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Abstract—Urban environments are the most prevalent ap-
plication scenario for the Internet of Things (IoT). In this
context, effective data collection and forwarding to a cloud (or
edge) server are particularly important. This work leverages
opportunistic data collection based on the mobile crowd sourcing
(MCS) paradigm for time-sensitive IoT applications. Specifically,
we design an incentive mechanism for the crowd to collect data
that are valuable to data consumers in terms of regions of interest
and time restrictions. In doing so, we (i) successfully incorporate
the highly-specific willingness of the crowd to participate in the
data collection to their cost, and (ii) ensure collection of valuable
data via selective user incentivization. Based on this, a weighted
social welfare maximization problem is defined for users to decide
which sensors to visit subject to deadline constraints. Following
the NP-hardness of the problem, an online heuristic algorithm
is proposed for sensors to dynamically incentivize mobile users
with a low message and time complexity. The proposed solution
is shown to be effective for time-sensitive quality data collection
through extensive simulations on realistic mobility traces. It
significantly increases the overall social welfare as well as the
amount of collected data compared to other approaches.

Index Terms—Incentives, opportunistic data collection, data
utility, IoT, mobile crowd sourcing

I. INTRODUCTION

Internet of Things (IoT) sensors are at the core of differ-
ent applications in smart cities, logistics, and the industrial
Internet [1]. For any of them, reliable delivery of sensed
data (e.g., to cloud or edge servers) is extremely important.
To address such an issue, the concept of opportunistic loT
applies the paradigm of delay-tolerant networking to urban
scenarios [33]. Accordingly, sensory data sampled by IoT
devices are collected by mobile gateways, generally people
carrying smartphones, as in mobile crowd sourcing (MCS) [5].

The ubiquitous presence of mobile personal devices makes
the opportunistic IoT particularly attractive, as either an
alternative or a supplement to a traditional wireless sens-
ing infrastructure. In particular, opportunistic data collection
(i) eases the integration of heterogeneous IoT sensors, which
may otherwise require different transmission protocols such as
Long Range (LoRa) through separate and costly networks [6],
and (ii) extends to isolated networks, e.g., to ensure low energy
consumption, or as a result of failures [7, 8].

An IoT system is effective only when the sensory data are
valuable enough to support applications with different require-
ments. However, mobile devices are carried by users, whose
availability and willingness to participate in data collection
are inherently unpredictable. Moreover, sensory data collection
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causes users both energy and monetary costs, in addition to the
burden to modify their planned path. Therefore, ensuring user
participation in data collection is crucial [9], and thus suitable
incentive mechanisms such as monetary compensation, virtual
cash, or redeemable credit must be put in place [11]. For
instance, Nodle enables individuals to contribute IoT data to
their platform in exchange for a Nodle Cash cryptocurrency.

Incentive mechanisms in MCS generally aim not only at
satisfying the economic properties of truthfulness, individual
rationality, efficiency, and non-negative social welfare [12—
17], but also include optimal user selection and task allocation
that guarantees a target service quality [13, 18, 19]. Moreover,
tasks are often location-dependent [20]; thus, mobile users (as
data collectors) that are nearby or plan to travel to a location
of interest are often prioritized [11, 16, 18, 21]. Indeed, this
article specifically accounts for the inherent dynamicity in user
mobility and the corresponding burden for users to move.

Designing effective incentive mechanisms for users to
change their mobility patterns poses several new research
challenges. First, the user’s cost of collecting data now in-
cludes not only the energy required to collect data from
sensors and forward it to a cloud server, but also the cost
incurred by modifying the user route. Evaluating each of these
costs requires us to go beyond typical MCS incentive studies
(Section VI) and extend our attention to evaluating the user’s
willingness to reach a certain region as a function of the burden
put on them. In fact, this task is non-trivial and may be quite
user-specific. Furthermore, we selectively incentivize users to
collect data that is valuable to loT applications: collecting data
of low diversity (i.e., from collocated regions) might simply
waste user effort. Incorporating this notion of data value —
equivalently, utility — into the offered incentives is challenging,
as it makes them dependent on the total number of users.

We solve these challenges by introducing an incentive-based
MCS system in which individual sensors charge mobile users
a dynamic virtual price to collect their data (Section II). After
users accept a sensing task and the associated compensation
from the MCS platform, willingly participating to obtain a
payoff, they decide which region to visit. In doing so, they
consider the service quality requirements of the task and their
own costs of collecting data from different sensors; then, they
pay the sensors out of the compensation given by the MCS
platform. Moreover, users evaluate their expected costs based
on the inconvenience in changing their route to visit regions of
interest. Each sensor encodes the utility of its own data and the
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Fig. 1: A mobile crowdsourcing system as considered in this work.

