P be the

orthogonal projection from H onto the closed subspace HE of 7(G)-invariant vectors and & € H.

Then maxyeq ||7(9)€ — & < 2-[|€ — P(£)]. Since the restriction of 7 to H © H has no non-zero

invariant vectors, we get that (G, T) - [|£ — P(§)|| < maxger ||7(9)€ — £|| and further that

k(G,T)
2

Lemma 2.2. [lo19a] In the above setting, assume that I has property (1) with respect to {I'y}22
For every n, let {Xn’k}zil be a partition of Gy, for some d, € N. Assume that for every n and

(2.1) $max [m(g)§ =& < max [7(g)€ — ||, for every £ € H.

g € I, there exists a permutation oy, g of {1,...,dn} such that nh_)rrgo WM-ZZ’; ]an,kAXmgnyg(k)] =0.

Then for every n we can find a subgroup H, < G, a set S, C {1,...,d,} and a one-to-one map
Wy, Sy, = Gy /Hy, such that

Z | X D, (k) H,y | = and
kgs

n—00 |G n—00 |

keSn
This result is a consequence of the proof of [lo19a, Theorem A]. For the reader’s convenience, we
indicate briefly how the proof of [Io19a, Theorem A] can be adapted to prove Lemma

Proof. For every n, let m, : I' — U({?(G,, x G,,)) be the unitary representation associated to the
action I' ~ G,, x G, given by ¢ - (z, y) = (g, gy), and define the unit vector

€ 2(G, x Gy).

1
\/7 Z \/m| Xn,kXXn,k

We claim that [|7,(g)n, — nnll2 = 0, for every g € I'. To this end, fix g € I'. Then the hypothesis

. . dn dn,
implies that ﬁ Y1 19Xk 0 X, (9| = 1 and thus IGiln\ Py \/\Xnk| N Xnon ) = 1.
Using a direct computation and the Cauchy-Schwarz inequality we derive that

d
1 n 1
(T (9) s ) = 747 - 19X 1 N X2
I [N MZ Xkl Xt © "
1 d
’an,k N Xn,anyg(k) ’2

n k= 1\/|Xnk‘| nUng

2
_ 1 ( " |ankanong(k)|>
B |Gn| \/’Xnk‘ nang(k |
Thus, liminf,, o (7 (9)Mn, 7m) > 1 and since ||n,||2 = 1, we conclude that |7, (g)nn — nnll2 — 0.
Since I" has property (7) with respect to {I';, }72 ;, we get that & := inf,, K(Gp, pn(S)) > 0. By [lo19b),
Lemma 2.5] we deduce that supgep [[7n(9)n — Mall2 < (2/K) - maxges |74(9)1n — Mall2, for every

n. In combination with the above it follows that supgep [|[7n(9)7n — fnll2 — 0. Thus, we can find
positive real numbers 4, such that 8§, — 0 and supyer [|7, ()00 — 7|13 < 26, for every n.
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Let n large enough such that 6, < 1072, Then

(2.2)

Z 9%k 0 X2 = (70 (9)1s10) > 1= 6, for every g €T

Note that the Haar measure m,, of G,, is given by m,(X) = %, for every subset X C G,,. By

using this fact and (2.2 and applying verbatim the second part of the proof of [Io19a, Theorem A],
we can find a subgroup H,, < Gy, a nonempty subset S,, C {1,...,d,} and a map w, : S,, = G/H,
such that ) g [Xn k| > (1=+/0,) |G|, and | X, g Awy (k) Hy| < 506/0y, | X, k|, for every k € Sp,.

If k,l € S, and k # [, then using that X,, ;, N X,,; = 0, we get that
|wn, (k) Hy Awr, (1) Hy| > | X, — | Xn pDwn (k) Hy | — | X 1 Awn (1) Hy |
> (1 —=506v/65) - (| Xnk| + | Xnal)-

Since 506/, < 1, we derive that wy(k)H, Aw,(l)H, # 0. This implies that the map w, is
one-to-one and the conclusion follows. [ |

3. CONSTRUCTION OF ASYMPTOTIC HOMOMORPHISMS

In this section, we establish two ingredients that will be needed in the proof of our main theorem.
To explain this, fix integers m > 5 and k& > 3, and denote I' = F,,_1 and A = F;. In the first
part of this section, given a prime p with p = 1 (mod 3), we construct a finite group G, and
homomorphisms ¢, : I' = G), p, : A — G}, with various special properties. In the second part
of this section, we follow closely [lo19b, Section 6] to construct an asymptotic homomorphism
op: ([*Z) x A — Sym(G)p) such that o,(g, h)x = ¢p(g)zpp(h)~1, for all g € I, h € A and x € G),.

