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ABSTRACT
COVID-19 has caused lasting damage to almost every domain in
public health, society, and economy. Tomonitor the pandemic trend,
existing studies rely on the aggregation of traditional statistical
models and epidemic spread theory. In other words, historical statis-
tics of COVID-19, as well as the population mobility data, become
the essential knowledge for monitoring the pandemic trend. How-
ever, these solutions can barely provide precise prediction and
satisfactory explanations on the long-term disease surveillance
while the ubiquitous social media resources can be the key enabler
for solving this problem. For example, serious discussions may oc-
cur on social media before and after some breaking events take
place. These events, such as marathon and parade, may impact the
spread of the virus. To take advantage of the social media data,
we propose a novel framework, Social Media enhAnced pandemic
suRveillance Technique (SMART), which is composed of two mod-
ules: (i) information extraction module to construct heterogeneous
knowledge graphs based on the extracted events and relationships
among them; (ii) time series prediction module to provide both
short-term and long-term forecasts of the confirmed cases and fa-
tality at the state-level in the United States and to discover risk
factors for COVID-19 interventions. Extensive experiments show
that our method largely outperforms the state-of-the-art baselines
by 7.3% and 7.4% in confirmed case/fatality prediction, respectively.
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Figure 1: Social media users can serve as a “social sensor”
formonitoring the pandemic trend. For example, some time-
wise and location-wise prevailing entities in social media
data such as “Reopen” and “Parade” indicate that people are
likely to go out, leading to an increasing trend of virus trans-
mission. The real-time forecasts will be delivered to the gov-
ernment, health organizations, all kinds of media, and edu-
cation institutes for making intervention strategies.

1 INTRODUCTION
Over 200 countries and territories have been deeply impacted by
the outbreak of the coronavirus disease 2019 (COVID-19). As of
2021 May, a total of 164 million cases and 3.4 million deaths were
reported all over the world1. It is critical to forecast the short-term
and long-term trends of the epidemic, to help governments and
health organizations determine the prevention strategies and help
researchers understand the transmission characteristics of the virus.

Modeling the COVID-19 pandemic is challenging. Previous stud-
ies present three types of disease transmission approaches to ex-
plain and model the pandemic, which are exponential growth
models [52], self-exiting branching process [42], and compartment
models (e.g., Susceptible-infected-resistant (SIR) [39], Susceptible-
Exposed-Infected-Removed (SEIR) [4] and Herd Immunity [23]).
However, exponential growth models can only address the initial
outbreak while self-exiting-branching process and compartment
models favor the development and peak stages [8]. Besides, the
pandemic trend varies dramatically across different locations and
times in response to real-time breaking events. To tackle these
challenges, some data-driven approaches [3, 19] that ensembles
1https://covid19.who.int/
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statistical and machine learning models emerge for monitoring
the confirmed cases, fatality, and hospitalizations. [25, 60] leverage
graph neural networks to incorporate the population mobility data,
i.e., how many people traveled from one place to another, to encode
the underlying diffusion patterns into the learning process. How-
ever, these models take into consideration only a small number of
homogeneous features. They are incapable of capturing potential
risk factors and identifying various intervention mechanisms of
this new pandemic as well.

As the quarantine life takes over the world and people turn to
online platforms for communication and information, social media
become more influential than ever [27, 58]. The vast collections
of social media streams can capture local activities (e.g., public
gatherings and vaccination progress) that may affect the transmis-
sion of the virus in real-time. Over 170 million tweets are posted
every day in the United States related to observations, behaviors,
and thoughts of individual users [17]. The social media users can
be naturally treated as robust “social sensors” [34] to unveil the
surveillance evidence over time and space. For example, in Figure 1,
the severe discussions related to the coming social events such
as “Marathon” and “Parade” may indicate a potential risk of virus
spread while some hot hashtags like “#StayHome” or “#GetVaccine”
may represent the safety awareness of individuals in the prevailing
areas. Over the past decades, researchers have successfully applied
social media data to monitor the earthquakes [68] or air quality [34].
Inspired by these works, we aim to incorporate social media content
to forecast the pandemic.

To this end, we want to answer the following interesting research
questions:
• Can social media contents further enhance the short-term and
long-term COVID-19 forecasts?
• How to identify potential risk factors from the social media
data as these factors may vary over time and space?

Motivated by them, we collaborate with Twitter and use their
COVID-19 stream API service to crawl large-scale tweets related
to COVID-19 based on Twitter’s internal COVID-19 annotations.
We propose a novel framework, Social Media enhAnced pandemic
suRveillance Technique (SMART), which is composed of two mod-
ules, information extraction module and time series prediction
module. Specifically, in the information extraction process, we rec-
ognize named entities and identify relationships among them from
the large-scale tweet corpora. Based on the entities and relation-
ships, we build a spatial-temporal heterogeneous knowledge graph.
We then propose a Dynamic Graph Neural Network (DGNN) with
a Bidirectional Recurrent Neural Network (Bi-RNN) to forecast
pandemic trends and suggest risk factors for each location.

Our main contributions are summarized as follows:
• To the best of our knowledge, we are the first to simulta-
neously detect social events for pandemic surveillance and
suggest the risk factors.
• We propose a novel framework, SMART, for domain-specific
information extraction from social media data and time series
prediction on dynamic spatial-temporal graphs. Extensive
experiments show the effectiveness of our approach. We
achieve 7.3% and 7.4% improvements from the state-of-the-
art methods for confirmed case/fatality predictions.

• We will open-source our implementations to facilitate the
research community.

