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ABSTRACT

Mobile crowdsourcing has long promised to utilize the power of
mobile crowds to reduce the time and monetary cost required to
perform large-scale location-dependent tasks, e.g., environmental
sensing. Assigning the right tasks to the right users, however, is
a longstanding challenge: different users will be better suited for
different tasks, which in turn will have different contributions to
the overall crowdsourcing goal. Even worse, these relationships
are generally unknown a priori and may change over time, partic-
ularly in mobile settings. The diversity of devices in the Internet
of Things and diversity of new application tasks that they may
run exacerbate these challenges. Thus, in this paper, we formulate
the mobile crowdsourcing problem as a Contextual Combinato-
rial Volatile Multi-armed Bandit problem. Although prior work
has attempted to learn the optimal user-task assignment based on
user-specific side information, such formulations assume known
structure in the relationships between contextual information, user
suitability for each task, and the overall crowdsourcing goal. To
relax these assumptions, we propose a Neural-MAB algorithm that
can learn these relationships. We show that in a simulated mobile
crowdsourcing application, our algorithm significantly outperforms
existing multi-armed bandit baselines in settings with both known
and unknown reward structures.

CCS CONCEPTS

« Information systems — Crowdsourcing.

KEYWORDS

mobile crowdsourcing, combinatorial bandit, neural networks

ACM Reference Format:

Shouxu Lin, Yuhang Yao, Pei Zhang, Hae Young Noh, and Carlee Joe-Wong.
2022. A Neural-Based Bandit Approach to Mobile Crowdsourcing. In The
23rd Annual International Workshop on Mobile Computing Systems and Ap-
plications (HotMobile °22), March 9-10, 2022, Tempe, AZ, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3508396.3512886

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HotMobile 22, March 9-10, 2022, Tempe, AZ, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9218-1/22/03.

https://doi.org/10.1145/3508396.3512886

Yuhang Yao
Carnegie Mellon University
Pittsburgh, PA, USA
yuhangya@andrew.cmu.edu

Pei Zhang
University of Michigan
Ann Arbor, MI, USA
peizhang@umich.edu

Carlee Joe-Wong
Carnegie Mellon University
Pittsburgh, PA, USA
cjoewong@andrew.cmu.edu

1 INTRODUCTION

The recent proliferation of devices in the Internet of Things has
sparked new initiatives in so-called smart cities: large-scale de-
ployments of sensors and actuators across urban areas, which can
monitor and respond to their environment [16]. These services,
however, rely on the ability of multiple “things” to collect and
process data throughout a city. Monitoring vehicle speeds or tem-
perature measurements, for example, requires sensors around a city
to collect this data and combine it into a city-wide map. Many such
tasks are accomplished with crowdsourcing: recruiting many users
or devices to complete subtasks of the overall goal, e.g., sensing
pollution at different locations [10], reporting traffic conditions to
Google Maps, or asking vehicles with digital billboards to display
ads relevant to nearby users. While crowdsourcing has long been
studied as a means to accomplish a variety of tasks, e.g., mobile
sensing or even image labeling or language translation on platforms
like Mechanical Turk [8], IoT environments are significantly more
heterogeneous and dynamic, leading to new challenges.
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Figure 1: Mobile Crowdsourcing schematic. Requesters send
task requests to a mobile cloud, which distributes the tasks to
one of several mobile users. The distribution of tasks should
consider user availability and suitability for the task.

Task allocation, or deciding which user should accomplish a
given task, is a core challenge in mobile crowdsourcing for the
IoT. Consider a location-dependent mobile task, such as speed and
temperature measurement. As shown in Figure 1, mobile workers


https://doi.org/10.1145/3508396.3512886
https://doi.org/10.1145/3508396.3512886

HotMobile ’22, March 9-10, 2022, Tempe, AZ, USA

may be able to complete the task if they have mobile devices that
are within a certain distance around the target location specified by
the requester. However, different devices may be more or less suited
to completing the task, e.g., some workers may be more willing
to travel to the given location than others. Indeed, even the qual-
ity of the completed task can vary greatly. Completing individual
tasks may also have different impacts on the overall crowdsourcing
task [11]: for example, if the overall task is to construct a temper-
ature map, locations corresponding to heat islands may be more
important to monitor than others. These relationships are gener-
ally unknown a priori, e.g., worker quality may be hard to predict,
which makes the task allocation problem difficult.

