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Abstract. We construct a sofic approximation of F2×F2 that is not essentially a “branched cover”
of a sofic approximation by homomorphisms. This answers a question of L. Bowen.

1. Introduction

A countable group Γ is called sofic if it admits a sequence of almost actions on finite sets which are
asymptotically free. To make this precise, endow the symmetric group Sym(X) of any finite set X
with the normalized Hamming distance: dH(σ, τ) = |X|−1 · |{x ∈ X | σ(x) 6= τ(x)}|.

Definition 1.1. A sequence of maps σn : Γ→ Sym(Xn), for finite sets Xn, is called an asymptotic
homomorphism if lim

n→∞
dH(σn(g)σn(h), σn(gh)) = 0, for all g, h ∈ Γ. An asymptotic homomorphism

σn : Γ → Sym(Xn) is called a sofic approximation of Γ if it satisfies that lim
n→∞

dH(σn(g), IdX) = 1,

for all g ∈ Γ \ {e}. The group Γ is called sofic if it has a sofic approximation.

In recent years, the study of sofic groups has received a lot of attention. It is now understood
that soficity has a number of important consequences (see, e.g., [Bo18,Th18]). This is particularly
interesting because sofic groups form a broad class, which includes all amenable and all residually
finite groups. Moreover, it is a longstanding open problem whether every countable group is sofic.

This note is motivated by the problem of classifying the sofic approximations of a given sofic group.
For amenable groups Γ, a satisfactory classification of sofic approximations was found in [ES11]:
any sofic approximation of Γ is equivalent to one constructed from a disjoint union of Følner sets.
Here, we say that two sofic approximations σn : Γ→ Sym(Xn) and τn : Γ→ Sym(Xn) are equivalent
if lim
n→∞

dH(σn(g), τn(g)) = 0, for all g ∈ Γ [Bo17]. If Γ is a residually finite group, then it admits

a sofic approximation σn : Γ → Sym(Xn), where each σn is a homomorphism. Conversely, given
a residually finite group Γ, one would ideally like to show that any sofic approximation of Γ is
equivalent to one consisting of homomorphisms, and thus arises from the finite quotients of Γ. In
this case, Γ is called weakly stable [AP15] 1. The class of weakly stable groups includes all residually
finite amenable groups [AP15] and the free groups. As shown in [LLM19], surface groups satisfy
a flexible variant of weak stability. On the other hand, we proved in [Io19b, Theorem D] that the
product of two non-abelian free groups is not weakly stable. Consequently, F2 × F2 admits a sofic
approximation which does not essentially come from a sequence of homomorphisms.

Our goal here is to strengthen this result and show the failure of a more general possible classification
of sofic approximations of F2 × F2 proposed by L. Bowen. This is formulated using the following:

Definition 1.2. Let σn : Γ → Sym(Xn) and τn : Γ → Sym(Yn) be asymptotic homomorphisms
of a countable group Γ. We say that (σn) is a branched covering of (τn) if there are onto maps
θn : Xn → Yn such that θn ◦σn(g) = τn(g)◦θn, for all g ∈ Γ, and θn is a dn-to-one, for some dn ∈ N.

The author was supported in part by NSF Career Grant DMS #1253402 and NSF FRG Grant #1854074.
1This is a weakening of the notion of stability in permutations (or P-stability), requiring that any asymptotic

homomorphism is equivalent to one given by homomorphisms. For a survey of recent progress on stability, see [Io19b].
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Remark 1.3. Assume the setting from Definition 1.2. Then dH(σn(g), IdXn) ≥ dH(τn(g), IdYn),
for every g ∈ Γ. Thus, if (τn) is a sofic approximation of Γ, then so is (σn). The branched covering
construction therefore provides a way of producing new sofic approximations from old ones.

We also remark that any branched covering (σn) of (τn) arises from a sequence of “almost cocycles”
for (τn). Indeed, let Zn = {1, 2, ..., dn} and identify Xn = Yn × Zn so that θn : Xn → Yn is the
projection map. Then σn(g)(y, z) = (τn(g)y, cn(g, y)z), where cn : Γ × Yn → Sym(Zn) is a map
satisfying lim

n→∞
|Yn|−1 · |{y ∈ Yn | cn(gh, y) 6= cn(g, τn(h)y)cn(h, y)}| = 0, for all g, h ∈ Γ.

At an Oberwolfach workshop in May 2011, Bowen asked (see [OWR11, page 1463, Question 7])
if any sofic approximation σn : Γ → Sym(Xn) of Γ = F2 × F2 is essentially a branched covering
of some sofic approximation τn : Γ → Sym(Yn) by homomorphisms, in the following sense: there
are sofic approximations (σ′n) and (τ ′n) of Γ such that (σn) is equivalent to (σ′n), (σ′n) is branched
covering of (τ ′n) and (τ ′n) is equivalent to (τn).

Remark 1.4. To give a better understanding of the notion of being essentially a branched covering,
we record two equivalent formulations of it. Let σn : Γ → Sym(Xn) and τn : Γ → Sym(Yn) be
asymptotic homomorphisms of a countable group Γ. Then the following conditions are equivalent:

(i) (σn) is essentially a branched covering of (τn).
(ii) there are onto, dn-to-one maps θn : Xn → Yn, for some dn ∈ N, such that we have

lim
n→∞

dH(θn ◦ σn(g), τn(g) ◦ θn) = 0, for every g ∈ Γ.

(iii) (σn) is equivalent to a branched covering (σ′n) of (τn) (i.e., one can take τ ′n = τn in (i)).

It is clear that (i) ⇒ (ii) and (iii) ⇒ (i). That (ii) ⇒ (iii) is a consequence of the following fact: if
X,Y are finite sets, σ ∈ Sym(X), τ ∈ Sym(Y ), and θ : X → Y an onto, d-to-one map, for d ∈ N,
then there is σ′ ∈ Sym(X) such that θ ◦ σ′ = τ ◦ θ and dH(σ′, σ) ≤ dH(θ ◦ σ, τ ◦ θ).

Our main result settles Bowen’s question in the negative. More precisely, we prove the following:

Theorem 1.5. Let Γ = Fm×Fk, for some integers m, k ≥ 2. Then Γ admits a sofic approximation
σn : Γ → Sym(Xn) with the following property: there are no homomorphisms τn : Γ → Sym(Yn)
and maps θn : Xn → Yn, for some finite sets Yn, such that

(a) lim
n→∞

dH(θn ◦ σn(g), τn(g) ◦ θn) = 0, for all g ∈ Γ, and

(b) lim
n→∞

dH(θn ◦ σn(g), θn) = 1, for all g ∈ Γ \ {e}.

Here, for finite sets X,Y and σ, τ : X → Y , we denote dH(σ, τ) = |X|−1 · |{x ∈ X | σ(x) 6= τ(x)}|.
Theorem 1.5 implies that (σn) is not essentially a branched covering of a sofic approximation by
homomorphisms. This follows by using Remark 1.4 ((i)⇒ (ii)) and noting that if each θn : Xn → Yn
is dn-to-one, for some dn ∈ N, and (τn) is a sofic approximation of Γ, then (a) implies (b).

Theorem 1.5 strengthens part of [Io19b, Theorem D]. More precisely, [Io19b, Theorem D] shows
that Γ = Fm × Fk is not weakly very flexibly stable, for any integers m, k ≥ 2, in the sense
of [Io19b, Definition 1.6]. This amounts to the existence of a sofic approximation σn : Γ→ Sym(Xn)
with the following property: (?) there are no finite sets Yn, homomorphisms τn : Γ→ Sym(Yn) and
one-to-one maps θn : Xn → Yn such that lim

n→∞
dH(θn ◦ σn(g), τn(g) ◦ θn) = 0, for every g ∈ Γ.

