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Abstract

Citizen science databases are increasing in importance as sources of ecological infor-
mation, but variability in effort across locations is inherent to such data. Spatially
biased data—data not sampled uniformly across the study region—is expected. A
further introduction of bias is variability in the level of sampling activity across loca-
tions. This motivates our work: with a spatial dataset of visited locations and sampling
activity at those locations, we propose a model-based approach for assessing effort at
these locations. Adjusting for potential spatial bias both in terms of sites visited and in
terms of effort is crucial for developing reliable species distribution models (SDMs).
Using data from eBird, a global citizen science database dedicated to avifauna, and
illustrative regions in Pennsylvania and Germany, we model spatial dependence in
both the observation locations and observed activity. We employ point process models
to explain the observed locations in space, fit a geostatistical model to explain obser-
vation effort at locations, and explore the potential existence of preferential sampling,
i.e., dependence between the two processes. Altogether, we offer a richer notion of
sampling effort, combining information about location and activity. As SDMs are
often used for their predictive capabilities, an important advantage of our approach is
the ability to predict effort at unobserved locations and over regions. In this way, we
can accommodate misalignment between point-referenced data and say, desired areal
scale density. We briefly illustrate how our proposed methods can be applied to SDMs,
with demonstrated improvement in prediction from models incorporating effort.
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1 Introduction

Informal and unstructured biological surveys of wild species may lead to biased esti-
mates of their distributions and abundances. Biases result when observers frequent
locations where they expect to observe species of interest. A further source of sampling
bias, which is our primary focus and novel contribution, concerns the sampling effort
at a visited site with regard to, e.g., number of visits, duration of visits. This additional
effort information is anticipated to enhance our ability to learn about species distribu-
tions beyond solely the point pattern of sampled locations. In fact, we demonstrate this
with a simple illustrative data example. Our approach is to specify a two-stage effort
model where the first stage models the point pattern of visited sites and the second
stage overlays a geostatistical model for effort on these sites.

The first stage bias, that is, where sites are visited, results from differential acces-
sibility of sampling regions; species that live within established habitats or are easily
observed are often preferentially sampled. Ecologists attempt to control for biased
sampling in a number of ways, imposing corrections that range from offsets in gener-
alized linear models (GLMs) to “pseudo-absence” points intended to improve spatial
coverage (see, for example, Szabo et al. 2010; Zaniewski et al. 2002). These solutions
are fixed, in the sense that they are imposed by the analyst, rather than estimated as
part of model fitting. Growing awareness of the modeling complications introduced by
biased observations suggests a growing interest in more formal modeling approaches.
These include geographically weighted kernels (Comber et al. 2013) and ensemble
models (Fink et al. 2020), but the choice of model is critical (see Bird et al. 2014
for further examples). For example, Isaac et al. (2014) test eleven methods that have
been proposed or used to address variation in observer activity. These methods include
some notion of filtering and/or correction to adjust for the variation, such the offsets
in GLMs mentioned above. The authors found that the performance of most methods
deteriorated in scenarios where data was simulated with biased site selection.

To provide some context with regard to sampling effort, we first note that models
for species distribution and abundance have become the primary tool for predictions
of biodiversity losses (e.g., Rosenberg et al. 2019; Langham et al. 2015; Kearney
et al. 2010). Global climate change and macroecology studies often take advantage of
citizen science data that were collected in a structured manner, hoping that structure
can avoid sampling bias. However, even studies using data obtained from structured
sampling schemes rely on the assumption that the sampled locations are representative
of the region. For example, the North American Breeding Bird Survey (BBS) employs
stratified random sampling. BBS observations take place along roads, meaning that
geographic locations without roads are left unsampled, and residential landscapes are
oversampled (Dickinson et al. 2010). Additionally, bias in estimates using BBS data
may arise due to spatial bias in land cover type or temporal bias in land cover change
(Harris and Haskell 2007; Niemuth et al. 2007). Examining another impact of BBS
roadside surveys, Griffith et al. (2010) found that as the number of vehicle counts on
a route increases, observed bird counts tended to decrease.

In contrast, opportunistic citizen science data tend to have less structure (see Kelling
et al. 2019 for examples of various levels of structure in citizen science surveys), while
at the same time offering broader coverage. For example, BBS restricts its observa-
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tions to pre-specified routes that are visited only once during the breeding season,
with observations occurring in the morning. In contrast, eBird (eBird 2017; Sullivan
et al. 2014), a global citizen science project for tracking avifauna with less structure
than BBS, allows participants to choose the location and frequency of their obser-
vations. Increasing the geographic and temporal coverage results in a richer dataset
overall. Rather than ignore the wealth of opportunistic data, we propose methods to
address spatial bias so that studies using such data can address the variation in the data
collection process apart from the variation in the biological process.

We develop a spatial model for sampling effort in the context of eBird data col-
lection. Again, this data collection is unstructured; participants choose the location,
duration, and frequency of their observations, and they record the observed species in
the form of a checklist. eBird allows for geographic flexibility and scope at the expense
of a balanced coverage of geographic space and habitat type (Isaac and Pocock 2015)
identify four key areas for bias introduced by volunteer sampling, including uneven
sampling in (1) time, (2) space, (3) effort per visit, and (4) uneven detectability, which
can vary by observer and by species.

Possible biases in eBird data include choice of conveniently located sites, such as
those close to home or roads (Tiago et al. 2017; Mair and Ruete 2016), or areas with
expected or known biodiversity or rare species (Dennis and Thomas 2000; Booth et al.
2011). Additionally, users may prefer conducting observations on certain days of the
week or times of the day (Courter et al. 2013). Because eBird records the numbers of
visits to locations as well as the date, start time, and duration of each visit, it supplies
insight into activity, hence effort at locations. It is anticipated that both locations and
the effort at these locations will reveal spatial bias, and our objective is to formally
model these biases.

