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Abstract
Many real-world systems such as social networks and moving plan-
ets are dynamic in nature, where a set of coupled objects are con-
nected via the interaction graph and exhibit complex behavior along
the time. For example, the COVID-19 pandemic can be considered
as a dynamical system, where objects represent geographical loca-
tions (e.g., states) whose daily confirmed cases of infection evolve
over time. Outbreak at one location may influence another location
as people travel between these locations, forming a graph. Thus,
how to model and predict the complex dynamics for these systems
becomes a critical research problem. Existing work on modeling
graph-structured data mostly assumes a static setting. How to han-
dle dynamic graphs remains to be further explored. On one hand,
features of objects change over time, influenced by the linked ob-
jects in the interaction graph. On the other hand, the graph itself
can also evolve, where new interactions (links) may form and exist-
ing links may drop, which may in turn be affected by the dynamic
features of objects. In this paper, we propose coupled graph ODE: a
novel latent ordinary differential equation (ODE) generative model
that learns the coupled dynamics of nodes and edges with a graph
neural network (GNN) based ODE in a continuous manner. Our
model consists of two coupled ODE functions for modeling the
dynamics of edges and nodes based on their latent representations
respectively. It employs a novel encoder parameterized by a GNN
for inferring the initial states from historical data, which serves as
the starting point of the predicted latent trajectories. Experiment
results on the COVID-19 dataset and the simulated social network
dataset demonstrate the effectiveness of our proposed method.
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Figure 1: COVID-19 death count time series of three states
in U.S. Correlation is higher between two states that have
higher population flow.

1 Introduction

Real-world systems in various domains such as physics, biology, ro-
botics can be viewed as dynamic interacting systems, where a set of
objects interact with each other and demonstrate complex behavior
longitudinally. Learning the underlying dynamics of an interacting
system is essential in many real-world applications. For example,
learning the movement of robotics can improve planning and con-
trol in future design [24]; studying the trajectories ofmoving planets
can discover potential new physical laws [8]; understanding the
spread of COVID-19 can help governments develop disease preven-
tion and intervention plans [5], etc. With the recent advances in
deep learning techniques, researchers have started building neural-
based simulators, aiming to approximate complex system interac-
tions with neural networks [2, 4, 18, 21, 24]. As interacting systems
contain multiple objects and are thus graph structured data, exist-
ing work [2, 21] usually employs graph neural networks (GNN) to
reason how objects interact and to predict object (node) features
in the future. However, a fundamental assumption behind a vast
majority of work is that the interaction graphs among objects are
static [23], such as particles connected by springs where the spring
structure remains unchanged. Nonetheless, the dynamic nature of
many real-world systems does not only exhibit in the evolution
of node features, but may also manifest as the dynamic changes
in the graph structure. One example is the spread of COVID-19
within U.S., where nodes are 50 states and the interaction graph
represents the population travel patterns between states. Both the
daily outbreak statistics (such as the number of new cases of each
state) and the mobility patterns between states (such as the number
of people traveling from one state to another) evolve over time [5].
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Figure 2: Population flow in May and August with self-loop
flow excluded (Diagonal entries). May has less population
flow due to the "close border" policies in many states.

Even though the graph structure and node features are two
distinct data representations, they are inherently correlated [23].
On one hand, node features are likely to be affected by other
nodes whom they interact with in the graph. In the aforementioned
COVID-19 example, New Jersey’s daily confirmed cases are more
likely to be affected by states with large population inflow (such as
New York, Pennsylvania) than by others such as California. This
is shown in Figure 1 where the daily death counts of New Jersey
is more correlated with that of New York than California. Similar
phenomena can also be observed in social networks where individ-
uals are likely to be influenced by their friends [11, 19, 27, 33, 35].
On the other hand, the dynamics of node features may also affect
the interaction. For example, the states’ severity of the epidemic
situation may, in short term, impact the population flow between
them as shown in Figure 2. Inspired by these observations, we pro-
pose a novel ordinary differential equation (ODE) based generative
model: coupled graph ODE, for predicting the dynamics of node
features by jointly considering the evolution of nodes and edges.

In order to model the co-evolution of nodes and edges, we de-
sign two coupled ODE functions to model the continuous evolution
of nodes and edges in the latent space respectively, considering
the mutual influence between them. The continuous nature of our
model allows it to track the evolution of the underlying system from
irregular observations, and is expected to offer improved perfor-
mance compared to using discrete methods to model a continuous
dynamical system such as the spread of COVID-19 [6, 25]. For the
edge ODE, the widely-used generative process assumes that the
new edges are completely determined by the features of source and
target nodes [11, 12]. However, we add an additional term to model
the self-evolution of edges. Such self-evolution is widely observed
in many real-world systems. For example, the population flow be-
tween two states will change naturally due to some seasonal factors
(e.g. holidays), which is not necessarily related to the node features
(severity of the epidemic situation). Likewise, for the node ODE,
we consider the self-evolution of nodes, as well as the potential
influence received from neighbors in the interaction graph.

Since we propose to learn continuous system dynamics using
ODEs, a fundamental challenge lies in how to estimate the la-
tent initial states for the whole system. We borrow a similar idea
from [18, 26] where a VAE-based latent ODE model is proposed to

estimate the latent initial states with uncertainty. As objects are
highly-coupled in interacting systems, we propose a novel GNN
as the encoder which infers the latent initial states for all objects
simultaneously. Overall, our model consists of three parts that are
jointly trained together: (1) An encoder that infers the latent initial
states for all objects and edges simultaneously considering their
interaction; (2) A generative model parameterized by two coupled
ODEs that learns the evolution pattern for edges and nodes respec-
tively. (3) Two decoders for nodes and edges respectively which
project the latent states for nodes and edges to the original input
spaces.We conduct extensive experiments on the COVID-19 dataset
and one simulated social network dataset. Experiment results verify
the effectiveness of our proposed method, especially for long-range
predictions. We also conduct case studies on how travel-related
policies could affect the number of confirmed cases in the future
on the COVID-19 dataset, by adding intervention to the interaction
graph, which has demonstrated that our model is a promising tool
for policymakers.

