
Interpretable Detection of Distribution Shifts in Learning
Enabled Cyber-Physical Systems

Yahan Yang
yangy96@seas.upenn.edu

University of Pennsylvania

Philadelphia, Pennsylvania, USA

Ramneet Kaur
ramneetk@seas.upenn.edu

University of Pennsylvania

Philadelphia, Pennsylvania, USA

Souradeep Dutta
duttaso@seas.upenn.edu

University of Pennsylvania

Philadelphia, Pennsylvania, USA

Insup Lee
lee@cis.upenn.edu

University of Pennsylvania

Philadelphia, Pennsylvania, USA

ABSTRACT

The use of learning based components in cyber-physical systems

(CPS) has created a gamut of possible avenues to use high dimen-

sional real world signals generated from sensors like camera and

LiDAR. The ability to process such signals can be largely attributed

to the adoption of high-capacity function approximators like deep

neural networks. However, this does not come without its potential

perils. The pitfalls arise from possible over-fitting, and subsequent

unsafe behavior when exposed to unknown environments. One

challenge is that, in high dimensional input spaces it is almost im-

possible to experience enough training data in the design phase.

What is required here, is an efficient way to flag out-of-distribution

(OOD) samples that is precise enough to not raise too many false

alarms. In addition, the system needs to be able to detect these

in a computationally efficient manner at runtime. In this paper,

our proposal is to build good representations for in-distribution

data. We introduce the idea of a memory bank to store prototypical

samples from the input space. We use these memories to compute

probability density estimates using kernel density estimation tech-

niques. We evaluate our technique on two challenging scenarios : a

self-driving car setting implemented inside the simulator CARLA

with image inputs, and an autonomous racing car navigation set-

ting, with LiDAR inputs. In both settings, it was observed that a

deviation from in-distribution setting can potentially lead to devia-

tion from safe behavior. An added benefit of using training samples

as memories to detect out-of-distribution inputs is that the system

is interpretable to a human operator. Explanation of this nature

is generally hard to obtain from pure deep learning based alter-

natives. Our code for reproducing the experiments is available at

https://github.com/yangy96/ interpretable_ood_detection.git

KEYWORDS

anomalous inputs, autonomy, safety, vision, perception systems

1 INTRODUCTION

Learning-enabled components (LEC) are being increasingly used in

modern cyber-physical systems (CPS) especially self-driving cars.

Designing such systems typically rely on data-driven techniques to

achieve desired performance. An LEC learns to operate by having

access to a large corpus of human-labelled input-output data during

the design phase. For instance, a learning-enabled component in a

modern car [2] could be performing simple lane keeping function

from the video feed it receives from the camera. The other end of the

spectrum would be a fully self-driving car equipped with an auto-

mated driving system (ADS). Here, the software is in full control of

the car, and is capable of making all decision concerning navigation

and maneuvering the vehicle. This has the potential to dramati-

cally reduce accidents and general vehicle safety. Additionally, such

technologies have the potential to bolster the independence and

mobility of seniors and those who cannot drive.

Deep Neural networks (DNNs) perform most of the the heavy

lifting regarding LEC’s with rich sensors like camera and LiDAR.

DNNs are high-capacity function approximators, and form a funda-

mental building block for most machine learning applications. The

downside is that DNNs do not learn to interpret an image input

the way humans do. It largely happens through an effort to fit a

high-capacity function to the training data by reducing its classifi-

cation error rate. DNNs are complex computation graphs and can

potentially have millions of nodes and parameters. This makes them

particularly difficult to be analyzable by a human expert. What this

translates to is that computer vision systems are prone to errors

in a way that people are not. For instance it is fairly easy to come

up with imperceptible changes to an input image that can fool the

ADS system. It can be shown that its fairly simple to change the

number on a speed limit sign, or even change a stop sign to a speed

limit sign [24].

The challenge with most LECs is that it is necessarily the case

that the input space is insufficiently sampled. That is, during the

design phase the system does not see all the training samples in the

vicinity of the operating region of the system. Hence it is almost

impossible to provide rigorous guarantees on the operating limits at

design time. This is where efficient runtime monitoring techniques

can play a significant role in ensuring safe operations of the system.

Neural networks due to the nature of the training algorithms do not

performwell when pushed outside of its training zone. Even though

statistical machine learning tools can provide upper bounds on the

test error rate of a learnt model, they are often too conservative

and do not capture a realistic error rate.

Detecting out-of-distribution (OOD) [16, 23] samples has gained

widespread popularity in the recent years to counter the fragility

of DNNs when operating in unknown environments. However, it

could not been extended easily to a CPS setting, and can have high

false alarm rates. The main contribution of this paper is a novel

225

2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)

978-1-6654-0967-4/22/$31.00 ©2022 IEEE
DOI 10.1109/ICCPS54341.2022.00027

technique to detect anomalous inputs in real time. The idea is to

build a representation system which captures the essence of in-

distribution data, using only a few samples from the training set.

These prototype samples are referred to as memories in our paper.

We use well established tools from computer vision literature and

combine it with kernel density estimation techniques to compute

the probability density estimates. In order to improve the robustness

for detecting distribution shifts, we implement a sliding window

based technique to flag an alarm.

Additionally, our technique can provide interpretability using

samples from the data set. A widely accepted mode of explanation

for machine learning systems, is in the form of comparisons drawn

between a test sample and a witness from the data set [10, 30]. In

a similar fashion we can provide explanations, when a sample is

detected either as in-distribution or out-of-distribution. In our ex-

periments we consider two broad sets of case studies, one involving

video inputs from camera, and the other involving LiDAR inputs.

For video inputs the application is an advanced emergency braking

system , and an end-to-end self-driving system introduced in [9].

We consider different sources of distribution shift such as a shift

from the training weather (low precipitation), lighting conditions

(day), leading obstacles (car), and clean (or non-adversarial) images.

In the context of LiDAR inputs such anomalous inputs come in the

form of light rays getting reflected by different surfaces in a real

setting. This pushes the network outside the trusted zone causing

deviation from safe behavior. In both cases, we were able to achieve

good OOD detection, which could save the system from a crash.

2 RELATEDWORK

OOD detection has been extensively studied in the classification

problem settings for standalone learning enabled components [16,

19, 20, 23, 32, 36]. These approaches either use differences in the

geometrical or statistical properties of the in-distribution and OOD

data for detecting a shift in the model behavior. OOD detection

through envelopes, in CPS with low-dimensional input space sen-

sors such as GPS has been studied in the past [33]. Recently, there

has been a growing interest for detection of OODs in closed-loop

CPS using high-dimensional sensors like camera [9, 13, 27, 31].

Cai and Koutsoukos [9] propose using reconstruction error by

variational autoencoder (VAE) on the input image (or frame) as a

non-conformity score in the inductive conformal anomaly detection

(ICAD) framework [21] for detection of OOD frames. They further

apply martingale test [34] along with the cumulative sum procedure

(CUSUM) [6] with a window of the past and present predictions

for robust detection of OOD traces. Ramakrishna et al. [27] use

KL-divergence between the disentangled feature space of 𝛽−VAE

and normal distribution as the non-conformity score in ICAD for

OOD detection of a single frame. They also use martingale test

along with CUSUM for detecting OOD traces. Similarly, Sundar

et al. [31] also propose using KL-divergence in the latent space of

𝛽−VAE for detection of OOD frames. Feng et al. [13] propose using

KL-divergence in the horizontal and vertical latent sub-space of

the 3D convolutional VAE from the specified prior for detection of

OOD traces. The input to 3D convolutional VAE is a sequence of

frames (or the trace to be detected).