One can pose the task assignment problem as a Multi-Armed
Bandit (MAB) problem, where a decision maker decides the as-
signment of a mobile task based on its estimation of the quality
of mobile workers (called “arms”). The goal is to assign each task
to promising workers and thus maximize the cumulative quality
of all tasks (called “rewards”). To accommodate many real-life mo-
bile crowdsourcing settings, one may extend the standard MAB to
a Contextual Combinatorial Volatile MAB (CCV-MAB) problem,
where (i) each arm is associated with known context information
that can be used to estimate the reward of pulling this arm, (ii)
a group of arms (super arm) needs to be selected in each round,
rather than a single arm, and (iii) the set of arms available in each
round may vary over time. However, existing works impose strong
restrictions on the problem setting, which usually cannot be sat-
isfied in practice. We propose Neural-MAB, a solution algorithm
that can work without such restrictions. Beyond crowdsourcing,
Neural-MAB may be applied to other problems in the CCV-MAB
framework, e.g., distributing subtasks in a mobile application across
a network of heterogeneous IoT devices.

In this paper, we study a CCV-MAB problem, which combines
all of the MAB extensions mentioned above. We design Neural-
MAB, an algorithm which utilizes one neural network to predict the
reward of each single arm, and another to select a super arm. A wide
range of mobile crowdsourcing problems can be converted to this
general framework and thus be solved by our solution. Specifically,
each candidate mobile worker is viewed as an arm in the CCV-MAB
problem. Assigning a task to a group of workers (e.g., asking a group
of workers to collect pollution measurements at specific locations
in a city) can then be converted to the problem of assigning a super
arm to each task, with the aim to maximize a pre-defined utility of
the assignment (e.g. the quality of the task or a quality-cost ratio).
This utility depends on the workers chosen but would generally
not be known at the time of task assignment.

The novelty of our work lies in four contributions.

o Our formulation is similar to the utility-oriented task assign-
ment problem in crowdsourcing, which matches tasks to
workers with the aim to maximize some utility (reward) [21].
Unlike prior works (e.g. [12, 22]), however, we suppose that
(i) the utility of assigning a job to a worker is unknown, and
(ii) each job is assigned to multiple workers, with its utility
depending on each constituent worker.

o We are the first to demonstrate the usefulness of neural net-
works in combinatorial bandit settings to the best of our
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knowledge. [24] proposed a similar algorithm for contex-
tual bandits, but does not consider combinatorial arms. Our
framework trains the neural network in an online manner,
which is particularly challenging in combinatorial settings
as the number of super arms, i.e., combinations of individual
arms, can be large.

Neural-MAB imposes no restrictions on the relationships
between the reward of each arm and its corresponding con-
text features (called the “single” reward function), or the
reward of a super arm and the rewards of its constituent
arms (called the “overall” reward function). Prior works as-
sume linear [18] or submodular [4] relationships, which may
not hold in practice, e.g., if the context consists of categorical
or textual data.

Neural-MAB does not rely on an (approximation) oracle that
can pick the optimal super arm given the rewards of each
single arm, as assumed in previous works [4, 17, 18]. Such
an oracle requires knowledge of the overall reward function,
which may be unknown a priori, e.g., the quality of workers’
tasks may depend on the overlap between their data, which
is unknown before the data is collected. Experiment results
showed that Neural-MAB, with no knowledge about the
overall reward function, can outperform existing algorithms
with oracle knowledge.

The rest of the paper is organized as follows. Section 2 intro-
duces problem definition and reviews some existing approaches.
Section 3 describes the details of the proposed algorithm. Section 4
evaluates the performance of the designed algorithm by applying it
to a crowdsourcing application. Section 5 concludes the paper and
discusses future works.

2 FORMULATION AND RELATED WORK

In this section, we first introduce the background of several exten-
sions of the standard MAB problem, which the CCV-MAB problem
considers. We then define the mobile crowdsourcing problem for-
mally, and show how it can be formulated as a CCV-MAB problem.
Next, we introduce our notations. Finally, we briefly walk through
the works on MAB, and then highlight the differences between our
algorithm and existing ones.