3.1. A group theoretic construction. In [ALWO01], Alon, Lubotzky and Widgerson showed that
expansion is not a group property. Thus, they introduced a method of constructing sequences of
finite groups {Gy, }°° ; and generating sets S, T, of fixed cardinality (|S,| = m, |T},| = k) such that
the Cayley graphs of G,, are expanders with respect to S, but not with respect to 7,,. Equivalently,
there are onto homomorphisms p,, : F,,, = Gy, ¢, : Fx — G, such that F,, has property (7) with
respect to {ker(py)}52; but F; does not have property (7) with respect to {ker(g,)}>>,

The proof of our main theorem relies on a particular case of the construction of [ALWO01]. Let p be
a prime with p = 1 (mod 3). Denote by P}(F,) = F, U {oo} the projective line over the field F),
with p elements. Consider the action of PSLy(F),) = SLQ( »)/{£1} on P}(E,) by linear fractlonal

transformations:
a b axr+b
ST = .
c d cr+d

1
Further, we consider the vector space F:,f) (F)

PSLy(F)) on F 1) given by g -z = (2,1

We identify F3 ) ith Fé’“ using a fixed bijection P'(F,) — {1,...,p + 1} which sends oo to
p + 1. We continue by introducing the following;:

over F3, and the permutational representation of

i)iepl (k) for every g € PSLy(F}) and @ = (2:);cp1(p,)-

Notation 3.1. We denote 4, = {(z;) € FY*' | Y01 2, = 0} and H, = PSLy(F,). Then A, is an
H-invariant subspace of Fp+1 with |Ap| = \Fp+1]/3 = 3P. We denote G, = A, X H,,.

We next record the following elementary result, whose proof we include for completeness.
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Lemma 3.2. Let K be a group and N < G, x K be a subgroup which is normalized by G, x {e}.
Then N is equal to {e} x L, A, x L or Gp x L, for some subgroup L < K.

Proof. First, we claim that if N < A, is a subgroup which is normalized by H,, then N = {e} or

N = A,. To this end, suppose that N contains an element x = (a:z)fill not equal to (0,..,0). Since

N is Hp-invariant and H,, acts transitively on Pl(Fp), we may assume that y := x,1 # 0. Since

the subgroup U, = {((1) Cf) | a € F,} of H, fixes 0o € P!(F},) and acts transitively on F,, we get
P P
Z g-Tr= (Z Ly eny sz'?pprrl) = (_y> E) _yapy) € N.
9€U, i=1 i=1
Since y # 0, we get that (—1,...,—1,p) € N. Let e = (mkl)f;rll, where z3,; = —1 for ¢ # k and

xpk = p- Since Hy, acts transitively on Pl(Fp), we get that e, € N, for all 1 <k < p. Since 3{p+1,
the vectors (ex)?_, € A, are linearly independent over F3. As dim A, = p, we get that N = A,,.

Second, we claim that if N < G, is a normal subgroup, then N = {e}, N = A, or N = G),. Let
p : G, — H, be the quotient homomorphism. Then p(N) < H), is a normal subgroup and since
H, is a simple group, p(N) = {e} or p(N) = H,. If p(N) = {e}, then N < A, and the first claim
implies that N = {e} or N = A,. It remains to analyze the case when p(N) = H,. We first
show that N N A, # {e}. Assume by contradiction that N N A, = {e} and let a € A, \ {e}. Since
p(N) = H,, for any h € H,, there is b € A, such that bh € N. Since N < G,, is normal, abha™t € N
and A, is normal and abelian, we get that aha™h™! = ab(ha™'h=1)b~! = (abha=1)(bh)~! € N.
Since A, is normal, we also have that aha=*h™! = a(ha=th™1) € A,. Thus, aha™'h™t € Nn A4,
and hence aha™'h™! = e, for every h € H,, which contradicts that a # e. Finally, if N N A, # {e},
then since N N4, < A, is normalized by H), the first claim implies that N N A, = A, and hence
N D A,. Since p(N) = Hp, it follows that N = G,

Let N < G, x K be a subgroup which is normalized by G), x {e}. The second claim implies that
N N (Gp x {e}) is equal to {e}, A, x {e} or G, x {e}. Note that if (g,k) € N, for some g € G,
and k € K, then (ghg='h™1,e) = (g,k)(h,e)(g, k)" L(h,e)~t € NN (G, x {e}), for every h € G,. If
NN (Gp x {e}) = {e}, it follows that N C {e} x K, thus N = {e} x L, for some subgroup L < K.
If NN (G, x {e}) = Ap x {e}, we get that if (g, k) € N, then ghg~th~! € A,, for every h € G}, and
thus g € A,. Hence A, x {e} C N C A, x K, which implies that N = A, x L, for some subgroup
L < K. Finally, if N N (Gp, x {e}) = Gp x {e}, then N = G, x L, for some subgroup L < K. N

In addition to the notation from throughout the rest of this paper we will use the following:

Notation 3.3. Given a prime p with p =1 (mod 3), we fix a prime 7, > p, denote K,, = PSLy(F;,)
and let ¢, : PSL2(Z) — K be the quotient homomorphism. We denote ép = G)p x K,

The following result combines [ALWO01] with a spectral result gap result from [BV12]. In its proof
and later in the paper we will use the following consequence of strong approximation (see [LS03,
Window 9]): if I' < PSLg(Z) is a non-amenable subgroup, then there is a finite set of primes S such
that the natural homomorphism I" — []7"_, PSLa(F,) is onto, for any distinct primes py, ..., p, ¢ S.

