2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)

Interpretable Detection of Distribution Shifts in Learning
Enabled Cyber-Physical Systems

Yahan Yang
yangy96@seas.upenn.edu
University of Pennsylvania
Philadelphia, Pennsylvania, USA

Souradeep Dutta
duttaso@seas.upenn.edu
University of Pennsylvania
Philadelphia, Pennsylvania, USA

ABSTRACT

The use of learning based components in cyber-physical systems
(CPS) has created a gamut of possible avenues to use high dimen-
sional real world signals generated from sensors like camera and
LiDAR. The ability to process such signals can be largely attributed
to the adoption of high-capacity function approximators like deep
neural networks. However, this does not come without its potential
perils. The pitfalls arise from possible over-fitting, and subsequent
unsafe behavior when exposed to unknown environments. One
challenge is that, in high dimensional input spaces it is almost im-
possible to experience enough training data in the design phase.
What is required here, is an efficient way to flag out-of-distribution
(OOD) samples that is precise enough to not raise too many false
alarms. In addition, the system needs to be able to detect these
in a computationally efficient manner at runtime. In this paper,
our proposal is to build good representations for in-distribution
data. We introduce the idea of a memory bank to store prototypical
samples from the input space. We use these memories to compute
probability density estimates using kernel density estimation tech-
niques. We evaluate our technique on two challenging scenarios : a
self-driving car setting implemented inside the simulator CARLA
with image inputs, and an autonomous racing car navigation set-
ting, with LiDAR inputs. In both settings, it was observed that a
deviation from in-distribution setting can potentially lead to devia-
tion from safe behavior. An added benefit of using training samples
as memories to detect out-of-distribution inputs is that the system
is interpretable to a human operator. Explanation of this nature
is generally hard to obtain from pure deep learning based alter-
natives. Our code for reproducing the experiments is available at
https:// github.com/yangy96/ interpretable_ood_detection.git

KEYWORDS

anomalous inputs, autonomy, safety, vision, perception systems

1 INTRODUCTION

Learning-enabled components (LEC) are being increasingly used in
modern cyber-physical systems (CPS) especially self-driving cars.
Designing such systems typically rely on data-driven techniques to
achieve desired performance. An LEC learns to operate by having
access to a large corpus of human-labelled input-output data during
the design phase. For instance, a learning-enabled component in a

978-1-6654-0967-4/22/$31.00 ©2022 IEEE
DOI 10.1109/ICCPS54341.2022.00027

225

Ramneet Kaur
ramneetk@seas.upenn.edu
University of Pennsylvania

Philadelphia, Pennsylvania, USA

Insup Lee
lee@cis.upenn.edu
University of Pennsylvania
Philadelphia, Pennsylvania, USA

modern car [2] could be performing simple lane keeping function
from the video feed it receives from the camera. The other end of the
spectrum would be a fully self-driving car equipped with an auto-
mated driving system (ADS). Here, the software is in full control of
the car, and is capable of making all decision concerning navigation
and maneuvering the vehicle. This has the potential to dramati-
cally reduce accidents and general vehicle safety. Additionally, such
technologies have the potential to bolster the independence and
mobility of seniors and those who cannot drive.

Deep Neural networks (DNNs) perform most of the the heavy
lifting regarding LEC’s with rich sensors like camera and LiDAR.
DNNs are high-capacity function approximators, and form a funda-
mental building block for most machine learning applications. The
downside is that DNNs do not learn to interpret an image input
the way humans do. It largely happens through an effort to fit a
high-capacity function to the training data by reducing its classifi-
cation error rate. DNNs are complex computation graphs and can
potentially have millions of nodes and parameters. This makes them
particularly difficult to be analyzable by a human expert. What this
translates to is that computer vision systems are prone to errors
in a way that people are not. For instance it is fairly easy to come
up with imperceptible changes to an input image that can fool the
ADS system. It can be shown that its fairly simple to change the
number on a speed limit sign, or even change a stop sign to a speed
limit sign [24].

The challenge with most LECs is that it is necessarily the case
that the input space is insufficiently sampled. That is, during the
design phase the system does not see all the training samples in the
vicinity of the operating region of the system. Hence it is almost
impossible to provide rigorous guarantees on the operating limits at
design time. This is where efficient runtime monitoring techniques
can play a significant role in ensuring safe operations of the system.
Neural networks due to the nature of the training algorithms do not
perform well when pushed outside of its training zone. Even though
statistical machine learning tools can provide upper bounds on the
test error rate of a learnt model, they are often too conservative
and do not capture a realistic error rate.

Detecting out-of-distribution (OOD) [16, 23] samples has gained
widespread popularity in the recent years to counter the fragility
of DNNs when operating in unknown environments. However, it
could not been extended easily to a CPS setting, and can have high
false alarm rates. The main contribution of this paper is a novel

technique to detect anomalous inputs in real time. The idea is to
build a representation system which captures the essence of in-
distribution data, using only a few samples from the training set.
These prototype samples are referred to as memories in our paper.
We use well established tools from computer vision literature and
combine it with kernel density estimation techniques to compute
the probability density estimates. In order to improve the robustness
for detecting distribution shifts, we implement a sliding window
based technique to flag an alarm.

Additionally, our technique can provide interpretability using
samples from the data set. A widely accepted mode of explanation
for machine learning systems, is in the form of comparisons drawn
between a test sample and a witness from the data set [10, 30]. In
a similar fashion we can provide explanations, when a sample is
detected either as in-distribution or out-of-distribution. In our ex-
periments we consider two broad sets of case studies, one involving
video inputs from camera, and the other involving LiDAR inputs.
For video inputs the application is an advanced emergency braking
system , and an end-to-end self-driving system introduced in [9].
We consider different sources of distribution shift such as a shift
from the training weather (low precipitation), lighting conditions
(day), leading obstacles (car), and clean (or non-adversarial) images.
In the context of LiDAR inputs such anomalous inputs come in the
form of light rays getting reflected by different surfaces in a real
setting. This pushes the network outside the trusted zone causing
deviation from safe behavior. In both cases, we were able to achieve
good OOD detection, which could save the system from a crash.