To the best of our knowledge, all the existing approaches for

OOD detection in CPS with LEC are tied to VAE. Either recon-

struction error from VAE on the input image or KL-divergence in

the latent space of the VAE is used for OOD detection in these

approaches. Training VAEs often requires careful manual tuning

[5], and the quality of the training decides the efficacy of the down-

stream processes. Here we set ourselves apart by not having to

depend on a well functioning VAE. Also, unlike our approach none

of the existing approaches except for Ramakrishna et al. [27]’s ap-

proach provides interpretability on the source of OOD-ness of the

input. We show that our approach can be extended to the case of

LiDAR inputs as well without any conceptual modification.

3 MOTIVATION AND PROBLEM STATEMENT

(a) Car doesn’t detect biker,

leading to a crash

(b) Frame detected as OOD, the

region in red shows the pixels

responsible for deviation

Figure 1: Deviation from training data leads to a crash with

biker as front object. Training data only had cars as front

objects. Our proposed method could detect deviations from

in-distribution data for detecting such OODs.

As mentioned before, learning enabled components have the

ability to bolster the level of autonomy a cyber-physical system has

to offer. Detection of OOD is one of the ways we can safe-guard

systems from unwarranted behavior. In Figure 1a we show an ex-

ample of a setting where the car is running an advanced emergency

braking system controller. The controller uses the system states

and the video feeds from the camera to sense the positions of the

closest leading object on the road. The controller’s job is to auto-

matically brake the car if it crosses a certain distance threshold

from the leading vehicle. What we observe is that because during

training the DNN experienced just cars, it never learnt to react to

bikes on the road. What happens next, is that the DNN completely

misjudges a bike in the video, and ends up causing an accident.

What we would like to target here is to propose a method to detect

such a shift in distribution.

Problem Formulation : In this paper, we would like to solve

the problem of being able to alarm the system about distribution

shifts in real-time. It is extremely challenging to sample high-

dimensional inputs space in an exhaustive fashion. This would

mean careful analysis of the training time in-distribution data to

come up with an effective detector which can act in real time.

Additionally, it is desirable that such an alarm system produces

interpretable behavior. It is often the case that DNNs due to their

black-box nature do not offer an explanation to their decisions. Here,

we would like to take up the challenge of being able to point to an

226

explanation when samples are in-distribution or out-of-distribution.

We demonstrate this in Figure 1b, the system not only flags the

image with the biker ahead as OOD, but selects a set of pixels de-

marcating the biker to communicate as to why it decided to label it

as an OOD.

4 PRELIMINARIES

4.1 Clustering with Medoids

Similar to k-means clustering, we wish to form partitions of the

data into distinct groups or clusters. Clustering with k-means is a

well known tool but has its challenges when used in the context of

images. An issue with k-means is that it can potentially produce

virtual cluster centers which are absent in the original data set.

This is essentially because a simple mean of two (or more) images

might not correspond to a real image. The other issue being that

it is often susceptible to outliers in the data. Hence, we restrict

ourselves to partitioning around points which are present in the

data. The algorithm which achieves this is PAM [3], which is short

for Partitioning Around Medoids. Intuitively the algorithm tries to

search for centrally located objects called medoids, and are used to

define the cluster boundaries in a nearest medoid sense.

Let us assume that the set S is equipped with a distance metric

D : (𝑠1, 𝑠2) → R, for 𝑠𝑖 ∈ S and 𝑛 = |S|. Given a data set S, PAM

tries to select a set of 𝑟 medoids -𝑀𝑟 : {𝑚1,𝑚2, . . . ,𝑚𝑟 } such that

the following cost is minimized,

𝐶𝑜𝑠𝑡 (𝑀𝑟) =

𝑛∑

𝑖=1

𝑚𝑖𝑛
𝑚 𝑗 ∈𝑀𝑟

D(𝑚 𝑗 , 𝑠𝑖) (1)

We assume that the inner minimization is always possible, and

we are able to break ties arbitrarily among distinct members of the

set S.

Algorithms : The challenge with PAM is that the naive implemen-

tation has a runtime complexity of𝑂 (𝑛2𝑟2) [28]. Even though there

exists faster variants, but is still largely inaccessible for applications

at the scale of image data sets generated from autonomous driving

scenarios. In order to circumvent this challenge we introduce a

variant of the Clustering Large Applications based upon Random-

ized Search (CLARANS) [25] algorithm in Section 5.2. It combines

randomized global search with local cluster improvement method

to improve the quality of clustering. The medoids identified by

minimizing the objective in Equation 1, are referred to as memories

from here on.

4.2 Kernel Density Estimation

Kernel Density Estimation (KDE) is a non-parametric way to es-

timate the probability density function of a random variable. Let

us assume that the set S = (𝑠1, 𝑠2, . . . , 𝑠𝑛) is independently and

identically drawn from a fixed but unknown distribution 𝑓 , and

we wish to estimate the probability density for an element 𝑥 . This

according to kernel density estimation methods it is given by the

following equation,

𝑓 (𝑥) =
1

𝑛

𝑛∑

𝑖=1

𝐾ℎ (|𝑥 − 𝑠𝑖 |) (2)

Where 𝐾 is the Kernel function, and ℎ is a smoothing term. The

kernel function measures the influence of sample 𝑠𝑖 on the query

point 𝑥 . The choice of kernel, smoothing parameter, and distance

function influences the quality of estimates that one obtains from

this method. We refer the reader to [29] for further details on KDE.

4.2.1 Abstract Kernel Centers. Standard KDE is often difficult to es-

timate at runtime. Placing demands on both memory requirements

and computational efficiency. To handle this, we use the concept of

abstract kernel centers introduced in [26]. Instead of using the full

data set, the idea is to use a smaller representative set to estimate

the probability density. In order to obtain useful density estimates,

the first step is to identify centrally located data points called kernel

centers, which are able to capture the distribution closely. Let us

denote these kernel centers with the set M𝑟 : (𝑚1,𝑚2, . . . ,𝑚𝑟).

The density estimates are computed using the k-nearest-neighbors

(kNN) from the test point 𝑥 in the setM𝑟 . Since, the kernel centers

are identified using the partitioning algorithm mentioned above,

we can alternately call it the 𝑘 nearest memories as well. Suppose

this set of 𝑘 nearest memories isM𝑘 ⊂ M𝑟 . The weighted kernel

density estimate [15] is given by,

𝑓𝐴 (𝑥) =

𝑘∑

𝑗=1

𝑤 𝑗𝐾ℎ (|𝑥 −𝑚 𝑗 |) (3)

𝑤 𝑗 =
points with closest memory as𝑚 𝑗

points which have closest memory in M𝑘

Thus, the data partitions built around the memories can now be

used to compute the density estimation function 𝑓𝐴 . In this paper

we use the 𝐸𝑝𝑎𝑛𝑒𝑐ℎ𝑛𝑖𝑘𝑜𝑣 kernel. Since, this kernel permits us to

demarcate a boundary around the center beyond which the distance

function stops being meaningful. The bandwidth parameter ℎ can

be chosen depending on the application. Note that, for us the kernel

centers are not abstract as compared to [26], but in our case we

keep the terminology to be coherent with the original idea.