frequency of user visits into a single quantity, which serves as
an incentive for the user to collect data from that sensor. This
design thus allows the sensors to incentivize users away from
them when their data has recently been collected by others.
We show that users’ decisions regarding which sensors to
visit under a given set of sensor prices can be formulated
as a weighted social welfare maximization problem. Such
an approach allows individual users to evaluate their own
costs of altering their routes and collecting data from specific
regions by a given time (Section III). Such a problem is
computationally hard, and is also complicated by the need to
estimate key operating parameters dynamically and efficiently.
In this respect, we introduce a Utility-based Opportunistic
Data Collection Algorithm (UO-DCA) that addresses weighted
social welfare maximization with delay constraints as a dis-
tributed process (Section IV). Thus, the MCS platform need
not estimate users’ personal mobility costs. This design is
also flexible to changes in the MCS system; for instance,
if the data utility drops, the sensor can simply change its
price without having to wait for the cloud server or MCS
users to discover such. Extensive simulations based on realistic
mobility traces (Section V) show that our proposed solution is
effective, providing adequate incentives for users to alter their
path and collect data from sensors within a specified deadline.

II. BACKGROUND
A. Reference Architecture

The reference IoT scenario we consider (Fig. 1) includes
different components: a set of sensors deployed in a large
geographical area; a set of mobile users (MUs), i.e., people
carrying personal devices such as smartphones; a platform that
organizes the crowdsourcing campaign, residing in the cloud;
edge servers deployed near the MUs; and data consumers.

Data consumers are people or companies that are interested
in sensory data characterizing certain physical phenomena.
Static sensors are deployed in the sensing field, and period-
ically collect data from the environment through short- or
medium-range communication technologies (i.e., BLE) and
store them locally. Data consumers submit requests to access
sensory data from a certain region of interest (Rol) to the

crowdsourcing platform, e.g., a cloud server; one or more
sensors could be located in a Rol. In turn, the cloud server
allocates the data collection tasks — which have an associated
deadline — to the MUs with the help of the edge servers. In
fact, it is unlikely that all sensors can reach an edge server with
short-range wireless technologies like BLE, thus requiring
the help of MUs to collect sensed data. Even longer-range
communication technologies like LoRA may not be able to
support the high throughput needed to handle all sensors’
transmitting data to the same edge server [26].

The cloud server receives a request from data consumers
and broadcasts it to the edge servers which, in turn, assign the
data collection tasks and monetary incentives' to the MUs.
The MU evaluates the cost of the data collection task and if
they agree, they visit the sensors and collect their data.

B. System Model

The sensing area consists of K regions of interest (Rols)
denoted by set R = {ry, 72, ...,7x }. Multiple sensor devices
sense the phenomena within each region; those in region
r, are denoted by Sp C S, where S is the set of all
sensors in the sensing area. The cloud server recruits N
MUs (either pedestrians or people in vehicles) denoted by
set U = {uj,ug,...,un} such that each u,, moves within
the Rols to collect data from sensors and transmit them to
the nearest edge server. A data collection round has |7'| time
slots, each lasting for At time; w,, starts its path traversal
at time slot A,,, then visits the set of Rols Rgf ) until time
slot ¢ in a certain sequence. Data are time-sensitive, thus the
cloud server imposes a deadline D,, for MU u,, to complete
their task. Visits of MUs to regions and sensor selection are
modeled with binary variables: :cgfr) and yﬁlts)r are set to one if
region 7 is visited by MU wu,, at time slot ¢, and sensor s in
region 7 sends data to MU u,,, respectively; otherwise to zero.

Sensor s € S, in region r transmits data to MU u,, starting
at time slot a4 and ending at ds. We suppose that as coincides
with the MU entering the region, after which data collection
immediately starts [28]. The ending time slot a5 < ds < |7,
and thus the amount of data sensed, is chosen by the user as
described in Section III. Furthermore, sensor s advertises the
utility 0 < @4 < 1 and the associated reward R, for the data
sensed at time slot ¢ during transmission. The utility expresses
how data are valuable or beneficial for a given IoT application.
We assume that utility is proportional to the data volume. For
instance, utility could be related to the resolution of collected
data such as the sampling frequency of a certain signal or
the size of an image. Higher utility is more desirable not
only for data-intensive applications; in fact, a higher sampling
frequency of sensors translates into more samples per unit of
time, thus, better characterizes the phenomenon of interest.

Ensuring a certain utility requires some effort by sensors.
This effort is quantified in terms of a power consumption (per
time slot) which depends on both sensing and communication.

'We assume monetary remuneration for simplicity, as incentives in mobile
crowdsourcing are widely studied [27] and out of the scope of this work.



Specifically, a sensor spends p, power for sampling; and Py, =
Cs - st power for transmitting the data to a MU, but only if
user u, collects data from sensor s € S, at time slot ¢ (i.e.,
ygs)r = 1). Note that the transmission power depends on the
instantaneous utility of sensed data. The rationale behind this
choice is that the sensor effort increases with the importance of
the data; clearly, the amount of recently collected data directly
impacts the number of transmitted messages. This model also
captures other policies that can improve data utility through
higher communication reliability, for instance, by increasing
either message redundancy (such as with erasure codes) or
the transmission power to reduce channel errors. Similarly,
each MU wu,, consumes: p,, power for traveling between Rols;
Post = ¢ - pst power for collecting and transmitting data
from sensor s in region r (i.e., argw) =1 and ymr 1).

