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Abstract Terrestrial soil organic carbon (SOC) dynamics play an important but uncertain role in the global
carbon (C) cycle. Current modeling efforts to quantify SOC dynamics in response to global environmental
changes do not accurately represent the size, distribution and flux of C from the soil. Here, we modified the
daily Century (DAYCENT) biogeochemical model by tuning decomposition rates of conceptual SOC pools

to match measurable C fraction data, followed by historical and future simulations of SOC dynamics. Results
showed that simulations using fraction-constrained DAYCENT (DC,,, ) led to better initialization of SOC stocks
and distribution compared to default/SOC-only-constrained DAYCENT (DC ) at long-term research sites.
Regional simulation using DC;,. demonstrated higher SOC stocks for both croplands (34.86 vs. 26.17 MgC
ha~") and grasslands (54.05 vs. 40.82 MgC ha~") compared to DC,,, for the contemporary period (2001-2005
average), which better matched observationally constrained data-driven maps of current SOC distributions.
Projection of SOC dynamics in response to land cover change under a high warming climate showed average
absolute SOC loss of 8.44 and 10.43 MgC ha~! for grasslands and croplands, respectively, using DC
whereas, SOC losses were 6.55 and 7.85 MgC ha~! for grasslands and croplands, respectively, using DC,.,. The
projected SOC loss using DC;,,. was 33% and 29% higher for croplands and grasslands compared to DC, ;. Our
modeling study demonstrates that initializing SOC pools with measurable C fraction data led to more accurate

frac

representation of SOC stocks and distribution of SOC into individual carbon pools resulting in the prediction of
greater sensitivity to agricultural intensification and warming.

Plain Language Summary We aim to improve the representation of soil organic carbon (SOC)
dynamics in the earth system model by matching the conceptual soil pools with carbon fraction data. We

found large divergence in SOC stocks with higher absolute and relative losses under historical and projected
climate and land use using the fraction-constrained compared to the default/SOC-only-constrained model. This
implies that the conceptual soil pools parameterized to match with carbon fraction data can better simulate SOC
dynamics now and into the future.

1. Introduction

Soil is the largest terrestrial reservoir of organic carbon (C), storing about 1,500 Pg C in the top 100 cm
(Batjes, 2016; Nachtergaele et al., 2012). Any small changes in the magnitude, distribution and forms of terres-
trial soil organic carbon (SOC) may lead to large release of C to the atmosphere (Sulman et al., 2018), with
significant impact on food security and the global climate system (Lal, 2004). Given that changes in soil organic
carbon (SOC) represent one of the largest uncertainties in the global C budget (Ciais et al., 2014), accurate quan-
tification of the distribution and forms of soil organic carbon (SOC) can help to constrain the global C budget and
provide key insights on the underlying processes related to SOC protection and cycling (Stockmann et al., 2013).

Changes in SOC stocks at any given time depend on the balance between organic matter inputs via plant produc-
tion, additions of manure and compost, and outputs via decomposition, erosion and hydrologic leaching of vari-
ous C compounds (Davidson & Janssens, 2006; Jobbagy & Jackson, 2000). Although higher organic matter
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inputs to the soil generally correlate with high SOC (Sanderman, Creamer, et al., 2017), the biological stability
of SOC is ultimately determined by the interactions among the soil physicochemical environment (soil mois-
ture, temperature, pH and aeration), soil mineralogy, and the accessibility of the organic matter to microbes and
enzymes (Schmidt et al., 2011). Current understanding of the SOC dynamics indicates that the soil physicochem-
ical environment plays an important role in determining the C efflux from soil and that the efflux rates are modi-
fied by substrate availability and the affinities of enzymes for the substrates (Six et al., 2002). However, the extent
to which different physicochemical characteristics of soil control the stabilization and cycling of SOC is still
debated (Carvalhais et al., 2014; Doetterl et al., 2015; Rasmussen et al., 2018). Additionally, the complex molecu-
lar structure of C substrates and their sensitivity to climatic and environmental constraints add further complexity
in understanding SOC dynamics at different spatial and temporal scales (Davidson & Janssens, 2006).

Previous studies have shown that the factors affecting the stabilization/destabilization of SOC are numerous
and that the changes in SOC over space and time are the result of complex interactions among climatic, biotic
and edaphic factors (Rasmussen et al., 2018; Stockmann et al., 2013; Torn et al., 1997; Wiesmeier et al., 2019).
For example, Carvalhais et al. (2014) have shown that climate, particularly temperature, strongly controls SOC
turnover. Doetterl et al. (2015) found that geochemical characteristics such as base saturation, soil texture, silica
content and pH also play a dominant role by altering the adsorption and aggregation of SOC. In addition, other
studies indicate that soil nitrogen (N) availability affects SOC change due to constraints on microbial activity and
plant productivity (Grandy et al., 2008; Janssens et al., 2010; Sinsabaugh et al., 2005). These findings have led
to the view that the accumulation and decomposition of organic matter in soil is ultimately determined by the
interactions among climate, vegetation type, topography and lithology.

Biogeochemical models commonly rely on capturing SOC dynamics by implicitly representing microbial
processes using soil pools that are conceptual (Hartman et al., 2011). An increasing number of models now explic-
itly represent the turnover of litter and soil pools using distinct microbial functional types (Wieder et al., 2014)
or measurable carbon fractions (Abramoff et al., 2018). Although the representation of microbial processes using
measurable soil pools or distinct microbial functional types have gained recognition in recent decades, their
applicability is still limited at diverse spatial and temporal scales, particularly due to limited data on measurable
fractions or rate modifiers to represent distinct microbial functional types. There has been recent attempts to
model SOC dynamics using measurable soil pools, which has been broadly calibrated and tested at regional and
global scales (Abramoff et al., 2018, 2021; Zhang et al., 2021). However, most of the earth system models still
simulate SOC dynamics using conceptual soil pools with different turnover rates, particularly when examining
the response of SOC to global change factors (Tian et al., 2015; Todd-Brown et al., 2014).

The potential turnover rates of conceptual soil pools are modified by climatic factors such as soil moisture and
temperature, soil chemical factors such as pH and oxygen availability and the mechanism that facilitates C
protection via organo-mineral interactions and aggregation, often loosely represented by clay content (Trum-
bore, 1997). However, the turnover rates of these conceptual soil pools cannot be directly determined because
these pools cannot be isolated in the laboratory (Paul et al., 2001). As a result, there is increasing need and effort
to link the conceptual pools with some measurable data to determine the turnover rates of SOC pools in the
biogeochemical models.

In current biogeochemical models with conceptual soil pools, SOC dynamics are most commonly represented
using three dominant pools: an active pool dominated by root exudates and the rapidly decomposable compo-
nents of fresh plant litter, with mean residence time (MRT) ranging from days to years (Hsieh, 1993); a slow pool
dominated by decomposed organic material, often of microbial origin, with MRT ranging from years to centuries
(Torn et al., 2013); and a passive pool dominated by stabilized organic matter with MRT of several hundred to
thousands of years (Czimczik & Masiello, 2007). Changes in the size and relative abundance of these pools are
strongly influenced by climate, soil type and land use (Sanderman et al., 2021). Therefore, accounting for accu-
rate distribution of SOC into different pools is paramount to quantify the current SOC stocks and examine the
vulnerability of SOC to future environmental changes.

Relating these conceptual pools with SOC partitioned into laboratory defined fractions, such as particulate-,
mineral associated- and pyrogenic-forms of C (POC, MOAC, and PyC, respectively), can help to constrain the
turnover rate of different pools in biogeochemical models. For example, Skjemstad et al. (2004) related POC,
MOAC and PyC approximated using a combination of physical size fractionation and solid-state '3C-NMR
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spectroscopy with resistant plant material, humic and inert organic material pools in the Rothamsted carbon
(RothC) model to predict changes in SOC in response to changes in soil type, climate and management. However,
RothC does not explicitly simulate plant growth and plant response to dynamic changes in climate and other envi-
ronmental factors (Zimmermann et al., 2007). In addition, the plant material is loosely partitioned into decompos-
able and resistant forms with large uncertainties in their respective sizes (Cagnarini et al., 2019). Unlike RothC,
ecosystem models such as Century, DeNitrification-DeComposition and Agricultural Production Systems sIMu-
lator integrate the effects of climate, land use change and land management practices by simulating plant physi-
ology and soil biogeochemistry, and explicitly consider the effects of climate, land use and land management on
three conceptual soil C pools with different turnover rates (Hartman et al., 2011; Ogle et al., 2010).

In this study, we modified, calibrated and evaluated the version 4.5 of the Daily Century model (hereafter,
DAYCENT) to improve the representation of SOC dynamics by linking conceptual pools of active, slow and
passive SOC against estimates of the measurable POC, MOAC, and PyC fractions, respectively. We then simu-
lated the response of SOC to climate and land use change during the historical and future period using the default/
) DAYCENT model in the US
Great Plains ecoregion. The objectives of this study were to (a) constrain the DC; model to link active, slow and

SOC-only-constrained (hereafter, DC ;) and fraction-constrained (hereafter, DC,

passive pools of organic C to soil C fractions by tuning the decomposition parameters; (b) calibrate and evaluate
DCfrac
fractions predicted at seven long-term research sites; (c) evaluate the differences between the DC

and DC,, performance by comparing the distribution of C in active, slow and passive pools against C
and DC,;in
simulating contemporary SOC stocks and their distribution by comparing against other existing data products in

frac

the US Great Plains region; and (d) project the SOC change in response to climate and land cover change through
2100. We hypothesize that (a) tuning the potential decomposition rates of the conceptual pools to C fraction
data in the DAYCENT model leads to more accurate initialization of equilibrium pool structure (Skjemstad
et al., 2004), thereby allowing a better comparison of measured and simulated SOC in response to climate, land
use and management (Basso et al., 2011); (b) conversion of native vegetation to any agricultural use significantly
alters the distribution of SOC among the various soil pools (Guo & Gifford, 2002), but the rate and extent of
SOC change depend on the intensity of agricultural use (Lal, 2018; Page et al., 2014), with larger losses from
models that allocate more C to active and slow pools; and (c) land use under a warming climate would result in
larger absolute and relative losses of SOC from the model that derive more SOC from the active pool due to rapid
decomposition of fresh organic matter induced by warming (Crowther et al., 2016).