4.3 Structural Similarity Index Metric

A fundamental challenge in dealingwith images is to capture human

perceptual similarity with a mathematically meaningful distance

function. Techniques like KDE necessitate the use of a distance met-

ric to compute the probability density. To the best of our knowledge

the right candidate for this purpose is the structural similarity index

metric (SSIM). This was first introduced in [35], and has gained

widespread popularity. It computes the degree to which two images

are similar to a human eye, and was used to compute the degra-

dation quality of the image. SSIM metric is designed to capture

statistical similarity between images. This makes our system more

robust to random noise in comparison to vanilla DNNs. It also has

been used to capture image similarity for adversarial sticker attacks

as well [22].

We state the original SSIM distance function next. Assume we

have two images A1 ∈ R𝑁 and A2 ∈ R𝑁 . This allows us to compute

three terms : a luminance distortion term, a contrast distortion term,

and a correlation term.

𝑙 (A1,A2) =
2Ā1Ā2 + 𝑐1

Ā1
2
+ Ā2

2
+ 𝑐1

(4)

227

𝑐 (A1,A2) =
2𝑠A1

𝑠A2
+ 𝑐2

𝑠2
A1

+ 𝑠2
A2

+ 𝑐2
(5)

𝑠 (A1,A2) =
𝑠A1,A2

+ 𝑐3

𝑠A1
𝑠A2

+ 𝑐3
(6)

Where Ā1, Ā2, 𝑠
2
A1
, 𝑠2
A2

and 𝑠A1,A2
are the local mean, local vari-

ance, and local covariance between A1 and A2. The scalar terms

𝑐1, 𝑐2, 𝑐3 aim to capture the saturation effects of the visual system,

and provide numerical stability. The terms computed above cap-

ture the local difference in some chosen window in the image. The

combination across all such local windows gives the SSIM index.

With 𝑐3 = 𝑐2/2, SSIM index can be written in the following form :

𝑆𝑆𝐼𝑀 (A1,A2) = 𝑆1 (A1,A2)𝑆2 (A1,A2)

𝑆1 (A1,A2) = 𝑙 (A1,A2)

𝑆2 (A1,A2) = 𝑐 (A1,A2)𝑠 (A1,A2)

(7)

SSIM can be implemented efficiently in tools like Pytorch [1] and

accelerated using a GPU. This permits a scalable and efficient imple-

mentation inside our OOD detection framework. On the downside,

SSIM does not have the mathematical properties to be a distance

metric. But with some modifications it can be turned into one. The

details of this modification and the associated proof can be found in

[8]. We use the modified SSIM to define a distance metricD(𝐴1, 𝐴2)

in this paper and hyperparameters (e.g. 𝑐1, 𝑐2, 𝑐3) are set same as in

[1]. The use of a proper distance metric for images allows us to com-

pute the probability density function, and subsequently distribution

shifts in a more meaningful way.

5 METHODOLOGY

5.1 Initializing the Memory Set

Algorithm 1 Generate Initial Memories

Input: Data set S : {𝑠1, 𝑠2, . . . , 𝑠𝑛}

Output: Memories𝑀 : {𝑚1,𝑚2,𝑚3, . . . ,𝑚𝑟 }

Parameter : Distance Threshold 𝑑

1: 𝑀 = 𝜙

2: RejectedSet = S

3: while RejectedSet ≠ 𝜙 do

4: 𝑠𝑚 = pickRandomPoint(RejectedSet)

5: for 𝑠𝑖 ∈ RejectedSet do

6: if D(𝑠𝑚, 𝑠𝑖) < 𝑑 then

7: RejectedSet = RejectedSet \𝑠𝑖

8: 𝑀 = 𝑀 ∪ {𝑠𝑚}

9: return𝑀

The intuition here is that high dimensional data like images, and

LiDAR scans generated from a real world setting, cluster well in

practice. Hence, the first step is to identify these broad categories in

a quick and efficient fashion. One of the questions however is that

the number of partitions to be made is often not known apriori. But

drawing on the intuitions from an image distance metric, only small

enough distances have perceptual meaning. Thus, the intuition here

is to populate the input space densely enough with memories such

that, every training point is within a threshold distance 𝑑 of some

memory. Algorithm 1 summarizes our approach. We pick a data

point at random, and compute the distance score across all the

samples in the currently RejectedSet in a single linear pass. The data

points which are similar enough are admitted as being close to a

memory, and are not considered as candidates for new memories in

the next iteration. We continue this process until all data points are

admitted into the set of memories𝑀 . This allows the subsequent

algorithms to have a warm start. Algorithm 1 always terminates.

This is because the RejectedSet decreases by at least 1 at each step.

In the worst case we have as many memories as the number of data

points. But in most practical datasets this is not the case.

5.2 Learning Memories

To restate, we are given a datasetS, with𝑛 elements, and wewish to

compute an 𝑟 size memory set𝑀 = {𝑚1,𝑚2, . . . ,𝑚𝑟 } with certain

desirable properties. The search for memories can be simplified

by viewing this as a search through a graph G [25] with subsets

S𝑟 ⊂ S as its nodes. Each subset of size 𝑟 defines a choice for the

memory set𝑀 .

Definition 5.1 (Memory SearchGraphG). The undirected graph

G is represented by an ordered pair (𝑉 , 𝐸). The set of nodes 𝑉 is

the collection of subsets of original dataset S𝑟 ⊂ S. An edge 𝑒 ∈ 𝐸

exists between two nodes S1
𝑟 and S2

𝑟 iff |S1
𝑟 ∩ S2

𝑟 | = 𝑟 − 1. That is,

they differ by at most one memory.

Each node of the graph has an associated cost given by Equation

1. Hence starting from some node it is possible to visit neighboring

nodes with decreasing costs in the search process. What we present

next is a combination of 𝐺𝑙𝑜𝑏𝑎𝑙 resets and 𝐿𝑜𝑐𝑎𝑙 minimization to

approximate the optimal choice.

Algorithm 2 Generate Memories

Input: S : {𝑠1, 𝑠2, . . . , 𝑠𝑛}

Output: Memories𝑀 : {𝑚1,𝑚2,𝑚3, . . . ,𝑚𝑟 }

Parameter : (Max Global Steps : 𝑍𝑔 , Max Local Steps : 𝑍𝑙 ,

Distance Threshold 𝑑)

1: BestCost = ∞

2: for 1 ≤ 𝑔 ≤ 𝑍𝑔 do

3: Memory Set𝑀 = GenerateInitialMemories(𝑆, 𝑑)

4: 𝑣 = FindNode(𝑀 , G)

5: G = CreateGraph(S, |𝑀 |) ⊲ The memory search graph

6: CurrentCost = ComputeCost(𝑣)

7: for 1 ≤ 𝑙 ≤ 𝑍𝑙 do

8: 𝑣 ′ = PickNeighbor(𝑣,G)

9: NewCost = ComputeCost(𝑣 ′)

10: if NewCost < CurrentCost then

11: 𝑣 ← 𝑣 ′

12: CurrentCost← NewCost

13: if CurrentCost < BestCost then

14: BestCost = CurrentCost

15: return𝑀

Algorithm 2 picks the eventual memories used in OOD detection.