Therefore, our approach quantifies the nature of spatial bias data collection, both
in locations visited and in the activity level at the visited locations, thus explicitly
addressing elements (2) and (3) (Isaac and Pocock 2015). The novelty of this approach
combines location bias with location-based effort. All visited locations are not “equal”
with regard to sampling effort, and spatial bias in data collected over a region will
evidently affect inference regarding abundance in that region (Dennis et al. 1999). We
assert that when sampling bias exists in the data, a formal method of incorporating
sampling effort is needed. The analysis reported here is the first step in the context of
abundance modeling to account for such spatial bias. Though our focus is on modeling
effort, we provide a simple illustrative example of how modeling the bias in effort can
lead to increased performance of SDMs.

We briefly review the variety of methods to account for bias in citizen science sam-
pling effort. The simplest approach is the inclusion of spatially-referenced covariates.
Other approaches choose features of the observation as a direct proxy for sampling
effort, such as density of observations (Callaghan et al. 2017; Oliveira et al. 2017;
Jeppsson et al. 2010) or number of species recorded (Szabo et al. 2011); use functions
of such features to develop a notion of effort such as ignorance scores (Ruete 2015) or
develop schemes to weight observations (Hill 2012; Johnston et al. 2020). In the case
of presence-absence data, occupancy-detection models (MacKenzie et al. 2017) are
common approaches for addressing biased effort. In these models, the estimated prob-
ability of detecting a species at a site, conditional on its occupancy, is used to account
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for biased effort (Kery et al. 2010; van Strien et al. 2013). Other proposals include
spatial filtering, where SDMs are fitted using a subset of the data in order to remove
records from highly-sampled regions (Boria et al. 2014; Beck et al. 2014; Robinson
et al. 2018), and mixed effects models where random effects are used to account for
variability across location, observers, and/or species (Brunsdon and Comber 2012;
Roy et al. 2012). With the exception of occupancy-detection models, which are not
applicable to opportunistic data, these approaches do not attempt to explicitly model
the sampling effort. Instead, bias is accounted for by directly plugging in features of
the observations or by modifying the data.

The above demonstrates that the notion of sampling “effort" is not always rigorously
specified in the literature. In particular, there is almost always bias in the locations
where sampling is performed, and this may be interpreted as bias in sampling effort.
The collection of opportunistic data is especially prone to bias in sampling effort
because ecologists, with limited time and resources, tend to go where they expect to
find things.

Thus the effort that we focus on is effort at a location that has been visited. How
often has the site been visited and how long was each visit at the site? We view this
information as a mark associated with a site and hence view our data as a marked point
pattern. Our approach to modeling this marked point pattern is to first model the point
pattern using either a nonhomogeneous Poisson process (NHPP) or a log Gaussian
Cox process (Mgller et al. 1998). Then, we model the marks given the locations using
a standard geostatistical model (Banerjee et al. 2014).

To offer the geostatistical model, we reduce the number and duration of visits to
a scalar effort as the mark at the location. We offer several choices to do this since
we cannot assert that there is a “correct” summary of effort at a site. In practice, we
would insert a choice of effort into an explanatory model for species distribution or
abundance and select the summary that provides the most significant explanation.

Because there will typically be misalignment between sampled sites and the species
distribution or abundance/density that we seek to learn about, we can use the geosta-
tistical model to interpolate potential effort (i.e., the amount of effort would we expect
if a new location was visited) across a study region. The ability to predict potential
effort at unobserved locations is important in the context of SDMs. Viewing the entire
process as a marked point pattern connects us to the issue of preferential sampling
(Diggle et al. 2010), as we amplify below. All models are fitted within a Bayesian
framework using Markov chain Monte Carlo.

We note that the spatial scale can be important for this analysis. Many previous
approaches are implemented at an areal scale, where the region is discretized into
sampling units which may be modeled using spatially autocorrelated random effects
(Conn et al. 2017). Because citizen science data most often arise as point-referenced
locations, aggregation into areal units may lead to loss of information. Moreover,
different choices of grid cell size may lead to different conclusions. Therefore, despite
some recent work in modeling effort as point patterns (Geldmann et al. 2016; Sicacha-
Parada et al. 2020), there remains need to develop models at point level.

Finally, in order to address model comparison, we acknowledge that while the point
pattern of locations is observed, the effort variable is constructed. By constructed, we
mean that the variable is a function or summary statistic of the observable data. Effort
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may not be directly observed, but it can be defined by the modeler through a collection
of observed information. So, we can only validate out-of-sample recovery of effort
within a choice of effort metric. Assessment of which metric is preferred as an effort-
driven covariate must be deferred to performance in an abundance model.

The paper has the following format. In Sect. 2 we describe the data we use with
eBird as well as associated spatial regressors. In Sect. 3 we formalize our effort metrics
as well as the modeling details. Section 4 takes up model fitting and checking. Section
5 provides results for the data from Sect. 2. Section 6 concludes with some discussion.