Lemma 3.4. Let I' = F,,_q1, for m > 5. View I' as a subgroup of PSLa(Z). Then for any
large enough prime p with p = 1 (mod 3), there is an onto homomorphism ¢, : I' — G, such

that @, : I' — ép given by ©p(9)
{ker(#p)}p-

Proof. Let ay, ..., am—1 be free generators of I" and p be a prime with p =1 (mod 3). Denote by &, :
PSLy(Z) — H) the quotient homomorphism and let 1, : PSL2(Z) — H) x K, be the homomorphism

(ep(9),¥p(g)) is onto and I' has property (1) with respect to
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given by n,(9) = (§(9),¥p(g)). Since H, x K, = PSLa(F},) x PSLa(F,,) = PSLy(Z/prpZ) and
(a1, .y ap—3) = Fpy_3 is a non-amenable subgroup of PSLy(Z) (as m — 3 > 2), it follows that for
large enough p we have n,((a1, ..., am—3)) = Hp x K.

By applying [BV12, Theorem 1], we conclude that
(3.1) K1 = inf K(Hp x Kp, {np(a1), ....;np(am—3)}) > 0.

For w € A,, we denote by wlr = {h(w) = hwh™! | h € H,} the orbit of w under the action of H,.

By the proof of Lemma the permutational representation of H, on A, C F¥ 1 is irreducible.
Thus, by applying [ALWO1, Theorem 3.1], we can find v1(p),v2(p) € A4, \ {e} such that

(3.2) Ko i= ian(Ap, v1 ()P Uwa(p)H?) > 0.

Define a homomorphism ¢, : I' = G, = A, x H), by letting ¢p(a;) = fp(al) for1 <i<m-—3,

ep(am—2) = v1(p)ép(am—2) and @p(am-1) = v2(p)ép(am—1). Then @, : I' — G given by ¢p(g) =
(¢p(9),v¥p(g)) is onto. Indeed, since pp(a;) = np(a;), for all 1 < i < m — 3, we get that ¢,(I")
contains n,({(a1, ...,am—3)) = Hp x K,. Thus, ¢,(I') also contains (vi(p),e) € (4, \{e}) x {e}.
Since A, has no proper non-trivial H-invariant subgroup by the proof of Lemma we derive
that ¢, is onto. In particular, ¢, is onto.

Moreover, combining (3.1)) and (3.2)) as in [ALWO1] implies that inf m(Gp, {@plar), ..., op(am—1)}) >

0. To justify this, put & : w > 0. Let 7: G — U(H) be a unitary representation with no

non-zero invariant vectors and f € H. For F C Gp7 let A(F) = maxgyer ||7(9)€ — £|| and note that
A(F) < A(Fy) + A(Fg) whenever F' C F1F5. Denote A := A({@p(a;) |1 <i<m—1}).

By combining ([2.1]) with ( and . we get that
(3.3) I{'A( » X Kp) < A{@p(ai) |1 <i<m—3}) <A and

(3.4) r- A4, x {e}) < A((vi(p)" Uva(p) ™) x {e}) = max{A(vi(p)""* x {e}), A(va(p)™ x {e}}.

Since (v1(p), e) € @pam—2)(Hp x K,) we derive that vy (p)r x {e} C (Hp x K,)@p(am—2)(Hy x Kp).
Thus, we have that

(3.5) A(vi(p)™ x {e}) < A{Gplam-2)}) +2- A(Hp x Kp) < A+2- A(Hy x ).
Similarly, we get that
(3.6) Ava(p)™ x {e}) < A{@p(am-1)}) +2 - A(Hp x Kp) < A+2- A(Hy x Kp).

By combining (3:3), B-4), (:5) and (B6), we get that

(3.7) k- A(A % {e}) < A+ 2. A(H, x K,) < "2

K
Since ép = (Ap x {e})(Hp x K}), by combining (3.3]) and (3.7)) we derive that

AW

I€2 ~ /432

(38) 20k +1) AlGp) = 2k + 1)

(A(Ap x {e}) + A(Hp x Kp)) < A.

Since 7 has no non-zero invariant vectors, the element of minimal norm in the closure of the convex
hull of {7(g)¢ | g € G,} is equal to 0. From this we get that |[£]| < A(G)p). Together with (3.8),
.. . . =~ ~ ~ 2 -
this implies that inf, x(Gp, {Pp(a1), ..., Pp(am—1)}) > 3 30ery > 0. Hence, T' has property (7 (1) with
respect to {ker(gp)}p, which finishes the proof of the lemma. [ |
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Lemma 3.5. Let by, ..., by be free generators of A = Fy, for k > 3. Then there is C > 0 such that

for every large enough prime p wz’th p=1 (mod 3) there is an onto homomorphism p, : A — G
T C .

and a set T, C Gy, satisfying that 243 ||Gp|‘ < and |T,pp(bj) AT, < ﬁ’GpL for every 1 < j < k.