2.1 Background

Contextual MAB is an extension of the standard MAB prob-
lem [13], which supposes that the decision maker also observes
some context information of each arm to choose in a round. The de-
cision maker then selects an arm by jointly considering the context
and the rewards of the arms chosen in the past [3]. In the mobile
crowdsourcing setting, the context may be a worker’s expertise,
which the decision maker can use to predict the quality of each
mobile worker. Combinatorial MAB is another extension of the
standard MAB problem. In many real-world scenarios, a set of arms
(called the "super arm") needs to be chosen in each round. For ex-
ample, we might want to allocate a single task to multiple mobile
workers. The challenge comes from the fact that the overall reward
of the super arm is not simply a linear function of every single
arm, but also depends heavily on the relationship among them [5],
e.g., the final quality of a task can be the best task completed by
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selected workers. To handle worker mobility, we further consider a
Volatile MAB framework, in which the set of arms to choose from
in each round may vary over time. In the mobile crowdsourcing
setting, the candidate mobile workers (arms) for a mobile task at a
specific location must be within a certain distance around the target
location. Due to the mobility of workers, the candidate workers for
tasks at different locations or even tasks at the same location but
different times will vary a lot. The CCV-MAB problem we consider
contains all the characteristics mentioned above.

2.2 Problem Formulation

In the context of mobile crowdsourcing, we may view candidate
mobile workers as arms. We suppose a set of mobile tasks arrives
in each round. For each mobile task arriving in each round, the
available arms (candidate mobile workers) may change dynamically.
For example, a “task” may represent the collection of traffic datain a
given location, with “workers” representing vehicles that can collect
such data. We define the reward of choosing an arm (i.e., assigning
a mobile task to this mobile worker) as the expected quality of the
task that will be completed by this mobile worker. For example,
the quality of a traffic data collection task might depend on how
long the user monitors traffic: monitoring for one minute rather
than one second will give a better idea of the average traffic flow. In
practice, we have access to some context features about each mobile
worker, such as its rating and expertise. Thus, the decision maker
can utilize such information to estimate the quality of the task if it
is assigned to each mobile worker. The single reward function can
then be defined as the expected quality of the task completed by a
worker, given the worker’s context. For example, it is reasonable
to expect a worker with a higher rating and expertise relevant to
the mobile task to complete the task with higher quality. Note that
the quality of tasks completed by the same worker is not fixed but
stochastic, and thus may vary between rounds depending on the
realization of the stochastic task quality. Such variation models
variation in work quality due to various external circumstances,
such as physical and mental conditions.

Each mobile task may be assigned to multiple mobile workers
(ie., selecting a super arm of constituent arms, or workers). Multiple
vehicles, for example, may monitor traffic flow in a given location.
The overall reward function can be expressed as the relation be-
tween the quality of a task completed by a group of workers and
the quality of a task completed by each worker in that group. We
do not impose any restrictions on the overall reward function. In
real-life mobile crowdsourcing problems, there can be various over-
all reward functions. For example, if the task is to collect traffic
data in a specific region, then the overall reward function can be a
(i) sum: if each worker only collects data at a specific sub-region
with no overlaps between workers, then the total amount of col-
lected data is the sum of the data collected by each worker, or (ii)
submodular sum: if multiple workers collaboratively collect data at
the same region, then as we add more workers, the overall quality
of the collected data increases, but the marginal increase might be
decreased as the data collected by multiple workers may overlap.
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2.3 Preliminaries

We now introduce mathematical notation formalizing the above
formulation. In each round t, 0 < t < T, the set of arms (i.e.,
workers) available for the decision maker to choose from is denoted
by A;. Note that this models the volatile arm setting where the arm
set arriving in each round A; may vary with t. Let a]’ € A;,1 <
m < |A¢|, denote the arms that arrive in round ¢. The corresponding
context features of the arm are represented by the vector x(a}*). We
let f denote the single reward function, which is an expectation over
an unknown distribution parametrized by the associated context
feature x(a}*). Thus, f(x(a}")) represents the expected reward of
choosing an arm al*.

In each round, the decision maker will choose a super arm Sy,
which is a subset of the arm set A;. We call each individual arm a}* €
St a "base arm". We use g to represent the overall reward function,
which depends on both the reward of each single arm and the
relation between base arms. Thus, the expected overall reward can
be expressed as g(f(S¢)), where f(S;) = {f(x(al*))|a} € S;}isthe
set consisting of the single reward of each constituent arm. Such a
formulation can work with any overall reward function, e.g., either
linear, or submodular, or even more complex functions. Usually,
a decision maker will have a budget B that limits the maximum
number of arms that can be selected, i.e., |S¢| < B. Note that the
decision maker can observe the actual, realized reward of each arm
a;” € S; it has chosen in this round and also the overall reward,
respectively denoted by r[* (where E(r[") = f(x(a}"))) and R;.
These observations can be used to estimate f and g to make better
selections in later rounds.