As we explain in the comments below, the sofic approximation (σn) of Γ from the hypothesis of
Theorem 1.5 is constructed following the strategy introduced in [Io19b]. As such, results from
[Io19b] readily imply that (σn) satisfies (?). The main novelty in the proof of Theorem 1.5 consists
of showing that any maps θn : Xn → Yn as in its statement must be “asymptotically one-to-one”.
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Moreover, we prove that if τn : Γ → Sym(Yn) are arbitrary maps, then any maps θn : Xn → Yn
which satisfy conditions (a) and (b) from Theorem 1.5 must be asymptotically one-to-one. This
implies that (σn) is a minimal sofic approximation of Γ, in the sense that it is not equivalent to a
proper (i.e., one satisfying dn > 1, for every n) branched covering of any sofic approximation of Γ.

Comments on the proof of Theorem 1.5. We end the introduction with an informal outline
of the proof of our main result. If a group Γ satisfies the conclusion of Theorem 1.5 then any group
containing it as a finite index subgroup also does (see Lemma 4.1). Therefore, it suffices to prove
Theorem 1.5 when m ≥ 5 and k ≥ 3. Fix a free decomposition Fm = Fm−1 ∗ Z. Thus, we have
Γ = Fm × Fk = (Fm−1 ∗ Z)× Fk. The proof of Theorem 1.5 is divided between Sections 3 and 4:

(1) In Section 3, we use the work [ALW01] of Alon, Lubotzky and Widgerson who proved that
expansion is not a group property. This allows us to define a sequence of finite groups Gp
(indexed over primes p ≡ 1 (mod 3)) together with onto homomorphisms ϕp : Fm−1 → Gp
and ρp : Fk → Gp such that Fm−1 has property (τ) with respect to {ker(ϕp)}, while Fk does
not have property (τ) with respect to {ker(ρp)}. (A key property of Gp is that it has only
one non-trivial normal subgroup. To the best of our knowledge, it is unknown if one can find
such groups Gp which are simple; if this were the case, then the proof could be simplified
considerably.) Following closely [Io19b] we then construct an asymptotic homomorphism
σp : Fm × Fk → Sym(Gp) which satisfies (?) and that σp(g, h)x = ϕp(g)xρp(h)−1, for every
g ∈ Fm−1, h ∈ Fk and x ∈ Gp. Note, however, that the asymptotic homomorphism (σp) is
not a sofic approximation.

(2) We begin Section 4 by augmenting the construction of (σp) to get a sofic approximation

σ̃p : Fm × Fk → Sym(G̃p) which inherits the properties of (σp) listed above. The rest of
Section 4 is devoted to proving that (σ̃p) verifies the conclusion of Theorem 1.5. Assume by
contradiction that there are homomorphisms τp : Fm×Fk → Sym(Yp), for some finite sets Yp,

and maps θp : G̃p → Yp which satisfy conditions (a) and (b) from Theorem 1.5. Condition

(b) implies that the partition {θ−1
p ({y}) | y ∈ Yp} of G̃p is σ̃p(Fm × Fk)-asymptotically

invariant. By combining the property (τ) assumption with a result from [Io19a] (see Section
2), we deduce that the partition {θ−1

p ({y}) | y ∈ Yp} is asymptotically equal to the coset

partition {gNp | g ∈ G̃p} of G̃p, for some normal subgroup Np E G̃p. Some additional work,
which uses condition (b), allows us to conclude that Np = {e}, and thus θp is asymptotically
one-to-one. This however contradicts the fact that (σ̃p) satisfies (?).

Acknowledgements. I am grateful to Lewis Bowen for helpful discussions clarifying his question
answered here. I would also like to thank Henry Bradford who has kindly informed me that he has
a construction showing that in (1) above it is possible to take {Gp} to be a sequence of alternating
groups, which are known to be simple. Finally, I am grateful to the referee for many useful comments
that helped improve the readability of the paper.

2. Property (τ) and almost invariant partitions

This section is devoted to a technical lemma which will be needed in the proof of our main theorem.
Let Γ be a finitely generated group, S be a finite set of generators of Γ and {Γn}∞n=1 be a sequence
of finite index normal subgroups. Denote Gn = Γ/Γn and let pn : Γ → Gn be the quotient
homomorphism. The following lemma asserts that if Γ has property (τ) with respect to {Γn}∞n=1,
then any partition of Gn which is almost invariant under the left multiplication action of Γ must
essentially come from the left cosets of a subgroup of Gn.
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Recall that Γ is said to have property (τ) with respect to {Γn}∞n=1 if infn κ(Gn, pn(S)) > 0 [Lu94].
Here, given a finite group G and a set of generators T ⊂ G, the Kazhdan constant κ(G,T ) denotes
the largest constant κ > 0 such that κ · ‖ξ‖ ≤ maxg∈T ‖π(g)ξ − ξ‖, for every ξ ∈ H and unitary
representation π : G → U(H) of G on a Hilbert space H which has no non-zero invariant vectors.
We record the following remark which will be needed in the proof of Lemma 3.4.

Remark 2.1. Let π : G → U(H) be a unitary representation of a finite group G. Let P be the
orthogonal projection from H onto the closed subspace HG of π(G)-invariant vectors and ξ ∈ H.
Then maxg∈G ‖π(g)ξ − ξ‖ ≤ 2 · ‖ξ − P (ξ)‖. Since the restriction of π to H	HG has no non-zero
invariant vectors, we get that κ(G,T ) · ‖ξ − P (ξ)‖ ≤ maxg∈T ‖π(g)ξ − ξ‖ and further that

(2.1)
κ(G,T )

2
·max
g∈G
‖π(g)ξ − ξ‖ ≤ max

g∈T
‖π(g)ξ − ξ‖, for every ξ ∈ H.

Lemma 2.2. [Io19a] In the above setting, assume that Γ has property (τ) with respect to {Γn}∞n=1.

For every n, let {Xn,k}dnk=1 be a partition of Gn, for some dn ∈ N. Assume that for every n and

g ∈ Γ, there exists a permutation σn,g of {1, ..., dn} such that lim
n→∞

1
|Gn| ·

∑dn
k=1 |gXn,k4Xn,σn,g(k)| = 0.

Then for every n we can find a subgroup Hn < Gn, a set Sn ⊂ {1, ..., dn} and a one-to-one map
ωn : Sn → Gn/Hn such that

lim
n→∞

1

|Gn|
·
∑
k∈Sn

|Xn,k4ωn(k)Hn| = 0 and lim
n→∞

1

|Gn|
∑
k/∈Sn

|Xn,k| = 0.

This result is a consequence of the proof of [Io19a, Theorem A]. For the reader’s convenience, we
indicate briefly how the proof of [Io19a, Theorem A] can be adapted to prove Lemma 2.2.

Proof. For every n, let πn : Γ → U(`2(Gn × Gn)) be the unitary representation associated to the
action Γ y Gn ×Gn given by g · (x, y) = (gx, gy), and define the unit vector

ηn =
1√
|Gn|

·
dn∑
k=1

1√
|Xn,k|

1Xn,k×Xn,k
∈ `2(Gn ×Gn).

We claim that ‖πn(g)ηn − ηn‖2 → 0, for every g ∈ Γ. To this end, fix g ∈ Γ. Then the hypothesis

implies that 1
|Gn| ·

∑dn
k=1 |gXn,k ∩ Xn,σn,g(k)| → 1 and thus 1

|Gn| ·
∑dn

k=1

√
|Xn,k| · |Xn,σn,g(k)| → 1.

Using a direct computation and the Cauchy-Schwarz inequality we derive that

〈πn(g)ηn, ηn〉 =
1

|Gn|
·
dn∑
k,l=1

1√
|Xn,k| · |Xn,l|

|gXn,k ∩Xn,l|2

≥ 1

|Gn|
·
dn∑
k=1

1√
|Xn,k| · |Xn,σn,g(k)|

|gXn,k ∩Xn,σn,g(k)|2

≥ 1

|Gn|
·

(∑dn
k=1 |gXn,k ∩Xn,σn,g(k)|

)2

∑dn
k=1

√
|Xn,k| · |Xn,σn,g(k)|

.