Moreover, if h € A\ {e}, then p,(h) # e, for every large enough p.

Proof. Let p be a prime with p =1 (mod 3) and put v(p) = (1,—-1,0,...,0) € A,. Forz = (z;) € 4,
and j € {0,1,2}, denote n;j(zx) = |{i | z; = j (mod 3)}|. We define

(3.9) Sp={x € Ay | n1(x) > no(x) + 2 and nq(z) > na(x) + 2}.
First, we claim that
1 1Sp 1
3.10 < P D
(3.10) 243 ~ |4, — 3

Since p = 1 (mod 3), we have a1 = (2,1,...,1) € A, and as = (1,2,...,2) € A,. Since the sets

Sp, a1 + Sp, a2 + S, are pairwise disjoint, it follows that |S,| < @. On the other hand, if we let

R, = {(z;) € F§_4 | ni(z) > no(x) and nq(x) > na(z)}, then for every x = (z;) € R,, there is
4

T = (&;) € Sy with &; = x;, for all 1 <i <p—4. Thus, |Sp| > |R,| > lFfT‘ = |2AT%|7 proving (3.10)).

Second, we claim that there is a constant C > 0 such that
C
(3.11) (00) + ) 28p| < 1A4y], - for every p.

To this end, note that Stirling’s formula implies that there is a constant ¢ > 0 such that

n n 2n
(3.12) <>§<n>§c-, for every n > k > 0.
k 5] vn

Since Sp\ (v(p)+Sy) C {x € Fgﬂ | no(z) +5 > ni(xz) > no(z) + 2 or no(x) +5 > ni(x) > na(x) + 2}
and ng(z),na(z) < %, for every x € S, by using (3.12]) we get that

(p+1)!
1Sp \ (v(p) + Sp)| <2~ Z nolnging!
not+nitne=p+1 =~ 7
0<no< it
na+2<n1<na+5

—2. % <p+1> 3 <p+?1h—no>

n
0<no<tl 0 ni1+nz=p+1l—-ng
- 2 na+2<n1<na+5

p+ 1> op+1-ng
< b - s
0<noz<:p+l < no Vp+ 1— no
— 2
< e - [_2 Z (er 1> op+1-no
- 1
P+ 0<mo< il 1o

2 3p+ 1

<6e-y)—
=0 p+1 2

Since |A,| = 3P, this proves (3.11]).

Let &, : PSLy(Z) — H, = PSLy(F),) be the quotient homomorphism. Since (b1, ...,bp—1) = Fj_4

is a non-amenable subgroup of PSLy(Z), for every large enough p we have &,((b1, ...,bx—1)) = H,.

We define a homomorphism p, : A = G, by pp(b;) = &,(b;), for every 1 < j < k — 1, and
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pp(br) = &(br)v(p). Since A, has no proper non-trivial Hp-invariant subgroup by the proof of
Lemma it follows that p, is onto.

Next, note that S, is Hy-invariant and let T, = Hy, - S, = S, - H, C Gp. Then and
imply that % <|T,| < @ and |T,v(p)AT,| < %|Gp|. Since S, is Hp-invariant, Tp,p,(bj) = 1),
forall 1 <j <k—1, and Tpp,(by) = Tpv(p). Hence, |T,pp(bj) ATy < %]GPL for every 1 < j <k.

Finally, since ker(p,) C ker(§,) N A, the moreover assertion follows. [ |

3.2. Construction of asymptotic homomorphisms. Assume the notation from and
and let ¢, : I' = G, and p, : A = G, be the homomorphisms provided by Lemmas and

Lemma 3.6. Let t = +1 be a generator of Z. Then there exists an asymptotic homomorphism
op: (D'« Z) x A — Sym(G,), where p is a large enough prime with p =1 (mod 3), so that

(1) op(g, W)z = pp(g)zpp(h)~", fm" every g € U h e Ayw € Gy,

(2) {z € Gy | op(t,e)z = x}| > G2,

(3) max{du(o,(t,e) o op(e, h), Up(e h) oop(te)) | h €A} > 5=, and
(4) lop(t, e)(Aph) DNALR| > 55| Ay, for every h, W' € H,.

Proof. Define a homomorphism oy, : I'x A — Sym(G),) using the formula from (1). In order to extend
op to an asymptotic homomorphism o, : (I'* Z) x A — Sym(G),) we will define o,(¢,e) € Sym(G,)
such that li)m du(op(t,e)op(e, h),op(e, h)op(t,e)) =0, for any h € A.

p—00

To this end, let a, = (0,0,1...,1) € F¥*'. Since 3 | p — 1, we get that a, € A,. If z € FI™" and
T = x — ap, then n1(Z) — n2(z) < no(z ) —ni(z) + 4. This observatlon together W1th the definition
(3.9) of S, implies that (a, +Sp) NS, = 0. Since T, = S, - H),, we get that a,T, N T, = 0.

Let h, € H, such that hf, # e. Since hyT, = T,, we get that a,h,T, = a,T,. We can therefore
define 0,(t, e) € Sym(G)) by letting

aphpx, if ©x € T,

op(t,e)z =< (aphy) Lz, if z € a,T,,

x, otherwise.