Similar to standard CLARANS algorithm each node in G has 𝑟 (𝑛−𝑟)

neighbors, where 𝑟 is the number of memories. Which can be quite

large given the scale of modern machine learning data sets with

large 𝑛. What we do here is that start with a reasonable choice

228

Figure 2: This figure summarizes our approach. Thememorization phase of the algorithmpicks prototypical samples asmemo-

ries. At run-time the algorithm computes kernel density estimates to assess the likelihood of a new data being in-distribution.

for initial node in G, and greedily look for local improvements

for a fixed number of iterations. The global search starts by using

Algorithm 1, in order to generate the initial set of memories as

node 𝑣 in G. Notice that we do not choose the number of memories

apriori but instead gets picked as a consequence of distance score 𝑑 .

The partitioning cost for the choice of memories is computed by

the function 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐶𝑜𝑠𝑡 which evaluates Equation 1. Note this

can be expensive since it needs a total of 𝑟 ×𝑛 distance computation

operations. The local search (Lines 7 − 12) implements a greedy

strategy to pick the neighborhood node which produces a descent.

The outer loop of the algorithm keeps track of the node with the

minimum cost for each such reset produced in line 3. Algorithm 2

trivially terminates, since each search proceeds for a fixed number

of steps.

Definition 5.2 (Memory System MS). A memory system is a

collection of pairs MS := {(𝑚1, 𝑞1), (𝑚2, 𝑞2), . . . , (𝑚𝑟 , 𝑞𝑟)}, where,

𝑞𝑖 = |𝑄𝑚𝑖
|

𝑄𝑚𝑖
=

⋃

𝑠∈S

I(𝑚𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑖

D(𝑠,𝑚𝑖))
(8)

Thus the memory system MS keeps track of the number of

points for every memory which belongs to the cluster defined by it.

The OOD detection algorithm which follows uses these memories

as abstract kernel centers in Equation 3 to compute the probability

density at a test point.

5.3 Scaling Memory Search

In order to compute the probability density estimates given by

Equation 3, we need to do a linear time search through the current

set of memories in MS . Even though the number of memories

produced in Algorithm 2 might be small enough compared to the

full data set, S a search through the list of memories might still be

challenging. To remedy this potential drawback we deploy a simple

hashing technique first introduced in [14] . The distance metric

D discussed in Section 4.3, was a proper distance metric, which

implies that the distance function respects triangle inequality. In

what follows, we describe a possible avenue to speed up the search

for the 𝑘 nearest memories. The intuition being that for sufficiently

different memories computing a single distance pair can be used to

reject other memories from further consideration.

We are interested in computing the nearest neighbor, that is

𝑘 = 1 in the set MS for a test point 𝑥𝑡 . Assume that we wish to

compute the distance between a test point 𝑥𝑡 , and some memory𝑚 𝑗

and the distance D(𝑥𝑡 ,𝑚𝑖) is known. Then in the triangle formed

by the triplet (𝑚𝑖 , 𝑥𝑡 ,𝑚 𝑗), the following two equations are true:

D(𝑚𝑖 , 𝑥𝑡) − D(𝑚𝑖 ,𝑚 𝑗) ≤ D(𝑚 𝑗 , 𝑥𝑡)

and

D(𝑚𝑖 ,𝑚 𝑗) − D(𝑚𝑖 , 𝑥𝑡) ≤ D(𝑚 𝑗 , 𝑥𝑡)

Meaning that D(𝑚′, 𝑥𝑡) is lower bounded by : |D(𝑚𝑖 ,𝑚 𝑗) −

D(𝑚𝑖 , 𝑥𝑡) |. Since, if we are interested in memories which are within

a certain threshold (sayℎ) of𝑚′, we do not actually need to compute

the distance D(𝑚′, 𝑥𝑡) if the following equation holds True.

|D(𝑚𝑖 ,𝑚 𝑗) − D(𝑚𝑖 , 𝑥𝑡) | > ℎ (9)

For each memory𝑚𝑖 , we can pre-compute a look-up table for

the inter-memory distance Q : {(𝑚 𝑗 ,D(𝑚𝑖 ,𝑚 𝑗)) |1 ≤ 𝑗 ≤ 𝑙, 𝑗 ≠ 𝑖}.

This can lead to reduction in the search space in practice by pruning

out memories from further consideration each time the distance of a

memory from 𝑥𝑡 gets measured. For 𝑘 > 1, similar reasoning holds.

The only difference being that, in this case the search algorithm

tracks the distance of the 𝑘𝑡ℎ-memory furthest from the test point.

5.4 Detecting Distribution Shifts

To summarize, we know how to go from the set of training data S

to the set of memoriesMS . This happens through a smart initial-

ization of the set of memories (Algorithm 1), followed by a further

refinement using a medoid based partitioning technique discussed

in Algorithm 2. Additionally, to handle any potential slow downs,

we briefly discuss how one can use the inter-memory distance to

prune out large parts of the search space. Thus allowing the system

to scale to larger memory systems. We are now at a stage to discuss

our runtime algorithm for detecting distribution shifts.

229

Algorithm 3 Detect Distribution Shifts

Input: Time Series Data 𝑥𝑡 , Memory System MS

Output: Distribution Shift Flags F𝑡
Parameter : Window Threshold - 𝜏 , Window -𝑊 , probability

threshold - 𝛼

1: Frame = 𝜙

2: for 1 ≤ 𝑡 ≤ ∞ do

3: 𝐹𝑙𝑎𝑔𝑂𝑂𝐷 = DetectOOD(MS , 𝑥𝑡 , 𝛼)

4: Frame← UpdateFrame(𝐹𝑙𝑎𝑔𝑂𝑂𝐷 ,𝑊 , Frame)

5: F𝑡 ← CountOOD(Frame) ≥ 𝜏

6: return F𝑡

In practical scenarios, detecting a shift in distribution needs a

robust mechanism. We achieve this using a sliding window based

implementation to track the number of out of distribution sam-

ples it sees. Algorithm 3 summarizes our approach. For each input

sample at runtime, the function 𝐷𝑒𝑡𝑒𝑐𝑡𝑂𝑂𝐷 simply computes the

probability estimates for a test point 𝑥𝑡 , from a memory system

MS using Equation 3. Additionally it compares this probability

density with a threshold 𝛼 to Flag a sample as OOD. The function

𝑈𝑝𝑑𝑎𝑡𝑒𝐹𝑟𝑎𝑚𝑒 keeps track of the OOD Flags in the last𝑊 frames.

The algorithm outputs a distribution shift once this count cross

threshold 𝜏 .

6 CASE STUDY 1 - SIMULATED
AUTONOMOUS DRIVING SCENARIO USING
CARLA

System Description: Here we consider an advanced emergency

braking system (AEBS) from [9]. The system overview is shown in

Figure 11 of A.2. It is a closed loop system composed of a perception

based LEC, which estimates distance of the object ahead of the ego

vehicle. This distance combined with the velocity is the input to the

braking controller. The objective of the AEBS system is to brake the

ego vehicle to avoid a collision. The controller is trained using stan-

dard reinforcement learning on in-distribution data. The distance

estimating LEC is trained using supervised learning techniques. For

details about the model architecture and training hypeparameters,

please refer to [9].