2 RELATED WORK

OOD detection has been extensively studied in the classification
problem settings for standalone learning enabled components [16,
19, 20, 23, 32, 36]. These approaches either use differences in the
geometrical or statistical properties of the in-distribution and OOD
data for detecting a shift in the model behavior. OOD detection
through envelopes, in CPS with low-dimensional input space sen-
sors such as GPS has been studied in the past [33]. Recently, there
has been a growing interest for detection of OODs in closed-loop
CPS using high-dimensional sensors like camera [9, 13, 27, 31].

Cai and Koutsoukos [9] propose using reconstruction error by
variational autoencoder (VAE) on the input image (or frame) as a
non-conformity score in the inductive conformal anomaly detection
(ICAD) framework [21] for detection of OOD frames. They further
apply martingale test [34] along with the cumulative sum procedure
(CUSUM) [6] with a window of the past and present predictions
for robust detection of OOD traces. Ramakrishna et al. [27] use
KL-divergence between the disentangled feature space of f—VAE
and normal distribution as the non-conformity score in ICAD for
OOD detection of a single frame. They also use martingale test
along with CUSUM for detecting OOD traces. Similarly, Sundar
et al. [31] also propose using KL-divergence in the latent space of
P—VAE for detection of OOD frames. Feng et al. [13] propose using
KL-divergence in the horizontal and vertical latent sub-space of
the 3D convolutional VAE from the specified prior for detection of
OOD traces. The input to 3D convolutional VAE is a sequence of
frames (or the trace to be detected).

226

To the best of our knowledge, all the existing approaches for
OOD detection in CPS with LEC are tied to VAE. Either recon-
struction error from VAE on the input image or KL-divergence in
the latent space of the VAE is used for OOD detection in these
approaches. Training VAEs often requires careful manual tuning
[5], and the quality of the training decides the efficacy of the down-
stream processes. Here we set ourselves apart by not having to
depend on a well functioning VAE. Also, unlike our approach none
of the existing approaches except for Ramakrishna et al. [27]’s ap-
proach provides interpretability on the source of OOD-ness of the
input. We show that our approach can be extended to the case of
LiDAR inputs as well without any conceptual modification.

3 MOTIVATION AND PROBLEM STATEMENT

(a) Car doesn’t detect biker,
leading to a crash

(b) Frame detected as OOD, the
region in red shows the pixels
responsible for deviation

Figure 1: Deviation from training data leads to a crash with
biker as front object. Training data only had cars as front
objects. Our proposed method could detect deviations from
in-distribution data for detecting such OODs.

As mentioned before, learning enabled components have the
ability to bolster the level of autonomy a cyber-physical system has
to offer. Detection of OOD is one of the ways we can safe-guard
systems from unwarranted behavior. In Figure 1a we show an ex-
ample of a setting where the car is running an advanced emergency
braking system controller. The controller uses the system states
and the video feeds from the camera to sense the positions of the
closest leading object on the road. The controller’s job is to auto-
matically brake the car if it crosses a certain distance threshold
from the leading vehicle. What we observe is that because during
training the DNN experienced just cars, it never learnt to react to
bikes on the road. What happens next, is that the DNN completely
misjudges a bike in the video, and ends up causing an accident.
What we would like to target here is to propose a method to detect
such a shift in distribution.

Problem Formulation : In this paper, we would like to solve
the problem of being able to alarm the system about distribution
shifts in real-time. It is extremely challenging to sample high-
dimensional inputs space in an exhaustive fashion. This would
mean careful analysis of the training time in-distribution data to
come up with an effective detector which can act in real time.
Additionally, it is desirable that such an alarm system produces
interpretable behavior. It is often the case that DNNs due to their
black-box nature do not offer an explanation to their decisions. Here,
we would like to take up the challenge of being able to point to an

explanation when samples are in-distribution or out-of-distribution.
We demonstrate this in Figure 1b, the system not only flags the
image with the biker ahead as OOD, but selects a set of pixels de-
marcating the biker to communicate as to why it decided to label it
as an OOD.

4 PRELIMINARIES
4.1 Clustering with Medoids

Similar to k-means clustering, we wish to form partitions of the
data into distinct groups or clusters. Clustering with k-means is a
well known tool but has its challenges when used in the context of
images. An issue with k-means is that it can potentially produce
virtual cluster centers which are absent in the original data set.
This is essentially because a simple mean of two (or more) images
might not correspond to a real image. The other issue being that
it is often susceptible to outliers in the data. Hence, we restrict
ourselves to partitioning around points which are present in the
data. The algorithm which achieves this is PAM [3], which is short
for Partitioning Around Medoids. Intuitively the algorithm tries to
search for centrally located objects called medoids, and are used to
define the cluster boundaries in a nearest medoid sense.

Let us assume that the set S is equipped with a distance metric
D : (s1,82) = R, fors; € S and n = |S|. Given a data set S, PAM
tries to select a set of r medoids - M, : {mq, my, ..., m;} such that
the following cost is minimized,

n
Cost(M,) = min D(mj,s;) (1)
r ;m,—EMr S

We assume that the inner minimization is always possible, and

we are able to break ties arbitrarily among distinct members of the
set S.
Algorithms : The challenge with PAM is that the naive implemen-
tation has a runtime complexity of O(n®r?) [28]. Even though there
exists faster variants, but is still largely inaccessible for applications
at the scale of image data sets generated from autonomous driving
scenarios. In order to circumvent this challenge we introduce a
variant of the Clustering Large Applications based upon Random-
ized Search (CLARANS) [25] algorithm in Section 5.2. It combines
randomized global search with local cluster improvement method
to improve the quality of clustering. The medoids identified by
minimizing the objective in Equation 1, are referred to as memories
from here on.

4.2 Kernel Density Estimation

Kernel Density Estimation (KDE) is a non-parametric way to es-
timate the probability density function of a random variable. Let
us assume that the set S = (s1,2,...,5p) is independently and
identically drawn from a fixed but unknown distribution f, and
we wish to estimate the probability density for an element x. This
according to kernel density estimation methods it is given by the
following equation,

== 3 Kl —si) @)
i=1

227

Where K is the Kernel function, and A is a smoothing term. The
kernel function measures the influence of sample s; on the query
point x. The choice of kernel, smoothing parameter, and distance
function influences the quality of estimates that one obtains from
this method. We refer the reader to [29] for further details on KDE.