Equivalently, for every a € A, and h € H, we have that

aphpah, if a € Sp,

(3.13) op(t,e)(ah) = < (aphy)~(ah), if a € a,S,,

ah, otherwise

By Lemma we have that lim %M =0, for every h € A.

p—00 »l

To continue the proof we will need the following result extracted from [Io19b).
Lemma 3.7. [lo19b] Assuming the above notation, we have
(1) lim dH(ap(t,e)ap(e, h),op(e, h)op(t,e)) =0, for every h € A, and

(2) dH(ap(t e)ap(e, h), aple, h)ay(t, e) > 2@l for cvery h e A.
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The first part of Lemma implies that (o,) is an asymptotic homomorphism which satisfies

condition (1) by construction. Since |T},| < I%\ by Lemma condition (2) is satisfied. Since
Zkecp Ty \ Tpk| = Zker(’Tp’ — |Tp, N Tpk]) = (IGpl — |Tp[) - [Tp], there is k € Gp such that

T, T, . .
T\ Tok| > (1 &0 - 221G, |. By Lemmawe get that [T}, \ Tpk| > L - 5L - |G,|. Since p, is
onto, there is h € A such that k = p,(h) and hence [T}, \ Tppp(h)| > % - 555 - |Gp|. In combination

with the second part of Lemma we deduce condition (3).

To prove condition (4), fix h,h' € Hp. Since hg # e, we have h,h # h' or h;lh # h'. If hyh # K,
then (3.13)) implies that S, C {a € A, | op(t,e)(ah) & AL’} If hyth # 1/, then (3.13) implies that
apSp C {a € Ap | op(t,e)(ah) ¢ Aph'}. In either case, [{a € Ay | op(t,€)(ah) ¢ AR} > |Sp| and
thus |o, (¢, e)(Aph) \ Aph'| > |S,|. By equation ([3.10), this implies condition (4). [ ]
Proof of Lemma . The first part follows by arguing as in the proof of [lo19b, Lemma 6.1]
using [lo19b, Lemma 2.2]. Since (ayh,)? # e, the second part follows from [[0o19b, Lemma 2.2]. W

Note that condition (2) of Lemma [3.6implies that (o) is not a sofic approximation of (I'*Z) x A.
In the next section, we will first build a sofic approximation (¢,) of (I' * Z) x A out of (o,), which
we will use to show that the conclusion of our main theorem holds for (I' * Z) x A = F,,, x Fy.

4. PROOF OF THE MAIN THEOREM

This section is devoted to the proof of the main theorem. We will first prove the conclusion
when m > 5 and k > 3. To this end, put I' = F,,_1,¥ = F,, and A = F,. We assume the
notation from and (B3): H, = PSLa(F,), G, = Ay x Hy, K, = PSLy(F,), G, = G, x K,
Yy : PSLa(Z) — K is the quotient homomorphism, where p < r}, are primes and p =1 (mod 3).

In the first part of the proof, we construct a sofic approximation g, : ¥ x A — Sym(G)) of ¥ x A.
View X, and thus I', as a subgroup of PSLy(Z). Let ¢, : I' = Gy, ¢p : I' — C~¥p and pp : A = G,
be the onto homomorphisms given by Lemmas and Recall that ¢,(g) = (¥p(9), ¥p(g)), for
every g € I'. Let 0, : ¥ x A = (I'*Z) x A = Sym(G)) be the asymptotic homomorphism provided
by Lemma As therein, we denote by t = 1 a generator of Z.

Next, for any large enough prime p with p = 1 (mod 3), we define onto homomorphisms ¢, : A — K,

and p, : A — ép. Fix a decomposition A = A % Z, where A = F;_1 and view A as a subgroup
of PSLy(Z). Define ¢, : A — K, by (,(h) = ¥,(h), if h € A, and (p(h) = e, if h € Z. Define
pp: A — ép by pp(h) = (pp(h),p(h)), for all h € A. Since A is non-amenable, ¢, is onto, for large
enough p. By Lemma the only quotient groups of G, are G, H), and {e}. Since K, is a simple
group which is not isomorphic to neither G, nor Hy, and p, is onto, Goursat’s lemma implies that
pp is onto, for large enough p.

We are now ready to define g, : ¥ x A — Sym(G,,) by letting for g € ¥,h € A,z € G, and y € K,
(4.1) Gp(g, 1) (. y) = (ap(g, )z, ¥p(9)yGp(h) ™)

Since Lemmagives that 0,(g, h)z = ¢p(g9)zpp(h) L, for all g € T,h € A, x € G, we derive that
(4.2) 5p(g, h)x = $p(g)zpy(h) 1, for all g e T,h € A,z € ép.

Claim 1. (7,) is a sofic approximation of ¥ x A.