In-distribution data:We evaluate our approach onOODdetection

with the dataset provided in [9]. The dataset is generated using

CARLA [11], an open-source simulator for autonomous driving.

The in-distribution traces consists of daytime frames with slight

rain (i.e. precipitation level in {0, 1, . . . 10}), and with cars as the

front object. The sampling rate is 20𝐻𝑧 [9].

Types of OODs: We evaluate our approach on the following four

different sources of OOD-ness in the traces.

(1) OOD-ness due to weather change from slight rain in the in-

distribution traces to heavy rain (precipitation level greater

than or equal to 20) and foggy traces in OOD traces.

(2) OOD-ness due to change in the lighting conditions from day

in the in-distribution traces to night in the OOD traces.

(3) OOD-ness due to change in the front obstacles from cars in

the in-distribution traces to bikes in the OOD traces.

(4) OOD-ness due to perturbation of in-distribution frames with

adversarial attack.

Evaluation metrics: We refer to OOD traces as positive and in-

distribution as negative. We report false positive (FP) as the number

of in-distribution traces that were falsely detected as OOD. False

negatives (FN) are the number of OOD traces falsely detected as in-

distribution. We also report an average delay in the OOD detection

as the number of windows required to detect the start of the OOD-

ness in the traces averaged over the total number of detected OOD

traces. We conduct all our experiments in this case study on a single

GPU (NVIDIA GeForce RTX 2080 Ti).

6.1 OOD-ness due to change in weather and
lighting

Here we generate OOD traces in which OOD-ness gradually in-

creases with time. We increase the precipitation (or fog) parameter

gradually in sequential frames of a trace to generate heavy rain (or

foggy) OOD trace. Similarly, we gradually increase the darkness

parameter to generate night time OOD traces. Examples of these

OOD traces are shown in Appendix.

6.1.1 Results on OOD detection for heavy rain. We define frames

with precipitation level greater than 20 as OODs due to heavy rain.

There are 4488 in-distribution images with precipitation parame-

ter from 0 to 10. The test dataset contains 26 in-distribution and

74 out-of-distribution traces. Our approach involves a few hyper-

parameters like window length𝑊 , threshold count 𝜏 , probability

threshold 𝛼 , and distance threshold 𝑑 . In the current experiments,

we choose the hyperparameters empirically. In practice, the desired

sensitivity of the system would dictate the parameter choice. We

report some of the top performers in Table 1. A more exhaustive

study has been reported in Figure 10 of the Appendix.

(𝑾 , 𝝉 , 𝜶 , 𝒅) Mem FP FN Avg Exec

Delay Time (ms)

(5,5,0.92,0.2) 145 0/26 2/74 0.42 21.39

(10,5,0.92,0.2) 145 0/26 2/74 0.04 19.80

(5,5,0.78,0.3) 36 1/26 1/74 0 6.26

(10,5,0.78,0.3) 36 1/26 0/74 0 5.88

Table 1: Results on heavy rain traces as OODs. 𝑀𝑒𝑚: Total

number of memories, 𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒: the time for OOD detection

on each frame (calculated on 3 random traces)

The experimental results shows that Algorithm 2 efficiently com-

pressed the training data (4488→ 145/36) into memories and can

perform OOD detection under autonomous driving setting. With

the parameters as shown in the table, the results in Table 1 indicate

that our OOD detector could successfully detect traces with heavy

rain precipitation and without delay. Performance of the VAE based

OOD detector [9] is comparable to ours in terms of false positive

and false negative rates but their average detection delay (as re-

ported) is higher than ours. We also report the average execution

230

Night traces Foggy traces

(𝑾 , 𝝉 , 𝜶 , 𝒅) FN Avg Delay FN Avg Delay

(5,5,0.92,0.2) 0/27 0.15 0/27 5

(10,5,0.92,0.2) 0/27 0.15 0/27 10

(5,5,0.78,0.3) 0/27 1.89 0/27 9

(10,5,0.78,0.3) 0/27 0.15 0/27 11.15

Table 2: Results on night and foggy OOD traces.

times for detecting an OOD in Table 1. We observe that it is well

within the the sampling period of the system. Implying that Algo-

rithm 3 is amenable to real-time OOD detection. Also, as expected,

reducing 𝑑 in Algorithm 1 results in higher memories. But results

in slower execution times with better false positive rates.

6.1.2 Results on detection for foggy and night OODs. Table 2 shows

results of OOD detection on foggy and night OODs. Here we con-

sider 27 OOD traces for both settings. With the same hyperparam-

eters as in the heavy rain OOD traces, our detector is able to detect

all OOD traces.

6.2 OOD-ness due to change in front obstacles

One of the motivations for building an OOD framework is that it

is often the case that unobserved data during training may lead to

crash. The perception LEC only saw cars as front obstacles during

its training. At test time, ego vehicle is able to stop at a safe distance

from the front obstacle if the obstacle is a car (Figure 3(a)). But if we

change the front obstacle from car to bike then it leads to a crash

(Figure 3(b)). We generated 27 OOD traces with different positions

and types of bikes as front obstacles and all of these traces lead to

a crash with the biker.

(a) Ego vehicle stopping at a

safe distance from the lead car

at test time

(b) Shift from training distri-

butionwith a biker as front ob-

stacle leads to a crash at test

time

Figure 3: Illustration of safety hazard, i.e. collision due to

shift in the training distribution

6.2.1 Results. We define the OOD frame starting from time-step 20

in the traces (when the biker becomes visible to human). We use the

same set of hyperparameters in Section 6.1. As shown in Table 3,

our OOD detector could successfully alarm the system before a

collision happens for all the 27 OOD traces for two hyperparameter

settings. For the other two settings, we could not detect 2 out of 27

OOD traces.

(𝑾 , 𝝉 , 𝜶 , 𝒅) FP FN Avg Delay

(5,5,0.92,0.2) 0/26 0/27 0

(10,5,0.92,0.2) 0/26 0/27 0

(5,5,0.78,0.3) 1/26 2/27 0.96

(10,5,0.78,0.3) 1/26 2/27 0

Table 3: Results on OOD traces with bikers.

(a) Input image (clean) (b) Test image (adversarial

sticker on the road)

Figure 4: OOD-ness due to adversarial road perturbations [9]

6.3 OOD-ness due to perturbations by
adversarial attack

In these experiments, we evaluate our approach for an adversarial

attack detection. Again, we consider the same attack of painting

lines on the roads as considered in [9]. This attack was introduced

by Boloor et al. [7] and shown that it causes the car to follow the

painted lines leading to a crash.