2 The data we use
2.1 eBird data

The dataset we use in this analysis is abstracted from the eBird citizen science project
where users report the type and number of bird species detected as a checklist. Users
may submit “complete” checklists, where they report every species identified on the
birding observation. Alternatively, users may submit “incomplete” checklists, which
intentionally omit one or more species . Each checklist contains the longitude-latitude
coordinate of the starting location, date, unique observer ID, and unique checklist ID.
Optional information includes the duration and start time of the observation. We con-
sider unique complete checklists only; group observations only count as one checklist.
The data is filtered: checklists with NA for length of duration and/or time the obser-
vation began were removed. Additionally, checklists obtained from a long duration
may be different from the typical eBirder’s search. Therefore, checklists that recorded
a duration length longer than 18 hours were removed. All analyses were conducted
using R (Version 3.6.1) (R Core Team 2013).

For illustration, we focus on birding activity in Pennsylvania and Germany in 2018.
Pennsylvania has recorded the fifth most eBird checklists in the U.S. We choose a
second region for comparison of how the drivers of observation location and activity
level may differ by locality. Germany has recorded the fifth most checklists in Europe
and has similar climate to Pennsylvania. Additionally, in 2018 the two regions had a
similar number of observed species: 334 in Pennsylvania and 355 in Germany. Our
analysis considers two subregions: 1) a 18525 km? region of northern Pennsylvania
and 2) a 41625 km? region of eastern Germany. After filtering the datasets according
to our criteria, which resulted in the removal of about 0.8% of observations in both
regions, we have 10713 complete checklists conducted at 1910 unique locations in
the Pennsylvania subregion, and 1683 complete checklists conducted at 684 unique
locations in the Germany subregion. Figure 1 displays the unique birding locations
in Pennsylvania and Germany in 2018, along with the observed point pattern plotted
over land cover types.
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Fig.1 For Pennsylvania (top) and Germany (bottom), point patterns of unique eBird observation locations
in entire region and subregions of interest overlaid on a map of land cover types with cities denoted by
white diamonds. Pennsylvania land cover is obtained from the National Land Cover Database 2016, and
Germany land cover is obtained from the CORINE Land Cover 2018 dataset

2.2 Spatial covariates

Associated with each unique location are the continuous covariates elevation (Shuttle
Radar Topography Mission), and distances to the nearest road and nearest city (Penn-
sylvania: Pennsylvania Spatial Data Access, Germany: Geofabrik); binary covariates
recording protected status (Pennsylvania: PAD-US, Germany: CDDA) and urban sta-
tus (Pennsylvania: Protected Areas Database of the United States, Germany: European
Environment Agency); and a categorical covariate for land cover type (Pennsylvania:
National Land Cover Database 2016, Germany: CORINE Land Cover 2018). For each
of the land cover source datasets, land cover type was aggregated into into five classes:
agriculture, artificial, forest, scrub, or water (Online Resource Table S1 for aggrega-
tions). Distances to nearest road and nearest city were calculated using ArcGIS.
From Online Resource Fig. S1, we see that observations in Pennsylvania are closer
to roads and cities when compared to observations conducted in Germany. The most
popular sampled land cover type is artificial, comprising 0.471 and 0.401 of obser-
vations in Pennsylvania and Germany, respectively. Fewer observations come from
agricultural (0.210, 0.269), forest (0.223, 0.151), and water (0.081, 0.151) areas.
Areas classified as scrub land cover experienced the least observations (0.016, 0.029).
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A higher proportion of German observations occurred in urban and protected areas
(0.635, 0.459) as compared to observations in Pennsylvania (0.128, 0.207).

In modeling activity level, we consider what might explain the observer’s behavior
once they have chosen a location. For each site we know the proportion of visits
that occurred on a weekend, along with the proportion of visits that began before
noon. Upon plotting the proportions on a map, we do not see strong spatial patterns
(Online Resource Fig. S2). In the Pennsylvania subregion, 0.476 of uniquely visited
locations had all of their visits occurring in the morning and 0.320 with no morning
visits, whereas these proportions are 0.323 and 0.528 for locations in the Germany
subregion, respectively.

3 Modeling details

Here, we detail the modeling ideas for developing effort and potential effort-driven
regressors to install in regression models for species abundance. The data consist
of a point pattern of n unique locations, S = {sy, s, ..., S,} in a region D, along
with a random number of visits, N (s;) at site s; with associated durations #;(s;), j =
1,2, ..., N(s;). In addition, we have site-level regressors. As we clarify below, some
are appropriate to explain the point pattern of sites and some are appropriate to explain
the effort at the site.

3.1 Modeling the spatial point pattern

We consider two point process models to explain the spatial pattern of the eBird
observation locations, S in D: a nonhomogeneous Poisson process (NHPP) and a log
Gaussian Cox process (LGCP) (Mgller et al. 1998). Working with Poisson processes
implies that the number of locations that occur in a region D is drawn according
to a Poisson distribution with intensity A(s). The points are located, conditionally
independent, using the location density f(s) = A(s)/A(D).

In the NHPP, we assume the intensity takes the form log A(s; 0) = X’ (s)B. That
is, the intensity on the log scale is modeled as a regression using a set of spatially-
referenced covariates X(s). In the LGCP, we introduce a Gaussian process random
effect z(s) into the log intensity: log A(s; 0) = X7 (s) B+z(s). Normal random variables
provide the customary model specification for random effects, which can yield extra
flexibility for local adjustments in addition to what the covariates may be able to
explain. With spatially dependent random effects, this leads to a Gaussian process
specification. Under the LGCP, the log intensity is a realization of a stochastic process.
Regardless, with an observed point pattern S = (s, s, - . ., S,), the likelihood takes
the form

5(9;8)=exp{—A(D;0)}HA(si;9):exp{—/ x(s;e)ds}]_[x(si;e). 1)
D i=1

i=1

For the NHPP, the integral in (1) is evaluated numerically. For the LGCP, the integral is
stochastic; we evaluate it using regularly spaced grid pointsi/ = {uy, up, ..., uy}over
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D, along with the observed points S. Therefore in order to evaluate the likelihood, we
require realizations of the Gaussian process at both the observed locations S but also
at the grid points /. In practice, these two sets of points are disjoint, so calculating the
likelihood and approximating A(D) requires evaluating an n 4 J-dimensional normal
density. To fit the model would require matrix inversion and determinant calculation
of the high-dimensional covariance matrix, which becomes infeasible with large n + J
(asin our application). Therefore, we use a nearest neighbor Gaussian process (NNGP)
as the model for z(s) (Datta et al. 2016). Details are provided in Online Resource S1.