Proof of Claim . It is clear that (o)) is an asymptotic homomorphism of ¥ x A. To see that it is
a sofic approximation, let Cr(g) = {y € L | gy = yg} be the centralizer of an element y of a group
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L. For every prime ¢ and g € SLa(Fy) \ {£I}, we have |Cgr,(x,)(9)| < . This implies that

PSLy(F,
(4.3 Crstary(o)] < o200

On the other hand, for all (g,h) € ¥ x A we have

[{z € ép | 0p(g, h)x =z} H{y € Kp | wp(g)ygp(h)il =y} ’CKp(wp(g))‘
(4.4) L < < :
|Gyl K | K|
If g # e, then v¢,(g) # e, for large enough p. Therefore, by combining (4.3) and (4.4) we get

{zeCplop(g.h)z=2}|  _ 1
that TN < 55Ty

(g,h) € X x A with g # e. If h € A\ {e}, then G,(e, h)(z,y) = (xpy(h) "L, y(p(h)L). Lemma
gives that p,(h) # e and thus dy(o,(e, h),Idép) = 1, for large enough p. This altogether proves

[SLa2(Fy)|
q—1

, for every g € PSLy(Fy) \ {e}.

for large enough p. Thus, pli_{r;o dH(ﬁp(g,h),Idép) = 1, for all

that (0,) is a sofic approximation of ¥ x A. O

In the rest of the proof, we will show that the sofic approximation (g,) of ¥ x A satisfies the
conclusion of the main theorem. Towards this goal, let 7, : ¥ x A — Sym(Y},) be a sequence

homomorphisms, for some finite sets Y}, for which there exist maps 6, : G, = Y), such that

(i) du(6p o o,(9), 7(g) 00,) — 0, for every g € ¥ x A, and
(i) du(0p o ap(g),0p) — 1, for every g € (X x A) \ {e}.

For every p and y € Y}, we denote X} = 6,1 ({y}). We continue with the following:

Claim 2. For every p there exist a normal subgroup N, < ép, a subset S, C Y, and a map
wp : Sp — Gy, such that

1
(4.5) lim —— - ) [XYAw,(y) N[ =0 and
o0 |Gyl
yESp
1
(4.6) lim —— - > Xy =o.
P |Gyl s,
Ny| - -1
Moroever, for every g € ¥ x A, we have that lim [Nl - 155 0 75(9) S| =1

P Gyl
Proof of Claim[3 If g € ¥ x A, then

U Gplo)Xax;7 DY) c {x € Gy | 6,(G,(9) " 2) # 7p(9) " (Gp(2))}.
yeY,

Note that every x € ép belongs to at most two sets of the form 5p(g)XgAX;p(g)(y), with y € Y.
Since dg(fp 0 5p(9) 1, 7p(g) "t 0 6,) — 0 by |(i), we deduce that the partition {X}},cy, of G, is
almost invariant under o), in the following sense:
o1 = 7(9)(v)
(4.7) pll)rélo @ ~y§ 55(9) XE LX) = 0, for every g € ¥ x A.
P

By Lemma op: ' = ép is an onto homomorphism such that I' has property (7) with respect
to {ker(gp)}. Moreover, gives that 0,(g,e)(z) = @p(g)z, for all g € T and x € C~¥p. Since
equation holds for all g € I', we can apply Lemma to deduce the existence of a subgroup
N, < ép, a subset S, C Y, and a map wy, : S, — ép, for every p, such that and hold.
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To finish the proof of the claim, it remains to show that N, < é is a normal subgroup and the
moreover assertion holds. Combining (4.6 and (4.7) gives that hm r— > e, | X7 (g)(y)| =0 and

Gyl
therefore

15{)107 : Z | X}| =0, for every g € X x A.
UG s,

Since 3, ey, | X7 = |C~¥p|, this together with (4.6]) implies that

1
(4.8) lim —— E |XJ| =1, for every g € ¥ x A.
ﬁ
e ’G ‘ yESpNT(9) ™" Sp

By combining (4.5)) and (4.8)), the moreover assertion follows.
On the other hand, combining (4.5) and (4.7)) gives that

1 ~
49 Jm o Y M)A ()] =0, o ey g €3
yESpNTR(g) 1

Let h € A. Then (4.9) and the moreover assertion imply that for every large enough p, there
is y € Sp N 7p(e,h)™"Sp such that |5p(e, h)(wp(y) Np) Awp(Tp(e, h)(y))Np| < [Np|. Since by (4.2)
we have Gp(e, h)(z) = xp,(h)7L, for all z € Gp, we get |wy(y)Nppp(h) "t Awy(mp(e, k) (y))Ny| <
|Np|. Thus, if we put a = pp(h)wp(y) twp(1p(e, h)(y)) € Gp, then |py(h) Nppp(h) "L AaN,| < |Ny|.
Equivalently, we have that |p,(h)Nyp,(h)™1 N aN,| > u\;—’ﬂ If x € pp(h)Nyppp(h)~t N aN,, then
oy~ - ~ ~ _ N,
2 (Pp(h)Nppp(h) "' 1aN,) € Bp(h) Npp(h) ' NNy, Thus, we get that |,(h) Npfp(h) NN, | > 2!
Since N, is a finite group, it follows that ﬁp(h)Nppp(h)_ = N, for every large enough prime p.
Since this holds for every h € A, A is finitely generated and p, : A — G, is onto, we derive that
N, < Gy is a normal subgroup. U

Since ép = G)p x K, and K, is a simple group, Lemma implies that NN, is one of the following
Six groups: NI} = {e},Np2 = {e} x Kp,N3 Ap x Kp,N4 Gp,N5 Gp x {e} or NS = A, x {e},
for every large enough prime p. We continue Wlth the followmg

Claim 3. N, = {e}, for every large enough prime p.