Thus, lim infn→∞〈πn(g)ηn, ηn〉 ≥ 1 and since ‖ηn‖2 = 1, we conclude that ‖πn(g)ηn − ηn‖2 → 0.

Since Γ has property (τ) with respect to {Γn}∞n=1, we get that κ := infn κ(Gn, pn(S)) > 0. By [Io19b,
Lemma 2.5] we deduce that supg∈Γ ‖πn(g)ηn − ηn‖2 ≤ (2/κ) · maxg∈S ‖πn(g)ηn − ηn‖2, for every
n. In combination with the above it follows that supg∈Γ ‖πn(g)ηn − ηn‖2 → 0. Thus, we can find

positive real numbers δn such that δn → 0 and supg∈Γ ‖πn(g)ηn − ηn‖22 < 2δn, for every n.
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Let n large enough such that δn < 10−12. Then

(2.2)
1

|Gn|
·
dn∑
k,l=1

1√
|Xn,k| · |Xn,l|

|gXn,k ∩Xn,l|2 = 〈πn(g)ηn, ηn〉 > 1− δn, for every g ∈ Γ.

Note that the Haar measure mn of Gn is given by mn(X) = |X|
|Gn| , for every subset X ⊂ Gn. By

using this fact and (2.2) and applying verbatim the second part of the proof of [Io19a, Theorem A],
we can find a subgroup Hn < Gn, a nonempty subset Sn ⊂ {1, ..., dn} and a map ωn : Sn → Gn/Hn

such that
∑

k∈Sn
|Xn,k| ≥ (1−

√
δn) · |Gn|, and |Xn,k4ωn(k)Hn| ≤ 506 4

√
δn · |Xn,k|, for every k ∈ Sn.

If k, l ∈ Sn and k 6= l, then using that Xn,k ∩Xn,l = ∅, we get that

|ωn(k)Hn4ωn(l)Hn| ≥ |Xn,k4Xl,n| − |Xn,k4ωn(k)Hn| − |Xn,l4ωn(l)Hn|

≥ (1− 506 4
√
δn) · (|Xn,k|+ |Xn,l|).

Since 506 4
√
δn < 1, we derive that ωn(k)Hn4ωn(l)Hn 6= ∅. This implies that the map ωn is

one-to-one and the conclusion follows. �

3. Construction of asymptotic homomorphisms

In this section, we establish two ingredients that will be needed in the proof of our main theorem.
To explain this, fix integers m ≥ 5 and k ≥ 3, and denote Γ = Fm−1 and Λ = Fk. In the first
part of this section, given a prime p with p ≡ 1 (mod 3), we construct a finite group Gp and
homomorphisms ϕp : Γ → Gp, ρp : Λ → Gp with various special properties. In the second part
of this section, we follow closely [Io19b, Section 6] to construct an asymptotic homomorphism
σp : (Γ ∗ Z)× Λ→ Sym(Gp) such that σp(g, h)x = ϕp(g)xρp(h)−1, for all g ∈ Γ, h ∈ Λ and x ∈ Gp.

3.1. A group theoretic construction. In [ALW01], Alon, Lubotzky and Widgerson showed that
expansion is not a group property. Thus, they introduced a method of constructing sequences of
finite groups {Gn}∞n=1 and generating sets Sn, Tn of fixed cardinality (|Sn| = m, |Tn| = k) such that
the Cayley graphs of Gn are expanders with respect to Sn but not with respect to Tn. Equivalently,
there are onto homomorphisms pn : Fm → Gn, qn : Fk → Gn such that Fm has property (τ) with
respect to {ker(pn)}∞n=1 but Fk does not have property (τ) with respect to {ker(qn)}∞n=1.

The proof of our main theorem relies on a particular case of the construction of [ALW01]. Let p be
a prime with p ≡ 1 (mod 3). Denote by P1(Fp) = Fp ∪ {∞} the projective line over the field Fp
with p elements. Consider the action of PSL2(Fp) = SL2(Fp)/{±I} on P1(Fp) by linear fractional
transformations: (

a b
c d

)
· x =

ax+ b

cx+ d
.

Further, we consider the vector space F
P1(Fp)
3 over F3, and the permutational representation of

PSL2(Fp) on F
P1(Fp)
3 given by g · x = (xg−1·i)i∈P1(Fp), for every g ∈ PSL2(Fp) and x = (xi)i∈P1(Fp).

We identify F
P1(Fp)
3 with F p+1

3 using a fixed bijection P1(Fp) 7→ {1, ..., p + 1} which sends ∞ to
p+ 1. We continue by introducing the following:

Notation 3.1. We denote Ap = {(xi) ∈ F p+1
3 |

∑p+1
i=1 xi = 0} and Hp = PSL2(Fp). Then Ap is an

Hp-invariant subspace of F p+1
3 with |Ap| = |F p+1

3 |/3 = 3p. We denote Gp = Ap oHp.

We next record the following elementary result, whose proof we include for completeness.
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Lemma 3.2. Let K be a group and N < Gp ×K be a subgroup which is normalized by Gp × {e}.
Then N is equal to {e} × L, Ap × L or Gp × L, for some subgroup L < K.

Proof. First, we claim that if N < Ap is a subgroup which is normalized by Hp, then N = {e} or

N = Ap. To this end, suppose that N contains an element x = (xi)
p+1
i=1 not equal to (0, .., 0). Since

N is Hp-invariant and Hp acts transitively on P1(Fp), we may assume that y := xp+1 6= 0. Since

the subgroup Up = {
(

1 a
0 1

)
| a ∈ Fp} of Hp fixes ∞ ∈ P1(Fp) and acts transitively on Fp, we get

∑
g∈Up

g · x = (

p∑
i=1

xi, ...,

p∑
i=1

xi, pxp+1) = (−y, ...,−y, py) ∈ N.

Since y 6= 0, we get that (−1, ...,−1, p) ∈ N . Let ek = (xk,i)
p+1
i=1 , where xk,i = −1 for i 6= k and

xk,k = p. Since Hp acts transitively on P1(Fp), we get that ek ∈ N , for all 1 ≤ k ≤ p. Since 3 - p+1,
the vectors (ek)

p
k=1 ∈ Ap are linearly independent over F3. As dimAp = p, we get that N = Ap.

Second, we claim that if N < Gp is a normal subgroup, then N = {e}, N = Ap or N = Gp. Let
ρ : Gp → Hp be the quotient homomorphism. Then ρ(N) < Hp is a normal subgroup and since
Hp is a simple group, ρ(N) = {e} or ρ(N) = Hp. If ρ(N) = {e}, then N < Ap and the first claim
implies that N = {e} or N = Ap. It remains to analyze the case when ρ(N) = Hp. We first
show that N ∩Ap 6= {e}. Assume by contradiction that N ∩Ap = {e} and let a ∈ Ap \ {e}. Since
ρ(N) = Hp, for any h ∈ Hp, there is b ∈ Ap such that bh ∈ N . Since N < Gp is normal, abha−1 ∈ N
and Ap is normal and abelian, we get that aha−1h−1 = ab(ha−1h−1)b−1 = (abha−1)(bh)−1 ∈ N .
Since Ap is normal, we also have that aha−1h−1 = a(ha−1h−1) ∈ Ap. Thus, aha−1h−1 ∈ N ∩ Ap
and hence aha−1h−1 = e, for every h ∈ Hp, which contradicts that a 6= e. Finally, if N ∩Ap 6= {e},
then since N ∩ Ap < Ap is normalized by Hp, the first claim implies that N ∩ Ap = Ap and hence
N ⊃ Ap. Since ρ(N) = Hp, it follows that N = Gp.