2 Problem Formulation
We consider a dynamical system with 𝑁 interacting objects. Our
input consists of the trajectories (features) of these objects and the
directed weighted interaction graph among them which changes
over time. We denote the snapshots of the interaction graph as
G =

{
𝐺1,𝐺2, . . . ,𝐺𝑇

}
, where𝐺𝑡 =

(
V, E𝑡

)
is the interaction graph

at timestamp 𝑡 withV denoting the set of 𝑁 interacting objects and
E𝑡 being the set of directed weighted edges, respectively. For every
pair of connected nodes 𝑖, 𝑗 ∈ V at timestamp 𝑡 ,𝑤𝑡

𝑖→𝑗
∈ R denotes

the weight of the directed edge linking them. The edge weight can
be asymmetric, i.e.,𝑤𝑡

𝑖→𝑗
∈ R may not necessarily hold the same

value as 𝑤𝑡
𝑖→𝑗

∈ R. We use A =
{
𝐴1, 𝐴2, . . . , 𝐴𝑇

}
to denote the

weighted adjacency matrix sequence.
We denote the node trajectory sequence asX = {𝑋 1, 𝑋 2, . . . , 𝑋𝑇 },

where 𝑋 𝑡 is the feature matrix of all 𝑁 objects at timestamp 𝑡 .
We use 𝑥𝑡

𝑖
to denote the feature vector of object 𝑖 at timestamp 𝑡 .

Based on the observed coupled trajectories of a dynamical system,
i.e. X,A, our goal is to learn the underlying dynamics which is
built upon the latent representations for nodes 𝒛𝑡

𝑖
∈ R𝑑 and edges

𝒛𝑡
𝑖→𝑗

∈ R𝑑 , and to utilize them to forecast trajectories 𝑋 𝑡 (𝑡 > 𝑇 )
in the future.

3 Related Work and Preliminaries

3.1 Ordinary Differential Equations (ODE) for
Multi-agent Dynamical Systems

The dynamic nature of a multi-agent dynamical system can be
captured by a series of first-order ordinary differential equations
(ODE), which describes the state evolution for a set of 𝑀 latent de-
pendent variables over continuous time 𝑡 ∈ R. Existing work [7, 26]
usually associates each object with a latent state variable 𝑧𝑡

𝑖
∈

R𝑑 , 𝑖 = 1, 2 · · ·𝑁 , with the corresponding ODE: ¤𝒛𝑡
𝑖
:= 𝑑𝒛𝑡

𝑖

𝑑𝑡
=

𝑔

(
𝒛𝑡1, 𝒛

𝑡
2 · · · 𝒛

𝑡
𝑁

)
, which describes how the trajectory of each ob-

ject changes over time. The ODE function 𝑔 is usually hand-crafted
by domain experts in the past and some recent studies [18, 26]
have proposed to parameterize it as a neural network which can be



learned from data. To capture the continuous interaction among
objects, graph neural network (GNN) is employed to parameterize
the ODE function 𝑔 in a recent study [18]. Given the latent initial
states 𝒛01, · · · 𝒛

0
𝑁

∈ R𝑑 for each object, 𝑧𝑡
𝑖
is the solution to an ODE

initial-value problem (IVP), which can be evaluated at any desired
time as shown in Eqn 1 using a numerical ODE solver such as
Runge-Kuttais [29]. The latent state 𝑧𝑡

𝑖
is further decoded to gener-

ate the predicted trajectory at timestamp 𝑡 : 𝑥𝑡
𝑖
= 𝑓dec (𝑧𝑡𝑖 ). Given the

ODE function, the latent initial states 𝑧0
𝑖
for each object determine

the whole trajectory.

𝒛𝑇𝑖 = 𝒛0𝑖 +
∫ 𝑇

𝑡=0
𝑔

(
𝒛𝑡1, 𝒛

𝑡
2 · · · 𝒛

𝑡
𝑁

)
𝑑𝑡 (1)

However, one major limitation of these methods is that, they
assume the interaction graph among agents is static. Therefore, the
set of 𝑀 latent state variables 𝑧𝑡

𝑖
are only for nodes, i.e. 𝑀 = 𝑁 .

In reality, the network structure may change over time, which
requires the modeling of latent edge state 𝑧𝑡

𝑖→𝑗
as well. Moreover,

the evolution of latent node and edge states are highly-coupled.
Taking the spread of COVID-19 as an example, the number of cases
for each state 𝑥𝑡

𝑖
can be affected by other states 𝑥𝑡

𝑗
via the (past)

population flow between them. On the other hand, the (future)
population flow between two states may change in response to the
varying severity of states’ epidemic situation 𝑥𝑡

𝑖
, 𝑥𝑡

𝑗
.

3.2 Graph Neural Networks (GNN)
GNN is a class of neural networks that operate directly on graph-
structured data by passing local messages[22, 32, 38]. It has been
widely used for approximating pair-wise object interactions in
multi-agent dynamical systems[4, 21].

3.2.1 GNN for Static Graphs The majority of work on GNNmainly
focus on static graphs and is designed for tasks such as node clas-
sification [22, 32], graph clustering and matching [1], etc. While
various architecture exists, the update procedure for a single GNN
layer can be characterized by two major operations: (1) Extracting
information. For example, graph convolution network (GCN) [22]
utilizes the normalized Laplacian as the attention weight for at-
tending each sender node with a linear transformation. It could
be regarded as an approximation of spectral domain convolution
of the graph signals. (2) Aggregating information from neighbors.
Basic aggregation operators including mean, sum and max, while
sophisticated pooling and normalization functions are also been
proposed. In multi-agent dynamical systems where edges are static
and only node attributes evolve, static GNNs are often employed
as neural physical simulators to capture the complex interaction
among objects, which reveals how system changes from timestamp
𝑡 to timestamp 𝑡 + 1 [2]. However, discrete GNNs may have inferior
performance compared with continuous graph ODE-based meth-
ods when the system is continuous by nature, such as the spread
of COVID-19. They also fail to handle irregularity and partial ob-
servations in multi-agent dynamical systems, as opposed to the
aforementioned ODE-based methods [18].

3.2.2 GNN for Dynamic Graphs In many real-world applications,
both nodes and edges are dynamic such as the traffic network [25].

In order to learn hidden patterns from those dynamic graphs, spatial-
temporal GNNs are proposed which is able to consider spatial and
temporal dependency at the same time. To achieve this, existing
approaches integrate static graph convolutions to capture spatial
dependencywith RNNs,CNNs or self-attentionmechanism tomodel
temporal dependency [12, 21, 28]. The learned node representations
can be utilized for downstream tasks such as link prediction [11,
12, 17, 28]. However, they usually assume the new edges are solely
determined by the end nodes, while in many real-life scenarios like
the spread COVID-19, the self-evolution of edges also exists. Also,
they are discrete models and may fail to model dynamical systems
that are continuous by nature, compared to ODE-based methods.