Proof of Claim @ Assume that the claim is false. Then, after replacing (o,) with a subsequence,
we may assume that there is 2 < ¢ < 6 such that NV, = N;;, for every p. We will prove that
each of these five possibilities leads to a contradiction. To this end, note that if g € X x A, then
Uyey, (X} Nop(g)Xp) = {:U € é | (0, 05,(g9) 1) (z) = 0,(x)}. Thus, by using we get that

(4.10) lgn E E | Xy Nap(g)Xy| =0, for every g € (X x A) \ {e}.
p—00
Pl yeyy

Case 1. N, = L, x K, where L, is one of the groups {e}, A, or Gp.

In this case, we will derive a contradiction by using condition (2) of Lemma Note first that
for every y € Y, we have that wy,(y)N, =V, x K, for some set Vy C Gp. By (4.1) we have that
op(t,e)(x,y) = (op(t, )z, Yp(t)y), for all x € G, and y € K,. Thus, we get that

ap(t, e)(wp(y)Np) = opl(t, e)pr x K, = (op(t,e) x Idg, ) (wp(y) Np).
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This implies that w,(y)Np N op(t, e)(wp(y)Np) D {x € wp(y) Ny | (0p(t,e) x Idk,)x = x} and hence

Y wp®Ny NGt ) wp()Np) = {z € | wp(y)Np | (0p(t€) x 1, ) (@) = 2}

yESp YESp
> {w € Gy | (op(t,e) x 1di, ) (@) = &} = |Gy \ (| wp(y)Np))-
yESp
Since [{z € Gy | op(t, e)z = x}| > E—H by condition (2) of Lemma while (4.5)) and (4.6]) imply
that lim |G\ (Uyespwp()Np)| _ 0, we conclude that

p—0 |Gl

Wl =

limsup —— 3 lwp(u)Ny (155(L€) (wp(y)Ny)]| =

p—>00 pl yes,

In combination with (4.5)) this gives that

)

1 ~
limsup — - Y [XY NGyt e)XY| >
p—>00 ‘Gp 4ES,

Wl

which contradicts (4.10)).
Case 2. N, = G, x {e}.

In this case, for every y € Y, we have that w,(y)N, = G, x W}, for some set W) C K,. Recall
that by the construction of the homomorphism ¢, : A — K, we can find h € A\ {e} such that
(p(h) = e. Then p,(h) = (pp(h),e) and ([{2) gives that 7,(e, h)(z,y) = (zpp(h)~1,y) for all z € G,
and y € K. Hence o(e, h)(wp(y)Np) = wp(y) Ny, for every y € Y),. In combination with (4.5]), this
implies that limsup,, , ., ﬁ - Dyes, [ Xp NTp(e,h)Xp| > 1, which contradicts (4.10).

Case 3. N, = A4, x {e}.

In this case, let z,2’ € Gp and y,y’ € K. Then (z,y)N, = Apz x {y} and (2, y )N, = Az’ x {y/'}.
By using the definition (4.1)) of 7, we derive that 7,(t,e)((x,y)Np) = op(t, e)(Apz) X {1 (t)y}. In
combination with condition (4) from Lemma we conclude that

o 1N

Bt ) DN A5 )N, | > Lot ) () (A > ol = Rl

This inequality implies that

(A1) = 3 (Gt ) wpn)Ny) Awp(rp(ts €) (1)) Ny >

Gp | yESpNTH(t,e) 1Sy

On the other hand, (4.9)) and the moreover assertion of Lemma [2{imply that the left and right sides
of (4.11)) converge to 0 and ﬁ, as p — 00, respectively. This gives a contradiction.

’Np’ : |Sp n Tp<t7 e)ilsp’.
243 - |G|

This altogether finishes the proof of Claim U
We next claim that ¢, is “asymptotically one-to-one”: there exists a set X, C ép such that 9p| X,
. i . 1Xpl : r Y /
is one-to-one and pli)rgo el 1. To see this, let S, = {y € S, | [Xp| = 1}. Ify € S, \ 5,

then |X}| # 1. Since N, = {e} we have that |w,(y)Ny| = 1 and thus | XJAw,(y)Npy| > %
In combination with (4.5) we derive that lim @ D ye S\, | X7 = 0. Together with (4.6) this

P—00
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further implies that lim —— - >" ves, | X3 = 0. Thus, if we let X, = Uyeg; X}/, then lim ol — g,

p—oo IGpI p—oo |Gyl
Since | Xp| =1, for every y € Sp, we also have that 0p| . is one-to-one, which proves our claim.
P