C. Reward and Profit Model

One of the key components of our system design is the
price that sensors charge the MUs for collecting their data,
which are paid out of the prices that the cloud server pays
the MU. Similar to prior research [30], our system provides
the users with a-priori knowledge on their expected profit,
allowing them to take informed decisions on whether or not to
carry out a task. We propose a simple method for the sensors to
set these prices so as to achieve our goals of incentivizing the
collection of useful data (i.e., highly-valuable data that has not
been recently collected). While setting such prices itself is an
interesting optimization problem, we instead propose a simple
method that requires limited computing at the sensors. We then
use these prices to analytically derive the profits for sensors
and MUs. In the next section, we characterize such a profit
to formulate and solve the MUs’ problem of deciding which
sensors to visit given the incentives offered by the sensors.

We suppose that the cloud server pays the MU the fixed
amount of I, reward for the collected data from sensor s
per time slot, which it determines based on consumers’ data
requests. Each sensor in turn determines the reward for its
samples based on the utility and the (historical) frequency
of visits by MUs to the Rol of the sensor. Each sensor’s
goal is to obtain high profits by motivating MUs to visit the
corresponding Rols. Accordingly, the (time-dependent) pricing
model for sensor s € S, in region 7 at time ¢ is:
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MUs visits to region r up to tlme slot t — 1; and ¢, =
Zi,zl ©st/)/t is the average utility of data at sensor s up to
time slot £. Sensors with fewer MU visits (e.g., those in remote
areas) would then have lower prices, potentially attracting
more MUs in the future. Sensors with higher utility would
increase their prices to compensate for the higher transmission
costs. The weights 0 < « and 8 < 1, with ae + 8 = 1, reflect
the impact of the frequency in MUs’ visits and the utility

R = Ry 1)+(

(respectively) on the price; they are determined by the sensors
through an internal policy. We empirically evaluate the effects
of oo and 8 on the data collected in Section V.

The profit of each sensor s from crowdsourced data
collection is simply its overall revenue less associated costs:

Profits(s) = Revenues(s) — Costs(s) 2)

The sensor revenue is the sum of the rewards received from a
MU for the data transmitted during its allocated time duration:
Revenues(s) = Zf;as Rg:. The associated cost is the energy
consumption for data sampling and transmission to the MU
during the allocated time duration: Costs(s) = Zt o, 0(Ps +
Py;)-At, where the coefficient a scales the energy consumption
to be comparable to the monetary sensor reward.

The profit an MU w,, achieves from crowdsourced data
collection is obtained as:

Profityy (n) = Revenueyy(n) — Costyy(n) 3)

The revenue of MU n is the reward it receives from the
cloud server for collecting data from all visited sensors and
transmitting it to the cloud. Precisely:
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MUs prefer to visit sensors whose data cost less and that are
close to their intended path. Similarly, MUs must also visit
sensors that the consumer values. Since the price of sensory
data increases with the number of visits and utility, MUs are
incentivized to visit sensors sampling data with high utility up
to the point where the price increases too much. At this point,
MUs start prioritizing other sensors, resulting in a trade-off
between data utility and corresponding price over time.

The costs associated with MU n’s data collection include:
the energy consumption or inconvenience of path traversal
(pn); the rewards to the sensors for collecting their data (R, );
and the energy consumption for transmitting the data to a
nearby edge server (Ppst):

COStMU Z .’L'(f) H (1 — atffr,,)))
Vt tt<t! v ot<t! <t
(t —t—max {ds —as} — Z ®) . (dy — as)) - b(py, - At)
syl =1 VseS,
T K
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The weights b and c allow us to scale the energy cost to be a
monetary value that is comparable to the reward of the MU.
Note that the time of data collection and transmission in region
7 has to be excluded from the time for traveling between region
r visited at time ¢ and the next region 7’ visited at time ¢'. To
do this, the first term in the right hand side of Eq. (5) states
that for every two subsequent time slots ¢ and ¢’ for which
the MU visits ROIs r and 7’ (the first summation) without
stopping at any other ROI 7"’ between them (the product), the



time for data collection from the sensors (the max term) and
the data transmission to the edge (the subsequent summation)
should be subtracted from the time spent in these ROIs (¢t —t').
The second term indicates the overall reward paid by the MU
to the sensors in each region along with the overall energy
consumption for transmitting the data to a nearby edge server.