We use the same attacked dataset from [9] which focuses on

Right Corner Driving case. We run our OOD detector to check

whether our detector could predict crash beforehand. There are

total 105 traces for tests and 69 out of them ends with a crash. Note

that an attack prediction is only useful as long as it happens before

the actual crash. We forecast a crash when a shift in distribution

occurs. Let us call this 𝑡𝑝𝑐 , time when crash prediction is set to

𝑇𝑟𝑢𝑒 . Also, let us denote the time of actual crash by 𝑡𝑎𝑐 . A crash is

successfully predicted when 𝑡𝑝𝑐 < 𝑡𝑎𝑐 . We report our performance

on the following metrics in the context of crash:

True Prediction Rate (TPR) =
crash predicted successfully

crash happens

False Prediction Rate (FPR) =
no crash happens

crash predicted

Missed Prediction Rate (MPR) =
crash happens without forecast

crash happens
(10)

In addition, we record the average forecast time as the average

value of 𝑡𝑎𝑐 −𝑡𝑝𝑐 , for the correctly predicted cases, and it is reported

in the number of frames. We report these numbers in Table 4

Here we also report the top performance in Table 4 using selected

hyperparameters according to the Figure 5. These results show that

our methodology is also successful in adversarial trace detection at

least 5 frames before the crash.

6.3.1 OOD detection reasoning using SSIM. As mentioned before,

an advantage of our framework is that it is interpretable to a human.

For in-distribution data, it is simply the closest memory the test

231

(a) True prediction rate (b) False prediction rate

Figure 5: Out-of-distribution traces detection results for de-

tecting adversarial attack on the road with different hyper-

parameters

(𝑾 , 𝝉 , 𝜶 , 𝒅) Mem TPR FPR MPR Avg Forecast

(5,5,0.05,0.5) 243 100.0 7.2 0.0 5.08

(5,5,0.1,0.5) 243 100.0 8.6 0.0 14.78

(5,5,0.2,0.6) 114 100.0 7.2 0.0 4.89

(5,5,0.25,0.6) 114 100.0 12.3 0.0 16.2

Table 4: Results on adversarial sticker detection.

frame matches to. This happens by design due to the choice of the

distance metricD. A more interesting case arises when a test frame

is recognized as an OOD. Note that a simple way to frame the reason

for an OOD would be to say - it is not similar enough to anything

in the memory system. But, here we go a step further and try to

provide pixel level reasoning. This can be mined from the closest

memory to an OOD sample, using modified D to attribute pixels

responsible for the dissimilarity. Additionally, in case of scattered

highlighted pixels (indicating that the test input is drawn from a

distribution that is very different from the training distribution),

our framework refrains from pixel attribution, and simply raises

an alarm.

Heatmap generation: Notice in Section 4.3, the SSIM value is

a mean of the dissimilarity scores for all pixels. For some pairs of

images it is possible that difference is high due to a high concen-

tration of dissimilarity scores on a few pixels. Thus it is possible to

filter out these pixels if the distance is above a certain threshold in

its window. We attribute these pixels responsible for higher SSIM

value and highlight them in red for providing reasoning about OOD

detection. The details about the heatmap generation algorithm are

provided in A.4.

We demonstrate this in Figure 1b and Figure 6b. In 1b, the unrec-

ognized biker is highlighted in this OOD frame. In the adversarial

sticker experiment (7b), we can also notice that the highlighted

area contains the adversarial stickers on the road.

7 CASE STUDY 2 - DRIVING WITH LIDAR

7.1 System Description

LiDAR forms a fundamental component for a large section of self-

driving car hardware, and is a reliable fall back option when it

comes to situations where camera is not enough. LiDAR simply

computes the distance of the closest obstacle in specific angles

(a) Match the input test im-

age withmemories in training

data

(b) Highlight the least similar

part compared to the memory

Figure 6: OOD detection reasoning for sticker detection (The

test image is Figure 4b)

for a fixed range. Even though the nature of the input is of much

simpler nature compared to a camera, NNs with LiDAR inputs can

suffer from similar behavior when exposed to OOD scenarios. In

this section we introduce the case study involving an autonomous

car, discussed in [17]. Figure 8 illustrates the arrangement of the

functional blocks. The system involves a car from the F1/10 Au-

tonomous Racing Competition [4], navigating square tracks using

only LiDAR measurements to judge obstacles and make general ori-

entation decisions. The LiDAR measurements are sent to a neural

network (NN) controller, which issues steering controls. It oper-

ates under a constant throttle setting for reasons discussed in [17].

The system state such as position and orientation, along with the

surrounding environment determines the nature of scan that the

LiDAR receives. The NN controller is trained using standard deep

reinforcement learning techniques like deep-deterministic policy

gradient (DDPG), and Twin Delay DDPG (TD3). The LiDAR scan

obtained from the system has 1081 rays ranging from −135 degrees

to 135 degrees, with 0 degrees being the heading of the car. Most

of the controllers trained in [17] acted on a sub-sampled set of 21

LiDAR rays, which produced satisfactory performance in simula-

tion. This sets the number of LiDAR rays for the experiments in

this paper as well.

7.2 Simulation vs Reality

As we saw before, one of the challenges when it comes to deploying

learning-enabled cyber-physical systems in the real world is the

unexpected behavior caused by the sim2real gap. Even though

the recent literature [12, 18] has seen an explosion of interest in

verifying closed-loop systems with NN controllers, verification

results make sense as long as the assumptions on the environment

hold. The NN controllers for this benchmark were trained in a

virtual environmentwith exactly the same racing track, and obstacle

setting. Simulations are a useful and rich source of training data

when it comes to deep reinforcement learning approaches. However,

the downside is that the aberrations arising in the real world can

cause the system to go berserk. In the current setting this aberration

comes from the presence of reflective surfaces as shown in Figure 7.

This introduces a large source of uncertainty. A LiDAR ray reflected

away from a highly reflective surface, takes longer time to return

to the on board detectors. Which ends up giving a false impression

of no obstacle in that angle. This is hard to model since surface

232

Figure 7: Left : We show a setting where the car should take a right turn on an L-shaped track. Middle : The dots show the

distance estimates as provided by the sensor. It matches well with the position of the obstacles. Right : Due to reflection from

the left wall, it gives a false impression of no obstacle to the left of the car when deployed in the real world.

Figure 8: Functional blocks in the F1/10 Autonomous Car.

reflectivity is largely unknown. In Figure 7, this happens at the

left corner of L-shaped track. This creates a false impression of no

obstacle to the left of the car. The ground-truth is hard to guess

just from the LiDAR inputs. But a crash could have been avoided if

the car had switched to a safe mode, or raised an alarm ahead of

time. In this case study, we focus on the ability to detect such OOD

scenarios. The right course of action after detecting such a shift is

context dependent and is beyond the scope of this work.

7.3 Predicting Crash

The authors in [17] report the presence of reflections as being

correlated with an actual crash. Additionally, they show that getting

rid of the reflections artificially can lead to safer outcomes. Hence,

our hypothesis here is that, crash could be due to the potential

deviation from in-distribution data, which is from simulations and

does not contain any reflections. The intuition being, if an NN

controller has experienced reflections during training time, then it

would have known the right course of action. The LiDAR scans with

reflected rays could therefore be treated as out-of-distribution data.

Notice that in this case study, there is no clear distinction when

things start becoming OOD.What we have instead is real crash data.