Finally, we will use that 7, : ¥ x A = Sym(Y},) is a homomorphism, for every p, in combination

with [To19b, Theorem 5.1] to derive a contradiction. Consider the disjoint union Z, = Y, (G, \ X,)

and extend 7, to a homomorphism 7, : ¥ x A — Sym(Z,) by letting 7,(g) Id for

IG\Xp — TUGH\Xp

every g € X x A. We also define a one-to-one map ©,, : ép — Z, by letting
0,(z) = Qp(.CC% if z € Xp, and
z,if x € Gp\ Xp.
If g € X x A, then O,(z) = 0,(x) and O,(5,(g)x) = 0,(5,(g9)z), for every z € X, N G,(g9) "1 X,.
From this it follows that

du(©p 0 ap(g), Tp(g) 0 Op) < du(bp o 5p(g), Tp(g) © 0p) + |ép \(Xp N &p(g)_lxp)‘ .

[eM
By using that |G~»'][J \ (X, Nap(g) tX,)| <2 |G \ X,| and that 1l>m Xl — 1, we deduce that
p—oo |Gp
(4.12) lim dg(©), 0 0,(9),7(g) 0 ©,) =0, for every g € ¥ x A.

pP—0o0

Note that 7,(g, h)z = @p(g9)zp,(h)~L, for all g € T,h € A,z € ép by (4.2), ¢, is onto and I' has
property (7) with respect to {ker($p)}, by Lemma [3.4 Since 7, is a homomorphism and 0, is
one-to-one, for every p, we can apply [[019b, Theorem 5.1] to conclude that

lim (max{dH(ap(t, e) 0 yle,h), Fyle, h) 0 Gy(t,e)) | h € A}) -
pP—00

Using the definition of 0, this can be equivalently written as

lim (max{dH(Up(t, e) o ayle, h), ap(e, h) o op(t,e)) | h e A}) -

pP—00
which contradicts condition (3) from Lemma

This finishes the proof of our main theorem in the case m > 5 and k > 3. In the general case, when
m, k > 2, note first that F,,;3 X Fi1 satisfies the conclusion by the above. Since F;, 3 x Fx11 can
be realized as a finite index subgroup of F,, x Fy, the following lemma implies that the conclusion
also holds for F,, x Fy. [ |

Consider the following property for a sofic approximation oy, : 'y — Sym(X,,) of a countable group
[p: (¢) there are a sofic approximation 7, : I'o — Sym(Y},) and maps 6,, : X,, — Y, such that

(a) 7, is a homomorphism, for every n € N,
(b) dg (6, 0 0n(g), Tn(g) 0 6y,) — 0, for every g € Ty, and
(¢) du(bn 0 on(g),6,) — 1, for every g € Iy \ {e}.

Let I'g < I be a finite index inclusion of countable groups. The next lemma shows that if ['g has
a sofic approximation which fails (¢), then so does I'. The proof of this fact relies on an induction
argument, following closely [Io19b| Section 3.3]. Let s : I'/T'y — I" be a map such that s(el'g) = e
and s(gTg) € glg, for every g € I'. Then ¢ : ' x I'/Ty — Ty given by ¢(g, hI'g) = s(ghTg) ~‘gs(hIy)
is a cocycle for the left multiplication action I' ~ T'/Ty.

Let oy, : T'g — Sym(X,,) be a sofic approximation of I'y and define Indll:o (0p) : T — Sym(T'/Ty x X,,)
by letting Indr0 (on)(g)(hLo,x) = (ghTo,on(c(g, hTo))x), for every g € I', hI'g € I' /Ty and x € X,,.
The proof of [Io19b, Lemma 3.3] shows that IndF0 (0y) is a sofic approximation of T.



ON SOFIC APPROXIMATIONS OF Fy x [Fa 15

Lemma 4.1. If the induced sofic approzimation (Indgo(an)) satisfies (¢), then (oy,) satisfies (o).

Proof. Assume that ,, := IndF0 (0,) : T — Sym(X,,) satisfies (), where X,, = ['/Ty x X,,. Let
Tn : I' = Sym(Y,,) be a sofic approximation by homomorphisms and 571 : )Z'n — Y, be maps such
that dg(fn 000 (9), Tn(g) 00p) — 0, for every g € T, and du (6,06, (g), 0,) — 1, for every g € '\ {e}.
If g € T'p, then 7,,(g) leaves el'g x X, invariant and 7,,(g)(el'o, ) = (el'g, on(g)x), for every z € X,.
Thus, the restriction of E”;H—‘O to el'g X X, can be identified to ¢,. Denote by 6, : el'g X X,, = Y,

the restriction of gn to el'g x X,,. Then it is clear that for every g € I'g we have that
di1 (0 © 00 (9)jergx x> Tn(9) © 0n) < [T To] - dia (0 ©Fu(9), Tulg) © ) and

1- dH(en o a(g)\efoxXna en) < [F . FO] ) (1 - dH(gn 0 5”(9)7 571))
These inequalities imply that the maps 6,, witness that (o,,) satisfies (¢). ]
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