3.2 Effort metrics at an observed location

We consider specification of effort w(s) as a function of the activity data thatis available
at an observed s € D. This effort variable is constructed or formulated and, in fact,
is constructed in several ways. Importantly, since the scale of w(s) will determine the
scale of a regression coefficient associated with it, we should adopt an appropriate
scale in its specification.

For the eBird data, the activity information we can employ at an observed point
s; includes the number of complete checklists at s; and the durations of those visits.
So, w(s;) will be some function of this set of values, with potential choices below.
We may also have some covariates U(s;) associated with s;; in our analysis these
are the proportion of weekend visits at s;, the proportion of morning start times at
s;, and land cover type at s;. Importantly, from a modeling perspective, we do not
expect the covariates that help explain location to be identical to those that explain
activity. Therefore, while the covariates X(s) used to drive A(s) maybe overlap with
U(s)—as is the case of the land cover covariate in the following analysis— we do not
take X(s) = U(s).

Again, the modeler can specify effort in a variety of ways. In order to use effort as
a predictor for abundance at a unique location, we must model the overall observer
effort at that location. We consider a subset of the following choices:

— w(s) = N(s) or w(s) = logN(s), total number of visits or log total number of
visits.

— w(s) = T(s) or w(s) = logT (s), total time or log total time.

— w(s) = T(s)/N(s), the activity per unit time.

The observed effort in the subregions under w(s) = log7'(s), w(s) = T(s)/N(s),
and w(s) = logN (s) are plotted in Figure 2. The spatial plots reveal clustering of high
effort in both regions under w(s) = log7 (s) and w(s) = log/N (s), suggesting possible
dependence between location and effort.

3.3 Modeling effort along with intensity and preferential sampling

Below, we will demonstrate the improved performance of the LGCP compared with
the NHPP so here we will only consider the former in conjunction with three models
for w(s):

(i) w(s) =UE) @+ ()
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Fig.2 Histogram of activity levels at unique locations for both subregions in Germany and Pennsylvania,
followed by spatial plots

(i) w(s) = U)o + 8z(s)
(iii) w(s) =UGS) a + 8z(s) + ¥ (s)

where U(s) are the coefficients explaining effort, z(s) is the Gaussian process incorpo-
rated into the LGCP, and ¥ (s) is another Gaussian process independent of z(s). (i) is
a simple geostatistical model resulting in W = {w(s;), j = 1, 2, ..., n} independent
of § = {sy, 82, ..., Sy}, enabling assignment of effort w(sg) at unobserved locations
so given S.

Model (ii) is a so-called “shared process” model (Diggle et al. 2010; Patiet al. 2011),
i.e., z(s) is shared between both specifications. In particular, in this formulation, z(s;)
becomes a significant regressor for explaining w(s;) if § is significantly different
from 0. This situation is referred to as preferential sampling; the response w(s;) is
explained, in part, by the point pattern of the visited sites. The third form (iii) brings in
both Gaussian processes, the one reflecting preferential sampling and the one from the
purely geostatistical model. Here, we again may ask whether § is significant? Unless
the sampling bias is severe, typically the flexibility of the v (s) process will annihilate
the significance of the inherited z(s) process as a regressor. In any event, the sign of §
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is interpreted in terms of local adjustment. That is, the sign of § along with the sign
of z(s;) determines whether the expected effort is pushed up or pulled down at s;.

A crucial remark here concerns kriging effort to a new location. For any of the
covariates that are taken from X(s), e.g., land cover type, we will have regressors at
so for prediction of w(sg). However, we will not have certain regressors in U(sp),
such as the percent of weekend visits. The solution we adopt here is to set those
regressor in U(sp) to their mean levels while employing the known X(sp), along
with the contributions from the Gaussian processes, to obtain a posterior predictive
distribution for w(sgp).

3.4 Integration over subregions

We have noted that a common challenge which arises with species distribution model-
ing is a misalignment between data collection and covariates; see, for example Agarwal
et al. (2002) or Lee and Sarran (2015). We may have abundances at areal scales with
intensity and effort at point level. To scale from point level to areal level, we can
obtain an “intensity weighted” effort of the form A(s)w(s) at a point s, that is, an effort
which is up- or down-weighted according to local intensity, and then integrated over
subregion B to obtain

|Ti| /B A(S)w(s)ds, 2)

the intensity-weighted effort per unit area in B.

We can consider the simpler forms, ﬁ f g w(s)ds and f 5 A(8)ds, the effort per unit
area over subregion B and the cumulative intensity over subregion B, respectively.
According to our specifications for w(s) and A(s), all are stochastic integrals and are
computed using realizations of the needed stochastic processes over a suitable fine
grid of points.