2. Materials and Methods
2.1. The DAYCENT Model

The DAYCENT Version 4.5 is a daily time step version of the Century biogeochemical model that simulates the
dynamics of C and N of both managed and natural ecosystems (Del Grosso et al., 2002; Parton et al., 1998). The
exchange of C and N among the atmosphere, vegetation and soil is a function of climate, land use, land manage-
ment and other environmental factors. The vegetation pool simulates potential plant growth at a weekly time step
limited by water, light, and nutrients. The DAYCENT model consists of multiple pools of SOM and simulates
turnover as a function of the amount and quality of residue returned to the soil, the size of different soil pools and
a series of environmental limitations. The type and timing of management events including tillage, fertilization,
irrigation, harvest and grazing activities can affect plant production and SOM retention.

The DAYCENT model was originally developed from the monthly CENTURY model version 4.0. The
CENTURY 4.0 is a general FORTRAN model of the plant-soil ecosystem that simulates carbon and nutrient
dynamics of different types of terrestrial ecosystems (grasslands, forest, crops and savannas). CENTURY 4.0
primarily focused on simulation of soil organic matter dynamics of agro-ecosystems (Metherell et al., 1994).
Earlier development of the CENTURY focused on simulation of soil organic matter dynamics of grasslands,
forest and savanna ecosystems (Parton et al., 1988; Sanford Jr et al., 1991).

The first DAYCENT model was developed in FORTRAN 77 and C from CENTURY 4.0 to simulate the exchanges
of C, water, nutrients, and gases (CO,, CH,, N,O, NOx, N,) among the atmosphere, soil and plants at a daily
time step (Del Grosso et al., 2001; Kelly et al., 2000; Parton et al., 1988). The submodels used in DAYCENT
are described in detail by Del Grosso et al. (2001), which includes submodels for plant productivity, soil organic
matter decomposition, soil water and temperature dynamics, and trace gas fluxes. Other model developments
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Table 1
General Attributes of the LTAR, LTER, and CPCRC-LTE Sites Used for DAYCENT Parameterization and Calibration
Site name Sampling location Lon Lat T,,(°C) Annual precip. (mm) Elev (m) Land use Data avail. Reference
Lower Chesa. Bay Beltsville, MD -76.9 39.1 12.8 1,110 41 CS 1996-2016 Cavigelli

et al. (2008)
CPCRC-NTLTE Pendleton, OR —1184 454 10.6 437 456 WW-FA 2005-2014 Gollany (2016)
Cent. Plains Exp. Ran. Cheyenne, WY —1049 412 8.6 425 1,930 C3-C4 Gra. 2004-2013 Ingram

et al. (2008)
Northern Plains Mandan, ND —100.9 46.8 4 416 593 C3-C4 Gra. 19592014 Liebig

et al. (2010)
Platte/High Plains Aq. Lincoln, NE -96.5 40.9 11 728 369 CC,CS 1998-2011 Sindelar

et al. (2015)
Platte/High Plains Aq. Mead, NE -96.0 41.0 9.8 740 349 CcC 20012015 Schmer

etal. (2014)
Kellogg Bio. Station H. Corners, MI —854 424 9.7 920 288 CSW-Gra. 19892017 Syswerda

etal. (2011)?

Note. CS: Corn-Soya; WW: Winter Wheat; FA: Fallow; CC: Continuous Corn, SC: Soya-Corn, CSW: Corn-Soya-Wheat, Gra.: Grass.
aH. Corners, MI is a LTER & LTAR site; CPCRC-NTLTE: Columbia Plateau Conservation Research Center No-Till Long-Term Experiment.

while transitioning from CENTURY 4.0 to DAYCENT included dynamic carbon allocation and changes in grow-
ing degree days routine that triggers the start and end of growing season based on phenology (soil surface temper-

ature, air temperature, and thermal units).

The first formal version DAYCENT 4.5 (Hartman et al., 2011) was developed from Del Grosso et al. (2002), with
a focus on simulation of trace gas fluxes for major crop types in the US Great Plains region. Hartman et al. (2011)

focused on calibrating and validating crop yield and trace gas fluxes for all the major crop types in 21 represent-

ative counties in the US Great Plains region.

The SOM sub-model consists of active, slow and passive pools with different turnover times (Motavalli
et al., 1994; Parton et al., 1987). The active pool has a short (1-5 years) turnover time and possibly composed of
live microbes and microbial products. The slow pool has an intermediate turn over time (20-50 years) and possi-

bly contains physically protected organic matter and stabilized microbial products. The passive pool has a long
turnover time (400-2000 years) that may be physically and chemically stabilized. In DAYCENT, the turnover of
the active, slow and passive pools is simulated as a function of potential decomposition rates of respective pools

modified by soil temperature, moisture, clay content, pH and cultivation effects. Changes in SOC are simulated

for the top 20 cm of the soil.

In this study, we used the DAYCENT to optimize and calibrate the size of the conceptual soil pools by compar-
ing it with carbon fraction data at long term research sites. First, we developed measurable carbon fraction data

using a combination of diffuse reflectance spectroscopy and a machine learning model (Section 2.2). Second, we

developed input data sets including climate, land use, cropping systems and land management data as required
by DAYCENT model for point and regional simulations (Section 2.3). Third, we parameterized the fraction-con-

strained DAYCENT (DC

frac

) by tuning the potential decomposition rates (k) such that the size of the active, slow and

passive soil pools matches with the POC, MAOC and PyC, respectively at the long-term research sites (Section 2.4).

Fourth, we calibrated both the DC,; and DC

frac

DAYCENT using input data developed in Section 2.3 (climate, land

use, and management) against observed total SOC for specific plant function types (PFTs; Section 2.5), followed by

model validation (Section 2.6) and historical and future simulations (Section 2.7).

2.2. Development of Carbon Fraction Data Sets to Match With Soil Carbon Pools

To link the SOC pools in DAYCENT with measurable C fractions, we used seven long-term research sites located
in the United States (Cavigelli et al., 2008; Gollany, 2016; Ingram et al., 2008; Liebig et al., 2010; Schmer
et al., 2014; Sindelar et al., 2015; Syswerda et al., 2011), which span a range of climatic, land use and land
management gradients (Table 1). Six of seven research sites are part of Long-Term Agroecosystem Research
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(LTAR) network focused on sustainable intensification of agricultural production. The remaining site is part
of Columbia Plateau Conservation Research Center (CPCRC) Long-Term Experiment (LTE). At each site, we
predicted the POC, MAOC and PyC fractions using a diffuse reflectance mid-infrared (MIR) spectroscopy-based
model as detailed in Sanderman et al. (2021). The predictive models for the C fractions were developed from a
database of fully fractionated soil samples using a combination of physical size separation and solid-state 3C
NMR spectroscopy (Baldock, Sanderman, et al., 2013) of Australian (Baldock, Hawke, et al., 2013) and US
origin (Sanderman et al., 2021). All samples for model development were scanned using a Thermo Nicolet 6700
FTIR spectrometer with Pike AutoDiff reflectance accessory located at the Commonwealth Scientific and Indus-
trial Research Organization (CSIRO) in Australia. The soil samples from all the long-term research sites were
scanned using a Bruker Vertex 70 FTIR equipped with a Pike AutoDiff reflectance accessory located at Wood-
well Climate Research Center in the United States. For all samples, spectra were acquired on dried and finely
milled soil samples. Since the SOC fraction model and the soil samples were scanned using different instru-
ments, we developed a calibration transfer routine to account for the differences in spectral responses between the
Commonwealth Scientific and Industrial Research Organization (CSIRO; primary) and Woodwell (secondary)
instruments by scanning a common set of 285 soil samples. The calibration transfer routine was developed using
piecewise direct standardization (PDS) as described in Dangal and Sanderman (2020).

For estimating C fractions of the prediction set (i.e., soil spectra of seven long-term research sites), we used a
local memory based learning (MBL) approach that fits a unique target function corresponding to each sample in
the prediction set (Dangal et al., 2019; Ramirez-Lopez et al., 2013). The MBL selects spectrally similar neighbors
for each sample in the prediction sets to build a unique SOC fraction model for each target sample. The MBL
was optimized by developing a soil C fraction model using a range of spectrally similar neighbors and selecting
the neighbors that produce the minimum root mean square error based on local cross validation. Before develop-
ing the soil C fraction model, the spectra of both the calibration and prediction sets were baseline transformed.
Following baseline transformation, spectral outliers were detected using F-ratios (Hicks et al., 2015). The F-ratio
estimates the probability distribution function of the spectra and picks samples that fall outside the calibration
space as outliers (Dangal et al., 2019). Observation data used for building the soil C fraction model were square
root transformed before model development and later back-transformed when estimating the goodness-of-fit. The
performance of predictive models is shown in Table S1 in Supporting Information S1.

