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University of Helsinki

pranvera.kortoci@helsinki.fi

Abbas Mehrabi
Northumbria University

abbas.mehrabidavoodabadi@northumbria.ac.uk

Carlee Joe-Wong
Carnegie Mellon University

cjoewong@andrew.cmu.edu

Mario Di Francesco
Aalto University

mario.di.francesco@aalto.fi

Abstract—Urban environments are the most prevalent ap-
plication scenario for the Internet of Things (IoT). In this
context, effective data collection and forwarding to a cloud (or
edge) server are particularly important. This work leverages
opportunistic data collection based on the mobile crowd sourcing
(MCS) paradigm for time-sensitive IoT applications. Specifically,
we design an incentive mechanism for the crowd to collect data
that are valuable to data consumers in terms of regions of interest
and time restrictions. In doing so, we (i) successfully incorporate
the highly-specific willingness of the crowd to participate in the
data collection to their cost, and (ii) ensure collection of valuable
data via selective user incentivization. Based on this, a weighted
social welfare maximization problem is defined for users to decide
which sensors to visit subject to deadline constraints. Following
the NP-hardness of the problem, an online heuristic algorithm
is proposed for sensors to dynamically incentivize mobile users
with a low message and time complexity. The proposed solution
is shown to be effective for time-sensitive quality data collection
through extensive simulations on realistic mobility traces. It
significantly increases the overall social welfare as well as the
amount of collected data compared to other approaches.

Index Terms—Incentives, opportunistic data collection, data
utility, IoT, mobile crowd sourcing

I. INTRODUCTION

Internet of Things (IoT) sensors are at the core of differ-

ent applications in smart cities, logistics, and the industrial

Internet [1]. For any of them, reliable delivery of sensed

data (e.g., to cloud or edge servers) is extremely important.

To address such an issue, the concept of opportunistic IoT

applies the paradigm of delay-tolerant networking to urban

scenarios [33]. Accordingly, sensory data sampled by IoT

devices are collected by mobile gateways, generally people

carrying smartphones, as in mobile crowd sourcing (MCS) [5].
The ubiquitous presence of mobile personal devices makes

the opportunistic IoT particularly attractive, as either an

alternative or a supplement to a traditional wireless sens-

ing infrastructure. In particular, opportunistic data collection

(i) eases the integration of heterogeneous IoT sensors, which

may otherwise require different transmission protocols such as

Long Range (LoRa) through separate and costly networks [6],

and (ii) extends to isolated networks, e.g., to ensure low energy

consumption, or as a result of failures [7, 8].
An IoT system is effective only when the sensory data are

valuable enough to support applications with different require-

ments. However, mobile devices are carried by users, whose

availability and willingness to participate in data collection

are inherently unpredictable. Moreover, sensory data collection

causes users both energy and monetary costs, in addition to the

burden to modify their planned path. Therefore, ensuring user

participation in data collection is crucial [9], and thus suitable

incentive mechanisms such as monetary compensation, virtual

cash, or redeemable credit must be put in place [11]. For

instance, Nodle enables individuals to contribute IoT data to

their platform in exchange for a Nodle Cash cryptocurrency.

Incentive mechanisms in MCS generally aim not only at

satisfying the economic properties of truthfulness, individual

rationality, efficiency, and non-negative social welfare [12–

17], but also include optimal user selection and task allocation

that guarantees a target service quality [13, 18, 19]. Moreover,

tasks are often location-dependent [20]; thus, mobile users (as

data collectors) that are nearby or plan to travel to a location

of interest are often prioritized [11, 16, 18, 21]. Indeed, this

article specifically accounts for the inherent dynamicity in user

mobility and the corresponding burden for users to move.

Designing effective incentive mechanisms for users to

change their mobility patterns poses several new research

challenges. First, the user’s cost of collecting data now in-

cludes not only the energy required to collect data from

sensors and forward it to a cloud server, but also the cost

incurred by modifying the user route. Evaluating each of these

costs requires us to go beyond typical MCS incentive studies

(Section VI) and extend our attention to evaluating the user’s

willingness to reach a certain region as a function of the burden

put on them. In fact, this task is non-trivial and may be quite

user-specific. Furthermore, we selectively incentivize users to

collect data that is valuable to IoT applications: collecting data

of low diversity (i.e., from collocated regions) might simply

waste user effort. Incorporating this notion of data value –

equivalently, utility – into the offered incentives is challenging,

as it makes them dependent on the total number of users.