Let N < Gp ×K be a subgroup which is normalized by Gp × {e}. The second claim implies that
N ∩ (Gp × {e}) is equal to {e}, Ap × {e} or Gp × {e}. Note that if (g, k) ∈ N , for some g ∈ Gp
and k ∈ K, then (ghg−1h−1, e) = (g, k)(h, e)(g, k)−1(h, e)−1 ∈ N ∩ (Gp × {e}), for every h ∈ Gp. If
N ∩ (Gp × {e}) = {e}, it follows that N ⊂ {e} ×K, thus N = {e} × L, for some subgroup L < K.
If N ∩ (Gp×{e}) = Ap×{e}, we get that if (g, k) ∈ N , then ghg−1h−1 ∈ Ap, for every h ∈ Gp, and
thus g ∈ Ap. Hence Ap × {e} ⊂ N ⊂ Ap ×K, which implies that N = Ap × L, for some subgroup
L < K. Finally, if N ∩ (Gp × {e}) = Gp × {e}, then N = Gp × L, for some subgroup L < K. �

In addition to the notation from 3.1, throughout the rest of this paper we will use the following:

Notation 3.3. Given a prime p with p ≡ 1 (mod 3), we fix a prime rp > p, denote Kp = PSL2(Frp)

and let ψp : PSL2(Z)→ Kp be the quotient homomorphism. We denote G̃p = Gp ×Kp.

The following result combines [ALW01] with a spectral result gap result from [BV12]. In its proof
and later in the paper we will use the following consequence of strong approximation (see [LS03,
Window 9]): if Γ < PSL2(Z) is a non-amenable subgroup, then there is a finite set of primes S such
that the natural homomorphism Γ 7→

∏n
i=1 PSL2(Fpi) is onto, for any distinct primes p1, ..., pn /∈ S.

Lemma 3.4. Let Γ = Fm−1, for m ≥ 5. View Γ as a subgroup of PSL2(Z). Then for any
large enough prime p with p ≡ 1 (mod 3), there is an onto homomorphism ϕp : Γ → Gp such

that ϕ̃p : Γ → G̃p given by ϕ̃p(g) = (ϕp(g), ψp(g)) is onto and Γ has property (τ) with respect to
{ker(ϕ̃p)}p.

Proof. Let a1, ..., am−1 be free generators of Γ and p be a prime with p ≡ 1 (mod 3). Denote by ξp :
PSL2(Z)→ Hp the quotient homomorphism and let ηp : PSL2(Z)→ Hp×Kp be the homomorphism
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given by ηp(g) = (ξp(g), ψp(g)). Since Hp × Kp = PSL2(Fp) × PSL2(Frp) ∼= PSL2(Z/prpZ) and
〈a1, ..., am−3〉 ∼= Fm−3 is a non-amenable subgroup of PSL2(Z) (as m − 3 ≥ 2), it follows that for
large enough p we have ηp(〈a1, ..., am−3〉) = Hp ×Kp.

By applying [BV12, Theorem 1], we conclude that

(3.1) κ1 := inf
p
κ(Hp ×Kp, {ηp(a1), ...., ηp(am−3)}) > 0.

For w ∈ Ap, we denote by wHp = {h(w) = hwh−1 | h ∈ Hp} the orbit of w under the action of Hp.

By the proof of Lemma 3.2, the permutational representation of Hp on Ap ⊂ F p+1
3 is irreducible.

Thus, by applying [ALW01, Theorem 3.1], we can find v1(p), v2(p) ∈ Ap \ {e} such that

(3.2) κ2 := inf
p
κ(Ap, v1(p)Hp ∪ v2(p)Hp) > 0.

Define a homomorphism ϕp : Γ → Gp = Ap o Hp by letting ϕp(ai) = ξp(ai), for 1 ≤ i ≤ m − 3,

ϕp(am−2) = v1(p)ξp(am−2) and ϕp(am−1) = v2(p)ξp(am−1). Then ϕ̃p : Γ → G̃p given by ϕ̃p(g) =
(ϕp(g), ψp(g)) is onto. Indeed, since ϕ̃p(ai) = ηp(ai), for all 1 ≤ i ≤ m − 3, we get that ϕ̃p(Γ)
contains ηp(〈a1, ..., am−3〉) = Hp × Kp. Thus, ϕ̃p(Γ) also contains (v1(p), e) ∈ (Ap \ {e}) × {e}.
Since Ap has no proper non-trivial Hp-invariant subgroup by the proof of Lemma 3.2, we derive
that ϕ̃p is onto. In particular, ϕp is onto.

Moreover, combining (3.1) and (3.2) as in [ALW01] implies that infp κ(G̃p, {ϕ̃p(a1), ..., ϕ̃p(am−1)}) >
0. To justify this, put κ := min{κ1,κ2}

2 > 0. Let π : G̃p → U(H) be a unitary representation with no

non-zero invariant vectors and ξ ∈ H. For F ⊂ G̃p, let ∆(F ) = maxg∈F ‖π(g)ξ − ξ‖ and note that
∆(F ) ≤ ∆(F1) + ∆(F2), whenever F ⊂ F1F2. Denote ∆ := ∆({ϕ̃p(ai) | 1 ≤ i ≤ m− 1}).

By combining (2.1) with (3.1) and (3.2) we get that

(3.3) κ ·∆(Hp ×Kp) ≤ ∆({ϕ̃p(ai) | 1 ≤ i ≤ m− 3}) ≤ ∆ and

(3.4) κ ·∆(Ap×{e}) ≤ ∆((v1(p)Hp ∪ v2(p)Hp)×{e}) = max{∆(v1(p)Hp ×{e}),∆(v2(p)Hp ×{e}}.

Since (v1(p), e) ∈ ϕ̃p(am−2)(Hp×Kp) we derive that v1(p)Hp×{e} ⊂ (Hp×Kp)ϕ̃p(am−2)(Hp×Kp).
Thus, we have that

(3.5) ∆(v1(p)Hp × {e}) ≤ ∆({ϕ̃p(am−2)}) + 2 ·∆(Hp ×Kp) ≤ ∆ + 2 ·∆(Hp ×Kp).

Similarly, we get that

(3.6) ∆(v2(p)Hp × {e}) ≤ ∆({ϕ̃p(am−1)}) + 2 ·∆(Hp ×Kp) ≤ ∆ + 2 ·∆(Hp ×Kp).

By combining (3.3), (3.4), (3.5) and (3.6), we get that

(3.7) κ ·∆(Ap × {e}) ≤ ∆ + 2 ·∆(Hp ×Kp) ≤
κ+ 2

κ
·∆.

Since G̃p = (Ap × {e})(Hp ×Kp), by combining (3.3) and (3.7) we derive that

(3.8)
κ2

2(κ+ 1)
·∆(G̃p) ≤

κ2

2(κ+ 1)
(∆(Ap × {e}) + ∆(Hp ×Kp)) ≤ ∆.

Since π has no non-zero invariant vectors, the element of minimal norm in the closure of the convex

hull of {π(g)ξ | g ∈ G̃p} is equal to 0. From this we get that ‖ξ‖ ≤ ∆(G̃p). Together with (3.8),

this implies that infp κ(G̃p, {ϕ̃p(a1), ..., ϕ̃p(am−1)}) ≥ κ2

2(κ+1) > 0. Hence, Γ has property (τ) with

respect to {ker(ϕ̃p)}p, which finishes the proof of the lemma. �
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Lemma 3.5. Let b1, ..., bk be free generators of Λ = Fk, for k ≥ 3. Then there is C > 0 such that
for every large enough prime p with p ≡ 1 (mod 3) there is an onto homomorphism ρp : Λ → Gp

and a set Tp ⊂ Gp satisfying that 1
243 ≤

|Tp|
|Gp| ≤

1
3 and |Tpρp(bj)4Tp| ≤ C√

p |Gp|, for every 1 ≤ j ≤ k.

Moreover, if h ∈ Λ \ {e}, then ρp(h) 6= e, for every large enough p.

Proof. Let p be a prime with p ≡ 1 (mod 3) and put v(p) = (1,−1, 0, ..., 0) ∈ Ap. For x = (xi) ∈ Ap
and j ∈ {0, 1, 2}, denote nj(x) = |{i | xi = j (mod 3)}|. We define

(3.9) Sp = {x ∈ Ap | n1(x) > n0(x) + 2 and n1(x) > n2(x) + 2}.
First, we claim that

(3.10)
1

243
≤ |Sp|
|Ap|

≤ 1

3
.