Thus, the objective of the decision maker is to maximize the
cumulative overall reward over T rounds. Equivalently, we may
view this objective as that of minimizing the cumulative regret,
defined as the difference in the cumulative overall reward obtained
by the decision maker and that obtained by an optimal decision
maker that always selects a super arm S} with the maximum overall
reward in each round t. Thus, our goal is to solve

T
max reward :ZE [g(F (ST, (1)
=1

{S1,...51}

or equivalently,

{S1,-..5T

T
min }regret = Z (E [g(f(SIN] —E[g(f(S)]) )
=1

2.4 Related Work

The problem we formulate is similar to the utility-oriented task
assignment problem in the crowdsourcing literature [21]. How-
ever, existing task assignment works generally assume a simpler
framework than the one we consider. In particular, they assign each
task to only one worker and assume that the corresponding reward
is known at the time of task assignment. In this case, the problem
can be formulated as a bipartite graph-based problem. Specifically,
workers and tasks are represented by the vertices in a bipartite
graph, and the reward of assigning each worker to a task can be
represented by the weight of the edge between them. The problem
is then converted to that of obtaining an optimal matching in the



HotMobile ’22, March 9-10, 2022, Tempe, AZ, USA

bipartite graph. We instead use a combinatorial bandit setting, as
extending the bipartite matching framework to our combinatorial
scenario is difficult. If multiple workers are assigned to each task,
the overall reward of a task is not simply a linear function of the
reward of assigning each single worker to the task, but also depends
heavily on the relationship among them. Thus, we cannot use an
edge with a fixed weight to represent the reward of a worker’s
contributions to a task.

The standard MAB problem has been studied for a long time [1,
19, 20]. The popular Upper Confidence Bound solution algorithm,
which is the basis of our proposed solution algorithm (Section 3),
associates an upper confidence bound (UCB) estimate of the reward
to each arm [1]. The arm in each round is chosen accordingly, and
the UCB is then updated according to the reward observations.

Several studies on contextual MAB problems have been con-
ducted recently [2, 13, 15]. For example, [15] designs a way to
compute the confidence bound efficiently in closed form based on
the context features. They assume a linear relationship between
the reward of an arm and its corresponding context vector. [24]
goes further by using a neural network to learn the relationship
between context features and reward, followed by a UCB strategy
for exploration. MAB is then extended by considering the combi-
natorial setting. [18] predicts the reward of each base arm based
on the associated context features, and then selects the optimal
super arm based on an oracle, which takes the predicted reward
of each base arm as input and returns the optimal super arm. The
assumption that such an oracle exists and the decision maker has
access to it, however, is not realistic in our crowdsourcing setting.
[9] works on a combinatorial MAB problem with a submodular
reward function, but does not take context features into account.

The most closely related works to ours are [4] and [17], which
also consider the CCV-MAB problem. In [4], the context space is
uniformly partitioned into hypercubes of identical size, and each
hypercube represents an arm group. The arms in the same group
are considered to have similar rewards, which are estimated by the
average observed reward in this group. They further use a greedy
algorithm as an approximated oracle to choose a super arm. The
greedy algorithm, however, needs the overall reward function to
be known, which takes predicted rewards of a subset of arms as
input and outputs the overall reward of this super arm. The decision
maker may not know this reward function in crowdsourcing set-
tings. [17] extends [4] by evolving from a static discretization to an
adaptive discretization of the context space, which then results in a
smaller regret bound. As in [4], however, it still requires an approxi-
mation oracle that approximately maximizes the overall reward. By
contrast, Neural-MAB can work without such an (approximation)
oracle.

3 NEURAL-MAB ALGORITHM

In this section, we propose the Neural-MAB algorithm for the CCV-
MAB formulation of mobile crowdsourcing (Algorithm 1). Given
a set of arms A; in each round, the algorithm will choose a super
arm S; which it believes can bring the maximum overall reward at
this round. This is accomplished in a two-step process. First, it will
estimate the reward of each base arm. Second, it will then pick a
super arm based on the estimation of the overall reward function.