We solve these challenges by introducing an incentive-based

MCS system in which individual sensors charge mobile users

a dynamic virtual price to collect their data (Section II). After

users accept a sensing task and the associated compensation

from the MCS platform, willingly participating to obtain a

payoff, they decide which region to visit. In doing so, they

consider the service quality requirements of the task and their

own costs of collecting data from different sensors; then, they

pay the sensors out of the compensation given by the MCS

platform. Moreover, users evaluate their expected costs based

on the inconvenience in changing their route to visit regions of

interest. Each sensor encodes the utility of its own data and the978-1-6654-4108-7/21/$31.00 ©2021 IEEE





Specifically, a sensor spends ps power for sampling; and Pst =
cs · ϕst power for transmitting the data to a MU, but only if

user un collects data from sensor s 2 Sr at time slot t (i.e.,

y
(t)
nsr = 1). Note that the transmission power depends on the

instantaneous utility of sensed data. The rationale behind this

choice is that the sensor effort increases with the importance of

the data; clearly, the amount of recently collected data directly

impacts the number of transmitted messages. This model also

captures other policies that can improve data utility through

higher communication reliability, for instance, by increasing

either message redundancy (such as with erasure codes) or

the transmission power to reduce channel errors. Similarly,

each MU un consumes: pn power for traveling between RoIs;

Pnst = cn · ϕst power for collecting and transmitting data

from sensor s in region r (i.e., x
(t)
nr = 1 and y

(t)
nsr = 1).

C. Reward and Profit Model

One of the key components of our system design is the

price that sensors charge the MUs for collecting their data,

which are paid out of the prices that the cloud server pays

the MU. Similar to prior research [30], our system provides

the users with a-priori knowledge on their expected profit,

allowing them to take informed decisions on whether or not to

carry out a task. We propose a simple method for the sensors to

set these prices so as to achieve our goals of incentivizing the

collection of useful data (i.e., highly-valuable data that has not

been recently collected). While setting such prices itself is an

interesting optimization problem, we instead propose a simple

method that requires limited computing at the sensors. We then

use these prices to analytically derive the profits for sensors

and MUs. In the next section, we characterize such a profit

to formulate and solve the MUs’ problem of deciding which

sensors to visit given the incentives offered by the sensors.

We suppose that the cloud server pays the MU the fixed

amount of Is reward for the collected data from sensor s
per time slot, which it determines based on consumers’ data

requests. Each sensor in turn determines the reward for its

samples based on the utility and the (historical) frequency

of visits by MUs to the RoI of the sensor. Each sensor’s

goal is to obtain high profits by motivating MUs to visit the

corresponding RoIs. Accordingly, the (time-dependent) pricing

model for sensor s 2 Sr in region r at time t is:

Rst = Rs(t�1)+
⇣

α
Vr(t�1) � V̄r

(t�1)

V̄r
(t�1)

t+β
ϕst � ϕ̄s

(t)

ϕ̄s
(t)

⌘

·∆R

(1)

where ∆R is a constant incremental reward specified by the

deployer; V̄r
(t�1)

=
P

N
n=1

Pt�1

t0=1
x(t0)
nr

t�1 is the average of the

MUs visits to region r up to time slot t � 1; and ϕ̄s
(t) =

Pt
t0=1 ϕst0)/t is the average utility of data at sensor s up to

time slot t. Sensors with fewer MU visits (e.g., those in remote

areas) would then have lower prices, potentially attracting

more MUs in the future. Sensors with higher utility would

increase their prices to compensate for the higher transmission

costs. The weights 0  α and β  1, with α+ β = 1, reflect

the impact of the frequency in MUs’ visits and the utility

(respectively) on the price; they are determined by the sensors

through an internal policy. We empirically evaluate the effects

of α and β on the data collected in Section V.

The profit of each sensor s from crowdsourced data

collection is simply its overall revenue less associated costs:

ProfitS(s) = RevenueS(s)� CostS(s) (2)

The sensor revenue is the sum of the rewards received from a

MU for the data transmitted during its allocated time duration:

RevenueS(s) =
Pds

t=as
Rst. The associated cost is the energy

consumption for data sampling and transmission to the MU

during the allocated time duration: CostS(s) =
Pds

t=as
a(ps +

Pst)·∆t, where the coefficient a scales the energy consumption

to be comparable to the monetary sensor reward.