3.3 Latent Graph ODE model for Dynamical
Systems

Dynamical systems with static interaction graph is a special case
in our setting. As mentioned in Sec 3.1, [18] employed GNN as
the ODE function and it follows the framework of variational au-
toencoder (VAE) [20], where an approximate posterior distribution
𝑞𝜙

(
𝒛0
𝑖
| X, 𝐴

)
is computed over each latent initial state for an object

from the encoder. The prior distribution 𝑝 (𝑧0
𝑖
), which is a standard

normal distribution, adds significant regularization over how latent
distribution looks like via the Kullback–Leibler divergence term
in the loss function, which differs VAE from other autoencoder
frameworks. 𝑧0

𝑖
is then sampled from the posterior distribution and

the entire trajectory is determined by 𝑧0
𝑖
and the generative model

defined by the ODE function 𝑔 for all objects. Finally, the decoder
outputs the predicted trajectories by mapping 𝑧𝑡

𝑖
to the original

feature space: 𝑥𝑡
𝑖
= 𝑓dec (𝑧𝑡𝑖 ). We model dynamical systems with

evolving interaction graph under the same framework, where in
addition to modeling latent states for nodes, we also incorporate
latent states for edges. Then the challenges lie in: (1) How can we
infer the initial states for both edges and nodes considering their
mutual influence? (2) How to specify the ODE functions for guiding
the co-evolution for node and edge latent states respectively?

4 Model
In this section, we present Coupled Graph ODE (CG-ODE) for
learning continuous multi-agent dynamical systems with evolving
interaction graph. The overall framework is depicted in Figure 3.
Following the framework of VAE, CG-ODE consists of three parts
that are trained jointly: (1) An encoder that infers the latent initial
states for nodes and edges considering the interaction among ob-
jects. (2) A generative model characterized by two coupled ODE
functions for edges and nodes respectively, with the goal of learning
the latent dynamics of the system. (3) Two decoders that generate
the predicted nodes and edges based on the decoding likelihood
determined by the latent states 𝑝

(
𝒙𝑡
𝑖
| 𝒛𝑡

𝑖

)
and 𝑝

(
𝑤𝑡
𝑖→𝑗

| 𝒛𝑡
𝑖→𝑗

)
.

4.1 Encoder for Initial States
Given the trajectory sequence X and the snapshots of the interac-
tion graph among objects, the encoder firstly computes a posterior
distribution of latent initial state for each object: 𝑞𝜙

(
𝒛0
𝑖
| X,A

)
,

from which 𝑧0
𝑖
is sampled. As in multi-agent dynamical systems,

objects are highly-coupled and their mutual influence is propagated
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Figure 3: The Overall framework of Coupled Graph ODE: Firstly, the encoder computes the latent initial states for edges and
nodes respectively based on the observed sequence of node attributes and adjacency matrix sequence so far with two steps:
Step1: Dynamic node representation learning over the constructed temporal graph. Step2: Sequence representation learning
for summarizing over each observation sequence. Then the generative model calls the ODE solver to solve the two coupled
ODEs for nodes and edges, which outputs the predicted latent states for nodes and edges in the future. Finally, decoders
generate the predicted nodes and edges based on their respective decoding likelihood determined by the latent states.

through the directed weighted edges, we compute the distributions
for all objects simultaneously by considering both their trajectories
and the dynamic interaction graph among them. After inferring
the latent initial states for all nodes, we generate the latent initial
states for edges based on the inferred node initial states.

4.1.1 Latent initial states for nodes We now present how to infer
the latent initial states for each object. Instead of encoding the tem-
poral pattern for each object independently using an RNN [26], we
incorporate the structural pattern by constructing a temporal graph
as shown in Figure 3 Step 1, where each node is an observation of an
object at a specific timestamp. For edges, we firstly construct spatial
edges between two objects at each timestamp 𝑡 based on the corre-
sponding weighted adjacency matrix 𝐴𝑡 , where the edge weight is
naturally given by𝑤𝑡

𝑖→𝑗
. Then, to preserve the autoregressive na-

ture of each trajectory, we only introduce directed temporal edges
𝑤𝑖 (𝑡 )→𝑖 (𝑡 ′) where 𝑡 < 𝑡 ′ are the timestamps of two consecutive
observations of 𝑖 . We use𝑤𝑖 (𝑡 )→𝑗 (𝑡 ′) as a uniform expression for
both spatial and temporal edges, i.e. for spatial edges (when 𝑡 = 𝑡 ′),
𝑤𝑖 (𝑡 )→𝑗 (𝑡 ′) is equivalent to𝑤𝑡

𝑖→𝑗
; for temporal edges (when 𝑖 = 𝑗 ,

𝑡 < 𝑡 ′),𝑤𝑖 (𝑡 )→𝑖 (𝑡 ′) becomes𝑤𝑡
𝑖→𝑖

. By introducing temporal edges
and stacking multiple layers of GNN, we can capture the influence
from historical observations to the current observation.

Based on the constructed temporal graph, we infer the latent
initial states for objects via a two-step process similar as in [26]:
1.) Dynamic Node Representation Learning, where we aim to
learn a structural representation ℎ𝑖 (𝑡 ) for each observation 𝑥𝑡

𝑖
. 2.)

Sequence Representation Learning, where we employ a self-
attention mechanism to summarize each observation sequence into
a fixed-dimensional vector 𝑢𝑖 . The sequence representation 𝑢𝑖 is
then utilized to generate the mean and variance for the Gaussian
posterior distribution for the latent initial state of object 𝑧0

𝑖
.

To learn a structural representation for each observation over the
weighted, directed temporal graph, we propose an attention-based
spatial-temporal GNN that attends over the immediate neighbors
of a node as defined in Eqn 2. Here ℎ𝑙−1

𝑗 (𝑡 ) are the representations of
object 𝑗 at timestamp 𝑡 from layer 𝑙−1,𝜎 (·) is a non-linear activation
function and 𝑑 is the dimension of the latent node representations.
The attention score 𝑒𝑙

𝑗 (𝑡 )→𝑖 (𝑡 ′) for both spatial edges (where 𝑡 = 𝑡 ′)
and temporal edges (where 𝑖 = 𝑗 and 𝑡 < 𝑡 ′), is defined as the
multiplication of the corresponding edge weight, and the computed
affinity score based on representations of sender node and target
node. We adopt the dot-product to compute the affinity score where
𝑊𝑣,𝑊𝑘 ,𝑊𝑞 projects input node representations into values, keys
and queries. The learned attention coefficient is normalized via



softmax across all neighbors. As the temporal graph contains spatial
and temporal edges, we add temporal encoding [26, 31] to the sender
node representation in order to distinguish them. Finally, we stack
𝐿 layers to get the final representation for each node: ℎ𝑖 (𝑡 ′) = ℎ𝐿