The predicted soil C fractions for the seven long-term research sites were then converted into C fraction stocks
using the relationship between C fraction (%), bulk density (BD; g/cm?) and the depth (cm) of soil samples. Since
the BD data were not available for all long-term research sites for different crop rotation and grazing intensities,
we predicted BD using methods similar to those described above. The only difference was that the samples
used to develop the BD model were based on a much larger database of soil spectra scanned at the Kellogg
Soil Survey Laboratory (KSSL) in Lincoln, USA (Dangal et al., 2019). Before predicting BD, the calibration
transfer, as documented in Dangal and Sanderman (2020), between the Kellogg Soil Survey Laboratory (KSSL)
and Woodwell soil spectra were developed and the local modeling approach (i.e., MBL) was used to make final
prediction for samples with missing laboratory BD. Calibration transfer between the spectrometers at the Wood-
well (secondary instrument) and Kellogg Soil Survey Laboratory (KSSL) (primary instrument) laboratory was
necessary to improve prediction of BD (R? = 0.46 — 0.64 and RMSE = 0.26 — 0.50; Dangal & Sanderman, 2020).

One of the technical challenges associated with the comparison of simulated pool sizes against diffuse reflectance
spectroscopy-based predictions of POC, MOAC and PyC at long-term research sites was the absence of labora-
tory data on C fractions to validate the MIR based predictions. To address this shortcoming, we first compared the
sum of the MIR based predictions of POC, MOAC and PyC against observation of total SOC available at these
sites (Figure S1 in Supporting Information S1). When comparing the total SOC against MIR based predictions,
we did not limit the comparison to 20 cm, but allowed it across the full soil depth profile based on the availability
of SOC data at the seven long-term research sites. The MIR based predictions of the sum of POC, MAOC and
PyC are in close agreement with laboratory based SOC content for both croplands (R?> = 0.79; RMSE = 0.28%)
and grasslands (R? = 0.88; RMSE = 0.52%; Figure S1 in Supporting Information S1). Additionally, the labo-
ratory data used for model comparison were available at multiple depths of up to 60 cm often without a direct
measurement for the 0-20 cm depth necessitating an approximation of the 0-20 cm stock. For example, when
soils were collected from 0-15 to 15-30 cm, we estimated the 20 cm SOC stock by adding 1/3 of the 15-30 cm
SOC stock to the entire 0—-15 cm SOC stock.
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2.3. Input Data Sets for Driving the DAYCENT Model

The US Great Plains region was delineated using the Level I ecoregions map (Omernik & Griffith, 2014) avail-
able through the Environmental Protection Agency (https://www.epa.gov/eco-research/ecoregions-north-amer-
ica). The data sets for driving the DAYCENT were divided into two parts: (a) dynamic data sets that include
time series of daily climate (precipitation, maximum and minimum temperature), annual land cover land use
change (LCLUC) and land management practices (irrigation, fertilization and cropping system, tillage intensity)
and (b) static data sets that include information on soil properties (soil texture, pH, and bulk density; Sander-
man et al., 2021), and topography maps (Jarvis et al., 2008). For the historical period (1895-2005), we used a
combination of VEMAP and PRISM (1895-1979) and DAYMET (1980-2005; Daly & Bryant, 2013; Kittel
et al., 2004; Thornton et al., 2012). The VEMAP data sets are available at a daily time step and a coarser spatial
resolution (0.5° x 0.5°), while the PRISM data sets are available at a monthly time step and a finer spatial resolu-
tion (10 x 10 km). We interpolated the PRISM data at a daily time step by using the daily trend from the VEMAP
data sets such that the monthly precipitation totals and monthly average temperature matches the monthly climate
from the PRISM data. For the future (2006-2100), we used the Intergovernmental Panel on Climate Change
(IPCC) fifth assessment report (ARS5) RCP4.5 and RCP8.5 climate scenarios available at a spatial resolution
of 1/16° x 1/16°. We chose the second-generation Canadian earth system model (CanESM2) developed by the
Canadian Centre for Climate Modeling and Analysis (Barker et al., 2008) to downscale the daily climate varia-
bles at a spatial resolution of 1/16° X 1/16° using the localized reconstructed analogs (LOCA) method (Pierce
et al., 2014). While we also examined other downscaled product, outputs from the CanESM2 better match with
historical change in climate variables during 1950-2005.

For annual LCLUC, we used spatially explicit data sets available at a resolution of 250 X 250m for the historical
(1938-2005) and future (2006-2100) periods under the IPCC fourth assessment report (AR4) A2 scenario (Sohl
et al., 2012). We used only the A2 land cover scenario because there was not much difference in the trajectories
of land cover change through 2100. For the period 1895-1937, we backcasted the proportional distribution of
croplands and grasslands by integrating the Sohl et al. (2012) data with HYDE v3.2 data (Klein Goldewijk
et al., 2017). We estimated the fractional distribution of croplands and grasslands by calculating the total number
of pixels dominated by each land cover type at 250m resolution within each 1/16° grid cell (Figure S2a in
Supporting Information S1). Irrigation and fertilization data are based on census of agriculture statistics (Falcone
& LaMotte, 2016). All data sets were interpolated/aggregated to a common resolution of 1/16° X 1/16° (approx-
imately 7 X 7 km at the equator).

Cropping systems and crop rotation are based on county level data for the US Great Plains region available
through Hartman et al. (2011), which were merged with tillage type and intensity data (Baker, 2011) to write 24
unique schedule files that describe grid-specific cropping system and crop management practices. The 24 unique
schedule files include sequences of time blocks, with each block describing a unique set of crop types, crop rota-
tion, tillage type, tillage intensity, fertilization, irrigation and residue removal (Hartman et al., 2011). Using these
schedule files, we developed an unsupervised classification algorithm (K-means) to create 24 unique clusters as
a function of long-term average climate (precipitation, minimum- and maximum-temperatures), land forms, land
cover type and elevation. We then assigned all the grid cells to one of the 24 unique clusters to create a spatially
explicit data set on cropping system and crop rotation. While developing the unsupervised classification algo-
rithm, the eastern part of the US Great Plains region dominated by corn (Zea mays L.)—soybean (Glycine max
(L.) Merr.) rotation was underrepresented. To address this shortcoming, we used randomly selected grid points
from the CropScape data (https://nassgeodata.gmu.edu/CropScape/) available through the USDA National Agri-
cultural Statistics Service in the unsupervised classification algorithm. Additionally, cropping systems classified
using the unsupervised algorithm was verified against current CropScape data allowing for realistic representa-
tion of cropping systems. During the verification, we retained 30% of the samples as independent sets. Appli-
cation of the model against independent sets show that the unsupervised algorithm can predict crop rotation for
all crop types with an accuracy of >70% (Figure S3 in Supporting Information S1). The distribution of schedule
files representing different crop rotation and crop types used to build the unsupervised classification is shown in
Figure S2b in Supporting Information S1 and the spatial distribution of crop rotations based on the unsupervised
classification is shown in Figure S4 in Supporting Information S1.
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2.4. Model Parameterization to Link DAYCENT Conceptual Pools With C Fractions

The SOC dynamics in the DAYCENT consists of the first-order kinetic exchanges among conceptual pools
(active, slow, and passive) defined by empirical turnover rates (Parton et al., 1987). However, a major impetus
for quantifying these pools comes from the fact that the size and distribution of SOC in the different pools cannot
be directly linked with experimental data. Here, we developed a methodology to link the conceptual active, slow
and passive pools to spectroscopy-based estimates of POC, MAOC, and PyC fractions. The rate of decomposi-
tion across POC, MAOC, and PyC are consistent with the potential turnover rates assigned to the active, slow,
and passive pools in some SOC models (Baldock, Sanderman, et al., 2013). For DAYCENT, there is conceptual
agreement between the active and slow pools and the POC and MAOC fractions, respectively; however, we
recognize (and discussion in Section 3.5) that the passive pool and PyC fraction are not necessarily aligned
conceptually due to different modes of formation.

Here, we optimized the potential turnover rates in the DAYCENT model such that the absolute difference between
the simulated SOC and predicted C fractions was minimized (see Section 2.5 below). When matching the soil
pools with C fraction data, we compared the sum of belowground structural, metabolic and active pool SOC to
POC, slow pool SOC to MAOC, and passive pool SOC to PyC. Details on matching the conceptual pools with C
fraction data are provided in Figure S5 in Supporting Information S1.

During the parameterization process, we tuned the potential decomposition rates (k) of only the DC;_ , while the
default value available from Hartman et al. (2011) were used for the DC, .. The DAYCENT version used by Hart-
man et al. (2011) has been widely applied to study the impacts of climate and land use on SOC stocks and green-
house gas fluxes for major crop types in 21 representative counties in the US Great Plains agricultural region.
we determined the upper (+60%) and lower (—60%) bounds of k using
default value (Table 1). We then tuned the k value of each pool by running the DAYCENT at seven long-term

When tuning the parameter of DC

frac®

research sites (Figure 1; Table 2), and comparing the simulated SOC in active, slow, and passive pools with the
POC, MAOC and PyC fractions, respectively. The DC, . and DC,  models were then reran during model calibra-
tion (Section 2.5), evaluation (Section 2.6), as well as during the historical and future simulations (Section 2.7).

In the current DAYCENT model, total SOC is defined as follows:

SOCmIa[ = Litxlrc + Litme/ah + SOCaclive + SOC.\'Iou' + SOCpa.\"xiue (1)

where,

Lit

strc

Lit

metab

= structural litter pool
= metabolic litter pool

SOC,

active

= active SOC pool
SocC

slow

SOC

passive

= slow SOC pool
= passive SOC pool

Each of the above SOC pool has a specific potential decomposition rates that determines the time (ranging
from years to centuries) until decomposition. Plant material is transferred to the active, slow and passive pools
from aboveground and belowground litter pools and three dead pools. Total C flow (CF,

act

) out of the active
pool is a function of potential decomposition rates modified by the effect of moisture, temperature, pH, and
soil texture.