The profit an MU un achieves from crowdsourced data

collection is obtained as:

ProfitMU(n) = RevenueMU(n)� CostMU(n) (3)

The revenue of MU n is the reward it receives from the

cloud server for collecting data from all visited sensors and

transmitting it to the cloud. Precisely:

RevenueMU(n) =

|T |
X

t=1

K
X

r=1

x(t)
nr(

Sr
X

s=1

y(t)nsr · (ds � as) · Is) (4)

MUs prefer to visit sensors whose data cost less and that are

close to their intended path. Similarly, MUs must also visit

sensors that the consumer values. Since the price of sensory

data increases with the number of visits and utility, MUs are

incentivized to visit sensors sampling data with high utility up

to the point where the price increases too much. At this point,

MUs start prioritizing other sensors, resulting in a trade-off

between data utility and corresponding price over time.

The costs associated with MU n’s data collection include:

the energy consumption or inconvenience of path traversal

(pn); the rewards to the sensors for collecting their data (Rst);
and the energy consumption for transmitting the data to a

nearby edge server (Pnst):

CostMU(n) = (
X

8t,t0,t<t0

x(t)
nr · x

(t0)
nr0 ·

Y

8 t<t00<t0

(1� x
(t

00

)

nr00
))

(t0 � t�max
s:y

(t)
nsr=1

{ds � as}�
X

8s2Sr

y(t)nsr · (ds � as)) · b(pn ·∆t)

+

|T |
X

t=1

K
X

r=1

x(t)
nr

⇣

Sr
X

s=1

y(t)nsr

�

ds
X

t=as

(Rst + cPnst) ·∆t
�

⌘

(5)

The weights b and c allow us to scale the energy cost to be a

monetary value that is comparable to the reward of the MU.

Note that the time of data collection and transmission in region

r has to be excluded from the time for traveling between region

r visited at time t and the next region r0 visited at time t0. To

do this, the first term in the right hand side of Eq. (5) states

that for every two subsequent time slots t and t0 for which

the MU visits ROIs r and r0 (the first summation) without

stopping at any other ROI r00 between them (the product), the



time for data collection from the sensors (the max term) and

the data transmission to the edge (the subsequent summation)

should be subtracted from the time spent in these ROIs (t�t0).
The second term indicates the overall reward paid by the MU

to the sensors in each region along with the overall energy

consumption for transmitting the data to a nearby edge server.

III. MOBILE CROWDSOURCING WITH DELAY CONSTRAINTS

The following formulates an optimization problem for

incentive-based mobile crowdsourcing subject to delay con-

straints (MCSD). To fairly share the obtainable profits be-

tween both MUs and sensors, we further define an adjustable

weighting parameter 0  γ  1 in the objective function. The

parameter γ allows us to tune the selfishness / generosity of

the MUs. As we show below, the MUs act solely in their own

best interest for γ = 1, while more generous MUs – e.g., those

that collect data altruistically – might use a lower value of γ.

The edge server could as well set γ = 0.5 to maximize the

sensor and MU profit equally. We encapsulate these different

scenarios by maximizing the weighted social welfare of the

system, so as to encourage both sensors and MUs to participate

in data sampling and data collection tasks (respectively) by

increasing their profits based on the weighting parameter γ.

In particular, the MCSD problem is defined as:

max
x,y,d

U =γ

N
X

n=1

ProfitMU(n) (6)

+ (1� γ)

|T |
X

t=1

N
X

n=1

K
X

r=1

x(t)
nr

⇣

Sr
X

s=1

y(t)snr · ProfitS(s)
⌘

Subject to:
⇣

X

8t<t0

�

x(t)
nr · x

(t0)
nr0 ·

�

Y

8t<t00<t0

(1� xt
00

nr00
)
�

(t0 � t)
�

⌘

∆t  Dn,

81  r, r0, r
00

 K, 1  n  N

(7)

|T |
X

t=1

x(t)
nr  1, 81  n  N, 1  r  K (8)

ProfitS(s) � 0, 8s 2 S (9)

ProfitMU(n) � 0, 8n 2 U (10)

as  ds  |T |, ds 2 N (11)

x(t)
nr , y

(t)
snr 2 {0, 1} 81  n  N, 1  r  K, s 2 S (12)