𝑖 (𝑡 ′)

ℎ𝑙
𝑖 (𝑡 ′) = ℎ𝑙

𝑖 (𝑡 ′) + 𝜎
©­«

∑
𝑗 (𝑡 ) ∈N𝑖 (𝑡′)

𝑒𝑙
𝑗 (𝑡 )→𝑖 (𝑡 ′) ×𝑊𝑣ℎ̂

𝑙−1
𝑗 (𝑡 )

ª®¬
𝑒𝑙
𝑗 (𝑡 )→𝑖 (𝑡 ′) = 𝑤 𝑗 (𝑡 )→𝑖 (𝑡 ′) × 𝛼𝑙

𝑗 (𝑡 )→𝑖 (𝑡 ′)

𝛼𝑙
𝑗 (𝑡 )→𝑖 (𝑡 ′) =

(
𝑊𝑘ℎ̂

𝑙−1
𝑗 (𝑡 )

)𝑇 (
𝑊𝑞ℎ

𝑙−1
𝑖 (𝑡 ′)

)
· 1
√
𝑑

(2)

ℎ̂𝑙−1
𝑗 (𝑡 ) = ℎ𝑙−1

𝑗 (𝑡 ) + TE(𝑡 − 𝑡 ′)

TE(Δ𝑡)2𝑖 = sin
(

Δ𝑡

100002𝑖/𝑑

)
, TE(Δ𝑡)2𝑖+1 = cos

(
Δ𝑡

100002𝑖/𝑑

)
Next, we employ a self-attention mechanism to generate se-

quence representation for each object, which is then utilized to
compute the posterior distribution for the latent node initial state.
Compared with traditional recurrent models that encode temporal
pattern within each sequence such as RNN, LSTM, self-attention
mechanism can be better parallelized for speeding up the training
process and alleviate the vanishing/exploding gradient problem
in these models [28]. We introduce a global sequence vector 𝑎𝑖 to
calculate a weighted sum of observations as the sequence repre-
sentation, where 𝑎𝑖 is the average of node representations with a
nonlinear transformation𝑊𝑎 . The process is shown in Figure 3 Step
2 and Eqn 3, where ℎ̂𝑖 (𝑡 ) = ℎ𝑖 (𝑡 ) + TE(𝑡).

𝑢𝑖 =
1
𝑁

∑
𝑡

𝜎

(
𝑎𝑇𝑖 ℎ̂𝑖 (𝑡 )ℎ̂𝑖 (𝑡 )

)
, 𝑎𝑖 = tanh

((
1
𝑁

∑
𝑡

ℎ̂𝑖 (𝑡 )

)
𝑊𝑎

)
(3)

Finally, we compute the mean and variance of the approximated
posterior distribution from the sequence representation 𝑢𝑖 , and
sample 𝑧0

𝑖
from it.

𝑞𝜙

(
𝑧0𝑖 | X,A

)
= N

(
𝜇𝑧0

𝑖
,𝝈𝑧0

𝑖

)
, 𝜇𝑧0

𝑖
, 𝜎𝑧0

𝑖
= 𝑓trans (𝑢𝑖 )

𝑧0𝑖 ∼ 𝑝

(
𝑧0𝑖

)
≈ 𝑞𝜙

(
𝑧0𝑖 | X,A

) (4)

4.1.2 Latent initial states for edges Given the latent initial states
for a pair of nodes 𝑧0

𝑖
, 𝑧0

𝑗
, the latent initial state for each edge is

given by Eqn 5, where | | denotes the concatenation operation.

𝑧0𝑖→𝑗 = 𝑓edge
(
[𝑧0𝑖 | |𝑧

0
𝑗 ]

)
(5)

4.2 ODE Generative Model and Decoder
After computing the latent initial states for nodes and edges, we
now define the ODE function that drives the system to move for-
ward. In multi-agent dynamical systems, the latent node and edge
states are co-evolving along with time. We therefore propose the
coupled ODE functions for edge and nodes respectively as shown
in Eqn 6, where 𝑍 𝑡 ∈ R𝑁×𝑑 denotes the latent state matrix for all
𝑁 objects,𝑊 ∈ R𝑑×𝑑 is a linear feature transformation matrix. The
node ODE function consists of three parts and can be understood
from an epidemic modeling perspective [37]. If we view 𝑍 𝑡 as the
infection conditions for all states in the U.S at timestamp 𝑡 , the first

term accounts for the infection from neighbors; the second term
−𝑍 𝑡 can be viewed as natural recovery and the third term 𝑍 0 is for
natural physique [3]. Note that we use the normalized adjacency
matrix 𝐴̃ = 𝐷−1𝐴 to compute message passing from neighbors,
where 𝐷 is the degree matrix of 𝐴 defined as 𝐷𝑖𝑖 =

∑
𝑗 𝐴𝑖 𝑗 . This

is because when solving the ODE using a numerical solver, it is
equivalent to stack multiple GNN layers as time progresses. Us-
ing an unnormalized adjacency matrix would therefore cause the
potential gradient exploding problem. As our interaction graph is
asymmetric, we normalize it to𝐷−1𝐴 instead of𝐷− 1

2𝐴𝐷− 1
2 for sym-

metric adjacency matrix. The edge ODE function consists of two
parts. 𝑓𝑒 : R2𝑑 → R𝑑 is a mapping function that transforms the con-
catenation of two nodes to the latent state of their corresponding
edge. 𝑓self : R𝑑 → R𝑑 accounts for the self-evolution of edges. For
example, the population flow between California and Washington
may change over time due to factors like holidays and quarantine
policies, which may not be driven by the severity of COVID-19 at
these two locations, i.e. 𝑧𝑡

𝑖
and 𝑧𝑡

𝑗
. 𝑓edge2value : R𝑑 → R transforms

the latent edge states to a scalar, which is then utilized in the node
ODE function.