Since p ≡ 1 (mod 3), we have a1 = (2, 1, ..., 1) ∈ Ap and a2 = (1, 2, ..., 2) ∈ Ap. Since the sets

Sp, a1 + Sp, a2 + Sp are pairwise disjoint, it follows that |Sp| ≤ |Ap|
3 . On the other hand, if we let

Rp = {(xi) ∈ F p−4
3 | n1(x) ≥ n0(x) and n1(x) ≥ n2(x)}, then for every x = (xi) ∈ Rp, there is

x̃ = (x̃i) ∈ Sp with x̃i = xi, for all 1 ≤ i ≤ p− 4. Thus, |Sp| ≥ |Rp| ≥
|F p−4

3 |
3 =

|Ap|
243 , proving (3.10).

Second, we claim that there is a constant C > 0 such that

(3.11) |(v(p) + Sp)4Sp| ≤
C
√
p
|Ap|, for every p.

To this end, note that Stirling’s formula implies that there is a constant c > 0 such that

(3.12)

(
n

k

)
≤
(
n

bn2 c

)
≤ c · 2n√

n
, for every n ≥ k ≥ 0.

Since Sp\(v(p)+Sp) ⊂ {x ∈ F p+1
3 | n0(x) + 5 ≥ n1(x) > n0(x) + 2 or n2(x) + 5 ≥ n1(x) > n2(x) + 2}

and n0(x), n2(x) < p+1
2 , for every x ∈ Sp, by using (3.12) we get that

|Sp \ (v(p) + Sp)| ≤ 2 ·
∑

n0+n1+n2=p+1

0≤n0<
p+1
2

n2+2<n1≤n2+5

(p+ 1)!

n0!n1!n2!

= 2 ·
∑

0≤n0<
p+1
2

(
p+ 1

n0

) ∑
n1+n2=p+1−n0
n2+2<n1≤n2+5

(
p+ 1− n0

n1

)

≤ 6c ·
∑

0≤n0<
p+1
2

(
p+ 1

n0

)
2p+1−n0

√
p+ 1− n0

≤ 6c ·
√

2

p+ 1
·

∑
0≤n0<

p+1
2

(
p+ 1

n0

)
2p+1−n0

≤ 6c ·
√

2

p+ 1
· 3p+1

2

Since |Ap| = 3p, this proves (3.11).

Let ξp : PSL2(Z) → Hp = PSL2(Fp) be the quotient homomorphism. Since 〈b1, ..., bk−1〉 ∼= Fk−1

is a non-amenable subgroup of PSL2(Z), for every large enough p we have ξp(〈b1, ..., bk−1〉) = Hp.
We define a homomorphism ρp : Λ → Gp by ρp(bj) = ξp(bj), for every 1 ≤ j ≤ k − 1, and
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ρp(bk) = ξp(bk)v(p). Since Ap has no proper non-trivial Hp-invariant subgroup by the proof of
Lemma 3.2, it follows that ρp is onto.

Next, note that Sp is Hp-invariant and let Tp = Hp · Sp = Sp · Hp ⊂ Gp. Then (3.10) and (3.11)

imply that
|Gp|
243 ≤ |Tp| ≤

|Gp|
3 and |Tpv(p)4Tp| ≤ C√

p |Gp|. Since Sp is Hp-invariant, Tpρp(bj) = Tp,

for all 1 ≤ j ≤ k − 1, and Tpρp(bk) = Tpv(p). Hence, |Tpρp(bj)4Tp| ≤ C√
p |Gp|, for every 1 ≤ j ≤ k.

Finally, since ker(ρp) ⊂ ker(ξp) ∩ Λ, the moreover assertion follows. �

3.2. Construction of asymptotic homomorphisms. Assume the notation from 3.1 and 3.3,
and let ϕp : Γ→ Gp and ρp : Λ→ Gp be the homomorphisms provided by Lemmas 3.4 and 3.5.

Lemma 3.6. Let t = ±1 be a generator of Z. Then there exists an asymptotic homomorphism
σp : (Γ ∗ Z)× Λ→ Sym(Gp), where p is a large enough prime with p ≡ 1 (mod 3), so that

(1) σp(g, h)x = ϕp(g)xρp(h)−1, for every g ∈ Γ, h ∈ Λ, x ∈ Gp,
(2) |{x ∈ Gp | σp(t, e)x = x}| ≥ |Gp|

3 ,

(3) max{dH(σp(t, e) ◦ σp(e, h), σp(e, h) ◦ σp(t, e)) | h ∈ Λ} ≥ 1
243 , and

(4) |σp(t, e)(Aph)4Aph′| ≥ 1
243 |Ap|, for every h, h′ ∈ Hp.

Proof. Define a homomorphism σp : Γ×Λ→ Sym(Gp) using the formula from (1). In order to extend
σp to an asymptotic homomorphism σp : (Γ ∗Z)×Λ→ Sym(Gp) we will define σp(t, e) ∈ Sym(Gp)
such that lim

p→∞
dH(σp(t, e)σp(e, h), σp(e, h)σp(t, e)) = 0, for any h ∈ Λ.

To this end, let ap = (0, 0, 1..., 1) ∈ F p+1
3 . Since 3 | p − 1, we get that ap ∈ Ap. If x ∈ F p+1

3 and
x̃ = x− ap, then n1(x̃)− n2(x̃) ≤ n0(x)− n1(x) + 4. This observation together with the definition
(3.9) of Sp implies that (ap + Sp) ∩ Sp = ∅. Since Tp = Sp ·Hp, we get that apTp ∩ Tp = ∅.

Let hp ∈ Hp such that h2
p 6= e. Since hpTp = Tp, we get that aphpTp = apTp. We can therefore

define σp(t, e) ∈ Sym(Gp) by letting

σp(t, e)x =


aphpx, if x ∈ Tp,
(aphp)

−1x, if x ∈ apTp,
x, otherwise.

Equivalently, for every a ∈ Ap and h ∈ Hp we have that

(3.13) σp(t, e)(ah) =


aphpah, if a ∈ Sp,
(aphp)

−1(ah), if a ∈ apSp,
ah, otherwise

By Lemma 3.5 we have that lim
p→∞

|Tpρp(h)4Tp|
|Gp| = 0, for every h ∈ Λ.

To continue the proof we will need the following result extracted from [Io19b].

Lemma 3.7. [Io19b] Assuming the above notation, we have

(1) lim
p→∞

dH(σp(t, e)σp(e, h), σp(e, h)σp(t, e)) = 0, for every h ∈ Λ, and

(2) dH(σp(t, e)σp(e, h), σp(e, h)σp(t, e)) ≥ 2|Tp\Tpρp(h)|
|Gp| , for every h ∈ Λ.
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The first part of Lemma 3.7 implies that (σp) is an asymptotic homomorphism which satisfies

condition (1) by construction. Since |Tp| ≤ |Gp|
3 by Lemma 3.5, condition (2) is satisfied. Since∑

k∈Gp
|Tp \ Tpk| =

∑
k∈Gp

(|Tp| − |Tp ∩ Tpk|) = (|Gp| − |Tp|) · |Tp|, there is k ∈ Gp such that

|Tp \ Tpk| ≥ (1− |Tp||Gp|) ·
|Tp|
|Gp| · |Gp|. By Lemma 3.5 we get that |Tp \ Tpk| ≥ 1

2 ·
1

243 · |Gp|. Since ρp is

onto, there is h ∈ Λ such that k = ρp(h) and hence |Tp \ Tpρp(h)| ≥ 1
2 ·

1
243 · |Gp|. In combination

with the second part of Lemma 3.7, we deduce condition (3).