2 RELATEDWORK
2.1 Pandemic Forecast
Epidemic Prediction Models. There are three types of epidemic
prediction models in literature, including exponential growth mod-
els [52], self-exiting branching process [42], and compartment mod-
els [4, 6, 7, 9, 23, 28, 29, 39, 43, 57, 65, 71]. The dynamics of in-
fectious diseases are expressed by the compartment models for
predicting the epidemic trends using ordinary differential equa-
tions [65]. SIR [39], as the most prevailing compartment model,
segments the population into three parts: Susceptible, Infectious,
and Recovered and express the population flow among them with
evolving equations. Later, many cumulative studies based on SIR
emerge, including SEIR [4], SEIS [77], MSEIR [29], SuEIR [83], and
MSIR [57]. In specific, SEIR includes the Exposed compartment and
SEIS, MSIR, MSEIR, SuEIR extend SEIR by taking into account ei-
ther Immunity or untested/unreported compartments. However, as
concluded in [8], the exponential growth models can only address
the initial outbreak while self-exiting-branching process and com-
partment models favor the development and peak stages. None of
these models are expected to be precise and robust in the long-term
pandemic prediction.
Statistical and Machine Learning Models. Researchers also ap-
ply statistical time series prediction models such as ARIMA and
PROPHET for COVID-19 pandemic prediction [44, 53]. ARIMA [10]
is an Autoregressive IntegratedMoving Average model, relying on a
basic assumption that the future time series are linear aggregations
of the past ones. PROPHET [74] is an additive model that empha-
sizes seasonal effects so that the model works better on time series
with periodical patterns. Chimmula and Zhang [14], Rodriguez
et al. [64], Saba and Elsheikh [66] aggregate neural networks to
an Autoregressive model, to enhance inter-region connections or
temporal dependencies. However, these models conduct pandemic
forecasts highly depending on the trend and seasonality instincts be-
hind the historical COVID-19 statistics, incapable of incorporating
heterogeneous features. Gao et al. [25], Jin et al. [37], Panagopoulos
et al. [60] apply graph neural networks to take advantage of the
mobility data across different regions but still cannot detect hidden
risk factors for the pandemic modeling. Therefore, in this paper, we
propose a social media enhanced pandemic forecast framework to
incorporate the extracted entities and relationships for confirmed
case/fatality prediction with strong interpretability.

2.2 Prediction with Social Media Data
Plenty of studies have utilized the social media data for various pre-
diction tasks including air pollution monitoring [31, 34, 35, 38, 56],
earthquake forecast [68, 79], stock market prediction [36, 59], and
disease detection [13, 55, 67]. However, limited work incorporates
the social media data to calibrate the COVID-19 pandemic surveil-
lance. Qin et al. [63] employ the search index of Baidu search engine
to serve as a pandemic early predictor. Bae et al. [5] leverage the
social effect of media information to strengthen the compartment
model for pandemic prediction. However, this study solely takes
into consideration the social effects of the media to users’ normal
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life while our method curate every tweet and detect significant
social events to enhance the pandemic prediction.

3 SOCIAL MEDIA ENHANCED PANDEMIC
SURVEILLANCE

Given a large-scale collection of social media data together with
the historical confirmed cases/fatalities and the population mobility
statistics, we aim to forecast the pandemic trend and recognize
potential risk factors. The framework of our SMART model consists
of two components: (i) information extraction module including
a named entity recognizer and a relation identifier (as shown in
Figure 2); (ii) spatial-temporal dynamic graph encoder for pandemic
trend forecast (as shown in Figure 3).

3.1 Constructing Dynamic Knowledge Graphs
from Social Media Data

We propose a bottom-up solution to extract entities and relations
to construct the heterogeneous dynamic knowledge graphs.
Named Entity Recognition (NER). NER is a natural language
processing (NLP) task which labels the tokens in a sequence with
tags from a desired tag pool. In this work, we adopt the NER setting
to extract entities of interest from the social media data by labeling
the words or phrases in the tweet sentences. As examples in Fig-
ure 2, we want to recognize nurse as OCCUPATION, stay home as
INDIVIDUAL_BEHAVIOR, race as EVENT, and so on.

Traditional NER approaches [11, 24, 62] heavily rely on expen-
sive and time-consuming feature engineering including parsing the
Part-of-Speech tags of each word and the syntactic dependency
structures of the sentences. Some recent studies [18, 32, 50] in-
corporate neural networks with statistical models, such as condi-
tional random fields [45], to improve the model performance. With
deep language models like BERT [21] and RoBERTa [51], the NER
performance can be further improved. Without the loss of gener-
ality, we leverage BERT model to provide contextualized embed-
dings and learn a supervised named entity recognizer. To overcome
the problem with the nonexistence of annotated tweets as train-
ing data, we collect the benchmark corpora and their annotations
for multiple NER tasks, including I2B2-2010 [20], CORD-NER [78]
and MACCROBAT-2018 [12]. Based on those external datasets, we
jointly learn a recognition model to extract entities on the COVID-
19 related tweets data. On average, we extracted 10,040 unique
entities of 45 entity types from 270k tweets corpus every day.
Relation Extraction. Given the extracted entities, the next step is
to identify the relationships among the entities. Note that we only
extract intra-tweet relations. In other words, we do not predict the
relation between entities in different tweets. Existing solutions [49,
61, 75, 81] formulate the problem as a sequence classification task,
given a textual sequence and the positions of two named entities.
Specifically, a multi-class classification is conducted to assign a label
from a desired set for the relationship. However, this formulation
highly depends on the quality and quantity of the annotated datasets
to achieve satisfactory performance. It is obviously incapable of
identifying emerging new relation types.