We have access to the time-stamped LiDAR scan log for each such

run of the system along the L-shaped trajectory in Figure 7. The data

set S here, is a set of trajectories {𝑇1,𝑇2, . . . ,𝑇𝑛}. Each trajectory

is a list of time-stamped LiDAR scans, 𝑇𝑖 = {(𝑥1, 𝑝1), (𝑥2, 𝑝2), . . . },

where 𝑥𝑖 ∈ R
𝑞 is the LiDAR scan at time 𝑖 , and 𝑝𝑖 is a flag variable

for crash. What we wish to test here is whether a detector for

distribution shift is a good predictor for a future crash.

Results In order to simulate a crash prediction setting, we run

our OOD detector for each LiDAR scan in the trace 𝑇𝑖 starting

from 𝑖 = 0. The in-distribution data here is obtained by running

the simulator for the 12 different controllers. These include LiDAR

scans over the length of 70 time steps. Which is approximately

the number of time-steps the system takes to reach from one end

of the track to the other. Note that the controllers were trained

well enough during simulation that none of the traces show a

crash. In this experiment, we create a 2-dimensional data array by

repeating the 1-dimensional measurement. The distance metric for

OOD detection is the same SSIM metric applied to a LiDAR scan.

The detection of distribution shift is implemented using Algorithm

3. We report our performance on the same metrics as mentioned

Equation 10, in Table 5 for different choices of the parameters. In

the best case we were able to predict 82.1% of the crashes with 22.7%

false positive rate and ≈ 9 time steps ahead. The missed predictions

rate ≈ 10%.

(𝑾 , 𝝉 , 𝜶 , 𝒅) TPR FPR MPR Avg Forecast

(40,15,0.05,0.3) 80.36 19.35 10.71 9.69

(40,17,0.1,0.3) 82.14 22.73 8.93 9.8

(40,11,0.05,0.2) 80.36 22.22 12.5 12.67

(40,15,0.1,0.2) 80.36 21.88 10.71 10.4

Table 5: Results for LiDAR data

(a) True prediction rate vs

threshold (𝑊 = 40)

(b) False prediction rate vs

threshold (𝑊 = 40)

Figure 9: OOD detection results for detecting LiDAR crash

with different hyperparameters

8 CONCLUSION

OOD detection can be of utmost importance in ensuring safety

of cyber-physical systems equipped with learning enabled com-

ponents. What we have achieved to demonstrate in this paper, is

233

that state of the art results in OOD detection for self-driving car

applications, can go hand in hand with overall interpretablity, with-

out compromising on execution times. In the future, we would like

to extend this technique on applications beyond self-driving cars

where anomalous inputs are challenging to handle.

9 ACKNOWLEDGEMENT

This work was supported in part by AROW911NF-20-1-0080, AFRL

and DARPA FA8750-18-C-0090, NSF-1915398, NSF-2125561 and

SRC Task 2894.001. Any opinions, findings and conclusions or rec-

ommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the Air Force Research

Laboratory (AFRL), the Army Research Office (ARO), the Defense

Advanced Research Projects Agency (DARPA), or the Department

of Defense, or the United States Government.

Additionally, we would like to thank Radoslav Ivanov, postdoc-

toral scholar from the University of Pennsylvania for discussions

on the LiDAR experiments and sharing the data. We also especially

appreciate Feiyang Cai, PhD candidate from Vanderbilt University

for sharing the CARLA dataset and simulation code.

REFERENCES
[1] [n. d.]. pytorch-msssim. https://pypi.org/project/pytorch-msssim/
[2] [n. d.]. Toyota Safety Sense. https://www.toyota.com/safety-sense/
[3] 1990. Partitioning Around Medoids (Program PAM). Chap-

ter 2, 68–125. https://doi.org/10.1002/9780470316801.ch2
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470316801.ch2

[4] 2021. F1TENTH. https://f1tenth.org
[5] Alexander A. Alemi, Ben Poole, Ian Fischer, Joshua V. Dillon, Rif A. Saurous, and

Kevin Murphy. 2017. An Information-Theoretic Analysis of Deep Latent-Variable
Models. CoRR abs/1711.00464 (2017). arXiv:1711.00464 http://arxiv.org/abs/1711.
00464

[6] Michele Basseville, Igor V Nikiforov, et al. 1993. Detection of abrupt changes:
theory and application. Vol. 104. prentice Hall Englewood Cliffs.

[7] Adith Boloor, Karthik Garimella, Xin He, Christopher Gill, Yevgeniy Vorobey-
chik, and Xuan Zhang. 2020. Attacking vision-based perception in end-to-end
autonomous driving models. Journal of Systems Architecture 110 (2020), 101766.
https://doi.org/10.1016/j.sysarc.2020.101766

[8] Dominique Brunet, Edward R. Vrscay, and Zhou Wang. 2012. On the Mathemat-
ical Properties of the Structural Similarity Index. IEEE Transactions on Image
Processing 21, 4 (2012), 1488–1499. https://doi.org/10.1109/TIP.2011.2173206

[9] Feiyang Cai and Xenofon Koutsoukos. 2020. Real-time out-of-distribution detec-
tion in learning-enabled cyber-physical systems. In 2020 ACM/IEEE 11th Interna-
tional Conference on Cyber-Physical Systems (ICCPS). IEEE, 174–183.

[10] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan
Su. 2019. This Looks Like That: Deep Learning for Interpretable Image Recog-
nition. In NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché Buc, Edward A.
Fox, and Roman Garnett (Eds.). 8928–8939. http://papers.nips.cc/paper/9095-
this-looks-like-that-deep-learning-for-interpretable-image-recognition

[11] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. 2017. CARLA: An Open Urban Driving Simulator. In Proceedings of the
1st Annual Conference on Robot Learning. 1–16.

[12] Souradeep Dutta, Xin Chen, Susmit Jha, Sriram Sankaranarayanan, and Ashish
Tiwari. 2019. Sherlock - A Tool for Verification of Neural Network Feedback
Systems: Demo Abstract. In Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control (Montreal, Quebec, Canada) (HSCC
’19). Association for Computing Machinery, New York, NY, USA, 262–263. https:
//doi.org/10.1145/3302504.3313351

[13] Yeli Feng, Daniel Jun Xian Ng, and Arvind Easwaran. 2021. Improving Varia-
tional Autoencoder based Out-of-Distribution Detection for Embedded Real-time
Applications. ACM Transactions on Embedded Computing Systems (TECS) 20, 5s
(2021), 1–26.

[14] K. Fukunaga and P.M. Narendra. 1975. A Branch and Bound Algorithm for
Computing k-Nearest Neighbors. IEEE Trans. Comput. C-24, 7 (1975), 750–753.
https://doi.org/10.1109/T-C.1975.224297

[15] Francisco José Gisbert. 2003. Weighted samples, kernel density estimators and
convergence. Empirical Economics 28 (02 2003), 335–351. https://doi.org/10.1007/
s001810200134

[16] DanHendrycks and KevinGimpel. 2016. A baseline for detectingmisclassified and
out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136
(2016).