To prove condition (4), fix h, h′ ∈ Hp. Since h2
p 6= e, we have hph 6= h′ or h−1

p h 6= h′. If hph 6= h′,

then (3.13) implies that Sp ⊂ {a ∈ Ap | σp(t, e)(ah) /∈ Aph′}. If h−1
p h 6= h′, then (3.13) implies that

apSp ⊂ {a ∈ Ap | σp(t, e)(ah) /∈ Aph′}. In either case, |{a ∈ Ap | σp(t, e)(ah) /∈ Aph′}| ≥ |Sp| and
thus |σp(t, e)(Aph) \Aph′| ≥ |Sp|. By equation (3.10), this implies condition (4). �

Proof of Lemma 3.7. The first part follows by arguing as in the proof of [Io19b, Lemma 6.1]
using [Io19b, Lemma 2.2]. Since (aphp)

2 6= e, the second part follows from [Io19b, Lemma 2.2]. �

Note that condition (2) of Lemma 3.6 implies that (σp) is not a sofic approximation of (Γ ∗Z)×Λ.
In the next section, we will first build a sofic approximation (σ̃p) of (Γ ∗ Z)× Λ out of (σp), which
we will use to show that the conclusion of our main theorem holds for (Γ ∗ Z)× Λ = Fm × Fk.

4. Proof of the main theorem

This section is devoted to the proof of the main theorem. We will first prove the conclusion
when m ≥ 5 and k ≥ 3. To this end, put Γ = Fm−1,Σ = Fm and Λ = Fk. We assume the

notation from (3.1) and (3.3): Hp = PSL2(Fp), Gp = Ap oHp, Kp = PSL2(Frp), G̃p = Gp ×Kp,
ψp : PSL2(Z)→ Kp is the quotient homomorphism, where p < rp are primes and p ≡ 1 (mod 3).

In the first part of the proof, we construct a sofic approximation σ̃p : Σ× Λ→ Sym(G̃p) of Σ× Λ.

View Σ, and thus Γ, as a subgroup of PSL2(Z). Let ϕp : Γ → Gp, ϕ̃p : Γ → G̃p and ρp : Λ → Gp
be the onto homomorphisms given by Lemmas 3.4 and 3.5. Recall that ϕ̃p(g) = (ϕp(g), ψp(g)), for
every g ∈ Γ. Let σp : Σ×Λ = (Γ ∗Z)×Λ→ Sym(Gp) be the asymptotic homomorphism provided
by Lemma 3.6. As therein, we denote by t = ±1 a generator of Z.

Next, for any large enough prime p with p ≡ 1 (mod 3), we define onto homomorphisms ζp : Λ→ Kp

and ρ̃p : Λ → G̃p. Fix a decomposition Λ = ∆ ∗ Z, where ∆ = Fk−1 and view ∆ as a subgroup
of PSL2(Z). Define ζp : Λ → Kp by ζp(h) = ψp(h), if h ∈ ∆, and ζp(h) = e, if h ∈ Z. Define

ρ̃p : Λ→ G̃p by ρ̃p(h) = (ρp(h), ζp(h)), for all h ∈ Λ. Since ∆ is non-amenable, ζp is onto, for large
enough p. By Lemma 3.2, the only quotient groups of Gp are Gp, Hp and {e}. Since Kp is a simple
group which is not isomorphic to neither Gp nor Hp, and ρp is onto, Goursat’s lemma implies that
ρ̃p is onto, for large enough p.

We are now ready to define σ̃p : Σ× Λ→ Sym(G̃p) by letting for g ∈ Σ, h ∈ Λ, x ∈ Gp and y ∈ Kp

(4.1) σ̃p(g, h)(x, y) = (σp(g, h)x, ψp(g)yζp(h)−1)

Since Lemma 3.6 gives that σp(g, h)x = ϕp(g)xρp(h)−1, for all g ∈ Γ, h ∈ Λ, x ∈ Gp, we derive that

(4.2) σ̃p(g, h)x = ϕ̃p(g)xρ̃p(h)−1, for all g ∈ Γ, h ∈ Λ, x ∈ G̃p.

Claim 1. (σ̃p) is a sofic approximation of Σ× Λ.

Proof of Claim 1. It is clear that (σ̃p) is an asymptotic homomorphism of Σ× Λ. To see that it is
a sofic approximation, let CL(g) = {y ∈ L | gy = yg} be the centralizer of an element y of a group
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L. For every prime q and g ∈ SL2(Fq) \ {±I}, we have |CSL2(Fq)(g)| ≤ |SL2(Fq)|
q−1 . This implies that

(4.3) |CPSL2(Fq)(g)| ≤ |PSL2(Fq)|
2(q − 1)

, for every g ∈ PSL2(Fq) \ {e}.

On the other hand, for all (g, h) ∈ Σ× Λ we have

(4.4)
|{x ∈ G̃p | σ̃p(g, h)x = x}|

|G̃p|
≤ |{y ∈ Kp | ψp(g)yζp(h)−1 = y}|

|Kp|
≤
|CKp(ψp(g))|
|Kp|

.

If g 6= e, then ψp(g) 6= e, for large enough p. Therefore, by combining (4.3) and (4.4) we get

that
|{x∈G̃p|σ̃p(g,h)x=x}|

|G̃p|
≤ 1

2(rp−1) , for large enough p. Thus, lim
p→∞

dH(σ̃p(g, h), Id
G̃p

) = 1, for all

(g, h) ∈ Σ × Λ with g 6= e. If h ∈ Λ \ {e}, then σ̃p(e, h)(x, y) = (xρp(h)−1, yζp(h)−1). Lemma 3.5
gives that ρp(h) 6= e and thus dH(σ̃p(e, h), Id

G̃p
) = 1, for large enough p. This altogether proves

that (σ̃p) is a sofic approximation of Σ× Λ. �

In the rest of the proof, we will show that the sofic approximation (σ̃p) of Σ × Λ satisfies the
conclusion of the main theorem. Towards this goal, let τp : Σ × Λ → Sym(Yp) be a sequence

homomorphisms, for some finite sets Yp, for which there exist maps θp : G̃p → Yp such that

(i) dH(θp ◦ σ̃p(g), τp(g) ◦ θp)→ 0, for every g ∈ Σ× Λ, and
(ii) dH(θp ◦ σ̃p(g), θp)→ 1, for every g ∈ (Σ× Λ) \ {e}.

For every p and y ∈ Yp, we denote Xy
p = θ−1

p ({y}). We continue with the following:

Claim 2. For every p there exist a normal subgroup Np < G̃p, a subset Sp ⊂ Yp and a map

ωp : Sp → G̃p such that

(4.5) lim
p→∞

1

|G̃p|
·
∑
y∈Sp

|Xy
p4ωp(y)Np| = 0 and

(4.6) lim
p→∞

1

|G̃p|
·
∑
y/∈Sp

|Xy
p | = 0.

Moroever, for every g ∈ Σ× Λ, we have that lim
p→∞

|Np| · |Sp ∩ τp(g)−1Sp|
|G̃p|

= 1.

Proof of Claim 2. If g ∈ Σ× Λ, then⋃
y∈Yp

(
σ̃p(g)Xy

p4X
τp(g)(y)
p

)
⊂ {x ∈ G̃p | θp(σ̃p(g)−1x) 6= τp(g)−1(θp(x))}.

Note that every x ∈ G̃p belongs to at most two sets of the form σ̃p(g)Xy
p4Xτp(g)(y)

p , with y ∈ Yp.
Since dH(θp ◦ σ̃p(g)−1, τp(g)−1 ◦ θp) → 0 by (i), we deduce that the partition {Xy

p}y∈Yp of G̃p is
almost invariant under σ̃p, in the following sense:

(4.7) lim
p→∞

1

|G̃p|
·
∑
y∈Yp

|σ̃p(g)Xy
p4X

τp(g)(y)
p | = 0, for every g ∈ Σ× Λ.