𝑑𝑍 𝑡

𝑑𝑡
= 𝜎

(
𝐴̃𝑡𝑍 𝑡𝑊

)
− 𝑍 𝑡 + 𝑍 0

𝑑𝑧𝑡
𝑖→𝑗

𝑑𝑡
= 𝑓𝑒

(
[𝑧𝑡𝑖 | |𝑧

𝑡
𝑗 ]

)
+ 𝑓self

(
𝑧𝑡𝑖→𝑗

)
(6)

𝐴𝑡
𝑖 𝑗 = 𝑓edge2value

(
𝑧𝑡𝑖→𝑗

)
, 𝐴̃𝑡 = 𝐷−1𝐴𝑡

Given the coupled ODE functions and the initial states for nodes
and edges, the trajectories for all objects are determined. We com-
pute the predicted trajectories for each object and the interaction
graph based on the decoding likelihood 𝑝

(
𝒙𝑡
𝑖
| 𝒛𝑡

𝑖

)
and 𝑝

(
𝑤𝑡
𝑖→𝑗

| 𝒛𝑡
𝑖→𝑗

)
with two decoding functions 𝑓decN, 𝑓decE respectively.

4.3 Training
Now that we have described all the elements, the overall training
process goes as follows: Each training sample is separated into two
halves along the time, where we condition on the first half [𝑇0,𝑇1]
in order to predict/reconstruct the second half [𝑇1,𝑇2]. Given the
trajectory sequence X and weighted adjacency matrix sequence A,
we firstly run the encoder to compute the posterior distribution
𝑞𝜙

(
𝑧0
𝑖
| 𝑋,A

)
for each object, based on the first half. Then we sam-

ple the latent node initial states 𝑧0
𝑖
from it for all objects, and com-

pute the latent initial states for edges as 𝑧0
𝑖→𝑗

= 𝑓edge
( [
𝑧0
𝑖
∥𝑧0

𝑗

] )
.

We then run the generative model defined by two coupled ODE
functions to compute latent states for predicted nodes and edges
in the future. Next, we run the decoder to compute the mean of
each decoding distribution as :𝜇𝑡

𝑖
= 𝑓decN (𝑧𝑡𝑖 ), 𝜇

𝑡
𝑖→𝑗

= 𝑓decE (𝑧𝑡𝑖→𝑗
),

which is treated as the predicted value for edges and nodes. Finally,
we jointly train the encoder, generative model and decoder by max-
imizing the evidence lower bound (ELBO) as shown below, where
the first term is the reconstruction loss for nodes and edges, and
the second term is the KL divergence. We additionally introduce
a hyperparameter 𝜆𝑒𝑑𝑔𝑒 for balancing the reconstruction loss of



Algorithm 1: Coupled Graph ODE training procedure.
Input: Adjacency matrix sequence A =

{
𝐴1, 𝐴2, . . . , 𝐴𝑇

}
;

Node feature sequences X =
{
𝑋 (1) , 𝑋 (2) , . . . , 𝑋 (𝑇 ) }.

Output: Model parameters 𝜙 and 𝜃 .
1 while model not converged do
2 for Each training sample do
3 Separate the sequence into observed half [𝑇0,𝑇1]

and predicted half [𝑇1,𝑇2];
4 //For the encoder :
5 Construct the temporal graph as shown in Figure 3

Step 1 based on the observed data in the first half;
6 Conduct dynamic node representation learning on

the temporal graph according to Eqn 2;
7 Generate sequence representation for each object

according to Eqn 3, then sample latent initial states
𝑧0
𝑖
for each object according to Eqn 4;

8 Generate latent initial state 𝑧0
𝑖→𝑗

for each edge
according to Eqn 5;

9 //For the generative model:
10 Given initial nodes, edges state, and timestamps to

predict [𝑇1,𝑇2], solve the coupled ODE in Eqn 6;
11 //For the decoder :
12 Compute predicted nodes and edges based on the

decoding likelihood 𝑝
(
𝒙𝑡
𝑖
| 𝒛𝑡

𝑖

)
and

𝑝

(
𝑤𝑡
𝑖→𝑗

| 𝒛𝑡
𝑖→𝑗

)
respectively;

13 end
14 Update the parameters 𝜙 and 𝜃 by optimizing ELBO loss

in Eq. 7;
15 end

edges and nodes.
ELBO (𝜃, 𝜙) = E

𝑍 0∼∏𝑁
𝑖=1 𝑞𝜙 (𝑧0𝑖 |X,A) [log𝑝𝜃 (X,A)]

− KL[
𝑁∏
𝑖=1

𝑞𝜙

(
𝑧0𝑖 | X,A

)
∥𝑝 (𝑍 0)]

=

(
1 − 𝜆𝑒𝑑𝑔𝑒

)
L𝑛𝑜𝑑𝑒 + 𝜆𝑒𝑑𝑔𝑒L𝑒𝑑𝑔𝑒 − KL[

𝑁∏
𝑖=1

𝑞𝜙

(
𝑧0𝑖 | X,A

)
∥𝑝 (𝑍 0)]

(7)
The reconstruction loss is estimated as below where the constant
𝜎 is the standard derivation of each prior distribution. The overall
pipeline is illustrated in Algo 1.

L𝑛𝑜𝑑𝑒 = −
∑
𝑖

∑
𝑡



x𝑡
𝑖
− 𝜇𝑡

𝑖



2
2𝜎2

L𝑒𝑑𝑔𝑒 = −
∑
𝑖

∑
𝑗

∑
𝑡




w𝑡
𝑖→𝑗

− 𝜇𝑡
𝑖→𝑗




2
2𝜎2

(8)

5 Experiments
In this section, we present the evaluation results over our model. We
first introduce the dataset we used, followed by our experimental
results and analysis.

5.1 Experiment Setup
5.1.1 Dataset We conduct experiments on the COVID-19 data
as well as the simulated social network data from [11]. For the
COVID-19 dataset, we utilize the daily trendency data [9] from
the Johns Hopkins University (JHU) Center for Systems Science
and Engineering1 to train our model for the United States. More
specifically, we focus on predicting the state-level daily cumulative
deaths. For node features, we choose five out of ten dynamic features
provided by JHU , which are: #Confirmed, #Deaths, #Recovered,
Mortality-Rate and Testing-Rate. Details about their semantic mean-
ing and preprocessing can be found in Appendix A. Additionally,
we utilize the population for each state as one static feature, which
has been widely used in many existing disease prediction mod-
els [16, 34, 39, 40]. We use the mobility data provided by Safegraph2
to construct the interaction graph. SafeGraph is a company that
aggregates anonymized location data from numerous mobile ap-
plications [5]. The mobility data captures the movement of people
between census block groups (CBGs) and we group them by states
to form the daily population flow including in-state flow (See Ap-
pendix A for details). We additionally use the in-state flow as the
sixth node dynamic feature, thus each node has seven features in
total. The social network data simulates the opinion migration of
individuals in a social network over time [11]. We set the number
of nodes as 80 and generate 399 timestamps. The initial positions
(opinions) of individuals follow uniform distribution in a 2-d space.
We set the noise parameter as 0.2, the sparsity parameter as 𝑒−0.4.