4 Model fitting, checking, and inference
4.1 Model fitting for the NHPP and LGCP

The log intensity of the NHPP is specified as log A(s) = X(s)T B. The posterior for
becomes p(B|S) o L(B; S) x w(B) with the likelihood taken from (1) and 7 (B) a
diffuse normal prior. Fitting the model using Markov Chain Monte Carlo (MCMC),
we take Metropolis steps to update the 8 parameters.

The LGCP model specifies logh(s) = X(s)” B + z(s) where the stochastic integral
A(D) in (1) is approximated via quadrature with quadrature points as the centers of
a Skm lattice over the region (Online Resource S3). We model the spatial effects
z(s) with an NNGP arising from a valid parent Gaussian process with an exponential
covariance function, C(s, s+ h) = ozze_‘f’”h”. Because we are modeling the intensity
on the log scale, we assume the parent Gaussian process is centered at —ozz /2 so that
E[eZ(s)] = 1. We place an Inverse Gamma(1,1) prior on 012, whose infinite variance
yields a highly uninformative prior.
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Due to identifiability issues associated with 022 and ¢ (Zhang 2004), we adopt an
empirical Bayes approach and fix ¢ at 1km and 3km for Germany and Pennsylvania,
respectively. Experimentation with other values revealed that inference is not sensitive
to values of ¢ near these values. Another potential identfiability issue concerning oz2
may arise: as the Gaussian process is centered at —012 /2, it may be difficult to separate
022 from the intercept in 8. One way to address this issue is to reparameterize the
Gaussian process such, introducing a z/(s) = z(s) + crzz /2, which will result in a
Gaussian process with zero mean and the same covariance function. Brief details
for the NNGP are provided in Online Resource S1. The form of the joint posterior
distribution is shown in Online Resource S2.

4.2 Fitting the shared process models

For modeling effort w(s), in case (i) we have a simple geostatistical model of the
form w(s) = Us)T o + ¥ (s), where ¥ (s) is a Gaussian process with an exponential
covariance function and spatial decay parameters fixed at the same values as above,
and adopt a weak inverse Gamma prior for aé. For the regression coefficients a, we
assign independent diffuse normal priors. With the absence of quadrature points, we fit
¥ (s) with an elliptical slice sampler (Murray et al. 2010). Due to conjugacy, posterior
updates for a and Gé are drawn from multivariate normal and Inverse Gamma full
conditionals, respectively.

Turning to model (ii), the shared process model links the point process model with
the model for activity level. More specifically,

log A(s;) = X(s)T B + z(s) locations
logw(s;) = U(si) o + 8z(s;) effort.

Again, we model the z(s;) with an NNGP. Due to the dependence between the two
models, the updates for z(s;) are modified slightly but are still normally distributed.
The updates of the spatial effects for the quadrature points remain unchanged due to
the fact that we chose the reference set for the NNGP to be S, the set of observed
locations. We now assign ¢ a diffuse normal prior. The parameters of interest in the
joint posterior distribution are 8, z, azz, o, §. As when fitting the LGCP independently,
we use random walk Metropolis steps to update o> and each of the z(s;)’s. Posterior
updates for a and § are conjugate multivariate and univariate normals, respectively.

Lastly, for model (iii) we now have two Gaussian processes along with a preferential
sampling term:

log A(s;) = X(si)Tﬂ + z(s;) locations
logw(s;) = U(si) e + 8z(s;) + ¥(s;)  effort.

Updates for the parameters and Gaussian processes are similar to the above, appropri-
ately modified to include the additional terms in the model for log w(s;).
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4.3 Model assessment and comparison

First we take up model assessment and comparison between the NHPP and the LGCP
with regard to the observation locations. To compare the two models, we employ
cross validation by separating the data into a training set and a testing set. Following
(Leininger and Gelfand 2017), we use p—thinning (Illian et al. 2008) to create the
test set V' for prediction by removing each point s; € S with probability (1 — p),
with the remaining points forming the training set Y Yrain js roughly p percent
of the original dataset, with intensity A™"(s) = pAi(s). V' has resulting intensity
A®Ys) = (1 — p)A(s), and the two sets are independent conditional on A(s). To
obtain posterior predictions for J'*!, we can convert the posterior draws of the training

|- 4
intensity via A" (s) = <_p> A (s) Using these intensities, we obtain NP4 (A),
p

the posterior predictive distribution for N**(A), the number of points within a region
A C D. We do this by integrating A'*!(s) over A.

In order to assess the performance of the models, we obtain predictive residuals
within A as Rprea(A) = N'{(A) — NP4(A), as suggested by Leininger and Gelfand
(2017). A valid model would expect residuals close to 0. We can do this using several
sizes for A, partitioning D into Ay, ..., Agx for some number K. Thus, we evaluate
the residuals on the A; and obtain the posterior predictive empirical coverage of 0. If
the model is suitable, the empirical coverage and the nominal coverage are expected
to be similar.

Then, to compare the NHPP and LGCP models, we use the rank probability score
(RPS; Gneiting and Raftery 2007) which compares the entire predictive count distribu-
tion to the observed held-out count. We obtain the predictive distribution for N*St(A)
from both models and compare them to the observed number of points in region A of
the test set, N'*'(A). Distributions more concentrated around the observation are pre-
ferred and lead to smaller RPS, providing our criterion. We then compare the posterior
predicted number of points to the observed, held-out number of points by computing
the RPS, averaged across the Ay if partitioning D.

Next, we turn to model comparison for effort at the visited sites. We reiterate that
there is no meaningful comparison to be made among different metrics; comparison
can only be made within one definition of activity level. Using training and test sets
obtained as described above, we can predict activity at the held-out locations, w(sp)
via kriging. We compute root mean squared error (RMSE), comparing the predicted
activity to the observed.