The objective function in Eq. (6) expresses the weighted social

welfare of the data collection system, as the summation of the

achievable profit for all MUs and sensors in a data collection

round. Eq. (7) ensures that the total time taken by an MU –

including the visits to RoIs, collecting data from the sensors

and transmitting the data to a nearby edge server – does not

exceed a certain deadline decided by the cloud server. Eq. (8)

states that each mobile user should visit every RoI at most

once in a data collection round for better coverage of the whole

sensing area. Eqs. (9)–(10) specify that the achievable profits

for sensors and MUs [given in Eqs. (2)–(3)] must be non-

negative, and thus are incentivized to participate. Moreover,

the task deadline should be between the task starting time and

the end of the data collection round [Eq. (11)]. Finally, Eq. (12)

restricts the variables to (binary) integer values. Accordingly,

the MCSD problem is an integer programming problem; the

problem is also non-linear due to the relation in Eq. (7).

Theorem 1 (NP-hardness). The MCSD problem is NP-hard.

Proof: For simplicity, we consider the special case in

which the system contains only one MU, one sensor node

in every RoI, and one edge server. The NP-hardness of this

special case trivially implies the same for the general problem

with multiple MUs, more than one sensor per RoI, and edge

servers covering only a subset of RoIs. Consider an instance

of the 0/1 capacitated knapsack (CK) problem with capacity

C and N items of profit pi and weight wi, i 2 N . The

objective is the selection of a subset N 0 ✓ N of items that

maximizes
P

i2N 0 pi subject to the capacity of the knapsack
P

i2N 0 wi  C. A reduction of such a CK instance is provided

next. The set of N items in CK are mapped to the set of K
RoIs in the sensing area and the capacity is mapped to the

deadline Dn of MU n. The weight wi of item i in the CK

problem is mapped to (i) the total time ti to visit RoI i 2 K,

(ii) time t
(i)
s to collect data from sensor node at that RoI ,

and (iii) one time slot t
(i)
e to transmit data to the edge server,

namely, ti+ t
(i)
s + t

(i)
e . Furthermore, the profit of item i in the

CK problem, pi, is mapped to the achievable weighted social

welfare γ · ProfitMU(n) + (1 � γ) · ProfitS(si) when MU n
visits RoI i to collect data from sensor si therein. The MU

can visit RoIs covered by the edge server in any order. Now,

the problem of visiting a subset K 0 ✓ K of RoIs by MU n for

collecting data from sensors with the objective of maximizing
P

i2K0(γ · ProfitMU(n) + (1 � γ) · ProfitS(si)) subject to the

deadline, i.e.,
P

i2K0(ti + t
(i)
s + t

(i)
e )  Dn is equivalent to

the above-mentioned instance of CK problem. Since the 0/1

CK problem is NP-hard [31], so is the special case considered

here, as it is the (more general) MCSD problem.

Theorem 2 (Feasibility). The MCSD problem is feasible.

Proof: A solution to the MCSD problem is feasible if

it is a sequence of RoI visits by an MU n that satisfies

the constraints in Eqs. (7)–(10). Assume that the traversal of

MU n at time slot t0 is within the deadline, i.e., t0  Dn.

Furthermore, assume that tmin is the minimum time needed by

MU n to visit the nearest unvisited RoI containing at least one

new sensor node. Two cases follow: (1) t0+tmin+2∆t  Dn:

the MU can still visit the nearest RoI and collect data for

at least one time slot from at least one sensor by satisfying

Eqs. (9)–(10). The total time is still within the deadline

(Eq. (7)) and the selected RoI has not yet been visited (Eq. (8)).

(2) t0 + tmin + 2∆t > Dn: the time to visit the nearest RoI,

collect data from at least one sensor and transmitting it to an

edge server exceeds the deadline of MU. In this case, the MU

can stop and the solution obtained until time t0 is feasible.