CFut = kact X SOCact X bggec X Cltaes X textes X anerbgee X pHepp X dtm )

where,

CF,, = the total amount of C flow out of the active pool (g C m~2)
k,,, = intrinsic decomposition rate of the active pool (yr=!)

S0C,., = SOC in the active pool (g C m~2).

bg,,. = the effect of moisture and temperature on the decomposition rate (0-1)
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Table 2

Default/SOC-Only-Constrained (DC,,;) and Fraction-Constrained (DCy,, )
Decomposition (k) Parameters Used in the DAYCENT to Simulate the Size

of Different Carbon Pools
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Figure 1. Parameterization of k. k;,,, and k.., using carbon fractions predicted across long-term research sites. Each

colored curve represents the change in soil organic carbon (SOC) stocks as a function of potential decomposition rates at
seven long-term research sites. The dashed black line represents the potential decomposition rates (k) that is optimized
when the absolute difference between the fraction-constrained (DC;, ) simulated SOC in different pools and the predicted C
fractions is minimum. The dashed green line represents the size of different soil SOC pools using the default k value based
on default/SOC-only-constrained (DC,,;) model. The dashed gray line is the average particulate-, mineral associated- and
pyrogenic-forms of C (POC [i.e., active], MAOC [i.e., slow], and PyC [i.e., passive]) predicted using the combination of
diffuse reflectance spectroscopy and machine learning at seven long term research sites.

clt,, = the effect of cultivation on the decomposition rate for crops (0-1) for the active pool
text,. = the effect of soil texture on the decomposition rate (0-1)

anerb,, = the effect of anaerobic conditions on the decomposition rate (0-1)

PH ;= the effect of pH on the decomposition rate (0-1)

dtm = the time step (fraction of year)

The respiratory loss when the active pool decomposes is calculated as:
COzaery = CFaet X p1CO; 3)

where,

COy,) = respiratory loss from the SOC,, pool (g C m~2)

DC, DC, k (yr~! . .
def rack O17) pl1CO, = scalar that control respiratory CO, loss computed as a function of
Relative intercept and slope parameters modified by soil texture.
Parameter Absolute  change
Pools  k(yr™!) range N  Optimized change (%) The C flow from active to passive pool is then computed as:
Active  7.30 (3,12) 301 3.50 —3.80 =52 C Facropas = CFaer X fps1s3 X (1 + animpt X (1 — anerb)) “)
Slow 0.20 (0.10,0.30) 201 0.14 —0.06 -30
where,

Passive 0.0045 (0.001,0.0085) 351

0.0075 0.003 +67

CF, , = C flow from the active to the passive pool (g C m~2
Note. The absolute and relative column refers to magnitude and percent actZpas P pool (g )
difference in k values between default and optimized parameters. fpsIs3 = impact of soil texture on the C flow (0-1)
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animpt = the slope term that controls the effect of soil anaerobic condition on C flows from active to passive
pool (0-1)

anerb = effect of anaerobic condition on decomposition computed as a function of soil available water and poten-
tial evapotranspiration rates

The C flow from active to the slow pool is then computed as the difference between total C flow out of the active
pool, respiratory CO, loss, C flow from active to passive pool and C lost due to leaching. Mathematically,

CFathsla = CFact - COZ(act) - CFathpas - Cleach (5)

where,

C

reacn = C lost due to leaching calculated as a function of leaching intensity (0-1) and soil texture

Likewise, total C flow (CF ;) out of the slow pool is a function of potential decomposition rates modified by the

effect of moisture, temperature, pH, and soil texture.

CFo = ksio X SOCyip X bguec X cltsio X anerbgee X pHe/f X dtm (6)

k,,, = intrinsic decomposition rate of the slow pool (yr~")

SOC,,, = SOC in the slow pool (g C m™2)

clt,,, = the effect of cultivation on the decomposition rate for crops (0-1) for the slow pool
The respiratory loss when the slow pool decomposes is calculated as:

COz(Slo) =CFy, X p2C02 (7)

where,

pool (g C m™2)

slo

CO,,) = respiratory loss from the SOC
P2CO, = parameter that controls decomposition rates of the slow pool (0-1)
The C flow from slow to passive pool is then computed as:

Csioopas = CFyo X fps2s3 X (1 + animpt X (1 — anerb)) (8)
where,
fps2s3 = impact of soil texture on decomposition (0-1)

The C flow from slow to active pool is then computed as a difference between total C flow out of the slow pool,
respiratory CO, loss and total C flow from slow to passive pool. Mathematically,

CFSIGcht = CFac! - COZ(:IG} - CF;‘[OZPGS (9)

Likewise, total C flow (CF,,) out of the passive pool is a function of potential decomposition rates modified by

the effect of moisture, temperature and pH.
C Fpas = kpas X SOCpag X bgaec X cltpas X pHepy X dtm (10)
where,
T o . o
k,,, = intrinsic decomposition rate of the passive pool (yr~')
S0C,,, = SOC in the slow pool (g C m™?)

clt,,, = the effect of cultivation on the decomposition rate for crops (0-1) for the passive pool

The CF ), is either lost through respiratory processes or transferred to the active pool using the following equation:

COxpasy = C Fpas X p3co2 (11
CFpa:ZacI = CFpns X (1 - P3002)) (12)
DANGAL ET AL. 9o0f23
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where,
CO,,,s) = respiratory loss from the passive SOC pool (g C m?)

p3co, = parameter that control decomposition rates of passive pool (0-1)

CF

vaszaee = C flow from passive to active pool (g C m~2)

The rate modifiers used in Equations 2, 6 and 10 are explained in Text S1 in Supporting Information S1. Since
DAYCENT is a donor-controlled model and changes in organic matter are primarily driven by a top down
approach, we first parameterize the active soil pool by comparing the simulated SOC in the active pool against
POC predicted using diffuse reflectance spectroscopy. During the parameterization process, we varied the poten-

tial decomposition rates (k.. ) by running the model to equilibrium under native vegetation for 2,000 years. We

active
then used site history at seven long-term research sites to create schedule files and simulate the effects of histori-

cal cropping systems, land use change, land management and grazing practices on the active SOC.

We repeated the above process for parameterizing the slow- and passive-carbon pools by comparing it with
MOAC and PyC, respectively. Similar to the active pool, we tuned the existing parameters based on the default/
and Kk,
passive-pools. The active, slow, and passive pools were optimized sequentially. When optimizing the decom-

SOC-only-constrained model that controls the potential decomposition rates (k ) of the slow- and

slow'

position rates of the slow pool, we used the k

werive Value and reran the model to determine the optimized k

slow
and k

0w Values.

value. Likewise, for the passive pool, we repeated the same process but with optimized &, ,
The parameters were optimized when the averaged absolute difference between the SOC stocks of the respective
pools across all the sites were minimum. During the optimization process, we ran the model iteratively within

60% (upper and lower bounds) of the DC,, to determine the optimized parameters (Table 2).

2.5. Model Calibration and Simulation Procedure

The DAYCENT model has been well calibrated across a range of climatic, environmental, and land use gradi-
ents for different crop and grassland types. Details of the recommended calibration procedure can be found in
Hartman et al. (2011). The calibration procedure explained here applied to both the DC,; and DC
Briefly, adjustment of key model parameters that control plant growth and SOM changes were made by changing

frac Models.
the schedule files at each point in time. For example, transitioning to higher yielding corn varieties occurred
in 1936, while the short and semi-dwarf wheat varieties were introduced in the 1960s. During the calibration
process, model parameters that control the maximum photosynthetic rate and grain to stalk ratio were adjusted
within realistic limits to account for improvement in crop varieties. The upper and lower bounds of the calibration
parameters were determined from literature and the model parameter were adjusted within these bounds, such
that the simulated C stocks and fluxes matches with the observation. Additionally, adjustments in the schedule
files were made to account for residue removal in early years, while residues were retained in later years, thereby
increasing nutrient input to the soils. These calibration strategies have allowed to better capture crop dynamics in
the US Great Plains region (Hartman et al., 2011).

Model simulation begins with the equilibrium run starting from year zero to year 1894 by repeating daily climate
data from 1895 to 2005 and native vegetation without disturbance or land use change. Following the equilibrium
run, we performed a historical simulation to quantify the effects of land use history, land management practices,
and climate change on the evolution of SOC during 1895-2005. Finally, we performed future simulations using
two climate scenarios (RCP4.5 and RCPS8.5) and A2 LCLUC, with land management practices (i.e., irrigation,
fertilization, tillage practices, and crop rotation) held at 2005 levels during 2006-2100.

2.6. Model Validation at Site and Regional Scales

The performance of the calibrated model was assessed by comparing simulated SOC in the active, slow, and
passive pools against predictions of POC, MAOC, and PyC, respectively, at the seven long-term research sites.
Model calibration was performed for specific PFTs (crops, C3 and C4 grass), while validation was carried out
at a given site, both under changing climate, land use and management. In the validation procedure, we ran the
model at these sites using plant growth and soil parameters determined from model calibration, but with changing
climate, environmental, and land use data based on the land use history of the respective sites. For all the sites,
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we compared the distribution of SOC in different pools and evaluated model performance using linear regression
and the goodness-of-fit statistics (bias, R?, RMSE).

We also compared the distribution of SOC simulated using DAYCENT against the machine learning model-based
predictions of POC, MAOC, and PyC for the US Great Plains ecoregion (Sanderman et al., 2021). Additionally,
we compared simulated total SOC against two other SOC maps for the contemporary period (Hengl et al., 2017,
Ramcharan et al., 2018).