5 Results
In this section, we first implement the NHPP and LGCP-NNGP models to analyze the

locations of observers. Then bringing in the notion of effort, we consider models (i)
and (ii) for the following specifications for effort w(s):

(a) w(s) =1logT(s)
(b) w(s) =T(s;)/N(s)
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(c) w(s) =logN(s)

Due to the shared process in (ii), inference for the point process will also be affected.
Therefore, we also obtain estimates for the LGCP-NNGP (from here on, simply LGCP)
coefficients under (ii) for (a)-(c), followed by estimates for effort w(s) under (i) and
(i1) for (a)-(c) for both regions.

5.1 Point pattern intensities

Table 1 displays the posterior means and 95% credible intervals for the regression
coefficients for both the NHPP and LGCP fit on the Pennsylvania point pattern. We see
that the models mostly agree on significance of coefficients. Because the introduction
of the Gaussian process provides local spatial adjustment to the intensity, i.e., less
spatial smoothing, the LGCP may lead to differences in the significance and/or sign
of coefficients when compared to the NHPP. The negative coefficient for elevation
signifies that few people are likely to travel to areas at high elevations. This, along with
the negative coefficient for distance to nearest road, indicates a notion of convenience,
as people may not be as inclined to travel far or high to go birding. Under the LGCP,
Pennsylvania eBirders are more likely to begin their observations in artificial or water
areas than forests, but are less likely to visit areas characterized as urban. Histograms
of the posterior densities of the intercepts and spatial variance terms for the LGCP
reveal that posteriors are not sensitive to the choice of priors (Online Resource Fig.
S3).

To assess and compare the NHPP and the LGCP fit using all the covariates, we
follow the p-thinning approach with p = 0.5. For model assessment, we partition
D into 225 fixed area subsets and obtain 90% prediction intervals for the predictive
residuals. We do this for both the training data as well as the test data. For the NHPP, the
empirical predictive coverage for the train and test data are 74% and 75%, respectively.
For the LGCP, these empirical coverages are 89% and 86%. The LGCP achieves an
empirical coverage very close to the nominal level of 90%, whereas the NHPP exhibits
undercoverage.

For both models, we compare the posterior predicted number of points to the true,
held-out number of points N*®St(D) in the entire Pennsylvania subregion. We then
perform this comparison for subsets of D by partitioning D into 9, 25, 49, and 225
fixed area subsets and computing the RPS averaged across the nine subsets for both
models. Comparing the averaged RPS across the various partitioning schemes, Table
2 (first two rows) demonstrates that the LGCP outperforms the NHPP in terms of
predictive performance. Therefore, for the remainder of the analysis we choose to use
the LGCP to model the locations of observations when fitting the effort models (i) and
(ii).

Turning to (ii), the shared process model creates a dependence between observer
location and activity level. Therefore estimates of coefficients will be affected by both
the activity level as well as the metric. Online Resource Table S2 displays posterior
mean and 95% credible intervals for models (ii) (a)-(c). In fact, all models for the
locations agree on significance of coefficients, with the exception of agricultural land
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Table 2 Average RPS for subsets of a fixed area in J**st within the Pennsylvania subregion, constructed
via p-thinning with p = 0.5

18525 km? 2060 km?2 740 km?2 378 km? 82 km?
NHPP 10.433 25.828 12.476 9.129 2.468
LGCP-NNGP 10.278 21.298 9.257 7.327 2.078
Model (ii)(a) 10.270 20.173 9.093 7.150 2.012
Model (ii)(b) 12.730 22.800 9.967 7.966 2.103
Model (ii)(c) 10.953 22.092 9.484 7.400 2.103

Models with lowest RPS are preferred (in bold); comparisons can only be made across models, not area
sizes

cover, which is significantly positive under (ii) (a)-(c) but not significant under the
LGCP.

Additionally, we note that the shared process scheme is intended to aid in estimation
of activity level, not the point pattern; a measurement of activity does not exist unless
an observation took place. Nevertheless, we compute the RPS under (ii) (a)-(c) using
the same train and test sets used to compare the NHPP and LGCP models as above,
presented in the last three rows of Table 2. Model (ii) (a) outperforms all models,
followed by the LGCP.

For the German subregion, posterior means of coefficients are very similar across
all four models (Online Resource Table S2). Coefficients for all land cover types are
significantly positive, suggesting that once adjusting for the spatial effects and other
covariates, forested areas are the least visited by German birders. Plots of the estimated
point pattern intensities for the Pennsylvania subregion under the LGCP and (ii) (a)
are presented in Figure 3. The plots Figure 3 reveal that the shared process model (ii)
better captures areas of particularly high intensity, that is, areas where many sampling
events occur, suggesting a potential benefit of fitting the shared process model.

5.2 Effort

Posterior summaries for the estimated coefficients under the various metrics for effort
under models (i) and (ii) in Pennsylvania are presented in Online Resource Table S3.
Focusing first on model (i), the coefficient for the proportion of visits that occurred
on weekends is significantly positive for all (a)-(c). This suggests higher effort occurs
on weekends, presumably when people may have more free time. The coefficient for
proportion of visits beginning before noon is negative for all (a)-(c), suggesting less
effort occurs in the morning in Pennsylvania. Under (a) and (b), the coefficient for
artificial land cover is also negative, interpreted as shorter birding activities occur in
artificial areas such as apartments and cities when compared to forested areas.
Turning to the shared process model (ii), the addition of the Gaussian process as a
regressor may invariably alter significance of coefficients. As such, we are primarily
interested in § to learn how observation location may be related to activity. From Online
Resource Table S3, § for the Pennsylvania region is estimated to be significant for
all (a)-(c), suggesting spatial dependence between Pennsylvania observers’ locations
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Fig.3 a—c Observed point pattern along with posterior mean intensities for the region in Pennsylvania under
the LGCP-only model and shared process model (ii) with effort as log(total time). Circled areas indicate
where the estimated intensities under under (ii) better capture the observed areas of higher local intensity
compared to the LGCP, as seen by the bright yellow. Plots of posterior mean intensities under the other
formulations of effort are similar
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and their effort at those locations. Online Resource Fig. S5 displays posterior mean
intensities plotted against the posterior mean estimated effort under the shared process
model for the two regions.