To overcome the above challenge, we convert the multi-class
prediction task to a binary classification problem of only identifying
the existence of a potential relationship between any entity pair

in each tweet instance. We aggregate datasets from multiple tasks
including Wiki80 [26], I2B2-2012 [73], and MAACROBAT-2018 [12]
to create the positive training data (labeled as ‘True’). In order to
achieve balanced training, validation and test datasets, we apply
negative sampling to create the same number of instances with
the label ‘False’. Note that we assume no relation between any
two entities exists if the entities were not annotated. Similarly, we
acquire the sequence representations from the fine-tuned BERT
language model and feed them into a binary classification layer
for label prediction. During the inference stage, we enumerate all
possible pairs of entities in each tweet and assign binary labels for
them.
Domain-specific Pre-trained LanguageModel.To tackle domain-
specific tasks, such as Clinical information extraction [82] and
Bioinformatics knowledge acquisition [46], recent studies pre-train
new language models with large-scale corpora collected from those
domains [2, 47] to learn customized token and sequence represen-
tations. Motivated by these approaches, we leverage all COVID-19
relevant text corpora together with the social media data to pre-
train a CoronaBERT language model with 12 layers of Transformers
and over 110 million parameters, in order to equip our models with
powerful input embeddings. We ceaselessly fine-tune the param-
eters in CoronaBERT as more COVID-19 stream corpora become
available and release the models on a quarterly basis.
Heterogeneous Knowledge Graph Aggregation. After named
entity recognition and relation extraction, we apply the DBSCAN
clustering model [22] to merge semantically similar entities for
reducing the noises in the entity sets. This step is essential for
cleaning the entities extracted from tweets. For example, “Marathon”
and “Marathon:)” are supposed to be merged and “COVID-19” is
indeed the same as “COVID2019”. In specific, we cluster the entities
based on the similarity among their entity embeddings acquired by
CoronaBERT. We assign the node in each cluster with the highest
occurrence in tweets as the cluster head. Other nodes in the same
cluster will be replaced by the cluster head.

Based on the clustering results, we aggregate the denoised knowl-
edge pieces into a heterogeneous knowledge graph. Two types of
nodes exist in the graph, including location nodes and entity nodes.
Here we set the location nodes as the 50 states in the United States
while our methods can be easily extended to the county-level lo-
cations or applied to other countries and regions. Next, we build
three types of edges as follows:

• Entity-Entity edges: we add an edge between any two en-
tities if there is a ‘True’ relationship identified.
• Location-Entity edges: we look up the geo-location at-
tribute of the tweet where each entity is extracted and add
an edge between the entity node and the geo-location.
• Location-Location edges: we add an edge between a lo-
cation pair under two circumstances, (i) two locations are
adjacent to each other on the US map; (ii) we detected pop-
ulation transition from one location to another according
to the mobility data. More details of the mobility data are
provided in Section 4.1.

We build one knowledge graph for each day. Later, knowledge
graphs within a certain time period will be further aggregated for
time series prediction, as described in Section 3.2.
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 Named        
Entity 

Recognition

Knowledge Graph AggregationInformation Extraction

Tweets 1       Los Angeles, CA
Runners were advised to wash their hands 
before the race and not to shake hands 
with other participants or the public. Hand 
sanitizer was also available for runners 
along the course. 
Tweets 2          Brooklyn, NY
My awesome wife is a nurse at a NYC 
hospital treating COVID-19 patients. Last 
week, she caught it. As of today, she's 
finally improving. Stay safe, stay home, 
wash your hands, wear a mask.

wife wash 
hands

COVID 
19

nurse

race

runner

hand
sanitizer

wear a 
mask

stay 
home

New 
York California

Relation 
Extraction 

 Data Samples from Social Media

US Map

Mobility

Extra Resources

Figure 2: Overview of the information extraction pipeline on social media data.

3.2 Time Series Prediction with Dynamic
Graph Attention Network

Dynamic graph aggregation. We represent the heterogeneous
knowledge graph of the 𝑡-th day as 𝐺 (𝑡 ) = (𝑉 (𝑡 ) , 𝐸 (𝑡 ) ) where
𝑛 = |𝑉 (𝑡 ) | denotes the number of nodes,𝑉 (𝑡 ) = 𝑉

(𝑡 )
𝐿
∪𝑉 (𝑡 )

𝐸
, where

𝑉
(𝑡 )
𝐿

is the location node set and 𝑉 (𝑡 )
𝐸

is the entity node set. Given
a sequence of knowledge graphs {𝐺 (1) ,𝐺 (2) , ...,𝐺 (𝑇 ) } of length 𝑇 ,
we aim to predict the COVID-19 courses including confirmed cases
and fatality cases on the day 𝑇 + 𝑙 . We regard it as a short-term
prediction when 𝑙 < 14 or a long-term prediction when 𝑙 ≥ 14. We
formulate the time series prediction problem as a regression task.