Lin, et al.

Algorithm 1 Neural-MAB

1. fort=1;t<=T;t=t+1do

2 Initialize S; = 0;

3 forbzl;b<:B;b:b+1c}o

" ap = argmaxgmeaps, 9(F (S Ufa}):

5 St =S Hap}s

6 end for

7 Play S; and observe the actual single rewards r; =

{r*|aj® € S;} and overall reward Ry;
8 f = train(f, re);
9 g = train(g, Ry)
10: end for

Single Reward Estimation: The key point of the contextual
MARB problem is to predict the single reward based on the context
features. However, the methods proposed in existing works rely on
restrictions on the single reward function or the context features.
For example, [15] and [18] assume a linear relation between the
reward and the context features, and [4] and [17] require the re-
ward of each base arm to be Holder continuous in context features.
However, such strong restrictions do not apply in many real-world
scenarios. In practice, the context features can be categorical (e.g.
educational level) or textual (e.g. description of expertise) data,
rather than numerical values. Thus, the key idea of our algorithm
is to use a neural network f to predict the reward of each base arm
based on its context features. Note that this method can (in theory)
handle any type of single reward function because any functions
can be arbitrarily well approximated by continuous feedforward
neural networks with only a single internal, hidden layer and any
continuous sigmoidal nonlinearity [7]. We demonstrate its ability
to learn nonlinear reward functions in practice in Section 4.

We can use the observed single rewards to train the neural net-
work f with back propagation to reduce the difference between
estimated single rewards and observed values (line 8). Specifi-
cally, suppose we have chosen a set of arms S;. The inputs of
the neural network are then the context features of each arm
{x(a]")|a]* € S;}, the outputs are the estimated single rewards
];(St) = {f(x(a;"))|a;" € S}, and the desired outputs are the
observed single rewards r; = {r]"|a}" € S;}.

Overall Reward Estimation: Solving combinatorial MAB prob-
lems is difficult due to the complexity of combinatorial optimization,
which is an NP-hard problem in general [23]. Existing works [17, 18]
thus assume the decision maker has access to a polynomial-time
oracle that chooses an approximately optimal super arm. [4] goes
further by designing a greedy algorithm to serve as an approxima-
tion oracle. But the greedy algorithm requires the reward function
to be known. Neural-MAB removes such unrealistic assumptions by
using another neural network g to learn the overall reward function,
with which we can estimate the overall reward given any super
arm and then pick the estimated optimal one.

After we have trained a neural network to approximate the
overall reward function, how to select the optimal super arm is still
a challenge. A straightforward way is to feed the neural network
with all possible subsets S; of the arm set A; and choose one which
can generate the maximum output value of the neural network.
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However, this method has a high computation complexity. Thus,
we adopt a greedy approach inspired by [4], suitably modified to
work with any unknown overall reward function. Specifically, we
select B arms step by step, and at each step, we pick the arm that
can bring the maximum increase in (our estimate of) the overall
reward (from lines 3 to 6).

4 EXPERIMENTS

In this section, we evaluate the performance of the proposed algo-
rithm on a mobile crowdsourcing problem.

e Scenario: the crowdsourcing service provider needs to as-
sign each location-dependent task arriving sequentially in T
rounds to a subset of candidate workers who are within a
certain distance around the target location.

e User context: c1: distance between the user and the task
location (generated based on Gowalla dataset), co: worker’s
rating (uniformly sample from [0, 1])

e Sub-task quality completed by a single worker f(c;) - (c2)2,
where f is a Gaussian probability density function with mean
0 and standard deviation 1.

o Task quality completed by a group of workers: the sum of the
quality of each sub-task completed by each single worker.

o Budget constraint: 20 workers per round.

e Performance analysis: Our Neural-MAB achieves > 50%
better regret compared to baseline algorithms.