By Lemma 3.4, ϕ̃p : Γ→ G̃p is an onto homomorphism such that Γ has property (τ) with respect

to {ker(ϕ̃p)}. Moreover, (4.2) gives that σ̃p(g, e)(x) = ϕ̃p(g)x, for all g ∈ Γ and x ∈ G̃p. Since
equation (4.7) holds for all g ∈ Γ, we can apply Lemma 2.2 to deduce the existence of a subgroup

Np < G̃p, a subset Sp ⊂ Yp and a map ωp : Sp → G̃p, for every p, such that (4.5) and (4.6) hold.
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To finish the proof of the claim, it remains to show that Np < G̃p is a normal subgroup and the

moreover assertion holds. Combining (4.6) and (4.7) gives that lim
p→∞

1

|G̃p|
·
∑

y/∈Sp
|Xτp(g)(y)

p | = 0 and

therefore

lim
p→∞

1

|G̃p|
·

∑
y/∈τp(g)−1Sp

|Xy
p | = 0, for every g ∈ Σ× Λ.

Since
∑

y∈Yp |X
y
p | = |G̃p|, this together with (4.6) implies that

(4.8) lim
p→∞

1

|G̃p|
·

∑
y∈Sp∩τp(g)−1Sp

|Xy
p | = 1, for every g ∈ Σ× Λ.

By combining (4.5) and (4.8), the moreover assertion follows.

On the other hand, combining (4.5) and (4.7) gives that

(4.9) lim
p→∞

1

|G̃p|
·

∑
y∈Sp∩τp(g)−1Sp

|σ̃p(g)(ωp(y)Np)4ωp(τp(g)(y))Np| = 0, for every g ∈ Σ× Λ.

Let h ∈ Λ. Then (4.9) and the moreover assertion imply that for every large enough p, there
is y ∈ Sp ∩ τp(e, h)−1Sp such that |σ̃p(e, h)(ωp(y)Np)4ωp(τp(e, h)(y))Np| < |Np|. Since by (4.2)

we have σ̃p(e, h)(x) = xρ̃p(h)−1, for all x ∈ G̃p, we get |ωp(y)Npρ̃p(h)−14ωp(τp(e, h)(y))Np| <
|Np|. Thus, if we put a = ρ̃p(h)ωp(y)−1ωp(τp(e, h)(y)) ∈ G̃p, then |ρ̃p(h)Npρ̃p(h)−14aNp| < |Np|.
Equivalently, we have that |ρ̃p(h)Npρ̃p(h)−1 ∩ aNp| > |Np|

2 . If x ∈ ρ̃p(h)Npρ̃p(h)−1 ∩ aNp, then

x−1(ρ̃p(h)Npρ̃p(h)−1∩aNp) ⊂ ρ̃p(h)Npρ̃p(h)−1∩Np. Thus, we get that |ρ̃p(h)Npρ̃p(h)−1∩Np| > |Np|
2

Since Np is a finite group, it follows that ρ̃p(h)Npρ̃p(h)−1 = Np, for every large enough prime p.

Since this holds for every h ∈ Λ, Λ is finitely generated and ρ̃p : Λ → G̃p is onto, we derive that

Np < G̃p is a normal subgroup. �

Since G̃p = Gp ×Kp and Kp is a simple group, Lemma 3.2 implies that Np is one of the following

six groups: N1
p = {e}, N2

p = {e} ×Kp, N
3
p = Ap ×Kp, N

4
p = G̃p, N

5
p = Gp × {e} or N6

p = Ap × {e},
for every large enough prime p. We continue with the following:

Claim 3. Np = {e}, for every large enough prime p.

Proof of Claim 3. Assume that the claim is false. Then, after replacing (σ̃p) with a subsequence,
we may assume that there is 2 ≤ i ≤ 6 such that Np = N i

p, for every p. We will prove that
each of these five possibilities leads to a contradiction. To this end, note that if g ∈ Σ × Λ, then

∪y∈Yp(Xy
p ∩ σ̃p(g)Xy

p ) = {x ∈ G̃p | (θp ◦ σ̃p(g)−1)(x) = θp(x)}. Thus, by using (ii), we get that

(4.10) lim
p→∞

1

|G̃p|
·
∑
y∈Yp

|Xy
p ∩ σ̃p(g)Xy

p | = 0, for every g ∈ (Σ× Λ) \ {e}.

Case 1. Np = Lp ×Kp, where Lp is one of the groups {e}, Ap or Gp.

In this case, we will derive a contradiction by using condition (2) of Lemma 3.6. Note first that
for every y ∈ Yp, we have that ωp(y)Np = V y

p ×Kp, for some set V y
p ⊂ Gp. By (4.1) we have that

σ̃p(t, e)(x, y) = (σp(t, e)x, ψp(t)y), for all x ∈ Gp and y ∈ Kp. Thus, we get that

σ̃p(t, e)(ωp(y)Np) = σp(t, e)V
y
p ×Kp = (σp(t, e)× IdKp)(ωp(y)Np).
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This implies that ωp(y)Np ∩ σ̃p(t, e)(ωp(y)Np) ⊃ {x ∈ ωp(y)Np | (σp(t, e)× IdKp)x = x} and hence∑
y∈Sp

|ωp(y)Np ∩ σ̃p(t, e)(ωp(y)Np)| ≥ |{x ∈
⋃
y∈Sp

ωp(y)Np | (σp(t, e)× IdKp)(x) = x}|

≥ {x ∈ G̃p | (σp(t, e)× IdKp)(x) = x}| − |G̃p \ (
⋃
y∈Sp

ωp(y)Np))|.

Since |{x ∈ Gp | σp(t, e)x = x}| ≥ |Gp|
3 by condition (2) of Lemma 3.6, while (4.5) and (4.6) imply

that lim
p→∞

|G̃p\(∪y∈Spωp(y)Np)|
|G̃p|

= 0, we conclude that

lim sup
p→∞

1

|G̃p|
·
∑
y∈Sp

|ωp(y)Np ∩ σ̃p(t, e)(ωp(y)Np)| ≥
1

3
.

In combination with (4.5) this gives that

lim sup
p→∞

1

|G̃p|
·
∑
y∈Sp

|Xy
p ∩ σ̃p(t, e)Xy

p | ≥
1

3
,

which contradicts (4.10).

Case 2. Np = Gp × {e}.

In this case, for every y ∈ Yp we have that ωp(y)Np = Gp ×W y
p , for some set W y

p ⊂ Kp. Recall
that by the construction of the homomorphism ζp : Λ → Kp we can find h ∈ Λ \ {e} such that
ζp(h) = e. Then ρ̃p(h) = (ρp(h), e) and (4.2) gives that σ̃p(e, h)(x, y) = (xρp(h)−1, y) for all x ∈ Gp
and y ∈ Kp. Hence σ̃p(e, h)(ωp(y)Np) = ωp(y)Np, for every y ∈ Yp. In combination with (4.5), this
implies that lim supp→∞

1

|G̃p|
·
∑

y∈Sp
|Xy

p ∩ σ̃p(e, h)Xy
p | ≥ 1, which contradicts (4.10).

Case 3. Np = Ap × {e}.

In this case, let x, x′ ∈ Gp and y, y′ ∈ Kp. Then (x, y)Np = Apx×{y} and (x′, y′)Np = Apx
′×{y′}.

By using the definition (4.1) of σ̃p we derive that σ̃p(t, e)((x, y)Np) = σp(t, e)(Apx)× {ψp(t)y}. In
combination with condition (4) from Lemma 3.6, we conclude that

|σ̃p(t, e)((x, y)Np)4(x′, y′)Np| ≥ |σp(t, e)(Apx)4(Apx
′)| ≥ |Ap|

243
=
|Np|
243

.

This inequality implies that

(4.11)
1

|G̃p|
·

∑
y∈Sp∩τp(t,e)−1Sp

|σ̃p(t, e)(ωp(y)Np)4ωp(τp(t, e)(y))Np| ≥
|Np| · |Sp ∩ τp(t, e)−1Sp|

243 · |G̃p|
.

On the other hand, (4.9) and the moreover assertion of Lemma 2 imply that the left and right sides
of (4.11) converge to 0 and 1

243 , as p→∞, respectively. This gives a contradiction.