We continue to aggregate the length-𝑇 graph sequence into one
spatial-temporal graph 𝐺𝑆 = (𝑉 𝑆 , 𝐸𝑆 ) as shown in Figure 3. First,
we keep all the location nodes from different times in the period, i.e.
𝑉 𝑆
𝐿
= 𝑉
(1)
𝐿
∪𝑉 (2)

𝐿
∪ ... ∪𝑉 (𝑇 )

𝐿
. On the other hand, we merge entity

nodes of different times, i.e. 𝑉 𝑆
𝐸

= 𝑉
(1)
𝐸
∪\𝑡 𝑉

(2)
𝐸
∪\𝑡 ... ∪\𝑡 𝑉

(𝑇 )
𝐸

,
where ∪\𝑡 denotes a time-unaware set union. For example, the
entity node 𝑒1 is recognized in the location 𝑠𝑖 on both time 1 and
time 2, but we only keep one 𝑒1 in 𝑉 𝑆

𝐸
by connecting 𝑒1 to 𝑠

(1)
𝑖

and
𝑠
(2)
𝑖

. In this way, we introduce the inter-time propagation edges to
expand the node neighbors along the temporal dimension so that
we can easily model the structural temporal dependencies among
the nodes.
Node Features.Our pre-trained CoronaBERT is applied to generate
the initial semantic features 𝑥𝑠𝑒

𝑖
of dimension 𝑑𝑒 for node 𝑖 of any

type. We also incorporate the historical COVID-19 statistics 𝑥𝑠𝑡
of 𝑑𝑡 days ahead of the current time as an extra feature set for
location nodes, resulting in a node feature embedding 𝑥𝑖 = 𝑥𝑠𝑒

𝑖
| |𝑥𝑠𝑡

𝑖
of dimension 𝑑𝑒 +𝑑𝑡 , where | | denotes a vector concatenation. Note
that we keep the embedding dimensions of location nodes and
entity nodes the same, in order to smooth the graph propagation
computation. Hence, we append a zero vector of length 𝑑𝑡 at the
end of each entity vector.
DynamicGraphNeuralNetwork.Wepropose amulti-headDGNN
architecture to perform the graph propagation. We first conduct a
linear transformation on the input node embeddings:

𝑧𝑖,𝑝 =𝑊𝑝𝑥𝑖 ,

Figure 3: Overview of the time series prediction module.

where𝑊𝑝 is a learnable weight matrix; 𝑝 = {1, ..., 𝐻 }; 𝐻 is the
number of heads. Then, we compute a pair-wise un-normalized
attention score of an edge between any two neighbors (two nodes
𝑖 and 𝑗 ) in the graph:

𝑒𝑖 𝑗,𝑝 = LeakyReLU(𝑤𝑇
𝑝 (𝑧𝑖,𝑝 | |𝑧 𝑗,𝑝 )),

where𝑤𝑝 is a learnable weight vector and LeakyReLU [80] is ap-
plied as a non-linear transformation. We use the attention score to
indicate the importance of a neighbor node in the message passing
process, especially when we interpret the risk entities to each loca-
tion. A Softmax is applied to normalize the attention weights to a
probability distribution so that we can easily interpret and compare
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the importance of all incoming edges,

𝛼𝑖 𝑗,𝑝 =
exp(𝑒𝑖 𝑗,𝑝 )∑

𝑘∈N𝑆 (𝑖)∪N𝐸 (𝑖) exp(𝑒𝑖𝑘,𝑝 )
,

where N𝑆 (·) and N𝐸 (·) denote the sets of neighboring location
nodes and entity nodes. We finally aggregate the embeddings of
neighboring nodes. The aggregation is scaled by the normalized at-
tention scores. We compute the averaged embeddings over different
heads,

𝑥 ′𝑖 = 𝜎
©­« 1𝐻

𝐻∑︁
𝑝=1

∑︁
𝑗 ∈N𝑆 (𝑖)∪N𝐸 (𝑖)

𝛼𝑖 𝑗,𝑝𝑧 𝑗,𝑝
ª®¬ .

Attentive Bi-Recurrent Neural Network.We intend to further
encode the temporal dependencies between the location nodes
over times and learn a hidden state of the overall graph using an
Attentive Bi-RNN module. We collect embeddings from the same
location of different times [𝑥

′ (1)
𝑖

, 𝑥
′ (2)
𝑖

, 𝑥
′ (𝑇 )
𝑖
] and recursively feed

them into a Bi-RNN with Gated Recurrent Units (GRU) [15]. We
choose GRU instead of Long Short Term Memory (LSTM) [30]
unit due to its computational efficiency and capability of tackling
shorter sequences like tweets [16]. The hidden representation of
each location in time 𝑡 is learned from two directions,

←−
ℎ
(𝑡 )
𝑖

= GRU(←−ℎ (𝑡+1)
𝑖

, 𝑥
′ (𝑡 )
𝑖
),−→ℎ (𝑡 )

𝑖
= GRU(−→ℎ (𝑡−1)

𝑖
, 𝑥
′ (𝑡 )
𝑖
),

ℎ
(𝑡 )
𝑖

=
←−
ℎ
(𝑡 )
𝑖
⊕ −→ℎ (𝑡 )

𝑖
,

We then aggregate the hidden states with another attention mecha-
nism,

𝑣𝑖 =

𝑇∑︁
𝑡=1

𝛽
(𝑡 )
𝑖

ℎ
(𝑡 )
𝑖

, 𝛽
(𝑡 )
𝑖

=
exp(𝑢𝑇ℎ (𝑡 )

𝑖
)∑

𝑘 exp(𝑢𝑇ℎ
(𝑘)
𝑖
)
,

where 𝑢 denotes a context vector and 𝛽
(𝑡 )
𝑖

are attention scores
reflecting the contribution of the hidden representation in time 𝑡 .
Learning Objective. We feed the context-aware node represen-
tation 𝑣𝑖 into two layers of Feed Forward Networks (FFN) and
lastly generate a scalar 𝑦 (𝑡+𝑙)

𝑖
representing the predicted COVID-19

confirmed case or fatality number in 𝑙 days ahead of time 𝑡 . We
compute the loss with the following Mean-Squared-Error (MSE)
objective [70],

L =
1
𝑚𝑛

𝑛∑̄︁
𝑡=1

𝑚∑︁
𝑖=1
(𝑦 (𝑡+𝑙)

𝑖
− 𝑦 (𝑡+𝑙)

𝑖
)2,

where𝑚 is the number of location nodes and 𝑛 is the number of
days that requires a prediction.