2.7. Historical and Future Changes in SOC Stocks

To quantify the effect of the new parameterization scheme linking measurable soil C pools with conceptual
active, slow, and passive pools from the DAYCENT, we designed two scenarios. In the first scenario, we ran
the model using the DC,; and the DC; . model that links conceptual pools with C fraction during the historical
period (1895-2005) to quantify the differences in SOC across different pools associated with different parame-
terization. We used daily climate data developed by merging PRISM, VEMAP and DAYMET climate products.
For historical LCLUC, we used Sohl et al. (2012) during 1938-2005 and HYDE v3.2 during 1895-1937 (see
Section 2.3 above). In the second scenario, we performed future simulations to understand if the different model
structures (DC,; vs. DC; ) result in different effects of climate and LCLUC on SOC stocks. We used the IPCC
ARS RCP8.5 and RCP4.5 climate scenarios and the IPCC AR4 A2 LCLUC scenarios to quantify the effects of
future climate and LCLUC change on SOC stocks. The RCP8.5 corresponds to the pathway that tracks current
global trajectories of cumulative CO, emissions (CO, levels reaching 960 ppm by 2100) with the assumption
of high population growth and modest rates of technological change and energy intensity improvements (Riahi
etal., 2011; Schwalm et al., 2020). The RCP4.5 is a modest emission scenario with CO, levels reaching 540 ppm
by 2100 under the assumption of shift toward low emission technologies and the deployment of carbon capture
and geologic storage technology (Thomson et al., 2011). The A2 land cover scenario emphasizes rapid population
growth and economic development, and resembles closely to the RCP8.5 scenario. We used the AR4 for LCLUC
because Sohl et al. (2012) data were available at high resolution and allowed for smoother transition between land
cover types when moving from historical to future A2 LCLUC scenarios. The purpose of the second scenario is
to better understand the response of SOC to future climate and LCLUC and examine the effect of the constraining
conceptual soil pools with C fractions on the projected change in total SOC through 2100.

3. Results and Discussion

By quantifying the size and distribution of conceptual SOC pools of ecosystem models using a combination
of diffuse reflectance spectroscopy and machine learning, we were able to modify DAYCENT by relating
the conceptual active, slow and passive pools with measurable POC, MAOC and PyC fractions (Section 3.1).
Model constrained by C fractions led to more accurate representation of the magnitude and distribution of SOC
(Section 3.2) and was necessary to accurately quantify the legacy effect of previous land use under a changing
climate and reproduce current SOC stocks compared to the default model (Section 3.3). Projection of future SOC
change show that the DC, ; underestimates the SOC loss in response to climate and land cover change by 31% and
29% for croplands and grasslands, respectively (Section 3.4). Overall, our results demonstrate that relating the
pools sizes from the ecosystem model with C fraction data is necessary to better initialize SOC pool and simulate
SOC response to climate and land use into the future.

3.1. Model Evaluation of Total SOC and the Distribution of SOC at Long-Term Research Sites

The DC,,,. model linking conceptual soil pools to measurable C fractions showed better representation of the
distribution of C stocks across different pools compared to the DC, ; model (Figures 2 and 3). When the mean
SOC at these sites were compared to DC,,,. and DC,; simulated SOC, DC,,,_ had better fit (R* = 0.52) and lower
RMSE (8.49 Mg C ha™") compared to DC,,; (R*> = 0.40; RMSE = 8.93 Mg C ha~'; Figure S6 in Supporting Infor-
mation S1). The mean SOC based on observation for these sites was 38.96 Mg C ha~!, which is comparable to
the sum of predicted C fractions (37.07 Mg C ha~!) and simulated SOC using DC,;,. (42.30 Mg C ha~') and DC;
(36.60 Mg C ha~!) models. The DC,,,. simulated SOC was higher than observation and machine learning based
SOC by 9% and 12%, respectively, while DC,.; showed under-predicted SOC by 6% compared to observation.

Although DC, __showed a tendency toward over-prediction, assessment of the distribution of SOC demonstrated

frac
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Figure 2. Comparison of the machine learning (ML) and DAYCENT simulated soil organic carbon (SOC) using the fraction-constrained (DC;, ) and default/
SOC-only-constrained (DC, ;) models at long-term research sites with a known cropping history (n = 387). The black dots in the boxplot represent the SOC at the
various sites plotted by adding a random value along the y-axis such that they do not overlap with each other.

that DC, . was able to better simulate the distribution of SOC in soil pools compared to DC, ;. The DC; . simu-
lated the highest proportion of C in the slow (56%) pool followed by the passive (30%) and active (14%) pools,
which is comparable to the machine learning model-based estimates of MAOC (57%), PyC (29%) and POC
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Figure 3. Comparison of the machine learning (ML) and DAYCENT simulated soil organic carbon (SOC) using the fraction-constrained (DC;, ) and default/
SOC-only-constrained (DC,;) models across different pools at two long-term research sites dominated by grasslands with a known grazing history (n = 201). The black
dots in the boxplot represent the SOC across different sites plotted by adding a random value along the y-axis such that they do not overlap with each other.
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(14%), respectively. Unlike DC
by slow (39%) and active (8%) pools (Table S2 in Supporting Information S1).

DC,,; model simulated the highest proportion of C in passive (53%), followed

frac?

Evaluation of the model performance for grasslands and croplands showed that the DC,,, . outperformed the DC;
with better model fit (R? = 0.60), lower bias (—1.94 Mg C ha~!) and lower RMSE (6.7 Mg C ha™") for grasslands
(Figure S7 in Supporting Information S1). The DC;,,. also produced better model fit for croplands (R? = 0.48),
but higher bias (—5.84 Mg C ha~') and RMSE (8.86 Mg C ha~!) compared to the DC,; model (bias = —0.82 and
RMSE = 7.45 Mg C ha™'). The DC
passive pools for both grasslands and croplands, while DC, ; showed large discrepancies when representing the

ac Was able to better represent the distribution of C in the active, slow and

distribution of SOC for croplands (Table S2 in Supporting Information S1).

The results of this exercise demonstrate that tuning the model parameters to initialize the conceptual SOC pools
by matching with C fraction data can reproduce the distribution of SOC (Figures 2 and 3), building confidence
in the modeling of SOC stocks, and their pool distribution (Lee & Viscarra Rossel, 2020; Luo et al., 2016).
A common approach to initializing soil C pools is based on the use of soil C steady-state conditions, which
is primarily achieved by running the model over a long period of 100-10,000 years under native vegetation.
However, this approach has shown large uncertainty in the estimation of contemporary SOC partly due to differ-
ences in parameter values used to determine the initial SOC stocks, which vary many fold across models (Tian
et al., 2015; Todd-Brown et al., 2014). Additionally, the size and distribution of the soil C pools are constrained
by model structure and parameter values producing large differences in initial conditions, which ultimately prop-
agates into uncertainties in historical and future projection of SOC change (Ogle et al., 2010; Shi et al., 2018).
Relating these conceptual pools to measurable C fractions by tuning parameters that control decomposition rates
can help to constrain initial pool size and reduce uncertainties related to initial SOC stocks across different
models (Christensen, 1996; Luo et al., 2014; Zimmermann et al., 2007). Results of this study show that tuning the
potential decomposition rates within reasonable range (Figure 1) can effectively capture the distribution of SOC
among different pools without significantly altering the magnitude of total SOC (Figures 2 and 3).

While tuning the parameters that control potential decomposition rates, active, and slow pools were adjusted by
—3.8 yr~! (=52% compared to default rate) and —0.06 yr~' (—=30%) respectively, and passive pool was increased
by 0.003 yr~! (67%) to match with C fractions data at the long-term research sites. These modifications were
done such that the model was able to simulate total SOC and their distribution under current climatic, and land
use conditions while also allowing to capture the legacy effect of previous land use, crop rotation, and tillage
practices. It is important to note that other soil C models use C fraction data obtained under land use of varying
intensities to run the model to steady state (Zimmermann et al., 2007), although soils under continuous use are in
a transient state (Wieder et al., 2018). The rate and direction of SOC change can be modified by environmental
factors, previous land use, and current management practices (e.g., intensity, cropping systems and fertilization/
irrigation), which ultimately determine a new equilibrium or transient state (Chan et al., 2011; Van Groenigen
et al., 2014). Here, we run the model to steady state conditions to tune the potential decomposition rates param-
eter using measured C fraction data for simulating the SOC stocks of active-, slow- and passive-pools pools,
and evaluate model performance to current land use and management practices by matching with C fractions
data at all the sites.

3.2. Model Evaluation of Net Primary Productivity (NPP) and SOC Stocks at the Regional Scale

Evaluation of simulated NPP using the DC,; and DC,,. models against county-level USDA-NASS NPP data
products developed by West (2008) showed that both models simulate NPP that is representative of this region

frac

(Figure S8 in Supporting Information S1). The USDA-NASS data products were developed using the relationship
between harvest area and yield in agronomic units (Hicke & Lobell, 2004). There was no significant difference in
simulated NPP between the DC,; and DC;,,. when compared to NPP product developed by West (2008). This is
likely because model optimization we employed in the DC

frac
rac are related to belowground decomposition, and the
exchanges of C among the active, slow and passive pools. The inconsistencies between the simulated NPP and
USDA-NASS data product can be attributed to differences in total cropland acreage by county. While spatially
explicitly cropland acreage maps were used to scale cropland NPP in the DAYCENT, estimates of NPP using the
USDA-NASS data product relies on using aggregated acreage by county. As a result, there is a mismatch between

total cropland acreage reported by USDA-NASS and the spatial map of cropland acreage used in this study.

DANGAL ET AL.