The problem we consider here is similar to the one studied in [17],
where a decision maker needs to assign each location-dependent
task arriving sequentially in T rounds to a subset of candidate work-
ers who are within a certain distance around the target location.
Specifically, a task arrives with a target location in each round ¢.
The location € [0, 1]? represents normalized longitude and latitude,
which are sampled uniformly from [0, 1]. The number of candidate
mobile workers |A;| at each round ¢ is sampled from the Poisson
distribution with mean = 200. A worker is associated with two
context features, a location that lies in [0, 1]Z and its rating sam-
pled uniformly at random from [0, 1]. The worker locations are
generated using Gowalla dataset [6], which contains user check-in
locations from the social networking platform Gowalla. In each
round ¢, the set of candidate workers A; is generated by randomly
selecting |A;| of these check-ins without replacement. We assign
the location information contained in each check-in to the location
of each generated mobile worker. In the MAB formulation, each
worker is represented by a base arm a* with a two-dimensional
context vector x(a}") = [el,s cfn]T, where ¢, denotes the normal-
ized Euclidean distance between the worker and the task locations,
and ¢2, represents the worker’s rating.

The expected single reward is defined as

f(x(al)) = gauss(ch,) - c2,,

where gauss is the Gaussian probability density function with
mean 0 and standard deviation 1. Note that f(x(a*)) € [0,1]
represents the expected quality of the task finished by the worker,
which is decreasing in the distance between the worker and the
task, but increasing in worker’s rating. Since the performance of
the same worker may vary over time, the actual single reward r}” =
N(f(x(af*)),0.05) of selecting worker m in round ¢ is sampled
from the normal distribution with mean f(x(a}") and standard
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deviation 0.05. Intuitively, a task is supposed to have a good quality
if it is assigned to a worker with a high rating and located closed
to the task location. Since we will assign each job to a group of
workers S;, the overall reward function can thus be expressed as
9(f(S1) = Sares, " = Lames, N(f(x(al")), 0.05). Intuitively,
the reward of assigning a task to a group of workers will be the sum
of the quality of each sub-task completed by each single worker. We
need to select B = 20 workers to complete the task in each round
with the aim to minimize the cumulative regret, which is calculated
by the gap between the optimal cumulative reward and the actual
cumulative reward.

We believe this simulation can provide insights about the per-
formance of Neural-MAB in real-world crowdsourcing scenarios.
The two context features that we consider, which would likely be
relevant in practice, are user location and reliability. Our location
data are based on the real user location data in the Gowalla dataset,
and thus have a realistic distribution. In practice, the current loca-
tion of a user will significantly affect its willingness to perform a
task at a given location. Although the reliability data is syntheti-
cally generated, it can be considered as the normalized values of
some real-world data. In practice, it is reasonable to expect data
to be normalized in order to expedite training and reduce training
error [14]. In addition, the single reward function that we define
takes randomness into account, which can reflect the fact that a
worker can perform better/worse than expected from the (location,
rating) data.

As noted in Section 2.4, we cannot directly compare the per-
formance of existing crowdsourcing algorithms to ours. We thus
compare the performance of our algorithm with two closely related
algorithms, CC-MAB [4] and ACC-UCB [17], which solve the CCV-
MAB problem with known reward functions. We also compare to a
random baseline in which we randomly choose arms.

We first evaluate the performance of Neural-MAB with the as-
sumption that CC-MAB and ACC-UCB rely on. That is, we assume
that there exists an oracle, which is denoted by Neural-MAB (ora-
cle) in the figure. In such a case, Neural-MAB only needs to learn
the single reward function and then turns to the oracle to get the
optimal super arm based on its estimation of each individual arm’s
reward. As shown in Figures 2 and 3, Neural-MAB (oracle) can
learn the single reward function very quickly and achieve almost
zero regret. Both ACC-UCB and CC-UCB, as well as a baseline that
randomly assigns workers to tasks, achieve higher regret (that is,
their assignments are further from the optimal ones), as shown in
Figure 2, and correspondingly lower reward (Figure 3).