4 EXPERIMENTS
4.1 Datasets
Twitter Stream Data. We collaborate with Twitter and build a
real-time tweet crawler to steadily acquire relevant social media
tweets using their COVID-19 streaming API2 [54]. In detail, the
streaming API returns real-time tweets related to COVID-19 based
on Twitter’s internal COVID-19 tweet annotation system. The data
collected for this paper start on May 15, 2020 and end on April
8, 2021. Figure 4 compares the distributions of the US population
and the number of tweets over 20 states. We notice except that
2https://developer.twitter.com/en/docs/labs/covid19-stream/api-reference/.
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Figure 4: Comparison between the spatial distributions of
US population and the number of tweets over 20 states. Each
bar represent the percentage of population or tweets in the
corresponding state.

Figure 5: Illustration of a mobility data sample of 5 states
on 01-01-2021. Compared to the inter-state transition (black
curves), intra-state transition takes the majority (color
blocks).

New York people are more passionate about posting COVID-19
related tweets while California people do the opposite, other states
have relatively similar spatial distributions over the population and
number of tweets.
Mobility Data. As Panagopoulos et al. [60] conclude a strong rela-
tionship between the population transition and regional COVID-19

https://developer.twitter.com/en/docs/labs/covid19-stream/api-reference/
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trends, we also collect the mobility data that describe the popula-
tion transition in the United States from SafeGraph3 for pandemic
forecast. As shown in figure 5, we illustrate a mobility data sam-
ple which includes the population transition among five states on
01-01-2021. The majority transitions are in-state transitions.
COVID-19 Statistics. We leverage the US state-level COVID-19
statistics gathered by the New York Times4 based on reports from
state and local health agencies for building the ground truths of
pandemic forecasts. We use the statistics of confirmed new cases
and fatalities from May 5, 2020 to April 8, 2021. Note that the
start date is the earliest date when we have Twitter Stream data
available. The average new confirmed cases and fatalities over 50
states are 1788.3 and 28.7 per day while the standard deviations are
3374.8 and 63.5. California has the highest average number of new
confirmed cases (10988.5) and fatalities (173.4). Vermont has the
lowest numbers (60.0 new confirmed cases and 0.5 fatalities).

4.2 Experimental Setup and Evaluation Metrics
Following the experimental setup in [60], we train a model with
the data from time 1 to time 𝑡 and use it to predict the numbers on
time 𝑡 + 𝑙5. We evaluate the model on short-term (𝑙 = {1, 7}) and
long-term (𝑙 = {14, 28}) predictions. Note that we learn a different
model to predict the cases for time 𝑡 + 𝑙𝑖 and 𝑡 + 𝑙 𝑗 , where 𝑖 ≠ 𝑗 . In
the training process, we select 5 data points from the training set
as the validation set to identify the best model.

We evaluate the performance of our method by computing the
Mean-Absolute-Error (MAE) [69],

errorMAE =
1
𝑚𝑛

𝑛∑̄︁
𝑡=1

𝑚∑︁
𝑖=1
|𝑦 (𝑡+𝑙)
𝑖

− 𝑦 (𝑡+𝑙)
𝑖
|,

where𝑚 and 𝑛 denote the numbers of test instances and location
nodes. We also follow [1, 41] to compute the symmetric Mean-
Absolute-Percentage-Error (sMAPE) to show the average error rate
over times and locations,

errorsMAPE =
1
𝑚𝑛

𝑛∑̄︁
𝑡=1

𝑚∑︁
𝑖=1

|𝑦 (𝑡+𝑙)
𝑖

− 𝑦 (𝑡+𝑙)
𝑖
|

|𝑦 (𝑡+𝑙)
𝑖

+ 𝑦 (𝑡+𝑙)
𝑖
|
.

4.3 Baselines
We select three types of baselines and benchmark models to com-
pare to our approach.
Compartment models. As there are a large number of compart-
ment models proposed in recent days for COVID-19 forecast, we
select three of them with the top performance and complete re-
sults in the desired time period from the COVID-19 Forecast Hub6:
JHU_IDD-CovidSP [48], UCLA-SuEIR [83], and RobertWalraven-
ESG [76]. In detail, JHU_IDD-CovidSP proposes a modified SEIR
compartment model where the time in the Infected compartment
follows an Erlang distribution to produce more realistic infectious
periods. RobertWalraven-ESG is a mathematical model that ap-
proximates the SEIR method with a particular skewed Gaussian

3https://www.safegraph.com/.
4https://github.com/nytimes/covid-19-data.
5For example, if we predict the next-day (i.e., 𝑙 = 1) case number for date 12-31-2020,
we make use of all the data between 5-15-2020 and 12-31-2020 to build the training set.
6The model descriptions and up-to-date predicted results can be found at https://
github.com/reichlab/covid19-forecast-hub.