4.2.1 Abstract Kernel Centers. Standard KDE is often difficult to es-
timate at runtime. Placing demands on both memory requirements
and computational efficiency. To handle this, we use the concept of
abstract kernel centers introduced in [26]. Instead of using the full
data set, the idea is to use a smaller representative set to estimate
the probability density. In order to obtain useful density estimates,
the first step is to identify centrally located data points called kernel
centers, which are able to capture the distribution closely. Let us
denote these kernel centers with the set M, : (my,my,...,m;).
The density estimates are computed using the k-nearest-neighbors
(kNN) from the test point x in the set M, Since, the kernel centers
are identified using the partitioning algorithm mentioned above,
we can alternately call it the k nearest memories as well. Suppose
this set of k nearest memories is My C M,. The weighted kernel
density estimate [15] is given by,

k
fale) = D wikn(Ix = mj)) 3

Jj=1

points with closest memory as m;

wj =
7™ # points which have closest memory in M,

Thus, the data partitions built around the memories can now be
used to compute the density estimation function f:4 In this paper
we use the Epanechnikov kernel. Since, this kernel permits us to
demarcate a boundary around the center beyond which the distance
function stops being meaningful. The bandwidth parameter h can
be chosen depending on the application. Note that, for us the kernel
centers are not abstract as compared to [26], but in our case we
keep the terminology to be coherent with the original idea.

4.3 Structural Similarity Index Metric

A fundamental challenge in dealing with images is to capture human
perceptual similarity with a mathematically meaningful distance
function. Techniques like KDE necessitate the use of a distance met-
ric to compute the probability density. To the best of our knowledge
the right candidate for this purpose is the structural similarity index
metric (SSIM). This was first introduced in [35], and has gained
widespread popularity. It computes the degree to which two images
are similar to a human eye, and was used to compute the degra-
dation quality of the image. SSIM metric is designed to capture
statistical similarity between images. This makes our system more
robust to random noise in comparison to vanilla DNNG. It also has
been used to capture image similarity for adversarial sticker attacks
as well [22].

We state the original SSIM distance function next. Assume we
have two images A1 € RN and A € RN This allows us to compute
three terms : a luminance distortion term, a contrast distortion term,
and a correlation term.

2A1A7 +¢1

c 2

(A1, Ag) = — 2L
Aq +A2 +c1

©

2SA13A2 +ca

c(A1,A2) = 5—— ®)
S, + Sh, +c2
SAL,A, T €3
s(A1,A) = ——F—— (6)
SA;SA, T C3

Where A1, Ay, 5/2\1, siz and sa, A, are the local mean, local vari-
ance, and local covariance between A7 and Aj. The scalar terms
c1, ¢2, c3 aim to capture the saturation effects of the visual system,
and provide numerical stability. The terms computed above cap-
ture the local difference in some chosen window in the image. The
combination across all such local windows gives the SSIM index.
With ¢3 = ¢3/2, SSIM index can be written in the following form :

SSIM(A1, A2) = S1(A1, A2)S2(A1, A2)
S1(A1,A2) = I(A1,A2)
S2(A1,A2) = c(A1,A2)s(A1, A2)

™)

SSIM can be implemented efficiently in tools like Pytorch [1] and
accelerated using a GPU. This permits a scalable and efficient imple-
mentation inside our OOD detection framework. On the downside,
SSIM does not have the mathematical properties to be a distance
metric. But with some modifications it can be turned into one. The
details of this modification and the associated proof can be found in
[8]. We use the modified SSIM to define a distance metric D (A1, Az)
in this paper and hyperparameters (e.g. c1, ¢, c3) are set same as in
[1]. The use of a proper distance metric for images allows us to com-
pute the probability density function, and subsequently distribution
shifts in a more meaningful way.

5 METHODOLOGY
5.1 Initializing the Memory Set

Algorithm 1 Generate Initial Memories

Input: DatasetS: {s1,52,...,5n}
Output: Memories M : {m1, mp, ms, ..
Parameter : Distance Threshold d

1. M= gb

2: RejectedSet =S

3: while RejectedSet # ¢ do

4 sm = pickRandomPoint(RejectedSet)
for s; € RejectedSet do

if D(sm,si) < d then
RejectedSet = RejectedSet \s;

M=MU {s;,}
: return M

L my}

5
6
7:
8
9

The intuition here is that high dimensional data like images, and
LiDAR scans generated from a real world setting, cluster well in
practice. Hence, the first step is to identify these broad categories in
a quick and efficient fashion. One of the questions however is that
the number of partitions to be made is often not known apriori. But
drawing on the intuitions from an image distance metric, only small
enough distances have perceptual meaning. Thus, the intuition here
is to populate the input space densely enough with memories such
that, every training point is within a threshold distance d of some
memory. Algorithm 1 summarizes our approach. We pick a data

228

point at random, and compute the distance score across all the
samples in the currently RejectedSet in a single linear pass. The data
points which are similar enough are admitted as being close to a
memory, and are not considered as candidates for new memories in
the next iteration. We continue this process until all data points are
admitted into the set of memories M. This allows the subsequent
algorithms to have a warm start. Algorithm 1 always terminates.
This is because the RejectedSet decreases by at least 1 at each step.
In the worst case we have as many memories as the number of data
points. But in most practical datasets this is not the case.

5.2 Learning Memories

To restate, we are given a dataset S, with n elements, and we wish to
compute an r size memory set M = {my, ma, ..., m,} with certain
desirable properties. The search for memories can be simplified
by viewing this as a search through a graph G [25] with subsets
S, C S as its nodes. Each subset of size r defines a choice for the
memory set M.

Definition 5.1 (Memory Search Graph G). The undirected graph
G is represented by an ordered pair (V, E). The set of nodes V is
the collection of subsets of original dataset S, C S. Anedgee € E
exists between two nodes S} and S? iff |S} N S?| = r — 1. That is,
they differ by at most one memory.

Each node of the graph has an associated cost given by Equation
1. Hence starting from some node it is possible to visit neighboring
nodes with decreasing costs in the search process. What we present
next is a combination of Global resets and Local minimization to
approximate the optimal choice.