We finally consider a more realistic setting where Neural-MAB
cannot access the oracle, as the oracle should not be known a
priori in real-world settings. However, ACC-UCB and CC-MAB
cannot work without the assumed knowledge of the overall reward
function and/or an oracle that maximizes it. Thus, we compare the
performance of our Neural-MAB algorithm (with no knowledge of
the overall reward function) with our baselines (which have oracle
knowledge). That is, we compare Neural-MAB with baselines in
a setting strongly in favor of the baselines. As shown by Figure 2,
although Neural-MAB has a higher cumulative regret at the very
beginning as it is learning the overall reward function, it finally
outperforms the ACC-UCB (oracle) and CC-MAB (oracle) baselines.
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Figure 2: Our algorithm (Neural-MAB) outperforms the base-
lines of ACC-UCB, CC-UCB, and random assignment of tasks
to workers (random). In this figure, we assume that ACC-UCB
and CC-UCB have an oracle knowledge of the overall reward
function, while Neural-MAB has no knowledge. However,
Neural-MAB achieves lower regret over time, showing that
it can successfully learn the reward function. We also com-
pare to Neural-MAB with knowledge of the oracle reward
function (Neural-MAB (oracle)); it achieves even lower regret
than Neural-MAB, due to the additional oracle knowledge.
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Figure 3: In the same settings as in Figure 2, Neural-MAB
achieves higher reward than our baselines, while Neural-
MAB with oracle knowledge achieves the highest reward.
Towards the beginning of the simulation, CC-MAB (which
has oracle knowledge) achieves a higher reward than Neural-
MAB, which needs time to learn the reward function, but is
overtaken by Neural-MAB around the 200th round.

Neural-MAB(oracle) achieves even better reward due to its prior
knowledge of the oracle.
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5 DISCUSSION AND CONCLUSION

In this paper, we studied the mobile crowdsourcing problem, which
aims to maximize the cumulative quality of sequentially arriving
mobile tasks. We first showed that such a problem can be formulated
as a CCV-MAB problem. We then designed a Neural-MAB algo-
rithm to solve this problem, which is able to work in a more general
environment than existing algorithms, without imposing unrealis-
tic restrictions and assumptions from previous works. We finally
evaluated Neural-MAB through a real-world mobile crowdsourc-
ing problem. Experimental results demonstrate that our algorithm
performs well compared to existing baselines.

In the future, we plan to compare our results to reinforcement
learning methods, which can also handle unknown reward func-
tions. We expect that reinforcement learning may learn more com-
plex assignment policies, but may also take more time to converge.

In addition, we will further apply our solution to more real-
world crowdsourcing applications and evaluate its performance on
data from these applications. Let us take the restaurant advertising
problem as an example. Specifically, we will ask users on a social
media platform like Instagram to recommend restaurants. The goal
is to increase the sales of the recommended restaurants. To apply
our solution, we need to do the following steps. First, we need to
convert the problem to a CCV-MAB problem, and clearly define the
arm and the task. In this case, each user can be considered as an arm
and each restaurant to recommend can be viewed as a task. Second,
we need to collect some context information of each arm (e.g. fan
base, age, nationality, and occupation of the user) and each task (e.g.
reputation, location, type, price of the restaurant). Next, we need to
define the single reward and the overall reward. In this scenario, the
single reward can be the number of likes/comments of the post that
the user writes to recommend the restaurant. The overall reward
is simply the increase in the sales of the restaurant. Clearly, the
single reward depends on the context information of each user
and each restaurant. In particular, if the user is popular and has a
large number of fans, then his/her post would tend to attract more
likes/comments. In addition, the overall reward is closely related to
the single rewards. For example, if a post about recommending a
restaurant receives a lot of likes/comments, then the sales of the
restaurant will likely increase significantly. Finally, we can apply
our Neural-MAB algorithm and evaluate its performance.

In this paper, we consider VM provisioning in an egde sys-
tem consisting of multiple mobile users communicating with edge
servers through a wireless channel. Specifically, mobile users can
offload their tasks to a nearby edge server if that edge server already
pre-provisions a virtual machine or container with a customized
image which contains all dependencies and runtime to execute
the task. To explain customized VM provisioning more clearly, we
give an example, as shown in Figure ??. In this figure, two mobile
users are in the coverage area of an edge server. Due to the budget
constraint and the computation resource limit of the edge server, it
only pre-provisions a customized VM for user A. In this case, user
A can offload the task to this edge server but the task of user B has
to be processed in the remote cloud. Although

Suppose there are K edge servers in the system and each server
is represented by my with k € {1, 2, .., K}. The operational timeline
is discretized into time slots {1,2, ..., T}, where T denotes the finite
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time horizon. Let U’ denote the users population in each time slot
t. The users covered by edge server my is denoted by Ulé C U At
the start of each time slot, the users notify the edge servers what
customized VMs they require and the edge servers then determine
which of them to pre-provision. In this time slot, only the users
whose customized VMs have been provisioned can offload their
tasks to the edge servers. However, due to the budget constraint and
resource scarcity of the edge servers, we can never pre-provision
all types of customized VMs in each edge server. Thus, we need to
cleverly determine what types of customized VM to pre-provision
in each edge server with the aim to minimize the aggregated latency
among all the tasks. Let B denote the budget constraint ( i.e., the
total number VMs we can place in all edge servers), and Cy denote
that the capacity constraint of an edge server my. (i.e. the number
of VMs the we can place in each edge server).