III. MOBILE CROWDSOURCING WITH DELAY CONSTRAINTS

The following formulates an optimization problem for
incentive-based mobile crowdsourcing subject to delay con-
straints (MCSD). To fairly share the obtainable profits be-
tween both MUs and sensors, we further define an adjustable
weighting parameter 0 < v < 1 in the objective function. The
parameter y allows us to tune the selfishness/generosity of
the MUs. As we show below, the MUs act solely in their own
best interest for v = 1, while more generous MUs — e.g., those
that collect data altruistically — might use a lower value of ~.
The edge server could as well set v = 0.5 to maximize the
sensor and MU profit equally. We encapsulate these different
scenarios by maximizing the weighted social welfare of the
system, so as to encourage both sensors and MUs to participate
in data sampling and data collection tasks (respectively) by
increasing their profits based on the weighting parameter .
In particular, the MCSD problem is defined as:

N
max U WnZIProﬁtMu( n) (6)
ITI N K
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PrOﬁtS( ) > 0, Vse S (9)
Profityy(n) >0, Vnel (10)
as <ds <|T|, ds€eN (1)

2@y 0,1} Vi<n<N,1<r<K,seS (12)

The objective function in Eq. (6) expresses the weighted social
welfare of the data collection system, as the summation of the
achievable profit for all MUs and sensors in a data collection
round. Eq. (7) ensures that the total time taken by an MU —
including the visits to Rols, collecting data from the sensors
and transmitting the data to a nearby edge server — does not
exceed a certain deadline decided by the cloud server. Eq. (8)
states that each mobile user should visit every Rol at most
once in a data collection round for better coverage of the whole
sensing area. Egs. (9)—(10) specify that the achievable profits
for sensors and MUs [given in Egs. (2)—(3)] must be non-
negative, and thus are incentivized to participate. Moreover,

the task deadline should be between the task starting time and
the end of the data collection round [Eq. (11)]. Finally, Eq. (12)
restricts the variables to (binary) integer values. Accordingly,
the MCSD problem is an integer programming problem; the
problem is also non-linear due to the relation in Eq. (7).

Theorem 1 (NP-hardness). The MCSD problem is NP-hard.

Proof: For simplicity, we consider the special case in
which the system contains only one MU, one sensor node
in every Rol, and one edge server. The NP-hardness of this
special case trivially implies the same for the general problem
with multiple MUs, more than one sensor per Rol, and edge
servers covering only a subset of Rols. Consider an instance
of the 0/1 capacitated knapsack (CK) problem with capacity
C and N items of profit p; and weight w;, i € N. The
objective is the selection of a subset N’ C N of items that
maximizes ) ;. p; subject to the capacity of the knapsack
> iens wi < C. Areduction of such a CK instance is provided
next. The set of IV items in CK are mapped to the set of K
Rols in the sensing area and the capacity is mapped to the
deadline D,, of MU n. The weight w; of item ¢ in the CK
problem is mapped to (i) the total time ¢; to visit Rol i € K,
(i) time tgl to collect data from sensor node at that Rol ,
and (iii) one time slqt tgb) to transmit data to the edge server,
namely, t; + tD 1% Furthermore, the profit of item 7 in the
CK problem, p;, is mapped to the achievable weighted social
welfare ~y - Profityy(n) + (1 — ) - Profits(s;) when MU n
visits Rol 7 to collect data from sensor s; therein. The MU
can visit Rols covered by the edge server in any order. Now,
the problem of visiting a subset K’ C K of Rols by MU n for
collecting data from sensors with the objective of maximizing
> ik (7 - Profityy(n) + (1 — ) - Profitg(s;)) subject to the
deadline, i.e., ) ;o (ti + 0 4 ¢l )) < D, is equivalent to
the above-mentioned instance of CK problem. Since the 0/1
CK problem is NP-hard [31], so is the special case considered
here, as it is the (more general) MCSD problem. |

Theorem 2 (Feasibility). The MCSD problem is feasible.

Proof: A solution to the MCSD problem is feasible if
it is a sequence of Rol visits by an MU n that satisfies
the constraints in Egs. (7)—(10). Assume that the traversal of
MU n at time slot ¢’ is within the deadline, ie., t' < D,.
Furthermore, assume that ¢,,,;,, is the minimum time needed by
MU n to visit the nearest unvisited Rol containing at least one
new sensor node. Two cases follow: (1) t/ +t,in +2At < D,
the MU can still visit the nearest Rol and collect data for
at least one time slot from at least one sensor by satisfying
Egs. (9)—(10). The total time is still within the deadline
(Eq. (7)) and the selected Rol has not yet been visited (Eq. (8)).
(2) t' + tymin + 2At > D,,: the time to visit the nearest Rol,
collect data from at least one sensor and transmitting it to an
edge server exceeds the deadline of MU. In this case, the MU
can stop and the solution obtained until time ¢’ is feasible. H

Note that the existence of a feasible solution for the MCSD
problem could not have otherwise been deduced from the 0/1



Algorithm 1: UO-DCA for mobile user u,, € U at time
slot 1 <t <|T]|

1 Determine edge server e according to Eq. (13);

2 foreach region r; € {R — Rgf)} NR. do

3 Compute Profits (), Costs(2), Profitmy () and Costmu (%)
[Egs. (16)-(19)];

4 | Find the target region r. according to Eq. (20);

5 Move to region r. within . time duration;

6 foreach time slot t +t. < t' <t +t.+ [ts/At] do

7 Sorted sensors in region 7. in decreasing order of their
/P values at time slot ¢’ into set S;

8 Select first [(me/ Y2, m;) - mel],Vj € R — R sensors
from set S such that Profits(s’) > 0 and Profityy(n) > 0
for each selected sensor s’;

9 Collect data for At time from the selected sensors;

10 Transmit collected data from selected sensors in region 7.
sequentially to a nearby edge server;

11 Remove region r. from the set of unvisited Rols;

12 Set current time slot t0 tcur =t + %( n —t);

13 Update nearby edge server e according to Eq. (13);

14 if teyr + min{t,, Vr € {R — Riv"}NR.} > D, then

15 L Terminate data collection by mobile user uy,;

16 else Repeat for mobile user u,, at time slot tcyr ;

CK reduction due to Theorem 1’s more restricted settings.