Algorithm 2 Generate Memories

Input: S: {s1,s2,...,5n}
Output: Memories M : {m1,ma, ms,...,my}
Parameter : (Max Global Steps : Z; , Max Local Steps : Z,
Distance Threshold d)
1: BestCost = co
2 for1<g<Z;do
Memory Set M = GeneratelnitialMemories(S, d)

4 v = FindNode(M, G)

5 G = CreateGraph(S, |M|) > The memory search graph
6: CurrentCost = ComputeCost(v)

7 for1 <1< Zdo

8: o” = PickNeighbor(v, G)

9: NewCost = ComputeCost(v”)

10: if NewCost < CurrentCost then
11: R

12: CurrentCost « NewCost

13: if CurrentCost < BestCost then

14: BestCost = CurrentCost

15: return M

Algorithm 2 picks the eventual memories used in OOD detection.
Similar to standard CLARANS algorithm each node in G has r(n—r)
neighbors, where r is the number of memories. Which can be quite
large given the scale of modern machine learning data sets with
large n. What we do here is that start with a reasonable choice

In-distribution

b

”

Memorization

o—X

Out-of-distribution

Figure 2: This figure summarizes our approach. The memorization phase of the algorithm picks prototypical samples as memo-
ries. At run-time the algorithm computes kernel density estimates to assess the likelihood of a new data being in-distribution.

for initial node in G, and greedily look for local improvements
for a fixed number of iterations. The global search starts by using
Algorithm 1, in order to generate the initial set of memories as
node v in G. Notice that we do not choose the number of memories
apriori but instead gets picked as a consequence of distance score d.
The partitioning cost for the choice of memories is computed by
the function ComputeCost which evaluates Equation 1. Note this
can be expensive since it needs a total of r X n distance computation
operations. The local search (Lines 7 — 12) implements a greedy
strategy to pick the neighborhood node which produces a descent.
The outer loop of the algorithm keeps track of the node with the
minimum cost for each such reset produced in line 3. Algorithm 2
trivially terminates, since each search proceeds for a fixed number
of steps.

Definition 5.2 (Memory System Mg). A memory system is a
collection of pairs Mg = {(m1,q1), (m2,q2), ..., (mr,qr)}, where,

qi = |Qmi|
Om,; = U]I(m,- = argminD (s, m;)) ®)
seS i

Thus the memory system Mg keeps track of the number of
points for every memory which belongs to the cluster defined by it.
The OOD detection algorithm which follows uses these memories
as abstract kernel centers in Equation 3 to compute the probability
density at a test point.

5.3 Scaling Memory Search

In order to compute the probability density estimates given by
Equation 3, we need to do a linear time search through the current
set of memories in Mg. Even though the number of memories
produced in Algorithm 2 might be small enough compared to the
full data set, S a search through the list of memories might still be
challenging. To remedy this potential drawback we deploy a simple
hashing technique first introduced in [14] . The distance metric
D discussed in Section 4.3, was a proper distance metric, which
implies that the distance function respects triangle inequality. In
what follows, we describe a possible avenue to speed up the search

229

for the k nearest memories. The intuition being that for sufficiently
different memories computing a single distance pair can be used to
reject other memories from further consideration.

We are interested in computing the nearest neighbor, that is
k = 1 in the set Mg for a test point x;. Assume that we wish to
compute the distance between a test point x;, and some memory m;
and the distance D (x;, m;) is known. Then in the triangle formed
by the triplet (m;, x¢, mj), the following two equations are true:

D(mj, x¢) — D(mj,mj) < D(mj, x¢)
and
D(mj,mj) — D(mj, x¢) < D(mj, x¢)

Meaning that D(m’, x;) is lower bounded by : |D(m;, mj) —
D(mj, xt)|. Since, if we are interested in memories which are within
a certain threshold (say h) of m’, we do not actually need to compute
the distance D (m’, x;) if the following equation holds True.

1D (mi,mj) — D(mi,xt)| > h ©)

For each memory m;, we can pre-compute a look-up table for
the inter-memory distance Q : {(mj, D(m;,mj))|1 < j <1, j # i}.
This can lead to reduction in the search space in practice by pruning
out memories from further consideration each time the distance of a
memory from x; gets measured. For k > 1, similar reasoning holds.
The only difference being that, in this case the search algorithm
tracks the distance of the k*"-memory furthest from the test point.

5.4 Detecting Distribution Shifts

To summarize, we know how to go from the set of training data S
to the set of memories Mg. This happens through a smart initial-
ization of the set of memories (Algorithm 1), followed by a further
refinement using a medoid based partitioning technique discussed
in Algorithm 2. Additionally, to handle any potential slow downs,
we briefly discuss how one can use the inter-memory distance to
prune out large parts of the search space. Thus allowing the system
to scale to larger memory systems. We are now at a stage to discuss
our runtime algorithm for detecting distribution shifts.

Algorithm 3 Detect Distribution Shifts

Input: Time Series Data x;, Memory System Mg

Output: Distribution Shift Flags 7+

Parameter : Window Threshold - 7, Window - W, probability
threshold - «

1: Frame = ¢

2. for1 <t < codo

3 Flagoop = DetectOOD(Mg, x¢, @)

4 Frame « UpdateFrame(Flagoop, W, Frame)

5 Fi < CountOOD(Frame) > 7

6: return 7;

In practical scenarios, detecting a shift in distribution needs a
robust mechanism. We achieve this using a sliding window based
implementation to track the number of out of distribution sam-
ples it sees. Algorithm 3 summarizes our approach. For each input
sample at runtime, the function DetectOOD simply computes the
probability estimates for a test point x;, from a memory system
M using Equation 3. Additionally it compares this probability
density with a threshold « to Flag a sample as OOD. The function
UpdateFrame keeps track of the OOD Flags in the last W frames.
The algorithm outputs a distribution shift once this count cross
threshold 7.

6 CASE STUDY 1 - SIMULATED
AUTONOMOUS DRIVING SCENARIO USING
CARLA

System Description: Here we consider an advanced emergency
braking system (AEBS) from [9]. The system overview is shown in
Figure 11 of A.2.It is a closed loop system composed of a perception
based LEC, which estimates distance of the object ahead of the ego
vehicle. This distance combined with the velocity is the input to the
braking controller. The objective of the AEBS system is to brake the
ego vehicle to avoid a collision. The controller is trained using stan-
dard reinforcement learning on in-distribution data. The distance
estimating LEC is trained using supervised learning techniques. For
details about the model architecture and training hypeparameters,
please refer to [9].