Note that the existence of a feasible solution for the MCSD

problem could not have otherwise been deduced from the 0/1



Algorithm 1: UO-DCA for mobile user un 2 U at time

slot 1  t  |T |

1 Determine edge server e according to Eq. (13);

2 foreach region ri 2 {R�R
(t)
n } \Re do

3 Compute ProfitS(i), CostS(i), ProfitMU(i) and CostMU(i)
[Eqs. (16)–(19)];

4 Find the target region rc according to Eq. (20);

5 Move to region rc within tc time duration;
6 foreach time slot t+ tc  t0  t+ tc + dtcs/∆te do
7 Sorted sensors in region rc in decreasing order of their

ϕ/P values at time slot t0 into set S;

8 Select first d(mc/
P

j mj) ·mce, 8j 2 R�R
(t)
n sensors

from set S such that ProfitS(s
0) > 0 and ProfitMU(n) > 0

for each selected sensor s0;
9 Collect data for ∆t time from the selected sensors;

10 Transmit collected data from selected sensors in region rc
sequentially to a nearby edge server;

11 Remove region rc from the set of unvisited RoIs;

12 Set current time slot to tcur = t+ ϕ̄/(dc·P̄c)P
j ϕ̄j/(dj ·P̄j)

(Dn � t);

13 Update nearby edge server e according to Eq. (13);
14 if tcur +min{tr, 8r 2 {R�Rtcur

n } \Re} > Dn then
15 Terminate data collection by mobile user un;

16 else Repeat for mobile user un at time slot tcur ;

CK reduction due to Theorem 1’s more restricted settings.

IV. UTILITY-BASED OPPORTUNISTIC DATA COLLECTION

The MCSD problem cannot be solved efficiently since it

is NP-hard. Exhaustive search methods are infeasible, due

to their extremely high computational complexity and the

unavailability of contextual information in advance (e.g., in-

stantaneous utility / rewards of sensed data and the power

consumption of nodes). This section presents a scalable and

low-complexity heuristic for the MCSD problem – Utility-

based Opportunistic Data Collection (UO-DCA).

A. UO-DCA: An Online Greedy Algorithm

The most challenging task in designing an efficient algo-

rithm for the MCSD problem is collecting the instantaneous

sensory data from the devices in different RoIs at a large

scale. All interactions could be directly controlled by the

cloud, at the expense of high latency and an increase of

traffic in the backhaul. In contrast, UO-DCA leverages the

mobile edge computing (MEC) paradigm [32] to move the

communication / processing tasks to the edge of the network,

nearby mobile users. Accordingly, edge servers manage the

tasks for the RoIs under their coverage (Fig. 1).

Local coordinators in each RoI inform edge servers about

the average utility of sensory data and energy consumption

of the devices in that area. Each MU contacts the nearest

edge server at the beginning of its traversal to receive the

contextual information of the RoIs, including their physical

distances. These can be obtained, for instance, by using GPS.

The MU then aggregates this contextual information to decide

on the most suitable RoI to visit. Visiting that RoI results in

the locally-maximum weighted social welfare while satisfying

the deadline associated with the overall data collection time –

including traversal to that RoI, receiving data from sensors

and transmitting data to a nearby edge server. Since MUs

have no prior information about time duration during which

sensors in each RoI transmit their data, we propose our online

heuristic that approximates the locally achievable weighted

social welfare from each unvisited RoI.

Estimating the time required for future data collection.

Assume that at a given time slot t, mobile user un with arrival

time An needs to decide which region to visit next, given the

set of unvisited RoIs nearby. The MU computes the achievable

profit for the sensors upon receiving the necessary information

from edge server e 2 E derived as follows:

e = argmin{d
(t)
ne0 , 8e

0 2 E} (13)

where d
(t)
ne0 is the physical distance between mobile user un

and edge server e0 2 E at time slot t. The information received

from a nearby edge server includes the average utility ϕ̄i,

power consumption P̄i and the physical distance di to each

unvisited region ri 2 {R�R
(t)
n }\Re. Note that Re indicates

the set of RoIs which edge server e covers.

The MU needs to precompute the achievable weighted

social welfare from every unvisited RoI i in real-time to visit

the next (best) RoI. However, the number of time slots at

which sensors in each RoI i transmit data to the MU (ds�as)
is not known in advance. Thus, the MU must approximately

estimate this information beforehand. In UO-DCA, an MU

uses the following approximation to estimate the time that it

should spend to collect data from the selected sensors in such

a region (t
(i)
s ) and transmit it to a nearby edge server (t

(i)
e ):

t(i)s +t(i)e ⇡
ϕ̄i/(di · P̄i)

P

j ϕ̄/(dj · P̄j)
(Dn�t�ti), 8j 2 R�R(t)

n (14)

Here ti, the time to visit RoI i is known in advance and

announced by the edge server to the MUs. From Eq. (14),

the higher the utility ϕ in region i compared to other regions

j 2 Re and the smaller the transmission power (i.e., energy

consumption) of the sensors in the region, the longer the time

considered by the MU for data collection and transmission

there. We further note that Eq. (14) does not require the MU

to know individual sensors’ data utility or power information.