5.1.2 Data Split and Task We train our model in a sequence to
sequence setting where we split the time of each training sample
into two parts [𝑇0,𝑇1] and [𝑇1,𝑇2]. We condition on the first half
of observations and reconstruct the second half. To achieve this,
we generate training samples by setting three hyperparameters:
prediction length, condition length and interval, where prediction
length is the size of the second half; condition length is the size of
the first half, and interval is the overlap between two consecutive
training samples. We generate different training samples to train
our model when predicting at different horizons. For the COVID-19
dataset, we utilize data from April.12.2020 to Nov.30.2020 to train
our model and test the performance on data from Dec.01.2020 to
Dec.31.2020. For the social network dataset, we utilize data from
the first 320 timestamps to make predictions in timestamps 321-399.

5.2 Baselines
For both datasets, we compare with the following three discrete
neural network-based methods.

• LSTM [30]: A classic recurrent neural network (RNN) that
learns the dynamics of each node independently.

• NRI [21]: A VAE-based relation inference model. The en-
coder infers the static graph structure among nodes and the
GNN-based decoder uses the inferred graph to generate the
node features in the future.

• VGRNN [12]: A VAE-based graph recurrent neural network
that jointly learns the evolution of network topology and
node attribute changes.

1https://github.com/CSSEGISandData/COVID-19
2https://www.safegraph.com/covid-19-data-consortium



Table 1: Mean Absolute Percentage Error (MAPE) for Cumulative Deaths

Step Length Pred Date UCLA-SuEIR UT-Mobility Columbia IHME LSTM NRI VGRNN CG-ODE

1-week
-ahead

Nov.29-Dec.05 0.03297 0.02707 0.02001 - 0.08094 0.07784 0.06807 0.02144
Dec.07-Dec.12 0.02283 0.03736 0.02455 0.02458 0.08363 0.07448 0.06086 0.02653
Dec.14-Dec.19 0.01946 0.04178 0.01443 - 0.07144 0.06462 0.06102 0.01997
Dec.21-Dec.26 0.01851 0.05460 0.02595 - 0.04912 0.04616 0.04297 0.01849

Average 0.02344 0.04020 0.02124 0.02458 0.07128 0.06578 0.05823 0.02161

2-weeks
-ahead

Nov.29-Dec.12 0.11036 0.07119 0.08194 - 0.15922 0.15004 0.13791 0.04341
Dec.07-Dec.19 0.07951 0.05830 0.09248 0.06252 0.14873 0.13782 0.12812 0.04702
Dec.14-Dec.26 0.06356 0.04112 0.05174 - 0.13012 0.11423 0.10712 0.03709

Average 0.08448 0.05687 0.07539 0.06252 0.14602 0.13403 0.12438 0.04251

3-weeks
-ahead

Nov.29-Dec.19 0.17361 0.13255 0.13721 - 0.11793 0.10752 0.10624 0.04513
Dec.06-Dec.26 0.13116 0.09570 0.14445 0.10671 0.19561 0.18088 0.17322 0.09832

Average 0.15239 0.11413 0.14083 0.10671 0.15677 0.14420 0.13973 0.07173

Table 2: Mean Absolute Percentage Error (MAPE) for Social
Data.

Pred Length 10 20 40
LSTM 0.12419 0.37031 0.69579
NRI 0.28879 0.41980 0.68417
VGRNN 0.11312 0.27789 0.56763
CG-ODE 0.12359 0.26340 0.45434

For the COVID-19 dataset, we additionally considers traditional
statistical models which learn the dynamic for each state (node)
independently.We choose the following four baselines developed by
different institutions and obtain their predictions from the forecast
hub3 which is officially used by the centers for disease control and
prevention (CDC)4.

• UCLA-SuEIR [40]: A SuEIR model which is a variant of the
SEIR [16] model considering both untested and unreported
cases. The model considers reopening and assumes suscepti-
ble population will increase after the reopening. Parameters
are learned via machine learning algorithms.

• IHME [13]: A non-linear curve-fitting method with the as-
sumption that current interventions remain unchanged.

• UT-Mobility [36]: A non-linear curve-fitting method where
mobility data within each state is utilized to quantify the
changing impact of social-distancing.

• Columbia [34]: A survival-convolution model with piece-
wise transmission rates that incorporates incubation period
and provides a time-varying effective reproductive number.

5.3 Performance Evaluation
We evaluate the performance of our model based on Mean Absolute
Percentage Error (MAPE) as shown in Table 1 and Table 2. For the
COVID-19 dataset, as the prediction results for statistical baselines
are obtained from their weekly official submissions to CDC, we
compare the performance across all models using the same weekly
prediction periods. Specifically, Pred Date denotes the targeted
prediction period while Step Length denotes the number of days
before the prediction is made. For example, for Pred Date of Nov.29
3https://github.com/reichlab/covid19-forecast-hub/tree/master/data-processed
4https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html

- Dec.05, the prediction is made for Dec.05 by using the data up to
Nov.29. Therefore it is a 1-week-ahead prediction.

We first observe that CG-ODE is able to outperform all baselines
in long-term predictions by a big margin while achieves similar
short-term prediction performance. In both datasets, there is a wider
performance gap between CG-ODE and other baselines (e.g. LSTM)
that do not consider the interaction among objects, when predicting
longer-range node attributes. This indicates that the interaction
graph plays a more important role in facilitating long-term predic-
tions. Similar observation can be found in some dynamic physical
systems such as particles connected by springs [18]: to predict the
location for each object in a spring system, usually the object’s
own velocity can be a good approximation for predicting the lo-
cation at the next timestamp, while it fails to predict locations in
the longer-range without considering its interaction among objects.
Secondly, neural network-based baselines fail to produce accurate
predictions for the COVID19-dataset, which is expected as they are
discrete models and may fail to capture the underlying dynamics
for a continuous interacting system. Among three neural network-
based models, by comparing LSTM with NRI and VGRNN, where
the latter two consider underlying interaction among objects and
LSTM only models the trajectory for each state independently, we
found that by jointly modeling the evolution of graph and node
attributes, models can achieve better prediction results. However,
NRI performs bad on the social network dataset. This is because
the topology change in the social network dataset is more sharp
than that of the COVID-19 dataset, and the static network topology
assumption in NRI would no longer holds. Among four statistical
methods, we observe that UT-Mobility shows better performance
in long-term predictions than others. This indicates that the mo-
bility data can serve as a useful signal for predicting the spread of
COVID-19. However, UT-Mobility only utilizes the mobility data
for each state independently, instead of utilizing it to model the
interaction among states as in our model, thus it achieves worse
prediction results compared to CG-ODE.