In order to compare effort under models (i) and (ii), we compute the RMSE for
the predicted effort at held-out observations in Pennsylvania. Predictive RMSEs under
((1), (i1)) are (2.4354, 1.5216) under effort (a), (2.4285, 1.6064) under (b), and (5.6412,
3.3110) under (c). Thus we find that with regard to posterior prediction, the shared
process model (ii) is superior to (i) for all three effort metrics. Online Resource Fig.
S4 displays the observed effort surface generated from the held-out data, alongside
the predicted posterior mean surfaces under (i) and (ii) for the three effort metrics.
Effort surfaces under (i) have more variability and extremes compared to (ii), which is
explained by the second Gaussian process providing local adjustments. In fact, surfaces
under (ii) are dampened when compared to the observed effort. However, the surfaces
show that predictions under (i), while perhaps closer in range to the observed values,
do a poorer job of capturing the overall trends. Plots of posterior mean intensities
plotted against the posterior mean estimated effort under the shared process model for
the two regions are presented in Online Resource Fig. S5.

In Germany, we once again find that the shared process model removes the signifi-
cance of many covariates, especially with regard to the land cover covariates (Online
Resource Table S3). Interestingly, across all models and effort metrics, the coefficient
for proportion of visits with morning start times is significantly positive. This is in
contrast to the negative coefficient for Pennsylvania birders, and also in contrast to our
exploratory analysis where we found that Germany had fewer locations with morn-
ing observations. § is estimated to be significantly positive for (a) and (c), suggesting
preferential sampling between effort and location also in Germany.

5.3 Average effort by land cover type

Here we demonstrate how to accommodate misalignment between point-referenced
data collection and desired areal scale species density. Illustratively, we consider
observer effort and intensity in conjunction. That is, we obtain an intensity-weighted
effort per unit area in subregions that are dominated by a single land cover to learn
how birding effort may differ across cover types. In both Pennsylvania and Germany
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we select two subregions that are nearly uniform in artificial and agricultural land
cover, respectively. Here we only consider model (ii), due to its superior prediction
performance with regards to w(s). Average effort, as proposed in 3.4, is calculated
using the quadrature method, with a 1km discretization over the subregions.

In Pennsylvania under metric (a), the average intensity-weighted effort per square
kilometer for artificial and agricultural land cover types are 0.3196 and 0.5129, respec-
tively. Under (b), the values are 2.6651 and 4.4477, and under (c), 0.0710 and 0.1029.
Thus under all three notions of activity, average intensity-weighted effort per square
kilometer is higher in agricultural areas than artificial areas in the Pennsylvanian sub-
region. Looking to Germany, average intensity-weighted effort under (a) for artificial
and agricultural areas are 0.5676 and 0.0982; under (b), 6.8648 and 1.8902; and under
(c) 0.0817 and 0.0101. We see a relationship between these land cover types that is
opposite to Pennsylvania birding effort; average birding effort in Germany is higher
in artificial areas than agricultural ones.

5.4 Application: effort as a regressor

Here, we offer a simple application of effort as a regressor for modeling bird counts.
We consider the observed counts for three species observed at sites in the Pennsylvania
subregion from June through August 2018: dark-eyed junco (Junco hyemalis), mourn-
ing dove (Zenaida macroura), and red-winged blackbird (Agelaius phoeniceus). As
an exploratory examination, Online Resource Fig. S6 displays the counts plotted by
longitude and latitude, and colored by observed effort. For the mourning dove and
red-winged blackbird, large counts tend to occur at locations where a large amount of
sampling effort occurred, and these locations tend to appear in close spatial proximity.
Magnitude of observed counts for the dark-eyed junco do not appear to be as strongly
associated with effort.

To examine the possible association of effort and counts, we split the data into train
and test sets and fit five models on the train sets for each species: a Poisson regression
using the environmental covariates outlined above as regressors; three Poisson regres-
sions using the environmental covariates and effort w(s) for the three effort metrics
under the shared process model (ii); and a Poisson regression using the environmental
covariates plus the covariates of proportion morning visits and proportion weekend
visits as “naive” proxies for effort. We acknowledge that while a more complex model
for the observed counts is warranted, here our aim is simply to present an illustration
of how our work may be applied to SDMs.