Hyperparameter Value
Learning Rate 0.001
Batch Size 4
Dropout Ratio 0.5
Bi-RNN Hidden State Size 64
DGNN Hidden Unit Size 64
Graph Sequence Length 𝑇 7
Semantic Feature Dim. 𝑑𝑒 768
Historical COVID-19 Statistics Feature Dim. 𝑑𝑡 7

Table 1: Grid-search is used to find the optimal hyperparam-
eters of our model.

distribution. UCLA-SuEIR extends SEIR by explicitly modeling the
untested/unreported compartment. Note that the 1-day-ahead pan-
demic forecast results are not provided in the COVID-19 Forecast
Hub.
Statistical time series prediction models. Two commonly used
statistical models are compared to our approach: ARIMA and PROPHET.
ARIMA [44] is an autoregressive moving average model, explaining
a given time series based on its past values. PROPHET [53] is a time
series prediction model7 where non-linear trends can be fit with
seasonality, plus holiday effects.
Neural network-based models. A simple two-layer LSTM-based
neural network (LSTM) is used for COVID-19 pandemic predic-
tion [14], taking the sequence of case numbers from the previ-
ous week as the input. MPNN [60] is a message passing neural net-
work, building graphs to aggregate the historical case numbers
from the neighboring locations based on the mobility magnitude.
MPNN+LSTM [60] takes advantage of both MPNN and LSTM by jointly
learning the graph propagation and temporal dependencies over
case numbers of different times.

4.4 Implementation Details
Information Extraction. We train the named entity recognition
and relation extraction models both for a maximum of 10 epochs.
The models are implemented in PyTorch and we use Adam opti-
mizer [40] to optimize the model parameters. We randomly select
10% instances from the training set as the validation set to select
the optimal models. To avoid the GPU out-of-memory problem, we
filter out tweets with more than 40 words (around 0.17%). In this
work, we focus on the information extraction from English tweets
so we also remove the tweets if 90% of the contents are non-English.
Time Series Prediction. We train the model for a maximum of
300 epochs. Early stopping occurs after 100 epochs. Similarly, we
utilize PyTorch to implement the model and leverage Adam [40] for
parameter optimization. Batch normalization [33] and dropout [72]
are applied to the outputs of DGNN and FFN layers to avoid over-
fitting. It takes around 8 hours to finish the complete training and
evaluation cycle with one NVIDIA V100 GPU. We employ grid
search to find the optimal hyperparameters of our model. Detailed
hyperparameter values are listed in Table 1.

7https://github.com/facebook/prophet.

https://www.safegraph.com/
https://github.com/nytimes/covid-19-data
https://github.com/reichlab/covid19-forecast-hub
https://github.com/reichlab/covid19-forecast-hub
https://github.com/facebook/prophet
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Confirmed Case 1 day ahead 7 days ahead 14 days ahead 28 days ahead Average
MAE sMAPE MAE sMAPE MAE sMAPE MAE sMAPE MAE sMAPE

JHU_IDD-CovidSP - - 1123.721 0.387 1253.138 0.409 1534.643 0.452 1303.834 0.416
RobertWalraven-ESG - - 768.433 0.310 978.533 0.369 2472.093 0.466 1406.353 0.382

UCLA-SuEIR - - 755.365 0.258 1099.761 0.335 1591.006 0.439 1148.711 0.344
ARIMA 604.181 0.200 802.977 0.250 961.297 0.286 1300.487 0.364 917.235 0.275

PROPHET 791.066 0.296 991.049 0.697 1341.798 0.810 2019.242 0.518 1285.789 0.581
LSTM 1262.333 0.393 1248.080 0.381 1235.201 0.357 1204.188 0.347 1237.450 0.369
MPNN 485.520 0.193 567.745 0.213 825.410 0.266 1304.112 0.352 795.697 0.256

MPNN+LSTM 455.677 0.172 523.770 0.209 672.049 0.211 967.123 0.286 654.655 0.220
SMART 430.007 0.163 474.164 0.203 608.984 0.216 913.202 0.279 606.589 0.215

Table 2: Performance of the short-term (1 day & 7 days ahead) and long-term (14 days & 28 days ahead) new confirmed case
number forecast. All the improvements of SMART over the baseline methods are statistically significant at a 99% confidence
level in paired t-tests. SMART achieves 5.6%, 9.5%, 9.4%, and 5.6% lower MAE than the best baseline MPNN+LSTM when forecasting
the new confirmed case numbers for 1, 7, 14, 28 days ahead.

Figure 6: The comparison between SMART and three neural network-based baselines (LSTM, MPNN, MPNN+LSTM) on the smoothed
MAE curve. Each data point on the curve represents the MAE over all the test instances before that date.

Fatality 1 day ahead 7 days ahead 14 days ahead 28 days ahead Average
MAE sMAPE MAE sMAPE MAE sMAPE MAE sMAPE MAE sMAPE

JHU_IDD-CovidSP - - 18.911 0.465 19.851 0.480 24.362 0.516 21.041 0.487
RobertWalraven-ESG - - 15.490 0.452 18.590 0.484 26.179 0.541 20.086 0.492

UCLA-SuEIR - - 14.235 0.429 15.603 0.451 19.064 0.495 16.301 0.458
ARIMA 16.589 0.372 18.649 0.492 22.223 0.437 31.766 0.591 22.307 0.473

PROPHET 19.323 0.423 21.914 0.445 24.469 0.464 29.204 0.500 23.728 0.458
LSTM 18.039 0.423 17.937 0.432 17.770 0.542 17.744 0.531 17.872 0.482
MPNN 12.129 0.356 12.897 0.372 14.871 0.380 19.733 0.434 14.908 0.386