Hyperparameter Study. We then study two important hyper-
parameters in CG-ODE in the COVID-19 dataset, which are 𝜆𝑒𝑑𝑔𝑒
in Eqn 7 for balancing the reconstruction loss for nodes and edges,
and the condition length for different prediction horizons. Figure 4
shows the MAPE changes as a function of 𝜆𝑒𝑑𝑔𝑒 for three prediction
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Figure 4: MAPE as a function of 𝜆𝑒𝑑𝑔𝑒 on the COVID-19
dataset

horizons respectively. First, we can see that the optimal 𝜆𝑒𝑑𝑔𝑒 for
1-week-, 2-week- and 3-week-ahead predictions are 0.3, 0.4, 0.5
respectively, which increases when predicting node attributes in
the longer range. This is consistent with the prediction errors illus-
trated in Table 1, where the performance gap between our models
and other baselines that do not consider graph interaction increases,
when predicting longer-range node attributes. They indicate that
the interaction graph plays a more important role in facilitating
long-term predictions. Second, for all of the three prediction hori-
zons, when 𝜆𝑒𝑑𝑔𝑒 = 0, the MAPE increases sharply as the model
is only trained to recover the node attributes, without supervision
from the dynamic interaction graph. In this case, our model has
degenerated to a relation inference model where the ground truth
graph is not known during training and is learned in an unsuper-
vised way. Notably, CG-ODE is able to achieve comparable results
for the 3-week-ahead predictions compared with statistical base-
lines even when 𝜆𝑒𝑑𝑔𝑒 = 0, which verifies the effectiveness of our
co-evolution model and the importance of introducing interaction
graph for long-term predictions. Last, when 𝜆𝑒𝑑𝑔𝑒 = 1, our model
is only trained for recovering the dynamic interaction graph, and
learns the dynamic node attributes in an unsupervised way. There-
fore, the MAPE increases as expected. However, the prediction error
is still comparable with some statistical baselines especially in the
long-term prediction. For example in the 3-week-ahead prediction,
UCLA-SuEIR has MAPE of 0.15239 while CG-ODE has MAPE of
0.16245 when 𝜆𝑒𝑑𝑔𝑒 = 1. This shows the capability of CG-ODE of
learning on semi-supervised data or sparse data.

Figure 5 shows the MAPE changes as a function of condition
length for three different prediction horizons. The optimal con-
dition length for 1-week-, 2-week- and 3-week-ahead predictions
are 2 weeks, 3 weeks, 4 weeks respectively, which increases when
predicting node attributes in the longer range. This is expected as
long-term prediction would usually depend more on the dynamic
pattern in the historical data, i.e. require longer range dependency
from the past. This is similar to a spring system: the location of an
object at next timestamp can be well-approximated by its current
location and velocity, while the locations in the longer future should
depend on its historical trajectories, instead of a single point.
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Figure 5: MAPE as a function of condition length on the
COVID-19 dataset

5.4 Case Studies
We conduct a case study by adding three different interventions to
the interaction graph. Table 3 shows the summation of the number
of deaths reduced for all states on Dec.26 compared to the ground
truth, when adding different interventions. We set the duration
of each intervention as 2 weeks and study the effect of adding
the same intervention at different times. For example, 1-wk-ahead
means the intervention period is one week ago, i.e. the intervention
ends at Dec.20 and starts at Dec.7. The first intervention adds 20%
reduction to all in-state population flows. The second intervention
adds 20% reduction to all between-state population flows. The third
one removes the same amount of population flow as in the second
intervention, but reduces the population flow in descending order
of states’ original outflow. Specifically, we rank states by their daily
population outflow in descending order and set the outflow for each
state to zero starting from the state with the largest population
outflow, until the total amount of outflow reduction equals to that
of the second intervention.

We firstly observe that reducing the in-state flow will decrease
the number of deaths the most. This is expected as the value of
in-state population is much larger than that of the between-state
population. Secondly, compared with evenly reducing between-
state flow for all states, reducing the population outflow from core
states will result in a larger drop in the number of deaths. This can
be due to the fact that states with larger population outflow are
likely to have larger in-state flow as well, due to the loose control
over traveling. Thus the severity of these states are likely to be
higher. Finally, by comparing the number of reduced deaths for the
same intervention happened at different times, we notice that the
effect of all interventions tends to decrease day by day.

6 Conclusion
In this paper, we investigate the problem of learning the dynamics
of interacting systems by jointly modeling the evolution of nodes
and edges. We model system dynamics in a continuous fashion
through two coupled neural ordinary differential equations. Specif-
ically, the evolution of a node would depend on its self-evolution
and influence received from the interaction graph; the evolution of



Table 3: Number of Deaths Reduced on Dec.26

1-wk-ahead 2-wk-ahead 3-wk-ahead
In-state flow
deduction (20%) -8973 - 7084 -6824

Between-state flow
deduction (20%) -2465 -2215 -2197

Flow deducted from
core states -3854 -3625 -3517

an edge would depend on its end node’s attributes and the edge’s
self-evolution. We infer the latent initial states for the two ODEs
through a novel encoder, which is a VAE-based graph neural net-
work (GNN) that infers the initial states for all objects simultane-
ously with uncertainty. The proposed model, coupled graph ODE
(CG-ODE) is able to achieve accurate prediction for the cumulative
deaths of COVID-19 in the United States as well as the simulated
social network dataset, especially for long-term predictions. We
also conduct an ablation study where we add intervention to the
interaction graph and provide insights on how to make efficient
intervention policies to control the population flow between the 50
states within the United States. There are some limitations though.
Our current model tries to learn latent edge representations by
assuming a fully-connected graph, which is time-consuming espe-
cially for large dataset. In the future, we plan to design efficient
sampling methods for the edge ODEs to balance model efficiency
and performance.
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A Data Preparation
We utilize the COVID-19 data [9] from the Johns Hopkins Univer-
sity (JHU) Center for Systems Science and Engineering to train our
model for the United States (See Section 5). Additionally, we incor-
porate mobility data from SafeGraph to construct the interaction
graph and use the in-state flow as one node feature. SafeGraph data
captures the movement of people between census block groups
(CBGs), which are geographical units that typically contain a popu-
lation of between 600 and 3,000 people, and points of interest (POIs)
like restaurants, grocery stores, or religious establishments [5].
Specifically, we utilize the Social Distancing Metrics dataset 5 from
SafeGraph, which contains daily estimates of the proportion of
people staying home in each CBG. As the scale for different node
features and mobility data are different, we now introduce the
preprocessing process for each of them below.