IV. UTILITY-BASED OPPORTUNISTIC DATA COLLECTION

The MCSD problem cannot be solved efficiently since it
is NP-hard. Exhaustive search methods are infeasible, due
to their extremely high computational complexity and the
unavailability of contextual information in advance (e.g., in-
stantaneous utility /rewards of sensed data and the power
consumption of nodes). This section presents a scalable and
low-complexity heuristic for the MCSD problem — Utility-
based Opportunistic Data Collection (UO-DCA).

A. UO-DCA: An Online Greedy Algorithm

The most challenging task in designing an efficient algo-
rithm for the MCSD problem is collecting the instantaneous
sensory data from the devices in different Rols at a large
scale. All interactions could be directly controlled by the
cloud, at the expense of high latency and an increase of
traffic in the backhaul. In contrast, UO-DCA leverages the
mobile edge computing (MEC) paradigm [32] to move the
communication/ processing tasks to the edge of the network,
nearby mobile users. Accordingly, edge servers manage the
tasks for the Rols under their coverage (Fig. 1).

Local coordinators in each Rol inform edge servers about
the average utility of sensory data and energy consumption
of the devices in that area. Each MU contacts the nearest
edge server at the beginning of its traversal to receive the
contextual information of the Rols, including their physical
distances. These can be obtained, for instance, by using GPS.
The MU then aggregates this contextual information to decide
on the most suitable Rol to visit. Visiting that Rol results in
the locally-maximum weighted social welfare while satisfying
the deadline associated with the overall data collection time —

including traversal to that Rol, receiving data from sensors
and transmitting data to a nearby edge server. Since MUSs
have no prior information about time duration during which
sensors in each Rol transmit their data, we propose our online
heuristic that approximates the locally achievable weighted
social welfare from each unvisited Rol.

Estimating the time required for future data collection.
Assume that at a given time slot ¢, mobile user w,, with arrival
time A, needs to decide which region to visit next, given the
set of unvisited Rols nearby. The MU computes the achievable
profit for the sensors upon receiving the necessary information
from edge server e € E derived as follows:

e = argmin{d”),, Ve’ € E}

ne’’

13)

where dgg, is the physical distance between mobile user u,
and edge server ¢’ € F at time slot ¢. The information received
from a nearby edge server includes the average utility @;,
power consumption P; and the physical distance d; to each
unvisited region r; € {R—Rgf )} NR.. Note that R. indicates
the set of Rols which edge server e covers.

The MU needs to precompute the achievable weighted
social welfare from every unvisited Rol ¢ in real-time to visit
the next (best) Rol. However, the number of time slots at
which sensors in each Rol ¢ transmit data to the MU (ds —a)
is not known in advance. Thus, the MU must approximately
estimate this information beforehand. In UO-DCA, an MU
uses the following approximation to estimate the time that it
should spend to collect data from the selected sensors in such
a region (tgi)) and transmit it to a nearby edge server (tgi)):

1) 40 o P/l F)
‘ > e/(d; - Py)

Here ¢;, the time to visit Rol 7 is known in advance and
announced by the edge server to the MUs. From Eq. (14),
the higher the utility ¢ in region ¢ compared to other regions
j € Re and the smaller the transmission power (i.e., energy
consumption) of the sensors in the region, the longer the time
considered by the MU for data collection and transmission
there. We further note that Eq. (14) does not require the MU
to know individual sensors’ data utility or power information.

(Dp—t—t;), Vj € R—RY (14)

Estimating sensor profit. In our system, a MU considers
collecting data from a fraction of sensors at each Rol for fair-
ness purposes, as well as to obtain heterogeneous yet valuable
data from all Rols within the deadline. More specifically, let
m; be the number of sensors in region 7; announced by the
edge server. UO-DCA approximates the number of sensors
selected for data transmission in region ¢ (i.e., for which
e = 1) as [(my/ 32, my) - my] for ¥j € R — RY, ie.,
the fraction of sensors selected is proportional to the fraction
of sensors located in region ¢ compared to other regions.
Candidate sensors in a region transmit all their data to an
MU; upon receiving such data, the MU then transmits them
sequentially (i.e., in consecutive time slots) to the nearest edge



server. Thus, the time period during which the MU collects
data from selected sensors in region r; follows from Eq. (14):
@i/ (di-Pi) ,
§0) — 2 ooty Pn m, VjeR-RY
[(mi/32;m;) -mq] + 1
Note that the above approximation is obtained under the
assumption that the selected sensors in region r; send their
data to the MU with equal time duration. With no change in
data utility or sensors power consumption, the MU spends less
time for data collection as the number of sensors in the Rol
increases to collect valuable data fairly from unvisited Rols in
its traversal. The revenue of the sensors in region r; is then:

Revenues (i) ~ ([(m;/ ij) -m;]) -t - R;

15)

(16)

where tgi) is given in Eq. (15) and R; is the corresponding
average reward that should be paid to the sensors in region
r; for collecting their data. Finally, the cost associated with
sensors in region r; is approximated as follows:

Costs (i) ~ ([(mi/ 32, my) -mi]) -a- (1) - (p + Py)) (17)

Estimating MU profit. Similarly, the revenue that an MU
obtains by visiting region r; is given by:

Revenueymy (i) = ([(m;/ ij) -my ) ~t§“ I (18)
J

where I; is the average reward that the cloud server pays to
the MU for sending the collected sensory data in region ;.
The corresponding cost for an MU is approximated as follows:

Costmuy (i) = b+ (t; - pn) (19)
+ (f(mi/zma‘) my]) - t9 - (R + cPi)

where P,; is the average power to transmit the data collected
by the MU from sensors in region ¢ to a nearby edge server.

Choosing the Rol to visit. Given the above, the region that
an MU selects (at time t) to visit next is obtained as follows:

c= argmax {(u;) At >0}
VieER-RY

(20)

where wu;, the local achievable weighted social welfare
(Eq. (6)) when visiting region r;, comes from Egs. (16-19):

u;j = y(Revenueg(j) — Costs(5)) @1
+ (1 — 7)(Revenueyy (j) — Costmu(4))

Once the MU moves to the selected region 7., the sensors in
this Rol send their data for the time duration of £\ within
[tS/At] time slots. At each time slot, the set of sensors which
are selected for data transmission to MU is determined as fol-
lows. First, the MU sorts all sensors in the region in decreasing
order of ¢/ P values at the current time slot and stores them in
set S. Then, the first [(m;/3_;m;) - m;] sensors from set S

which have the highest ¢/ P values and satisfy the conditions

in Egs. (9)—(10) are selected for data transmission to the MU
at the current time slot. Upon collecting and transmitting the
data of sensors in region 7. to the edge server, the MU updates
its remaining time and executes the same above-mentioned
heuristic to find the next Rol to visit in its traversal. The MU,
at every time slot, evaluates whether the remaining time is
sufficient to visit at least one more Rol. If not, the MU does
not accept the subsequent data collection task.

UO-DCA is described in Algorithm 1. Although the algo-
rithm refers to a certain mobile user at a given time slot, the
same procedure is executed by all MUs at different time slots.

Complexity Analysis. The following provides an analysis of
UO-DCA, starting from its time and message complexity.

Theorem 3. UO-DCA has a time complexity of O(K (5L +
Mlog(M))) and a message complexity of O(K(E + M)),
where K is the number of Rols, E is the number of edge
servers, and M = max(|Sg|,1 < k < K) is the maximum
number of sensors per Rol.

Proof: The complexity analysis is done for one MU;
however, it applies to all the MUs in the system. In the worst
case, an MU visits all Rols within the specified deadline for
a data collection task. For each unvisited Rol, the MU first
computes the achievable profits and the associated costs (line
2) in O(1) time (line 2), for a total time complexity of O(7)
with ¢ unvisited Rols at a certain time slot. After the visit, the
MU sorts the sensors in decreasing order of their ¢/ P values
(line 6) with a worst case time complexity of O(M log(M)),
where M = max(|Sg|,1 < k < K) is the maximum number
of sensors in the Rol. The MU can visit all Rols within the
deadline, therefore, the worst case time complexity of UO-
DCA is O(K (55 + Mlog(M))) for K Rols.

A MU must discover and communicate with the nearest
edge server to select the subsequent Rol to visit at each time
slot. Such a communication involves sending O(E) messages,
where E is the maximum number of edge servers in the
sensing area, and receiving O(1) messages in reply. Upon
visiting the selected region, the MU receives data from at
most M sensors with a worst-case message complexity of
O(M). The MU visits at most K regions in the worst case;
thus, the overall message complexity of UO-DCA is given by:
Myo—-pca € O(K(E + M)). |

V. EVALUATION
A. Simulation Setup

The considered urban IoT scenario is represented by a
varying number of MUs and 200 sensors randomly deployed
in a metropolitan area of 4,480 by 3, 500 meters. All sensors
had a transmission range of 100 m. The area is further divided
into square regions of size 140 by 140 meters (i.e., inscribed
in a circle of 99 meter radius) and 24 edge servers cover
not-overlapping subsets of such regions. The ONE simulator
v.1.6.0 was employed to generate mobility traces based on the
roads in the city of Helsinki and pedestrians walking with
a speed between 0.5 and 1.5 m/s along streets as well as
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Fig. 2: (a) Average number of visits to Rols and (b) average sensor reward over Rols as a function of simulation time for the considered
algorithms, and (c) sensors reward as a function of the a and 3 parameters with 10 MUs and 200 sensors in the network for the UO-DCA.
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Fig. 3: (a) Average collected data and (b) system social welfare as a function of the number of MUs for the considered algorithms, and (c)
social welfare as a function of the o and 3 parameters (Eq. 1) with 10 MUs and 200 sensors in the network for the UO-DCA.