13 of 23



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Journal of Advances in Modeling Earth Systems 10.1029/2021MS002622

g
= =

S i
(a) ﬂw (b) ﬂw
= 5

[
S 4

80

60

40

(d) (e)

Figure 4. Spatial pattern of soil organic carbon (SOC) change during the contemporary period: fraction-constrained
(DC,,,.) (a), default/SOC-only-constrained (DC,,,) (b), Sanderman et al. (2021) (c), Ramcharan et al. (2018) (d), and Hengl
et al. (2017) (e). Data-driven SOC maps were scaled by cropland and grassland distribution maps before comparing against
day Century-simulated SOC.

Evaluation of the model performance at the regional level by comparing model simulations to three data-driven
SOC maps showed that the DC,; under-predicts SOC stocks for the contemporary period (2001-2005 average).
The DC;,. was better able to reproduce the spatial pattern as observed in the data driven estimates of SOC
(Figure 4). The difference map among different data driven products and simulated SOC showed that DC
outperforms DC,; for croplands, but overestimate SOC for grasslands (Figure S9 in Supporting Information S1).
The DC;,,. simulated contemporary SOC stocks of 34.86 Mg C ha~! were closer to the estimates based on three
data-driven models (32.38-39.19 Mg C ha~!; Figure S10 in Supporting Information SI). The DC,,, simulated
SOC stocks of 26.17 Mg C ha~!, which is lower than the machine learning based predictions by 19%-33%.
Interestingly, both DC,; and DC;, . were not able to reproduce the high C stocks in the northeastern Great Plains
although data driven modeling shows large SOC stocks.

frac

Evaluation of the model performance using a scatterplot shows that calibration of active, slow, and passive pools
was necessary to produce unbiased estimates of SOC despite having slightly higher RMSE values than the DC;
model when compared to the different SOC data sets (Figure 5). Among the three data driven models, Sanderman
et al. (2021) also provided prediction of POC, MAOC, and PyC in the US Great Plains region. Comparison of the
distribution of SOC across different pools indicate that the DC;,, . was able to reproduce SOC in the slow/MAOC,
but under-predicted the size of the active/POC and passive/PyC pools by 48% and 37%, respectively (Figure S11
in Supporting Information S1).

While the DC;,,. model was able to better capture the magnitude and spatial pattern of SOC when compared
against data based on machine learning models, the data sets themselves present a few challenges when compar-
ing with the results from this study. First, these data sets were produced using the environmental covariates
approach under current climatic and land use conditions, and thus represent SOC dynamics using aggregated
climate, land use, and environmental conditions over a certain period. However, in the DAYCENT model, we
used annual and daily time series data for climatic and land use conditions to simulate the processes that control
SOM retention and stabilization, which could lead to inconsistencies when comparing results between this study
and data driven products. Second, outputs based on machine learning models are sensitive to the number of
samples used in the training sets. For example, machine learning-based SOC shows higher stocks in the north-
eastern Great Plains region compared to the DC; . or DC,; models (Figure 4). This may be because the region
contains thousands of shallow seasonal wetlands with higher SOC stocks averaging between 78 and 109 Mg C

frac

ha~! to the depth of 20 cm (Tangen & Bansal, 2020). Accounting for the large number of wetlands samples in the
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against Sanderman et al. (2021)—JS250m, Ramcharan et al. (2018)—AR100m, and Hengl et al. (2017)—SG250m.

SOC Gain/Loss (MgC/ha)

25

5
Baseline SOC

training set would likely produce higher SOC stocks in the region. We did not specifically model wetlands SOC
and only considered grasslands and croplands, which cover >90% of the land area in the US Great Plains region
and as such may have underrepresented these high SOC ecosystems.

3.3. Historical Changes in SOC Stocks and Their Distribution

When the baseline SOC (1895-1899 average) values were compared with the current (2001-2005 average) SOC
stocks, the DC,,,. and DC,,, models simulated a loss of 1,063 Tg C (12%) and 634 Tg C (10%), respectively. On
a per unit area basis, DCy,,. showed higher absolute (17.62 Mg C ha~!) and relative (33%) SOC losses compared
to the loss of 10.60 Mg C ha™! (27%) using DC,,, for croplands. Grasslands showed similar patterns of higher
absolute (2.51 Mg C ha™!) and relative (4%) SOC losses using DC;,, compared to the loss of 1.06 Mg C ha™!
(3%) using DC,,. Overall, croplands showed a large and significant loss of C when compared against the baseline

20
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Figure 6. Changes in contemporary (2001-2005 average) soil organic carbon (SOC) after conversion of native vegetation to croplands (a) and under native vegetation
(b) as a function of baseline (1895-1899 average) SOC stocks. Negative values are losses while positive values are gains of SOC.
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Figure 7. The active, slow, and passive soil pools of soil organic carbon stocks (20 cm depth) based on the fraction-constrained (DCy,, ) model under native vegetation
(1895-1899 average; top maps) and following land cover land use change (2001-2005 average; bottom maps).

SOC using both models, while grasslands showed both losses and gains of SOC during 1895-2005 (Figure 6).
The SOC loss from conversion of native vegetation to croplands were on average 14.70 Mg C ha~! and 9.29 Mg
C ha~! using DC;,,. and DC,,;, respectively. This translates into a relative loss using DCy, . that is higher than
the loss using DC,; by 58% during 1895-2005. For grid cells under native grasslands, DC; . simulated slightly
higher average SOC loss (1.96 Mg C ha™!) compared to DC,; (1.39 Mg C ha™").

frac

The simulation of total SOC stocks following historical land use under a changing climate is constrained by
model parameters that determine the time until decomposition, modified by the interaction of land use intensity
with changing climate (Arora & Boer, 2010; Eglin et al., 2010). Land use change can modify total SOC through
its effect on individual soil pools, with the POC/active pool more vulnerable to loss compared to the MAOC/slow
and PyC/passive pools (Poeplau & Don, 2013). The potential decomposition rates using the DC;,. model were
adjusted to match C fraction data such that higher SOC was allocated to rapid and slow cycling pools, which are
more vulnerable to loss following land use change and management intensity at decadal to century time scales
(Hobley et al., 2017; Sulman et al., 2018). We further compared the historical SOC loss following land use change
against other studies to determine the robustness of the new parameterization using DC;, . The SOC loss rate
using DC, . are closer to the mean 30 cm loss rate of 17.7 Mg C ha~! (Sanderman, Hengl, & Fiske, 2017), and
relative loss of 42%—49% following conversion of forest/pasture to croplands (Guo & Gifford, 2002). However,
it is important to note that these previous studies are not directly comparable with the results from this study
because of differences in sampling depth, the intensity of land use and the time since disturbance.

Comparison of the total SOC and its distribution in different pools between the two models provided a more
nuanced picture of the effect of new parameterization on SOC stocks and the response of SOC to historical land
use. The spatial pattern of the SOC stocks showed that the baseline SOC in the active, slow and passive pools

simulated by the DC,,,. model (Figure 7) were higher than the DC,,; model (Figure S12 in Supporting Informa-
tion S1). As a result, there were higher SOC losses from the active and slow pools using DC,, . compared to DC,;
DANGAL ET AL. 16 of 23
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Figure 8. Temporal change in the absolute soil organic carbon (SOC) stocks (20 cm depth) for croplands (a) and grasslands (c) and relative SOC loss compared to the
1895 SOC for croplands (b) and grasslands (d) in response to land use under a changing climate through 2100. The solid and dashed lines after 2006 represent RCP4.5
and RCP8.5 climate scenarios, respectively, both under the A2 land cover change scenario.

(Figures 7 and S12 in Supporting Information S1). When averaged over all pixels, the cropland SOC loss in the
active, and slow, pools were 0.85, 10.09 and gains in the passive pool was 0.34 Mg C ha~!, respectively, using
DC,,; The DC;,. simulated larger SOC loss for all pools with active, slow, and passive pools losing SOC by
1.48, 16.04 and 0.09 Mg C ha™!, respectively. The magnitude of SOC loss from grasslands was lower compared
to croplands for all three pools, with the largest SOC loss from the slow pool of 1.45 and 0.49 Mg C ha~! using
DC,,. and DC,; models, respectively. The distribution of SOC to different pools indicated that DC,; had 44%,
43% and 13% SOC in the passive, slow, and active pools for croplands, while DC;,,. had 57% of the total SOC
allocated to the slow pool, followed by the passive (23%) and active (20%) pools. For grasslands, both models
were consistent in allocating the largest proportion of SOC (59% in DC,; and 70% in DC,, ) to slow pools,
followed by passive and active pools.

frac

The differences in the total SOC and their distribution between the models is constrained by the sensitivity
of the SOC pools to environmental, climatic, and management factors (Davidson & Janssens, 2006; Dungait
et al., 2012; Luo et al., 2016). The SOC stocks in the passive pool are not significantly different between the
models at the regional level because the passive pool is less sensitive to environmental, climatic, and management
factors, and it has a smaller contribution to total SOC (Collins et al., 2000), the SOC stocks in the passive pool
were not significantly different between the models at the regional level. However, the active and slow pools
respond strongly to environmental, climatic, and management constraints, which is largely driven by rapidly
cycling fresh organic matter input in the active pool, and gradually decomposing detritus in the slow pool (Sher-
rod et al., 2005). In the DC,,, the potential decomposition rates of the active and slow pools are adjusted, allow-
ing the model to retain more SOC to match with C fraction data. These changes resulted in higher SOC stocks
in these pools, which translated into higher total losses despite slower turnover rates relative to DC,_ ;. Model
optimization was necessary not only to match total SOC values but also to simulate the distribution of SOC into
the active, slow and passive pools.