In-distribution data: We evaluate our approach on OOD detection
with the dataset provided in [9]. The dataset is generated using
CARLA [11], an open-source simulator for autonomous driving.
The in-distribution traces consists of daytime frames with slight
rain (i.e. precipitation level in {0, 1,...10}), and with cars as the
front object. The sampling rate is 20Hz [9].

Types of OODs: We evaluate our approach on the following four
different sources of OOD-ness in the traces.

(1) OOD-ness due to weather change from slight rain in the in-
distribution traces to heavy rain (precipitation level greater
than or equal to 20) and foggy traces in OOD traces.

(2) OOD-ness due to change in the lighting conditions from day
in the in-distribution traces to night in the OOD traces.

230

(3) OOD-ness due to change in the front obstacles from cars in
the in-distribution traces to bikes in the OOD traces.

(4) OOD-ness due to perturbation of in-distribution frames with
adversarial attack.

Evaluation metrics: We refer to OOD traces as positive and in-
distribution as negative. We report false positive (FP) as the number
of in-distribution traces that were falsely detected as OOD. False
negatives (FN) are the number of OOD traces falsely detected as in-
distribution. We also report an average delay in the OOD detection
as the number of windows required to detect the start of the OOD-
ness in the traces averaged over the total number of detected OOD
traces. We conduct all our experiments in this case study on a single
GPU (NVIDIA GeForce RTX 2080 Ti).

6.1 OOD-ness due to change in weather and
lighting

Here we generate OOD traces in which OOD-ness gradually in-
creases with time. We increase the precipitation (or fog) parameter
gradually in sequential frames of a trace to generate heavy rain (or
foggy) OOD trace. Similarly, we gradually increase the darkness
parameter to generate night time OOD traces. Examples of these
OOD traces are shown in Appendix.

6.1.1 Results on OOD detection for heavy rain. We define frames
with precipitation level greater than 20 as OODs due to heavy rain.
There are 4488 in-distribution images with precipitation parame-
ter from 0 to 10. The test dataset contains 26 in-distribution and
74 out-of-distribution traces. Our approach involves a few hyper-
parameters like window length W, threshold count 7, probability
threshold a, and distance threshold d. In the current experiments,
we choose the hyperparameters empirically. In practice, the desired
sensitivity of the system would dictate the parameter choice. We
report some of the top performers in Table 1. A more exhaustive
study has been reported in Figure 10 of the Appendix.

W, t,a,d) | Mem | FP FN Avg Exec
Delay | Time (ms)
(5,5,0.92,0.2) 145 0/26 | 2/74 0.42 21.39
(10,5,0.92,0.2) 145 0/26 | 2/74 0.04 19.80
(5,50.78,03) | 36 | 1/26 | /74 | 0 6.26
(10,5,0.78,0.3) 36 1/26 | 0/74 0 5.88

Table 1: Results on heavy rain traces as OODs. Mem: Total
number of memories, Exec time: the time for OOD detection
on each frame (calculated on 3 random traces)

The experimental results shows that Algorithm 2 efficiently com-
pressed the training data (4488— 145/36) into memories and can
perform OOD detection under autonomous driving setting. With
the parameters as shown in the table, the results in Table 1 indicate
that our OOD detector could successfully detect traces with heavy
rain precipitation and without delay. Performance of the VAE based
OOD detector [9] is comparable to ours in terms of false positive
and false negative rates but their average detection delay (as re-
ported) is higher than ours. We also report the average execution

‘ ‘ Night traces ‘ Foggy traces ‘
W,z,a,d) | FN | AvgDelay | FN | Avg Delay
(5,5,0.92,0.2) | 0/27 0.15 0/27 5
(10,5,0.92,0.2) | 0/27 0.15 0/27 10
(5,5,0.78,0.3) | 0/27 1.89 0/27 9
(10,5,0.78,0.3) | 0/27 0.15 0/27 11.15

Table 2: Results on night and foggy OOD traces.

times for detecting an OOD in Table 1. We observe that it is well
within the the sampling period of the system. Implying that Algo-
rithm 3 is amenable to real-time OOD detection. Also, as expected,
reducing d in Algorithm 1 results in higher memories. But results
in slower execution times with better false positive rates.

6.1.2 Results on detection for foggy and night OODs. Table 2 shows
results of OOD detection on foggy and night OODs. Here we con-
sider 27 OOD traces for both settings. With the same hyperparam-
eters as in the heavy rain OOD traces, our detector is able to detect
all OOD traces.

6.2 OOD-ness due to change in front obstacles

One of the motivations for building an OOD framework is that it
is often the case that unobserved data during training may lead to
crash. The perception LEC only saw cars as front obstacles during
its training. At test time, ego vehicle is able to stop at a safe distance
from the front obstacle if the obstacle is a car (Figure 3(a)). But if we
change the front obstacle from car to bike then it leads to a crash
(Figure 3(b)). We generated 27 OOD traces with different positions
and types of bikes as front obstacles and all of these traces lead to
a crash with the biker.

Sl

-~

(a) Ego vehicle stopping at a
safe distance from the lead car
at test time

(b) Shift from training distri-
bution with a biker as front ob-
stacle leads to a crash at test

time

Figure 3: Illustration of safety hazard, i.e. collision due to
shift in the training distribution

6.2.1 Results. We define the OOD frame starting from time-step 20
in the traces (when the biker becomes visible to human). We use the
same set of hyperparameters in Section 6.1. As shown in Table 3,
our OOD detector could successfully alarm the system before a
collision happens for all the 27 OOD traces for two hyperparameter
settings. For the other two settings, we could not detect 2 out of 27
OOD traces.

231

W,7,a,d) | FP | FN | Avg Delay
(5,5,0.92,0.2) | 0/26 | 0/27 0
(10,5,0.92,0.2) | 0/26 | 0/27 0
(5,5,0.78,0.3) 1/26 | 2/27 0.96
(10,5,0.78,0.3) | 1/26 | 2/27 0

Table 3: Results on OOD traces with bikers.