This altogether finishes the proof of Claim 3. �

We next claim that θp is “asymptotically one-to-one”: there exists a set Xp ⊂ G̃p such that θp|Xp

is one-to-one and lim
p→∞

|Xp|
|G̃p|

= 1. To see this, let S′p = {y ∈ Sp | |Xy
p | = 1}. If y ∈ Sp \ S′p,

then |Xy
p | 6= 1. Since Np = {e} we have that |ωp(y)Np| = 1 and thus |Xy

p4ωp(y)Np| ≥ |Xy
p |

2 .

In combination with (4.5) we derive that lim
p→∞

1

|G̃p|
·
∑

y∈Sp\S′p |X
y
p | = 0. Together with (4.6) this
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further implies that lim
p→∞

1

|G̃p|
·
∑

y/∈S′p |X
y
p | = 0. Thus, if we let Xp = ∪y∈S′pX

y
p , then lim

p→∞
|Xp|
|G̃p|

= 1.

Since |Xy
p | = 1, for every y ∈ S′p, we also have that θp|Xp

is one-to-one, which proves our claim.

Finally, we will use that τp : Σ × Λ → Sym(Yp) is a homomorphism, for every p, in combination

with [Io19b, Theorem 5.1] to derive a contradiction. Consider the disjoint union Zp = Ypt(G̃p\Xp)
and extend τp to a homomorphism τp : Σ × Λ → Sym(Zp) by letting τp(g)|G̃p\Xp

= Id
G̃p\Xp

, for

every g ∈ Σ× Λ. We also define a one-to-one map Θp : G̃p → Zp by letting

Θp(x) =

{
θp(x), if x ∈ Xp, and

x, if x ∈ G̃p \Xp.

If g ∈ Σ × Λ, then Θp(x) = θp(x) and Θp(σ̃p(g)x) = θp(σ̃p(g)x), for every x ∈ Xp ∩ σ̃p(g)−1Xp.
From this it follows that

dH(Θp ◦ σ̃p(g), τp(g) ◦Θp) ≤ dH(θp ◦ σ̃p(g), τp(g) ◦ θp) +
|G̃p \ (Xp ∩ σ̃p(g)−1Xp)|

|G̃p|
.

By using (i), that |G̃p \ (Xp ∩ σ̃p(g)−1Xp)| ≤ 2 · |G̃p \Xp| and that lim
p→∞

|Xp|
|G̃p|

= 1, we deduce that

(4.12) lim
p→∞

dH(Θp ◦ σ̃p(g), τp(g) ◦Θp) = 0, for every g ∈ Σ× Λ.

Note that σ̃p(g, h)x = ϕ̃p(g)xρ̃p(h)−1, for all g ∈ Γ, h ∈ Λ, x ∈ G̃p by (4.2), ϕ̃p is onto and Γ has
property (τ) with respect to {ker(ϕ̃p)}p by Lemma 3.4. Since τp is a homomorphism and Θp is
one-to-one, for every p, we can apply [Io19b, Theorem 5.1] to conclude that

lim
p→∞

(
max{dH(σ̃p(t, e) ◦ σ̃p(e, h), σ̃p(e, h) ◦ σ̃p(t, e)) | h ∈ Λ}

)
= 0.

Using the definition 4.1 of σ̃p, this can be equivalently written as

lim
p→∞

(
max{dH(σp(t, e) ◦ σp(e, h), σp(e, h) ◦ σp(t, e)) | h ∈ Λ}

)
= 0,

which contradicts condition (3) from Lemma 3.6.

This finishes the proof of our main theorem in the case m ≥ 5 and k ≥ 3. In the general case, when
m, k ≥ 2, note first that Fm+3×Fk+1 satisfies the conclusion by the above. Since Fm+3×Fk+1 can
be realized as a finite index subgroup of Fm × Fk, the following lemma implies that the conclusion
also holds for Fm × Fk. �

Consider the following property for a sofic approximation σn : Γ0 → Sym(Xn) of a countable group
Γ0: (�) there are a sofic approximation τn : Γ0 → Sym(Yn) and maps θn : Xn → Yn such that

(a) τn is a homomorphism, for every n ∈ N,
(b) dH(θn ◦ σn(g), τn(g) ◦ θn)→ 0, for every g ∈ Γ0, and
(c) dH(θn ◦ σn(g), θn)→ 1, for every g ∈ Γ0 \ {e}.

Let Γ0 < Γ be a finite index inclusion of countable groups. The next lemma shows that if Γ0 has
a sofic approximation which fails (�), then so does Γ. The proof of this fact relies on an induction
argument, following closely [Io19b, Section 3.3]. Let s : Γ/Γ0 → Γ be a map such that s(eΓ0) = e
and s(gΓ0) ∈ gΓ0, for every g ∈ Γ. Then c : Γ×Γ/Γ0 → Γ0 given by c(g, hΓ0) = s(ghΓ0)−1gs(hΓ0)
is a cocycle for the left multiplication action Γ y Γ/Γ0.

Let σn : Γ0 → Sym(Xn) be a sofic approximation of Γ0 and define IndΓ
Γ0

(σn) : Γ→ Sym(Γ/Γ0×Xn)

by letting IndΓ
Γ0

(σn)(g)(hΓ0, x) = (ghΓ0, σn(c(g, hΓ0))x), for every g ∈ Γ, hΓ0 ∈ Γ/Γ0 and x ∈ Xn.

The proof of [Io19b, Lemma 3.3] shows that IndΓ
Γ0

(σn) is a sofic approximation of Γ.
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Lemma 4.1. If the induced sofic approximation (IndΓ
Γ0

(σn)) satisfies (�), then (σn) satisfies (�).

Proof. Assume that σ̃n := IndΓ
Γ0

(σn) : Γ → Sym(X̃n) satisfies (�), where X̃n = Γ/Γ0 × Xn. Let

τn : Γ → Sym(Yn) be a sofic approximation by homomorphisms and θ̃n : X̃n → Yn be maps such

that dH(θ̃n◦ σ̃n(g), τn(g)◦ θ̃n)→ 0, for every g ∈ Γ, and dH(θ̃n◦ σ̃n(g), θ̃n)→ 1, for every g ∈ Γ\{e}.
If g ∈ Γ0, then σ̃n(g) leaves eΓ0×Xn invariant and σ̃n(g)(eΓ0, x) = (eΓ0, σn(g)x), for every x ∈ Xn.
Thus, the restriction of σ̃n|Γ0

to eΓ0 ×Xn can be identified to σn. Denote by θn : eΓ0 ×Xn → Yn

the restriction of θ̃n to eΓ0 ×Xn. Then it is clear that for every g ∈ Γ0 we have that

dH(θn ◦ σ̃n(g)|eΓ0×Xn
, τn(g) ◦ θn) ≤ [Γ : Γ0] · dH(θ̃n ◦ σ̃n(g), τn(g) ◦ θ̃n) and

1− dH(θn ◦ σ̃n(g)|eΓ0×Xn
, θn) ≤ [Γ : Γ0] ·

(
1− dH(θ̃n ◦ σ̃n(g), θ̃n)

)
.

These inequalities imply that the maps θn witness that (σn) satisfies (�). �

References

[ALW01] N. Alon, A. Lubotzky and A. Widgerson: Semi-direct product in groups and zig-zag product in graphs:
connections and applications (extended abstract), 42nd IEEE Symposium on Foundations of Computer
Science (Las Vegas, NV, 2001), 630-637, IEEE Computer Soc., Los Alamitos, CA, 2001.

[AP15] G. Arzhantseva and L. Paunescu: Almost commuting permutations are near commuting permutations, J.
Funct. Anal., 269(3):745-757, 2015.

[Bo17] L. Bowen: Examples in the entropy theory of countable group actions, preprint arXiv:1704.06349, to appear
in Erg. Th. Dynam. Sys., 1-88. doi:10.1017/etds.2019.18.

[Bo18] L. Bowen, A brief introduction to sofic entropy theory, Proc. Int. Cong. of Math. 2018 Rio de Janeiro, Vol.
2 (1847-1866).
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