3.4. Future Changes in SOC Stocks and Their Distribution

Projection of the SOC dynamics in response to land cover change under a changing climate resulted in greater rela-

tive changes for both croplands and grasslands using the DC;,, . compared to the DC,  model (Figure 8). Despite

frac
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Table 3

Fraction-Constrained (DC,,, ) and Default/SOC-Only-Constrained (DC, @) Simulated Absolute Changes in Total and Per
Unit Area Soil Organic Carbon (SOC) During the 2000s, 2045s, and 2095s for Croplands and Grasslands in the US Great
Plains Region

Total (TgC) Per unit area (MgC/ha)

DCdef Dcfrac DCdef DCfrac

Time RCP4.5 RCP85 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

Croplands 20005 2,113 2,717 28,51 36.17
20455 1,988 1938 2588 2513 2520 2480 3241  31.87
20955 2266 2,082 2818 2563 2231 2066 2791 2587

Grasslands 2000s 3,891 5,160 40.82 54.05
2050s 3,531 3,523 4674 4659 3890 3880 5151 5134
20955 2,505 2324 3310 3,095 3688 3427 4865 4561

Total 20005 6,004 7,877 NA NA
(Croplands + Grasslands) - »p450 5519 5461 7262 7,172 NA NA NA NA
20955 4771 4406 6128 5658 NA  NA  NA  NA

greater rates of loss, by the end of the 21st century, DC,,, still simulated higher total SOC stocks compared to
DC, s model (Table 3). By the end of 21st century, the DC;,, simulated total SOC stocks of 2,818 and 2,563 Tg C
for croplands under the RCP4.5 and RCP8.5 scenarios, while the DC,,; simulated total SOC stocks of 2,266 and
2,082 Tg C. Native grasslands had higher SOC stocks of 3,310 and 3,095 Tg C using the DC;, . compared to the
SOC stocks of 2,505 and 2,324 Tg C using the DC,; under the RCP4.5 and RCP8.5 scenarios, respectively. On
a per unit area basis, absolute loss (difference between the 2095s and 2000s) were slightly higher for croplands,
under the RCP8.5
scenario (Table 3). The DC,; also simulated similar trend with slightly higher absolute losses for croplands
(7.85 Mg C ha™') compared to grasslands (6.55 Mg C ha™") under the RCP8.5 scenario. Relative losses estimated
as a percentage of contemporary SOC stocks were higher in croplands (29% for DC,,,. vs. 28% for DC,,; model)
and DC; models) under the RCP8.5 scenario. Using the DC, , the
SOC loss rate were 33% and 29% higher for croplands and grasslands, respectively, compared to the DC, ; by the
end of the 21st century under the RCP8.5 scenario. While both models simulated total SOC loss over the 21st
century, the difference in SOC between models sums to an additional loss of 1,252 Tg SOC under the RCP8.5
scenario.

with a mean loss rate 10.43 Mg C ha~! compared to 8.44 Mg C ha™! for grasslands using DC

frac

compared to grasslands (16% for both DC

frac

The turnover rates of SOM are primarily driven by temperature and environmental controls with significant
impact on the dynamics of total SOC changes at decadal to century time scales (Knorr et al., 2005). The two
model versions used the same climate and environmental data and only differ in the turnover rates of the active,

slow, and passive pools. Because the sizes of active, and slow pools in the DC; . model were larger than the

frac

DC,,; model, simulated absolute and relative losses were higher using the DC,,, compared to the DC 4, for crop-

frac

lands. Larger losses using the DC, . are primarily associated with the legacy effects of management intensity

frac
and rising temperatures with larger rates of SOC loss from the active, and slow pools (Crow & Sierra, 2018) of
and this

pool is less vulnerable to land use intensity and warming climate compared to active and slow pools. Thus, there

DC,,,. compared to DC,;. Additionally, the size of the passive pool in DC,; is larger compared to DC

frac frac®

was a disproportionately larger SOC loss driven by the size of the slow pool and the interaction of climate and

management intensity using the DC;  compared to the DC,, which translated into larger absolute and relative

frac
losses of SOC. For grasslands, we did not include any management driven changes. Both absolute and relative
losses of SOC stocks in the grasslands are primarily driven by the warming climate (Jones & Donnelly, 2004),

with active and slow pools losing more SOC stocks using DC;, . compared to DC, ;. Future work should consider

frac
the interactive effects of grazing management with climate.

Future land use, management intensity, nitrogen content, and climate interact in different ways to control C
flow from soil pools with different mean residence times, which ultimately determine total SOC stocks (Deng
et al., 2016; Luo et al., 2017; Sulman et al., 2018). Under a warming climate, SOC formed from fresh organic
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matter inputs controls the size of the active/POC pool, which is further constrained by the intensity of land
use and is more vulnerable to loss (Crow & Sierra, 2018; Lavallee et al., 2020). The active/POC pool also acts
as a donor to the slow/MAOC pool with C transfer and rates of SOC accumulation increasingly controlled by
temperature (Crow & Sierra, 2018). In the DAYCENT, regardless of model version, the size of the active pool
is relatively small as fresh organic matter is either decomposed rapidly or quickly enters the slow pool following
decomposition. The slow pool has longer residence times ranging from years to decades, and can accrue C when
transfer rates from the active pool are higher than C losses through decomposition from the slow pool (Collins
et al., 2000; Fontaine et al., 2007). In this study, the rates of decomposition due to rising temperatures had a
stronger control on the size of the slow pool compared to the transfer of SOC from the active pool. As a result,
the slow pool continued to lose SOC under projected climate changes. Although rising temperature had a strong
control on SOC dynamics of the slow pool, it is important to recognize that the actual sensitivity of active, slow,
and passive pools to elevated temperatures is relatively unknown (Lugato et al., 2021; Soong et al., 2021).

3.5. Limitations of the Study

Although previous studies have shown that conceptual pools can be linked to measurable fractions of SOC
separated on the basis of soil physiochemical properties (Christensen, 1996; Luo et al., 2016; Zimmermann
et al., 2007), there are limitations of matching the conceptual pools with the measurable C fractions. One of the
main limitations is that the conceptual soil pool in the DAYCENT is simulated as a function of potential decom-
position rates modified by clay content, temperature and moisture limitations. But, the C fraction data obtained
using a specified methodology (e.g., Baldock, Hawke, et al., 2013) are assumed to have different physiochemical
properties compared to the formation of SOC in the conceptual soil pools.

The POC fraction is composed of plant detritus material with residence times of <5 years (Baldock, Hawke,
etal., 2013), which is comparable to the SOC in active pool given that changes in POC and active SOC are driven
by soil texture, temperature and moisture limitations, and management history (Zimmermann et al., 2007). In the
DAYCENT, the active pool resembles closely with the POC because of short residence time and are assumed to
be dominated by fresh plant residues. Likewise, the MAOC fraction is composed of highly decomposed plant
material and microbial necromass, and is more stabilized compared to POC due to its association with reactive
minerals (Schmidt et al., 2011). The slow pool in the DAYCENT resembles closely with MAOC because of
longer residence times and are assumed to be dominated by stabilized organic matter. On the other hand, the
PyC fraction is associated with incomplete combustion of organic matter and thus have a different mechanism
of formation compared to the passive pool in the DAYCENT, which is essentially the leftovers after extensive
action by microbes over decades and its persistence is driven by environmental limitations. However, a recent
study has shown that the PyC fraction is strongly correlated with clay content (Reisser et al., 2016), indicating
that the passive pool driven by clay content with long residence time can be representative of the PyC persistence
in soils. Conceptually, there is a pretty good match between the active and slow DAYCENT pools and their corre-
sponding measurable fractions, but the passive pool is not as well represented by the measured PyC fraction, and

as a result, there is potential that the DC,__simulations may not truly represent the SOC dynamics in response to

frac
climate, land use and management practices. However, the passive pool cycles on a multi-centennial time scale
and as such does not contribute meaningfully to carbon dynamics for the time scales considered in this study.
A few research groups have now developed model structures from scratch that best match the characteristics of
the measurable fractions (Abramoff et al., 2018, 2021; Zhang et al., 2021), while other models now explicitly
represent microbial activity by accounting for the relationship between litter quality, microbial physiology, and

the physical protection of microbial products (Wieder et al., 2014; Woolf & Lehmann, 2019).

4. Conclusions

In this study, we developed an approach to link conceptual soil pools in biogeochemical models against measur-
able C fractions. We then quantified the long-term evolution of SOC change and projected the SOC response to
) model that has been calibrated to
C fraction data. Our results demonstrate that matching the active, slow and passive pools against POC, MOAC
and PyC data lead to better representation of total SOC stocks and the distribution of SOC into different pools.
With the updated model, the long-term legacy effect of past agricultural management results in larger absolute

future climate and land cover scenarios using the fraction-constrained (DC

frac

and relative losses of SOC compared to the default/SOC-only-constrained (DC,,;) model. Projecting the SOC
response to climate and land cover change into the future (2005-2100) indicates that, by the end of 21 Century,

DANGAL ET AL.

19 of 23



A7t |
NI
ADVANCING EARTH
AND SPACE SCIENCE

Journal of Advances in Modeling Earth Systems

10.1029/2021MS002622

Acknowledgments

Funding for this research was provided
by USDA NIFA award #2017-67003-
26481. We thank Melannie D Hartman at
Colorado State University for providing
access to the DAYCENT model and help
with running the model. We also thank
staff at the USDA National Soil Survey
Center (NSSC) Kellogg Soil Survey
Laboratory (KSSL) for providing access
to the soil characterization database.