(b) Test image (adversarial
sticker on the road)

(a) Input image (clean)

Figure 4: OOD-ness due to adversarial road perturbations [9]

6.3 OOD-ness due to perturbations by
adversarial attack

In these experiments, we evaluate our approach for an adversarial
attack detection. Again, we consider the same attack of painting
lines on the roads as considered in [9]. This attack was introduced
by Boloor et al. [7] and shown that it causes the car to follow the
painted lines leading to a crash.

We use the same attacked dataset from [9] which focuses on
Right Corner Driving case. We run our OOD detector to check
whether our detector could predict crash beforehand. There are
total 105 traces for tests and 69 out of them ends with a crash. Note
that an attack prediction is only useful as long as it happens before
the actual crash. We forecast a crash when a shift in distribution
occurs. Let us call this tp., time when crash prediction is set to
True. Also, let us denote the time of actual crash by t4.. A crash is
successfully predicted when) < t5c. We report our performance
on the following metrics in the context of crash:

h predicted full
True Prediction Rate (TPR) = Crash predicied successuTy

crash happens
no crash happens

False Prediction Rate (FPR) =
alse Prediction Rate (FPR) # crash predicted

h h ithout f t
Missed Prediction Rate (MPR) = crash nappens witiout Jorecas

crash happens
(10)
In addition, we record the average forecast time as the average
value of tac — tpc, for the correctly predicted cases, and it is reported
in the number of frames. We report these numbers in Table 4
Here we also report the top performance in Table 4 using selected
hyperparameters according to the Figure 5. These results show that
our methodology is also successful in adversarial trace detection at
least 5 frames before the crash.

6.3.1 OOD detection reasoning using SSIM. As mentioned before,
an advantage of our framework is that it is interpretable to a human.
For in-distribution data, it is simply the closest memory the test

100

—
— 2
—d:
— d:
—d:
s
g
—

0.5 TAW: 5/5
0.5 TAW: 5/10
0.5T/W: 7/10
05TW:910
06 TM:S/5 /)

0.6 T/W: 5/10
0.6 T/W: 7/10
0.6 TAW: 9/10

80

60 — & 05TW: S5
~—— d: 0.5 T/W: 5/10
— & 0.5TW: 7/10
— d: 0.5T/W: 9/10
— d: 06TIW:5/5
— d: 0.6 T/W: 5/10

d: 0.6 TIW: 7/10
—— d: 0.6 T/W: 9/10

0.1 0.2 0.3 0.4 0.5
Probability Density Threshold

40

20

True Prediction Rate

0.1 0.2 0.3 0.4 0.5
Probability Density Threshold

(a) True prediction rate (b) False prediction rate

Figure 5: Out-of-distribution traces detection results for de-
tecting adversarial attack on the road with different hyper-
parameters

(W, 7, a,d) | Mem | TPR | FPR | MPR | Avg Forecast
(5,5,0.05,0.5) 243 100.0 7.2 0.0 5.08
(5,5,0.1,0.5) 243 100.0 8.6 0.0 14.78
(5,5,0.2,0.6) 114 100.0 | 7.2 0.0 4.89
(5,5,0.25,0.6) 114 100.0 | 12.3 0.0 16.2

Table 4: Results on adversarial sticker detection.

frame matches to. This happens by design due to the choice of the
distance metric 9. A more interesting case arises when a test frame
is recognized as an OOD. Note that a simple way to frame the reason
for an OOD would be to say - it is not similar enough to anything
in the memory system. But, here we go a step further and try to
provide pixel level reasoning. This can be mined from the closest
memory to an OOD sample, using modified D to attribute pixels
responsible for the dissimilarity. Additionally, in case of scattered
highlighted pixels (indicating that the test input is drawn from a
distribution that is very different from the training distribution),
our framework refrains from pixel attribution, and simply raises
an alarm.

Heatmap generation: Notice in Section 4.3, the SSIM value is
a mean of the dissimilarity scores for all pixels. For some pairs of
images it is possible that difference is high due to a high concen-
tration of dissimilarity scores on a few pixels. Thus it is possible to
filter out these pixels if the distance is above a certain threshold in
its window. We attribute these pixels responsible for higher SSIM
value and highlight them in red for providing reasoning about OOD
detection. The details about the heatmap generation algorithm are
provided in A 4.

We demonstrate this in Figure 1b and Figure 6b. In 1b, the unrec-
ognized biker is highlighted in this OOD frame. In the adversarial
sticker experiment (7b), we can also notice that the highlighted
area contains the adversarial stickers on the road.

7 CASE STUDY 2 - DRIVING WITH LIDAR
7.1 System Description

LiDAR forms a fundamental component for a large section of self-
driving car hardware, and is a reliable fall back option when it
comes to situations where camera is not enough. LiDAR simply
computes the distance of the closest obstacle in specific angles

232

(a) Match the input test im-
age with memories in training
data

(b) Highlight the least similar
part compared to the memory

Figure 6: OOD detection reasoning for sticker detection (The
test image is Figure 4b)

for a fixed range. Even though the nature of the input is of much
simpler nature compared to a camera, NNs with LiDAR inputs can
suffer from similar behavior when exposed to OOD scenarios. In
this section we introduce the case study involving an autonomous
car, discussed in [17]. Figure 8 illustrates the arrangement of the
functional blocks. The system involves a car from the F1/10 Au-
tonomous Racing Competition [4], navigating square tracks using
only LiDAR measurements to judge obstacles and make general ori-
entation decisions. The LiDAR measurements are sent to a neural
network (NN) controller, which issues steering controls. It oper-
ates under a constant throttle setting for reasons discussed in [17].
The system state such as position and orientation, along with the
surrounding environment determines the nature of scan that the
LiDAR receives. The NN controller is trained using standard deep
reinforcement learning techniques like deep-deterministic policy
gradient (DDPG), and Twin Delay DDPG (TD3). The LiDAR scan
obtained from the system has 1081 rays ranging from —135 degrees
to 135 degrees, with 0 degrees being the heading of the car. Most
of the controllers trained in [17] acted on a sub-sampled set of 21
LiDAR rays, which produced satisfactory performance in simula-
tion. This sets the number of LiDAR rays for the experiments in
this paper as well.