[17] Radoslav Ivanov, Taylor J. Carpenter, James Weimer, Rajeev Alur, George J. Pap-
pas, and Insup Lee. 2020. Case Study: Verifying the Safety of an Autonomous
Racing Car with a Neural Network Controller. In Proceedings of the 23rd Inter-
national Conference on Hybrid Systems: Computation and Control (Sydney, New
South Wales, Australia) (HSCC ’20). Association for Computing Machinery, New
York, NY, USA, Article 28, 7 pages. https://doi.org/10.1145/3365365.3382216

[18] Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and Insup
Lee. 2019. Verisig: Verifying Safety Properties of Hybrid Systems with Neu-
ral Network Controllers. In Proceedings of the 22nd ACM International Confer-
ence on Hybrid Systems: Computation and Control (Montreal, Quebec, Canada)
(HSCC ’19). Association for Computing Machinery, New York, NY, USA, 169–178.
https://doi.org/10.1145/3302504.3311806

[19] Ramneet Kaur, Susmit Jha, Anirban Roy, Sangdon Park, Edgar Dobriban, Oleg
Sokolsky, and Insup Lee. 2022. iDECODe: In-distribution Equivariance for Confor-
mal Out-of-distribution Detection, Association for the Advancement of Artificial
Intelligence. arXiv:2201.02331 [cs.LG]

[20] Ramneet Kaur, Susmit Jha, Anirban Roy, Sangdon Park, Oleg Sokolsky, and Insup
Lee. 2021. Detecting OODs as datapoints with High Uncertainty. arXiv preprint
arXiv:2108.06380 (2021).

[21] Rikard Laxhammar and Göran Falkman. 2015. Inductive conformal anomaly
detection for sequential detection of anomalous sub-trajectories. Annals of
Mathematics and Artificial Intelligence 74, 1 (2015), 67–94.

[22] Juncheng Li, Frank R. Schmidt, and J. Zico Kolter. 2019. Adversarial camera
stickers: A physical camera-based attack on deep learning systems. CoRR
abs/1904.00759 (2019). arXiv:1904.00759 http://arxiv.org/abs/1904.00759

[23] David Macêdo, Tsang Ing Ren, Cleber Zanchettin, Adriano LI Oliveira, and Teresa
Ludermir. 2021. Entropic out-of-distribution detection. In 2021 International Joint
Conference on Neural Networks (IJCNN). IEEE, 1–8.

[24] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2015.
DeepFool: a simple and accurate method to fool deep neural networks. CoRR
abs/1511.04599 (2015). arXiv:1511.04599 http://arxiv.org/abs/1511.04599

[25] R.T. Ng and Jiawei Han. 2002. CLARANS: a method for clustering objects for
spatial data mining. IEEE Transactions on Knowledge and Data Engineering 14, 5
(2002), 1003–1016. https://doi.org/10.1109/TKDE.2002.1033770

[26] Xiao Qin, Lei Cao, Elke A. Rundensteiner, and Samuel Madden. 2019. Scalable
Kernel Density Estimation-based Local Outlier Detection over LargeData Streams.
In Advances in Database Technology - 22nd International Conference on Extending
Database Technology, EDBT 2019, Lisbon, Portugal, March 26-29, 2019. 421–432.

[27] Shreyas Ramakrishna, Zahra Rahiminasab, Gabor Karsai, Arvind Easwaran, and
Abhishek Dubey. 2021. Efficient Out-of-Distribution Detection Using Latent
Space of 𝛽-VAE for Cyber-Physical Systems. arXiv preprint arXiv:2108.11800
(2021).

[28] Erich Schubert and Peter J. Rousseeuw. 2018. Faster k-Medoids Clustering:
Improving the PAM, CLARA, and CLARANS Algorithms. CoRR abs/1810.05691
(2018). arXiv:1810.05691 http://arxiv.org/abs/1810.05691

[29] B.W. Silverman. 2018. Density Estimation for Statistics and Data Analysis. 1–175
pages. https://doi.org/10.1201/9781315140919

[30] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2014. Deep Inside
Convolutional Networks: Visualising Image Classification Models and Saliency
Maps. CoRR abs/1312.6034 (2014).

[31] Vijaya Kumar Sundar, Shreyas Ramakrishna, Zahra Rahiminasab, Arvind
Easwaran, and Abhishek Dubey. 2020. Out-of-distribution detection in multi-
label datasets using latent space of 𝛽-vae. In 2020 IEEE Security and Privacy
Workshops (SPW). IEEE, 250–255.

[32] Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. 2020. Csi: Novelty
detection via contrastive learning on distributionally shifted instances. arXiv
preprint arXiv:2007.08176 (2020).

[33] Ashish Tiwari, Bruno Dutertre, Dejan Jovanović, Thomas de Candia, Patrick D
Lincoln, John Rushby, Dorsa Sadigh, and Sanjit Seshia. 2014. Safety envelope
for security. In Proceedings of the 3rd international conference on High confidence
networked systems. 85–94.

[34] Vladimir Vovk, Ilia Nouretdinov, and Alexander Gammerman. 2003. Testing
exchangeability on-line. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03). 768–775.

[35] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image Quality
Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on
Image Processing 13, 4 (April 2004), 600–612. https://doi.org/10.1109/TIP.2003.
819861

[36] Ev Zisselman and Aviv Tamar. 2020. Deep residual flow for out of distribution
detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 13994–14003.

234

A APPENDIX

A.1 Hyperparameter experiments

(a) False Positive Rate (b) False Negative Rate

Figure 10: Out-of-distribution episode detection results for

detecting OODs due to heavy rain

A.2 Overview of the AEBS system

Figure 11: Closed loop of the AEBS from [9]

A.3 OODs Data Set Case Study 1

Fog dataset: the OOD frame starts from the 1st frame. The average

length of foggy episodes is 123 frames.

Figure 12: Example sequence in Fog Dataset (we gradually

increase the level of fog)

Night dataset: the OOD frame starts from the 10th frame. The

average length of night episodes is 123 frames.

Figure 13: Example sequence in Night Dataset (we gradually

increase the darkness parameter)

A.4 Heatmap Generation Algorithm

As mentioned in section 6.3.1, in addition to use the SSIM value to

indicate whether the test frame is similar to each memory, we can

also compute the contribution of each corresponding pixel to the

SSIM distances using 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐹𝑢𝑙𝑙𝑆𝑆𝐼𝑀 . 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐹𝑢𝑙𝑙𝑆𝑆𝐼𝑀 com-

putes and returns the local differences for individual pixels between

two images. By highlighting the pixels with high contribution in

the heatmap, we can visualize the most dissimilar parts between

the test frame and its closest memory.

Algorithm 4 Heatmap Generation

Input: Time Series Data 𝑥𝑡 ∈ R
𝑚×𝑛 , Closest Memory𝑚𝑐

Output: Heatmap 𝑥 ′𝑡 ∈ R
𝑚×𝑛

Parameter : Color Distance Threshold 𝑑𝑐𝑜𝑙𝑜𝑟

1: Instantiate 𝑥 ′𝑡 ← 𝑥𝑡
2: 𝐷𝑥 ∈ R𝑚×𝑛 ← ComputeFullSSIM(𝑥𝑡 ,𝑚𝑐)

3: for 1 ≤ 𝑚′ ≤ 𝑚 do

4: for 1 ≤ 𝑛′ ≤ 𝑛 do

5: if 𝐷𝑥 [𝑚
′, 𝑛′] > 𝑑𝑐𝑜𝑙𝑜𝑟 then

6: 𝑥 ′𝑡 [𝑚
′, 𝑛′] ← PaintPixel(𝑥𝑡 [𝑚

′, 𝑛′])

7: return 𝑥 ′𝑡

235