pedestrian paths. The sampling frequency of a sensor expresses
the utility of sensory data. Specifically, data are obtained
with a random sampling frequency between f,,;, = 10 and
fmaz = 100 Hz and their utility falls in the range [0 — 1].
The parameters « and 3 in Eq. (1) are set to 0.5, unless
otherwise stated. Also, we set the weighting parameter in the
objective function [namely, Eq. (6)] to v = 0.5 to achieve a
fair share of profits between MUs and sensors. The system
comprises 300 tasks generated with a minimum time duration
of 500 seconds (i.e., D,, — A,, > 500 s), unless otherwise
stated. The length of the time slot was set to one second
and the experiments lasted for 2 hours of simulated time. The
figures report the average values over ten runs along with the
related standard deviations as error bars when meaningful.

B. Trace-based Simulations

A custom Python simulator was employed to assess the
performance of the proposed mobile crowdsourcing data col-
lection scheme UO-DCA (i.e., Algorithm 1) against two other
schemes: Nearest Location Data Collection Algorithm (NL-
DCA), where an MU selects to visit the region with the
shortest distance and collects data in such a region from
candidate sensors similar to UO-DCA; and Random Location
Data Collection Algorithm (RL-DCA), where a mobile user
randomly selects to visit a region and collects data in such a
region from candidate sensors similarly to UO-DCA.

Comparison of Considered Algorithms. Fig. 2a shows the
average number of visits to all Rols over time for three
schemes: UO-DCA, NL-DCA, and RL-DCA. Initially, there
are zero visits (as no tasks have been generated yet), the

number increases over time, and then it decreases by the
end of the simulation. That is because most of the tasks are
assigned for completion by the beginning of the simulation
time, making the MUs occupied; thereby, less time available
to complete other tasks. Moreover, there are fewer tasks whose
starting time falls by the end of the simulation time. Fig. 2b
shows how the average reward over all sensors varies over
time due to MUs visiting the sensors in the respective Rols.
The parameters « and S in Eq. (1) are set to 0.5 and R at
time ¢t = 0 is set to 1. The average sensor reward increases as
more MUs visit Rols, while it decreases more slowly as the
visits to Rols drop. Hence, the reward model of the sensors
in Eq. (1) retains past rewards and slowly adapts over time to
new ones. Overall, the UO-DCA yields a higher number of
visits to Rols and thus a higher reward for the sensors.

Fig. 3a shows the average data collected by all sensors as
a function of the number of MUs. The average data collected
with the three algorithms increases with the number of MUs
— intuitively, more MUs collect more data. The proposed UO-
DCA outperforms the NL-DCA and the RL-DCA. Such gap
increases with the number of MUs in the system. The NL-
DCA outperforms the RL-DCA as choosing to visit the nearest
Rol results in lower (e.g., travel) costs for the MUs; at the
same time, it results in more time available to visit a multitude
of (other) Rols, thereby collecting more data. Fig. 3b shows
the average social welfare of the system as a function of the
number of MUs. Similarly, the UO-DCA yields higher system
social welfare compared to the NL-DCA and the RL-DCA.
Moreover, the system social welfare is slightly higher for the
RL-DCA compared to the NL-DCA. This seemingly counter-
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Fig. 4: Average (a) data collected over time, (b) system social welfare, and (c) number of tasks that are completed, (assigned but) not
completed, and not assigned as a function of the task duration with 20 MUs and 200 sensors in the network for the UO-DCA.

intuitive result is because collecting data from the nearest Rols
does not yield maximum profit for the sensors and the MUs.

Impact of Weights o and 5. Fig. 2c and Fig. 3c show the
average sensors’ reward and the social welfare of the system
as a function of the o and [ parameters [Eq. (1)]. Recall
that the o parameter weighs the number of visits to Rols,
whereas the J parameter weighs the data utility in the reward
that sensors request for their data (see Section V-A). As «
increases from 0.2 to 0.8 (while 3 decreases from 0.8 to
0.2), the sensors request a higher reward for their data as they
get more visits by MUs. Similarly, the system social welfare
in Fig. 3c increases with o being the dominant parameter.
Thereby, the reward paid to sensors heavily contributes to the
social welfare. Intuitively, one would set a high « parameter to
increase the social welfare. However, this presents two main
drawbacks: first, by increasing «, the locality of the data (a
dimension of utility) decreases (i.e., low (); second, a high
social welfare reflects a high cost for data consumers to buy
and access sensory data (see Fig. 1). With o dominating such
system dynamics, the different stakeholders of a MCS such
as data consumers, MUs, and (owners of) sensors trade-off
their costs and profits. That is, setting a high o value benefits
the sensors as it increases their reward and the social welfare
of the system; however the utility of data decreases and data
consumers pay a higher price for sensory data. By contrast,
the average visits to Rols and the amount of collected data
(not shown here) do not vary with the o and  parameters.