• # Confirmed. The number of daily increased confirmed
cases for each state. We divide each value by 10 for normal-
ization.

• # Deaths. The number of daily increased deaths for each
state. We keep the original value for this feature without
normalization.

• #Recovered. The number of daily increased recovered cases
for each state. We divide each value by 10 for normalization.

• Mortality-Rate. The number of daily cumulative deaths *
100/ the number of daily cumulative confirmed cases for
each state. The value is within range [0, 10] for the provided
data, and we keep the original value without normalization.

• Testing-Rate. The number of daily cumulative test results
per 100,000 persons for each state. The cumulative test results
are equal to the summation of total positive cases and total
negative cases, obtained from the COVID Tracking Project 6.

• Population. The number of population for each state. We
divide each value by 1000000 for normalization.

• Mobility data. The number of daily population flow be-
tween andwithin each state.We divide each value by 1000000
for normalization. Note that the population flows between
two states are asymmetric.

We concatenate #Confirmed, #Deaths, #Recovered, Mortality-
Rate, Testing-Rate, Population and In-State Mobility data to gen-
erate each node attribute of size seven. The In-State Mobility data
is the number of people moving between POIS within each state,
which does not contain the inflow population from other states.

We generate training samples from April.12 to Nov.31 with three
hyperparameters: condition length, prediction length and interval.
The code snippet is shown below, where we split the time of each
training sample into two halves [𝑇0,𝑇1] and [𝑇1,𝑇2]. We condition
on the first half with size equals to the condition length, to predic-
t/reconstruct the second half with size equals to prediction length.
The interval is the forwarding steps along the time between two
consecutive training samples. We generate different training sam-
ples for predicting different horizons. For all settings, we set the
interval as 3. For the simulated social network dataset, we set the
interval as 5. To generate testing sequences for the social network
dataset which does not have any test points as in the COVID-19
5https://docs.safegraph.com/docs/social-distancing-metrics
6https://covidtracking.com/

dataset, we utilize the feature sequence from timestamps 321-399 as
the input testing features, and generate testing sequences following
the pseudo code below.

condition_length = 14 # number of days to condition on
prediction length = 7 # number of days to predict
interval = 3 # number of steps forward for next sample

sample_length = condition_length + prediction_length
total_timestamps = feature_train.shape[1]
#feature_train of shape [num_states,num_times,num_features]
feature_sequences = []
for i in range(0, total_timestamps - sample_length + 1,

interval):
feature_sequences.append(features[:, i:i +

sample_length, :])

B Implementation Details
We now introduce the implementation details in our experiment.
ODE Solver. For the COVID-19 dataset, we use the fourth-order
Runge-Kutta method [29] from the torchdiffeq python package 7

as the ODE solver. It solves the ODE system on a time grid that is
five times denser than the observed time points. For the simulated
social dataset, we use the Euler method [10] which is another type
of fixed step solver. We also utilize the Adjoint method described
in [7] which reduces the memory cost for backpropagation to a
constant.
Encoder. The encoder consists of two modules and aims to infer
the latent initial states for nodes and edges simultaneously consid-
ering the interaction among objects. It firstly constructs a temporal
graph and then performs dynamic node representation learning and
sequence representation learning to generate latent initial states
for nodes. Then the edge initial state is generated by the latent
states of its end nodes. We set the latent representation dimension
in the GNN of the first module as 64 and the number of layers as 1
for both dataset. We use Gelu [15] as the activation function. For
sequence representation learning, we set the output dimension as
20 and 30 for the COVID-19 dataset and the social network dataset
respectively, which is the hidden dimension in the ODE function.
ODE functions. The generative model consists of two coupled
ODE functions for nodes and edges respectively, in order to capture
their co-evolution along with the time. We set the dimension for
both latent states for nodes and edges as 20 and 30 respectively for
the COVID-19 dataset and the social network dataset. For edge ODE,
we implement the self-evolution function 𝑓self as a simple two-layer
Multi-Layer Perception (MLP). The transfer function 𝑓edge2value is
also a simple MLP, which transforms latent edge states to a scalar
and is then utilized in the node ODE.
Training details. We implement our model in pytorch. Encoder,
generative model and the decoder parameters are jointly optimized
with AdamW optimizer [14] with learning rate 0.0005. For both
datasets, we train our model over 50 epochs and report the results
by the best validation value.

7https://github.com/rtqichen/torchdiffeq



Table 4: Root Mean Square Error (RMSE) for Social Data.

Pred Length 10 20 40
LSTM 0.15594 0.51567 0.76808
NRI 0.58779 0.68384 0.71086
VGRNN 0.14609 0.28104 0.50778
CG-ODE 0.10914 0.26704 0.53371

Table 5: Root Mean Square Error (RMSE) for Cumulative Deaths

Pred Date UCLA-SuEIR UT-Mobility Columbia IHME LSTM NRI VGRNN CG-ODE

1-week
-ahead

Nov.29-Dec.05 145.60 117.56 77.06 - 417.15 375.59 400.86 103.36
Dec.07-Dec.12 84.76 223.05 123.03 86.14 460.03 391.26 418.89 146.45
Dec.14-Dec.19 111.47 310.27 76.32 - 415.17 447.66 481.33 192.71
Dec.21-Dec.26 111.35 413.73 212.14 - 347.99 363.05 406.59 150.31

Average 113.30 266.15 122.14 86.14 410.09 394.39 426.92 148.21

2-weeks
-ahead

Nov.29-Dec.12 605.54 394.57 442.38 - 992.42 823.33 854.72 230.70
Dec.07-Dec.19 539.26 350.78 626.48 439.99 981.73 902.39 939.26 302.21
Dec.14-Dec.26 558.03 261.12 413.86 - 876.60 888.33 930.85 358.41

Average 567.61 335.49 494.24 439.99 950.25 871.35 861.86 297.11

3-weeks
-ahead

Nov.29-Dec.19 1129.14 892.55 879.45 - 745.35 591.99 618.16 170.61
Dec.06-Dec.26 1010.10 696.32 1069.29 850.02 1483.57 1343.04 1408.38 455.30

Average 1069.52 794.43 974.37 850.02 1114.46 967.52 1013.27 312.96

C Additional Results
Table 4 and 5 shows the Root Mean Square Error (RMSE) for the
COVID-19 and social network dataset respectively. We can observe

a similar trendency that CG-ODE tends to perform better on long
range predictions.
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