This research also used data from the
Long-Term Agroecosystem Research
(LTAR) network and Columbia Plateau
Conservation Research Center (CPCRC),
which are both supported by the United
States Department of Agriculture. The
NSF Long-term Ecological Research
Program (DEB 1832042) and Michigan
State University AgBioResearch provided
funding for the data and soil samples
from the Kellogg Biological Station. We
acknowledge the World Climate Research
Programme's Working Group on Coupled
Modelling, which is responsible for
CMIP, and we thank the climate modeling
groups for producing and making avail-
able their model output. For CMIP the
U.S. Department of Energy's Program for
Climate Model Diagnosis and Intercom-
parison provides coordinating support and
led development of software infrastruc-
ture in partnership with the Global
Organization for Earth System Science
Portals. Downscaled climate data were
obtained from “Downscaled CMIP3 and
CMIPS5 Climate and Hydrology Projec-
tions” archive at http://gdo-dcp.ucllnl.org/
downscaled_cmip_projections/.

the DC,,_ increases SOC losses by 32% and 28% for croplands and grasslands, respectively, under the RCP8.5

scenario compared to using the DC, . model.

There are several study limitations that need to be addressed in our future work. First, new modeling efforts
should also consider quantifying how changes in quantity and quality of aboveground biomass inputs affect SOC
dynamics given mixed results in agricultural systems in response to litter inputs (Halvorson et al., 2002; Sander-
man, Creamer, et al., 2017). Second, current models rely on using clay content to modify rates of SOM stabiliza-
tion and turnover, but recent research has shown that other soil physicochemical properties such as exchangeable
calcium and extractable iron and aluminum are stronger predictors of SOM content (Rasmussen et al., 2018).
Third, new modeling efforts should constrain model parameters affecting SOC dynamics by integrating them
with data-driven modeling and long-term experimental data (Jandl et al., 2014). Finally, given the paucity of data
related to C fractions, there is increasing need for measurement and modeling of C fractions across a wide range
of environmental and management gradients (Luo et al., 2017). Despite these limitations, we have shown that
models calibrated to pool sizes by matching with C fractions can improve long-term SOC predictions by more
accurately representing soil C transformations in response to climate, land cover and land use change.
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Text S1. Explanation of rate modifiers used in equations 2, 6 and 10

Effect of moisture and temperature on belowground decomposition

The bgaec (0-1) is calculated as a product of a temperature (¢func) and moisture (wfunc) effect on

decomposition.

bggec = tfunc X wfunc (1)

The temperature effect on decomposition is a variable Q10 function and is computed as

teffo+ % arctan(m X tef f, (soiltemp — tef f1))

tfunc = normalizer (2)
normalizer = teff, + te£f3 arctan(m X teff,(30.0 — teff;)) 3)
Where,

soiltemp = average surface soil temperature (°C)for the day

teff1, teffz, teffs and teffs = are fix temperature effects parameters

normalizer = value of the tfunc when soiltemp 1s 30°C

The equation (2) has a low Q10 values at high temperature and high Q10 values at low

temperatures (Del Grosso et al. 2005).

The moisture effect on decomposition is computed using the relative water content of the top
layer (re/WaterContentiyr). Mathematically,

1.0
1.04+30 X exp(—9.0 X relWaterContent)

wfunc =

(4)



VSWClyr— SWClimityyy

relWaterContent,,, =

)

fieldcyyr— swclimityy,

For aboveground decomposition, re/WaterContent is the relative water content of the topsoil
water layer, while for the belowground decomposition, re/WaterContent is the weighted average

relative soil water content of the second and third soil water layers.

Effect of pH on decomposition

The pH effect (0-1) on decomposition is a function of soil pH and the dominant type of

decomposer (fungi, bacteria, or a combination of both), and is computed as:

pHeffect = b + % arctan(nd (pH — a)) (6)
For pHefffingi,a=3.0,b=0.5,c=1.10,and d = 0.7

For pHeffcombination, a = 4.0, b=0.5, ¢ = 1.10, and d = 0.7

For pHeffvacteria,a=4.8,b=0.5,c=1.14,and d = 0.7

For decomposition of metabolic pools, pHeffbacteria 1s used, while for decomposition of active and

slow pools pHeffcombination 1s sued. For the passive pool, pHefffingi 1s used.

Effect of anaerobic condition on decomposition



anerb =

1.0, rprpet < aneref (1)
1.0+sl t— 1))x(1.0—drain), (7)
max (anerej‘g?)e x(rprpet-aneref (L)x( rain) ) rprpet = aneref (1)
_ 1.0—aneref(3)
slope " aneref(1)—aneref(2) (8)
Where,

rprpet = ratio of available water to the potential evapotranspiration rate

drain = soil drainage factor

aneref(1) = value of rprpet below which there is no anaerobic impact

anreref(2) = fix parameter to calculate the slope of the impact of anerobic decomposition

aneref(3) = minimum value of anerb (i.e, the maximum reduction in decomposition rates).

Effect of cultivation on decomposition

There is no effect of cultivation (clteff = 1.0) for grasslands, while the clteff for croplands is
defined using a set of parameters (1.0-15.0) that have the multiplying effect on the
decomposition rate to increase the decomposition in the month of cultivation. These parameters
are defined as clteff(1), clteff(2), clteff(3) and clteff(4) which determines the cultivation effect on

active, slow, passive and litter pools respectively.
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Fig S1. Comparison of machine learning based prediction of the sum of C fractions (POC,
MAOC and PyC) against laboratory based total SOC for seven long term research sites in the

continental US. The left panel figure represent croplands and the right panel figure represent
grassland sites.



Grass Crops

Fig S2. Cropland and grassland distribution (a) and distribution of the schedule files that
represent different cropping systems (b) in the Great Plains region, US. The black dots in Fig. b
represent 24 unique county level cropping systems and crop rotations, while the red dots
represent new randomly selected grid points added to the clustering algorithm for building the
unsupervised classification model.
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Fig S3. Classification accuracy of k means unsupervised clustering approach for predicting crop
rotation and specific crop types in the US Great Plains region against the independent samples.
In the unsupervised clustering approach, 70% of the samples were retained for developing the
model, and remaining 30% of the samples were used to test model performance against
independent datasets. C: corn only, C-C-S: corn corn soya, C-S: corn soyabean, C-WW; corn
winter wheat, Co-Co-So: cotton cotton sorghum, FA-WW-WW: fallow, winter wheat, winter
wheat, S: soyabean only, and SW-C-C: spring wheat, corn, corn rotations.
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Fig S4. Crop rotation maps for the contemporary time period using the K-means unsupervised
classification algorithm. The crop rotation map is used only when there is cropping in the given
pixel. In the absence of cropping, the given pixel is assumed to be continuously grazed native
grasslands.
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Fig. S5. Linking DAYCENT conceptual pools to C fraction data predicted using a combination of mid-infrared spectroscopy and a local
memory-based learning approach, where STRCre is structural, METABbel is metabolic, Active, Slow and Passive are active, slow and
passive soil C pools, and POC, MAOC and PyC are particulate, mineral associated and pyrogenic organic carbon.
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Fig. S6. Comparison of the sum of C fractions, DAYCENT simulated SOC using the
default/SOC-only-constrained (DCedef) and the fraction-constrained (DCtrac) models against
laboratory based SOC estimates at the long-term research sites.
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Fig S7 Scatterplots of the comparison of fraction-constrained (DCfrac) and default/SOC-only-
constrained (DCuder) simulation against data-driven estimates of total SOC at the long-term
research sites. The top and bottom panels show the comparison for croplands and grasslands,

respectively.
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Fig S8. Comparison of the DAYCENT simulated NPP using the default/SOC-only-constrained
(left panel) and fraction-constrained (right panel) models against county level USDA-NASS NPP
products developed by West (2008)
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Fig S9. Difference map between JS250 (a), Ramcharan (b) and Soilgrids (¢) and the fraction-
constrained model (DCrrac), and difference map between Sanderman et al. (2020) (d), Ramcharan
et al. (2018) (e) and Hengl et al. (2017) (f) and the SOC-only-constrained model (DCdef). Values
close to zero indicate a perfect match with the machine learning predicted SOC while positive

values indicate under prediction and negative values indicate overprediction from the
DAYCENT.
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Fig S10. Comparison of total SOC (20 cm depth) between the DAYCENT and data driven
modeling for the contemporary period. JS250, Sanderman et al. 2021; AR100m, Ramcharan et
al. (2018); SG250m, Hengl et al. (2017).
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Fig S11. Comparison of the simulated active-, slow- and passive-SOC (20 cm depth) against
Sanderman et al. (2020) for the US Great Plains Agricultural region during the contemporary
period. The green line represents the median SOC values based on JS250 (Sanderman et al.
2021) C fraction predictions.
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Fig S12. Active, slow and passive SOC pools at 20-cm depth based on the SOC-only-
constrained (DCder) model under native vegetation (1895-1899 average; top maps) and following
land cover land use change (2001-2005 average; bottom maps).



Table S1. Predictive performance of US Samples using spectra acquired on Woodwell

instrument with and without calibration transfer

No calibration transfer'

After calibration transfer'

Bias R RMSE Bias R? RMSE
POC (g/kg) 0.65 0.50 4.93 1.04 0.70 439
MAOC (gkg)  0.86 0.81 3.30 0.62 0.88 2.84
PyC (g/kg) 0.38 0.49 2.83 0.29 0.68 2.29

'Leave-one-out cross validation on the 99 GP samples



Table S2. Distribution of SOC across different pools by plant functional types (PFTs) when
compared to C fractions predictions at the long-term research sites.

Grasslands Croplands
C fractions DClrac DClef C fractions DClrac DClef
Active 0.20 0.13 0.08 0.14 0.14 0.08
Slow 0.56 0.63 0.49 0.57 0.56 0.39
Passive 0.24 0.24 0.43 0.29 0.30 0.53
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