MPNN+LSTM 12.175 0.354 12.785 0.351 14.572 0.379 20.005 0.446 14.884 0.383
SMART 11.783 0.346 11.847 0.331 13.236 0.349 18.263 0.421 13.782 0.362

Table 3: Performance of the short-term (1 day & 7 days ahead) and long-term (14s day & 28 days ahead) new fatality number
forecast. All the improvements of SMART over the baseline methods are statistically significant at a 99% confidence level in
paired t-tests. SMART achieves 3.2%, 7.3%, 9.1%, and 8.7% lower MAE than the best baseline MPNN+LSTM when forecasting the
fatality for 1, 7, 14, 28 days ahead.
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4.5 Results
Confirmed Case Forecast. Results of the confirmed case short-
term and long-term forecasts are shown in Table 2. Compared to the
best baseline method MPNN+LSTM, our model improves the average
MAE and sMAPE by 7.3% and 2.3%, respectively. The results show
SMART significantly outperforms the compartment models, such as
JHU_IDD-CovidSP and UCLA-SuEIR. We think the big gap between
our method and the compartment models results from the serious
over-fitting issue in the SEIR model and its extensions. The SEIR
model tends to assume that the peak would come right after the
current data and is especially weak at predicting the progression at
the early pandemic stage [25]. We also notice that the two statis-
tical time series prediction models perform differently, and ARIMA
gets much lower errors than PROPHET especially in the long-term
prediction. This could be because PROPHET is supposed to work best
with time series that have strong seasonal effects which is obvi-
ously not the situation in the COVID historical statistics. It turns
out that a simple linear aggregation over the past case numbers
can achieve relatively good performance. Besides, MPNN gets higher
errors compared to its temporal variant, MPNN+LSTM, denoting the
effectiveness of learning the temporal dependencies together with
the graph aggregation. However, solely using LSTM to conduct the
pandemic forecast achieves quite inaccurate predictions. We think
it is because sequence modeling approaches like LSTM are unstable
to handle the sequential inputs with sharply changing patterns [60].
For instance, it may be hard for LSTM to recognize turning points,
such as lockdowns and reopens. SMART initially outperforms other
models by a small margin (1-day-ahead forecast) while the improve-
ment increases as the model predicts on later days. Compared to
MPNN+LSTM, SMART achieves the largest error reduction of 9.5% and
9.4% while forecasting the case numbers in the next 7th and 14th
day. This could be because the ongoing events discussed on social
media would not immediately affect the COVID-19 confirmed case
numbers. More precisely, we need 1-2 weeks on average for the
newly infected cases to be self-identified, tested and confirmed,
based on our observations.

To observe the detailed forecast performance on every test in-
stance, we plot the smoothedMAE curve for SMART and three neural
network-based baselines (LSTM, MPNN, MPNN+LSTM). Note that every
data point on the curves represents the MAE over all the test in-
stances before the corresponding date. We observe that an error
explosion becomes more and more clearly visible at the early stage
of MPNN. We think MPNN is quite unstable especially when the train-
ing data are limited. In contrast, our SMART model remains stable
of all time. In addition, we observe the average MAE comes to a
peak in the middle of January for all the models. This is consis-
tent with the fact that the new confirmed case numbers in the US
come to a peak at around the same time. We also plot the smoothed
sMAPE curve in Figure 7 which shows the sMAPE over the test
instances before that date. All the curves quickly converge as the
models obtain enough training instances, denoting the stability of
our method.
Fatality Forecast. We show the results of fatality forecasts in
Table3. SMART achieves 7.4% and 5.5% lower MAE and sMAPE, com-
pared to the best baseline model MPNN+LSTM. Among the three
compartment models, UCLA-SuEIR performs the best. We surmise

0.0

0.1

0.2

0.3

0.4

07-01-2020 09-01-2020 11-01-2020 01-01-2021 03-01-2021

1 day ahead 7 days ahead 14 days ahead 28 days ahead

Figure 7: The comparison of smoothed sMAPE curve of
SMART on four forecast tasks. Each data point on the curves
represents the sMAPE over all the test instances before that
date.

that taking unreported/untested cases leads to better modeling on
fatalities. We notice the MAE of LSTM model is lower than SMART
by 2.9% while its sMAPE is higher than SMART by 26.1%. We believe
the LSTM model has been over-fitted to some extremely large or
small values so that a large MAE can be avoided but the sMAPE will
explode. Again, we find that the improvements of SMART on the 7,14-
28-day-ahead forecast tasks (7.3%, 9.1%, and 8.7%) are much more
significant than the 1-day-ahead forecast task (3.2%), demonstrating
the long-term advantages of our method.

4.6 Ablation Study
We present the ablation study on the 7-day-ahead new confirmed
case forecast task to demonstrate the effectiveness of each module
in our framework. We observe similar results on other forecast
tasks. Here we explain the different settings of our model variants
as follows.
w/o RE module. Under this setting, we exclude the Entity-Entity
edges in the heterogeneous knowledge graphs so that we can ob-
serve the improvement from our relation extraction module.
w/o NER module. We continue to exclude the Location-Entity
edges to check the contribution of our named entity recognition
module. Under this setting, all the edge propagation between loca-
tion nodes and entity nodes are eliminated.
w/o Attentive Bi-RNN module. We remove the Attentive Bi-
RNN module from our framework. We alternatively compute an
element-wise averaged representation for each location node and
feed it into the FNN layer for the pandemic forecast.
w/o DGNNmodule. To verify the contribution of our DGNNmod-
ule, we remove the DGNN module but instead recursively feed
the sequence of historical COVID-19 statistics features into the
Attentive Bi-RNN units for each location node.
w/o CoronaBERT Language Model. We also observe the con-
tribution from our pre-trained CoronaBERT language model by
replacing it with a BERT language model (BERT-BASE) to initialize
the semantic representations for each node.