Impact of Task Duration. Fig. 4a shows the average col-
lected data as a function of the time duration of the tasks (i.c.,
6 =D, — A,) in a network with 20 MUs and 200 sensors
for the UO-DCA. The collected data increases rapidly with
0. Recall that the size of an Rol is 140 by 140 meters and
pedestrians walk with a speed between 0.5 and 1.5 m/s. MUs
that are assigned a task would either collect data from the Rol
they reside in, or attempt to reach another Rol that has not yet
been visited for the given task and that yields positive profit.
In fact, given the size of a Rol, the amount of collected data
is very low for values of § that are comparable to the time
needed to traverse it. As ¢ increases, MUs have more time
to visit new Rols and collect data from them, resulting in a
higher amount of collected data. Moreover, a higher locality

of the phenomena (i.e., higher accuracy of the data) requires
smaller Rol sizes. Thereby, tasks with smaller time duration
can be assigned to MUs, making § a crucial design parameter
of a MCS. Similar to Fig. 4a, the results in Fig. 4b present an
identical pattern: the system social welfare increases with .
Fig. 4c shows the distribution of tasks during one data
collection campaign of 2 hours as a function of the time
duration 9 of the tasks. The campaign consists of 300 tasks.
These tasks can be (i) assigned and completed successfully
by an MU, (ii) assigned to an MU but not completed, as
it is not feasible to reach an Rol in terms of time, or the
feasible Rol yields negative social welfare for the system, or
(iii) not assigned as all MUs are occupied completing other
tasks. The number of completed tasks is low for a small 6,
especially for § = 500 s, as MUs are able to reach very
few feasible Rols. In most cases, tasks are initially assigned
to MUs who immediately drop them, as it is not feasible to
complete the tasks. The number of tasks (assigned but) not
completed decreases with §. At the same time, the number of
tasks that are completed successfully increases, as MUs have
more time to visit feasible Rols. Moreover, MUs carrying out
longer tasks lead to an increased number of not assigned tasks.

VI. RELATED WORK

Opportunistic data collection in the IoT has received consid-
erable attention in the last few years [33]. Casadei et al. [34]
model opportunistic IoT services using the aggregate com-
puting approach. Kortoci et al. [35] devise a data offloading
protocol using fog networking, which offloads data sampled
by storage-constrained sensors to mobile gateways. Fadda et
al. [36] consider task assignment with the goal to minimize
costs while covering all sensors in a certain area. However,
none of these solutions explicitly considers incentives for user
participation in data collection, as addressed in this work.

Many works in mobile crowd sourcing [13, 14, 37] tar-
get outsourcing sensory data collection to the public crowd
by focusing on service and data quality. Instead, [15] ad-
dresses truthfulness and integrity of sensory data, while other
works [11, 16, 18, 20, 29] focus on time- and location-
dependent tasks. Similarly, our work considers data collection
of “valuable” time-sensitive data, where any mobile user can
complete a task if they are satisfied with the expected profit.



However, we leverage the concept of utility to characterize
how sensory data are valuable. In addition, [38] considers an
incentive-aware time-sensitive data collection scheme whose
focus is users’ cooperation to relay data to ultimately reach
a data requestor. By contrast, our solution requires no user
cooperation, but only the willingness of a user to collect data.

Several works design incentive and pricing mechanisms to
ensure user participation [17, 39] while reducing their sensing
effort [11, 12, 18, 39]. While we similarly account for the
cost to complete a task, we focus on the user-specific cost
incurred by modifying their route. By accounting for users’
behavior, we selectively incentivize them to collect valuable
data. Moreover, our work provides users with expected cost
and revenue values prior to task completion, as opposed
to [17, 39]. Similar to [19], we focus on trade-offs between
task quality and completion cost, while emphasizing the dy-
namics of a time-varying price for sensor data that accounts
for network dynamics such as utility and frequency of user
visits to the sensors.

VII. CONCLUSION

IoT applications in urban scenarios can benefit from mobile
crowd sourcing as long as sensory data are properly collected
and transmitted to the cloud for further processing. In such a
context, this work devises an incentive-based solution in which
individual sensors charge mobile users a dynamic virtual price
to collect their data. Upon accepting a sensing task and the
corresponding compensation, a user decides which sensors to
visit based on the task’s service quality requirements and its
own costs relative to task completion. By encoding the quality
of the sensory data and frequency of user visits into the virtual
price, each sensor dynamically incentivizes users to either
collect data or not, depending on sensor’s data having been
recently collected by others. The proposed incentive-based
scheme accounts for such dynamics and significantly increases
the amount of collected data by up to 70% compared to other
baseline approaches, while simultaneously yielding a higher
social welfare by up to 60% for all system’s stakeholders.

As a future work, we seek to implement the proposed
solution on top of an existing mobile crowdsourcing platform.
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