7.2 Simulation vs Reality

As we saw before, one of the challenges when it comes to deploying
learning-enabled cyber-physical systems in the real world is the
unexpected behavior caused by the sim2real gap. Even though
the recent literature [12, 18] has seen an explosion of interest in
verifying closed-loop systems with NN controllers, verification
results make sense as long as the assumptions on the environment
hold. The NN controllers for this benchmark were trained in a
virtual environment with exactly the same racing track, and obstacle
setting. Simulations are a useful and rich source of training data
when it comes to deep reinforcement learning approaches. However,
the downside is that the aberrations arising in the real world can
cause the system to go berserk. In the current setting this aberration
comes from the presence of reflective surfaces as shown in Figure 7.
This introduces a large source of uncertainty. A LIDAR ray reflected
away from a highly reflective surface, takes longer time to return
to the on board detectors. Which ends up giving a false impression
of no obstacle in that angle. This is hard to model since surface

LiDAR scan — no reflection

LiDAR scan — with reflection

-
.
.
o
e

Figure 7: Left : We show a setting where the car should take a right turn on an L-shaped track. Middle : The dots show the
distance estimates as provided by the sensor. It matches well with the position of the obstacles. Right : Due to reflection from
the left wall, it gives a false impression of no obstacle to the left of the car when deployed in the real world.

States

System : F1/10
Racing Car

Controls

LiDAR scan

Learning Enabled Component

Figure 8: Functional blocks in the F1/10 Autonomous Car.

reflectivity is largely unknown. In Figure 7, this happens at the
left corner of L-shaped track. This creates a false impression of no
obstacle to the left of the car. The ground-truth is hard to guess
just from the LiDAR inputs. But a crash could have been avoided if
the car had switched to a safe mode, or raised an alarm ahead of
time. In this case study, we focus on the ability to detect such OOD
scenarios. The right course of action after detecting such a shift is
context dependent and is beyond the scope of this work.

7.3 Predicting Crash

The authors in [17] report the presence of reflections as being
correlated with an actual crash. Additionally, they show that getting
rid of the reflections artificially can lead to safer outcomes. Hence,
our hypothesis here is that, crash could be due to the potential
deviation from in-distribution data, which is from simulations and
does not contain any reflections. The intuition being, if an NN
controller has experienced reflections during training time, then it
would have known the right course of action. The LiDAR scans with
reflected rays could therefore be treated as out-of-distribution data.
Notice that in this case study, there is no clear distinction when
things start becoming OOD. What we have instead is real crash data.
We have access to the time-stamped LiDAR scan log for each such
run of the system along the L-shaped trajectory in Figure 7. The data
set S here, is a set of trajectories {T1, Tp, . . ., T, }. Each trajectory
is a list of time-stamped LiDAR scans, T; = {(x1, p1), (x2, p2), ... },
where x; € R9 is the LiDAR scan at time i, and p; is a flag variable
for crash. What we wish to test here is whether a detector for
distribution shift is a good predictor for a future crash.

Results In order to simulate a crash prediction setting, we run
our OOD detector for each LiDAR scan in the trace T; starting
from i = 0. The in-distribution data here is obtained by running

233

the simulator for the 12 different controllers. These include LiDAR
scans over the length of 70 time steps. Which is approximately
the number of time-steps the system takes to reach from one end
of the track to the other. Note that the controllers were trained
well enough during simulation that none of the traces show a
crash. In this experiment, we create a 2-dimensional data array by
repeating the 1-dimensional measurement. The distance metric for
OOD detection is the same SSIM metric applied to a LIDAR scan.
The detection of distribution shift is implemented using Algorithm
3. We report our performance on the same metrics as mentioned
Equation 10, in Table 5 for different choices of the parameters. In
the best case we were able to predict 82.1% of the crashes with 22.7%
false positive rate and ~ 9 time steps ahead. The missed predictions
rate ~ 10%.

W, 1, o, d) TPR | FPR | MPR | Avg Forecast
(40,15,0.05,0.3) | 80.36 | 19.35 | 10.71 9.69
(40,17,0.1,0.3) | 82.14 | 22.73 8.93 9.8
(40,11,0.05,0.2) | 80.36 | 22.22 12.5 12.67
(40,15,0.1,0.2) 80.36 | 21.88 | 10.71 104

Table 5: Results for LiDAR data

— d:02alpha 0.05
d:0.2 alpha 0.1
— d:02alpha 0.15
— d:02alpha 022
— d:02alpha 0.25
— d:02alpha 0.3
& d: 0.3 alpha 0.05
O\ — d:0.3alpha 0.1
d:0.3 alpha 0.15

100

~N
(=]

-]
o

80

— d:02alpha 0.05
:02alpha 0.1

o
=]

60

— d:02alpha 015
— d:02alpha 02
— d:02alpha0.25
— d:02alpha 03

d: 0.3 alpha 0.05
— d:03alpha0.1

d: 03 alpha 0.15

=]

d: 0.3 alpha 0.2
— d:03alpha 0.25
d: 03 alpha 03

40

N W B
=]

20

False Prediction Rate
(=]

True Prediction Rate

— d:03alpha0.2
— d:03alpha0.25
d:0.3 alpha 0.3

=
o

5 13 21 29

Threshold/Window

5 13 21 29 37

Threshold/Window

(a) True prediction rate vs(b) False prediction rate vs
threshold (W = 40) threshold (W = 40)

Figure 9: OOD detection results for detecting LiDAR crash
with different hyperparameters

8 CONCLUSION

OOD detection can be of utmost importance in ensuring safety
of cyber-physical systems equipped with learning enabled com-
ponents. What we have achieved to demonstrate in this paper, is

that state of the art results in OOD detection for self-driving car
applications, can go hand in hand with overall interpretablity, with-
out compromising on execution times. In the future, we would like
to extend this technique on applications beyond self-driving cars
where anomalous inputs are challenging to handle.

9 ACKNOWLEDGEMENT

This work was supported in part by ARO W911NF-20-1-0080, AFRL
and DARPA FA8750-18-C-0090, NSF-1915398, NSF-2125561 and
SRC Task 2894.001. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the Air Force Research
Laboratory (AFRL), the Army Research Office (ARO), the Defense
Advanced Research Projects Agency (DARPA), or the Department
of Defense, or the United States Government.