For models fit with effort under (ii) as a regressor, the estimated coefficient for effort
is significantly positive for all species and all specifications of w(s). Thus, increasing
effort leads to increased expected counts. As mentioned in the Introduction, SDMs
are valued for their predictive abilities. We therefore explore if there are performance
gains when using predicted effort, w(sp), at held out locations, s, to predict the species
counts at sg. A distinct advantage of our modeling of effort emerges; it allows us to
interpolate and predict effort at new locations. We compute the RPS to compare the
predictive performances of the five count models. All three models which include
the explicitly modeled effort as a regressor are largely superior for the three species

@ Springer



626 Environmental and Ecological Statistics (2021) 28:609-630

Table 3 Average RPS for predicting counts for three species using a model with only environmental
covariates (EC), EC with the “naive effort” covariates of proportion weekend and morning visits, and EC
with the explicitly modeled effort under (ii)(a)—(c)

Model Junco hyemalis Zenaida macroura Agelaius phoeniceus
EC 0.706 6.972 16.982

EC + naive effort 0.691 6.021 21.129

EC + (ii)(a) 0.632 4.756 5.363

EC + (ii)(b) 0.699 6.638 12.770

EC + (ii)(c) 1.166 5.858 7.124

Models with lowest RPS are preferred (in bold)

and forms of effort, with (ii)(a) outperforming for all three species (Table 3). We find
that the model without effort tends to overpredict counts with much higher frequency
compared to the model containing effort.

6 Discussion

Confronting spatial bias in citizen science data is not a new problem; it is recognized
that bias exists in space and effort, and both should be accounted for in adopting species
distribution models. If the data representing the biological community arise from a
biased sampling scheme, then depending on the goal of the analysis, inference for
species distributions may not be reliable if the model does not incorporate appropriate
adjustments. In particular, accounting for the bias is necessary when the outcome of
interest varies due to the bias in the data. We argued that the visited eBird locations
occur as a point pattern over space, fit a nonhomogeneous Poisson process and a
logGaussian Cox process model within a Bayesian framework, and found that the
LGCEP is superior with regard to prediction of where birders go. We found that areas
of lower accessibility are often less likely to be visited, and that agricultural, artificial,
and water locations are often more likely to be visited than forests.

We then developed a geostatistical model for the observed effort at each location,
under various definitions of effort, and learned that both time of week and day can be
significant predictors of sampling effort (Table S3). Additionally, we found evidence
of preferential sampling between effort and location, implying dependence in the two
sources of bias. Crucially, by explicitly modeling the spatial dependence, we were able
to obtain predictions for effort at other locations within the region. We then offered a
simple illustration which used the predicted effort as a regressor to predict the counts of
three species of birds, and demonstrated that adjusting for sampling bias can improve
predictive performance.

Some of our findings align with results obtained from previous studies. In model-
ing the intensity of observations of Bird atlas III in Denmark, Geldmann et al. (2016)
found intensities increased in areas classified as water land cover. In our own analyses,
compared to a different baseline class of forest, we also found evidence of increased
intensities in water areas in both Germany and Pennsylvania. Additionally, Geldmann
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et al. (2016) found birding intensity increased with increasing human population den-
sity. Considering urban status as a similar covariate, we obtained similar conclusions
for Germany. In their modeling of sampling effort of BirdTrack data in Great Britain,
Johnston et al. (2020) found protected status was not a significant predictor, in contrast
to other studies which have found a higher density of sampling in protected areas. They
suggest that the discrepancy could possibly be attributed to how the characteristics of
protected areas vary across countries. We find supporting evidence in our own anal-
ysis, where protected status is a positive, significant predictor for Germany birding
locations but is not significant for Pennsylvania.

In fact, we found several differences in sign and significance of coefficients between
the two regions. For example, urban areas are associated with higher intensity in
Germany but lower intensity in Pennsylvania. Additionally, we considered how birding
effort changes by land cover type, and found higher average intensity-weighted effort in
agricultural areas than artificial ones in Pennsylvania, while the relationship is reversed
in Germany. These findings suggest differences in the behavior of eBird observers in
various geographical regions, and underscore the importance of modeling effort and
including covariates in order to account for these differences. While we focused on two
regions with more temperate weather and similar climates, our methods are readily
extendable to analyze sampling effort in other regions.

We did not consider the temporal aspect of the data collection. In this regard, we
could extend the analysis to a spatiotemporal point pattern. One would expect that
time of year has an impact on the frequency of effort, due to weather or migration
season. Also, we do not expect species distributions to be independent of observation
effort; bias towards rare or attractive species has been found in previous studies, such
as Johnston et al. (2020) and Boakes et al. (2010). Therefore, site selection and effort
may change over time as species distributions change or become more well known
(Lobo et al. 2007), further underscoring the potential of temporal bias in birding effort.
This could be implemented in the fashion of an autoregressive model, developing effort
across a sequence of time windows to see if previous effort helps to explain current
effort. Doing so would address bias (1) identified by Illian et al. (2008).

Lastly, the larger goal is to develop effective SDMs. By creating a model for effort,
we can introduce it as a regressor into a model for abundance in a hierarchical spec-
ification of the form [abundance|effort][effort], adding an additional shared process
layer. We provided a simple demonstration of how modeled effort can be incorporated
into SDMs. If we wished to model the observed counts at each site s, then we can
immediately introduce the associated effort at that site. If the objective is understand-
ing abundance, taken say as density at areal unit scale, we can obtain integrated effort
for areal units of interest as developed above in the case of subregions characterized
by a land cover. The flexibility of the methods presented here allows for incorporating
the bias in effort at different spatial scales.

In conclusion, citizen science data are crucial for the field of ecology, allowing for
the monitoring of species diversity at large geographic scales. The nature of citizen
science data, especially data collected in an opportunistic manner, can pose challenges
due to the bias in sampling location and effort. As citizen science data are being
applied to increasingly more complex ecological questions, developing methodology
to account for such biases is essential. We hope this work encourages further model-
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based approaches to capturing the biases in effort, as doing so will inevitably lead to
more trustworthy models for species distributions and abundances.

Supplementary Information  The online version contains supplementary material available at https://doi.
org/10.1007/s10651-021-00508-1.
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