Estimating sensor profit. In our system, a MU considers

collecting data from a fraction of sensors at each RoI for fair-

ness purposes, as well as to obtain heterogeneous yet valuable

data from all RoIs within the deadline. More specifically, let

mi be the number of sensors in region ri announced by the

edge server. UO-DCA approximates the number of sensors

selected for data transmission in region i (i.e., for which

y
(t)
nsr = 1) as d(mi/

P

j mj) · mie for 8j 2 R � R
(t)
n , i.e.,

the fraction of sensors selected is proportional to the fraction

of sensors located in region i compared to other regions.

Candidate sensors in a region transmit all their data to an

MU; upon receiving such data, the MU then transmits them

sequentially (i.e., in consecutive time slots) to the nearest edge



server. Thus, the time period during which the MU collects

data from selected sensors in region ri follows from Eq. (14):

t(i)s =

ϕ̄i/(di·P̄i)P
j
ϕ̄j/(dj ·P̄j)

(Dn � t� ti)

d(mi/
P

j mj) ·mie+ 1
, 8j 2 R�R(t)

n (15)

Note that the above approximation is obtained under the

assumption that the selected sensors in region ri send their

data to the MU with equal time duration. With no change in

data utility or sensors power consumption, the MU spends less

time for data collection as the number of sensors in the RoI

increases to collect valuable data fairly from unvisited RoIs in

its traversal. The revenue of the sensors in region ri is then:

RevenueS(i) ⇡ (d(mi/
X

j

mj) ·mie) · t
(i)
s · R̄i (16)

where t
(i)
s is given in Eq. (15) and R̄i is the corresponding

average reward that should be paid to the sensors in region

ri for collecting their data. Finally, the cost associated with

sensors in region ri is approximated as follows:

CostS(i) ⇡ (d(mi/
P

j mj) ·mie) · a · (t
(i)
s · (ps + P̄i)) (17)

Estimating MU profit. Similarly, the revenue that an MU

obtains by visiting region ri is given by:

RevenueMU(i) ⇡ (d(mi/
X

j

mj) ·mie) · t
(i)
s · Īi (18)

where Īi is the average reward that the cloud server pays to

the MU for sending the collected sensory data in region ri.
The corresponding cost for an MU is approximated as follows:

CostMU(i) ⇡ b · (ti · pn) (19)

+ (d(mi/
X

j

mj) ·mie) · t
(i)
s · (R̄i + cP̄ni)

where P̄ni is the average power to transmit the data collected

by the MU from sensors in region i to a nearby edge server.

Choosing the RoI to visit. Given the above, the region that

an MU selects (at time t) to visit next is obtained as follows:

c = argmax
8j2R�R

(t)
n

{(uj) ^ t(j)s > 0} (20)

where uj , the local achievable weighted social welfare

(Eq. (6)) when visiting region rj , comes from Eqs. (16–19):

uj = γ(RevenueS(j)� CostS(j)) (21)

+ (1� γ)(RevenueMU(j)� CostMU(j))

Once the MU moves to the selected region rc, the sensors in

this RoI send their data for the time duration of t
(c)
s within

dtcs/∆te time slots. At each time slot, the set of sensors which

are selected for data transmission to MU is determined as fol-

lows. First, the MU sorts all sensors in the region in decreasing

order of ϕ/P values at the current time slot and stores them in

set S. Then, the first d(mi/
P

j mj) ·mie sensors from set S
which have the highest ϕ/P values and satisfy the conditions

in Eqs. (9)–(10) are selected for data transmission to the MU

at the current time slot. Upon collecting and transmitting the

data of sensors in region rc to the edge server, the MU updates

its remaining time and executes the same above-mentioned

heuristic to find the next RoI to visit in its traversal. The MU,

at every time slot, evaluates whether the remaining time is

sufficient to visit at least one more RoI. If not, the MU does

not accept the subsequent data collection task.