In a time slot ¢, a user u € U; can have computation tasks, e.g.,
gaming, video streaming, and virtual reality tasks, to be offload
to the edge serve/cloud server for processing. Since these task are
computing-intensive and data-intensive task, and limited comput-
ing capacity and battery life, we assume these tasks cannot be
handled by mobile devices. Thus, similar as the works in [? ? ? ],
we only consider task processing on either edge servers or cloud
servers. Next, we will introduce the single user latency model for
Edge/Cloud processing.

5.1 Edge Processing Delay

Note that unlike more powerful devices like desktop or laptop,
mobile devices have limited computing capacity and each time a
mobile device will execute one application at each time, which is
why mobile device manufacturer focus more on the performance
of single-processor over multiple processor. We assume that the
mobile tasks of a single user in each time slot are of the same type,
which can be handled by one customized VM. Thus, in a time slot
t, a user u, € U; can offload computation tasks j% to a nearby
edge server through the one-hop wireless link if a customized
VM has been provisioned at that edge server. The task delays are
incurred for completing the tasks, which consists of two main parts:
transmission delay and computation delay.

Transmission delay: According to the Shannon capacity [? ],
the wireless uplink transmission rate between user u/, and edge
server my at time slot ¢ can be modeled as r,tl’m = Q- loga(1 +

t
W';VGJ:}'” ), where Q is the channel bandwidth, W;, is the transmis-
sion power of user u,’s mobile device, Gf,l’mt is the uplink channel
gain, N is the noise power, and I is the interference. Since the data
size of task result is usually small and therefore it can be neglected,
as assumed in works [? ? ? ]. But this model can be easily extended
to incorporate downlink transmission delay. Since mobile devices
have limited computing resources and battery life, we assume that
the tasks from a single user in each time slot are of the same type.
Suppose the input data size of each single task j% € j} is s, the
transmission delay of offloading all these tasks can then be calcu-

s[
lated as .
rnm

Compﬁtation delay: The computation delay depends on the
computation workload and the allocated VM’s CPU frequency. We
assume that the computing resources including CPU and memory
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at edge sever my has been equally separated into C VMs. Suppose

the CPU frequency of each VM is f; and a task j requires o,
t

number of CPU cycles, the computation delay is %.

The overall task latency from user u/, when processed at edge
Sh

. t _ t Ut to:
server my is 5n,k = AL ( + f—]:’), where A}, is the number of

t
n-

L
nm

tasks from user u

5.2 Cloud Processing Delay

If a customized VM is not pre-provisioned at edge server my for user
ul,, then it can only be processed by the remote cloud server. Similar
to edge processing, the cloud processing delay includes includes
wireless transmission delay and cloud computation delay. However,
it also incurs the backbone Internet transmission delay. Specifically,
the cloud processing latency &%, = % + % + UT('? +y, where ré, rf, fo,
and y represents the wireless transmission rate between the user
and the cloud server, the backbone Internet transmission rate, CPU
frequency of the allocated VM at the cloud server, and the round
trip time respectively.

5.3 Delay Reduction

The delay reduction of tasks from a user u, by provisioning cus-
tomized VM at edge server my. can be calculated as 6%, = 5; e S5t

¢
nk
a customized VM has been pre-provisioned, the delay reduction

for this user is then afl e 0! Let a set function G : {R} — R rep-

Suppose a! | is a binary variable which denotes whether or not

resent the relationship’between the delay reduction of each user
and the total reduction delay among all the users at the edge server
my. One may form G as a linear sum function, i.e., G({0}|u}, €
U,ﬁ}) = Zuteu! 0. However, this only holds under the assumption

that there is no inference between the VMs at each edge server.
As described before, the performance of each VM will decay due
to inevitable resource sharing and contention (e.g. shared CPU
cache, memory bandwidth, and 1/0). Thus, we have G({0}|u}, €
Uli}) <X eut 0!, where the equation only holds when there is
no inference between tasks, as assumed in works [? ? ? ].
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