In summary, every component in our framework is proved ef-
fective. Removing Entity-Entity and Location-Entity edges leads
to 4.3% and 8.9% error lifts, respectively. When we jump over the
DGNN module, the error dramatically increases, proving the capa-
bility of the heterogeneous graph to encode a rich spatial-temporal
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Model MAE Error Lift(%)
SMART 474.164 -
w/o RE module 495.688 +4.3
w/o NER module 518.389 +8.9
w/o Attentive Bi-RNN module 528.025 +10.4
w/o DGNN module 1112.334 +120.8
w/o CoronaBERT Language Model 500.878 +5.6

Table 4: Ablation study on the 7-day-ahead forecast task.
Similar results can be achieved fromother forecast tasks.We
can observe significant improvements from all components
in our framework.

California New York Florida
#1 pharmacists traveler workers
#2 #endthelockdown doctors #stopcovidcorruption
#3 mexico city test results crimes
#4 covid-positive bill gates voting
#5 msm public health #stayconnected

Ohio Hawaii Vermont
#1 golf mental health #endthelockdown
#2 #hydroxychloroquine immigrants rape
#3 #wwg1wgaworldwide surf #wakeupamerica
#4 crush 2ndwave burger
#5 traveler patients sickness

Table 5: Top-5 risk factors in six different states related to
COVID-19 pandemic.

representation for each location node. The Attentive Bi-RNN mod-
ule also makes a significant improvement of 10.4% on the forecast
performance.

4.7 Risk Factor Discovery
To identify the potential location-wise risk factors of the COVID-
19 pandemic, we make use of the normalized attention score 𝛼𝑖, 𝑗
(introduced in Section 3.2) which indicates the contribution of each
entity node 𝑖 when node 𝑖’s message is passed to the location node
𝑗 . For each location, we first rank all the dates based on the number
of confirmed cases in decreasing order. We then pick the top 20%
dates with the biggest numbers from all the dates to build a high
set. Ultimately, we aim at discovering a group of significant entities
from the tweets that are used to predict the confirmed cases on the
dates from the high set. Specifically, during each inference process,
we retrieve the attention scores of all the Location-Entity edges for
each location node. We then compute a risk score for each (Location,
Entity) pair by averaging the attention scores over all dates in the
high set. Finally, the entities with top-𝑘 risk scores for each location
can be considered as the risk factors.

Table 5 shows the top-5 risk factors of six states: California, New
York, Florida, and Ohio, Hawaii, and Vermont with distinct spatial
distributions as shown in Figure 4. Some of the entities can be easily
connected with the increasing trend of the COVID-19 pandemic.
For example, when people are seeking for ending the lock down
in California and Vermont, or staying connected to each other in
Florida, they are likely to go out, inevitably facilitating the spread

HASHTAG SIGN_OR_SYMPTOM
#1 #wakeupamerica cough
#2 #covidiot sneezes
#3 #breakingnews headaches
#4 #staysafe chill
#5 #ppeshortage sickness

SOCIAL_INDIVIDUAL_BEHAVIOR ORGANIZATION
#1 genocide @youtube
#2 loyalty @nytimes
#3 discord nih
#4 voting amazon
#5 racism msm

Table 6: Top-5 risk factors under four different entity cate-
gories related to COVID-19 pandemic.

of the virus. When people pay more attention to the local doctor
resource or public health condition in New York, the peak of the
pandemic should not be far away. However, it may be hard to
interpret some entities like msm without the contexts since msm
can be the abbreviation of either mainstream media or master of
science in management.

We also incorporate the named entity recognition results to show
in Table 6 the top5 risk factors under 4 different categories: HASH-
TAG, SIGN_OR_SYMPTOM, SOCIAL_INDIVIDUAL_BEHAVIOR
and ORGANIZATION. We notice msm is categorized as an orga-
nization, so it is more likely to be interpreted as the mainstream
media. It is obvious that the pandemic is getting more serious if we
are facing the personal protective equipment shortage. The govern-
ment and health institutes are better to be prepared if more and
more people become sick and have the symptoms such as cough
and sneezes. There are limitations if we only rely on the entities
with high attention scores to interpret the risk factors. For exam-
ple, we cannot simply conclude that the prevailing entity amazon
results in an increasing trend of the pandemic. The relationship
between amazon and increasing trend might not be causal but just
co-occurrence.

5 CONCLUSION AND DISCUSSION
In this paper, we conduct the first trial to incorporate the entities
and relationships extracted from social media data to simultane-
ously enhance the pandemic surveillance and detect the potential
risk factors. We propose a dynamic graph neural network to learn
the temporal dependency among nodes of different times and prop-
agate the messages among the heterogeneous nodes. Extensive
experiments show the effectiveness and robustness of our forecast
model. We will open-source our framework and release the pre-
trained CoronaBERT language model to facilitate future research in
this direction.

Overall, we provide a generic solution for taking advantage of
the informative entities and relationships in the social media data. It
is straightforward to apply our approach to any future epidemiolog-
ical surveillance. Our approach also has the potential to tackle other
real-world problems, such as environment monitoring and crime
detection. In the future, we will focus on detecting the risk factors
in a more strict manner by identifying the relationship between
the risk factors and the pandemic trends or predicted targets.
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