UO-DCA is described in Algorithm 1. Although the algo-

rithm refers to a certain mobile user at a given time slot, the

same procedure is executed by all MUs at different time slots.

Complexity Analysis. The following provides an analysis of

UO-DCA, starting from its time and message complexity.

Theorem 3. UO-DCA has a time complexity of O(K(K+1
2 +

M log(M))) and a message complexity of O(K(E + M)),
where K is the number of RoIs, E is the number of edge

servers, and M = max(|Sk|, 1  k  K) is the maximum

number of sensors per RoI.

Proof: The complexity analysis is done for one MU;

however, it applies to all the MUs in the system. In the worst

case, an MU visits all RoIs within the specified deadline for

a data collection task. For each unvisited RoI, the MU first

computes the achievable profits and the associated costs (line

2) in O(1) time (line 2), for a total time complexity of O(i)
with i unvisited RoIs at a certain time slot. After the visit, the

MU sorts the sensors in decreasing order of their ϕ/P values

(line 6) with a worst case time complexity of O(M log(M)),
where M = max(|Sk|, 1  k  K) is the maximum number

of sensors in the RoI. The MU can visit all RoIs within the

deadline, therefore, the worst case time complexity of UO-

DCA is O(K(K+1
2 +M log(M))) for K RoIs.

A MU must discover and communicate with the nearest

edge server to select the subsequent RoI to visit at each time

slot. Such a communication involves sending O(E) messages,

where E is the maximum number of edge servers in the

sensing area, and receiving O(1) messages in reply. Upon

visiting the selected region, the MU receives data from at

most M sensors with a worst-case message complexity of

O(M). The MU visits at most K regions in the worst case;

thus, the overall message complexity of UO-DCA is given by:

MUO�DCA 2 O(K(E +M)).

V. EVALUATION

A. Simulation Setup

The considered urban IoT scenario is represented by a

varying number of MUs and 200 sensors randomly deployed

in a metropolitan area of 4, 480 by 3, 500 meters. All sensors

had a transmission range of 100 m. The area is further divided

into square regions of size 140 by 140 meters (i.e., inscribed

in a circle of 99 meter radius) and 24 edge servers cover

not-overlapping subsets of such regions. The ONE simulator

v.1.6.0 was employed to generate mobility traces based on the

roads in the city of Helsinki and pedestrians walking with

a speed between 0.5 and 1.5 m/s along streets as well as







However, we leverage the concept of utility to characterize

how sensory data are valuable. In addition, [38] considers an

incentive-aware time-sensitive data collection scheme whose

focus is users’ cooperation to relay data to ultimately reach

a data requestor. By contrast, our solution requires no user

cooperation, but only the willingness of a user to collect data.

Several works design incentive and pricing mechanisms to

ensure user participation [17, 39] while reducing their sensing

effort [11, 12, 18, 39]. While we similarly account for the

cost to complete a task, we focus on the user-specific cost

incurred by modifying their route. By accounting for users’

behavior, we selectively incentivize them to collect valuable

data. Moreover, our work provides users with expected cost

and revenue values prior to task completion, as opposed

to [17, 39]. Similar to [19], we focus on trade-offs between

task quality and completion cost, while emphasizing the dy-

namics of a time-varying price for sensor data that accounts

for network dynamics such as utility and frequency of user

visits to the sensors.

VII. CONCLUSION

IoT applications in urban scenarios can benefit from mobile

crowd sourcing as long as sensory data are properly collected

and transmitted to the cloud for further processing. In such a

context, this work devises an incentive-based solution in which

individual sensors charge mobile users a dynamic virtual price

to collect their data. Upon accepting a sensing task and the

corresponding compensation, a user decides which sensors to

visit based on the task’s service quality requirements and its

own costs relative to task completion. By encoding the quality

of the sensory data and frequency of user visits into the virtual

price, each sensor dynamically incentivizes users to either

collect data or not, depending on sensor’s data having been

recently collected by others. The proposed incentive-based

scheme accounts for such dynamics and significantly increases

the amount of collected data by up to 70% compared to other

baseline approaches, while simultaneously yielding a higher

social welfare by up to 60% for all system’s stakeholders.

As a future work, we seek to implement the proposed

solution on top of an existing mobile crowdsourcing platform.
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