Additionally, we would like to thank Radoslav Ivanov, postdoc-
toral scholar from the University of Pennsylvania for discussions
on the LiDAR experiments and sharing the data. We also especially
appreciate Feiyang Cai, PhD candidate from Vanderbilt University
for sharing the CARLA dataset and simulation code.

REFERENCES

[1] [n.d.]. pytorch-msssim. https://pypi.org/project/pytorch-msssim/

[2] [n.d.]. Toyota Safety Sense. https://www.toyota.com/safety-sense/

[3] 1990. Partitioning Around Medoids (Program PAM). Chap-
ter 2, 68-125. https://doi.org/10.1002/9780470316801.ch2
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470316801.ch2

2021. FITENTH. https://fltenth.org

Alexander A. Alemi, Ben Poole, lan Fischer, Joshua V. Dillon, Rif A. Saurous, and
Kevin Murphy. 2017. An Information-Theoretic Analysis of Deep Latent-Variable
Models. CoRR abs/1711.00464 (2017). arXiv:1711.00464 http://arxiv.org/abs/1711.
00464

Michele Basseville, Igor V Nikiforov, et al. 1993. Detection of abrupt changes:
theory and application. Vol. 104. prentice Hall Englewood Cliffs.

Adith Boloor, Karthik Garimella, Xin He, Christopher Gill, Yevgeniy Vorobey-
chik, and Xuan Zhang. 2020. Attacking vision-based perception in end-to-end
autonomous driving models. Journal of Systems Architecture 110 (2020), 101766.
https://doi.org/10.1016/j.sysarc.2020.101766

Dominique Brunet, Edward R. Vrscay, and Zhou Wang. 2012. On the Mathemat-
ical Properties of the Structural Similarity Index. IEEE Transactions on Image
Processing 21, 4 (2012), 1488-1499. https://doi.org/10.1109/TIP.2011.2173206
Feiyang Cai and Xenofon Koutsoukos. 2020. Real-time out-of-distribution detec-
tion in learning-enabled cyber-physical systems. In 2020 ACM/IEEE 11th Interna-
tional Conference on Cyber-Physical Systems (ICCPS). IEEE, 174-183.

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan
Su. 2019. This Looks Like That: Deep Learning for Interpretable Image Recog-
nition. In NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché Buc, Edward A.
Fox, and Roman Garnett (Eds.). 8928-8939. http://papers.nips.cc/paper/9095-
this-looks-like-that-deep-learning-for-interpretable-image-recognition
Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. 2017. CARLA: An Open Urban Driving Simulator. In Proceedings of the
1st Annual Conference on Robot Learning. 1-16.

Souradeep Dutta, Xin Chen, Susmit Jha, Sriram Sankaranarayanan, and Ashish
Tiwari. 2019. Sherlock - A Tool for Verification of Neural Network Feedback
Systems: Demo Abstract. In Proceedings of the 22nd ACM International Conference
on Hybrid Systems: Computation and Control (Montreal, Quebec, Canada) (HSCC
’19). Association for Computing Machinery, New York, NY, USA, 262-263. https:
//doi.org/10.1145/3302504.3313351

Yeli Feng, Daniel Jun Xian Ng, and Arvind Easwaran. 2021. Improving Varia-
tional Autoencoder based Out-of-Distribution Detection for Embedded Real-time
Apbplications. ACM Transactions on Embedded Computing Systems (TECS) 20, 5s
(2021), 1-26.

K. Fukunaga and P.M. Narendra. 1975. A Branch and Bound Algorithm for
Computing k-Nearest Neighbors. IEEE Trans. Comput. C-24, 7 (1975), 750-753.
https://doi.org/10.1109/T-C.1975.224297

Francisco José Gisbert. 2003. Weighted samples, kernel density estimators and
convergence. Empirical Economics 28 (02 2003), 335-351. https://doi.org/10.1007/
5001810200134

[4]
[5]

l6

=

4

—

[8

—

[

=

[10]

(1]

[12]

[13]

[14]

(15]

234

[16

(7

[18

[19

[20

[21

[22

[23

[24

[25

[26

[27

[28

[29]

[30]

w
—

[32]

[33

[34

[35

[36

Dan Hendrycks and Kevin Gimpel. 2016. A baseline for detecting misclassified and
out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136
(2016).

Radoslav Ivanov, Taylor J. Carpenter, James Weimer, Rajeev Alur, George J. Pap-
pas, and Insup Lee. 2020. Case Study: Verifying the Safety of an Autonomous
Racing Car with a Neural Network Controller. In Proceedings of the 23rd Inter-
national Conference on Hybrid Systems: Computation and Control (Sydney, New
South Wales, Australia) (HSCC ’20). Association for Computing Machinery, New
York, NY, USA, Article 28, 7 pages. https://doi.org/10.1145/3365365.3382216
Radoslav Ivanov, James Weimer, Rajeev Alur, George]J. Pappas, and Insup
Lee. 2019. Verisig: Verifying Safety Properties of Hybrid Systems with Neu-
ral Network Controllers. In Proceedings of the 22nd ACM International Confer-
ence on Hybrid Systems: Computation and Control (Montreal, Quebec, Canada)
(HSCC ’19). Association for Computing Machinery, New York, NY, USA, 169-178.
https://doi.org/10.1145/3302504.3311806

Ramneet Kaur, Susmit Jha, Anirban Roy, Sangdon Park, Edgar Dobriban, Oleg
Sokolsky, and Insup Lee. 2022. iDECODe: In-distribution Equivariance for Confor-
mal Out-of-distribution Detection, Association for the Advancement of Artificial
Intelligence. arXiv:2201.02331 [cs.LG]

Ramneet Kaur, Susmit Jha, Anirban Roy, Sangdon Park, Oleg Sokolsky, and Insup
Lee. 2021. Detecting OODs as datapoints with High Uncertainty. arXiv preprint
arXiv:2108.06380 (2021).

Rikard Laxhammar and Goran Falkman. 2015. Inductive conformal anomaly
detection for sequential detection of anomalous sub-trajectories. Annals of
Mathematics and Artificial Intelligence 74, 1 (2015), 67-94.

Juncheng Li, Frank R. Schmidt, and J. Zico Kolter. 2019. Adversarial camera
stickers: A physical camera-based attack on deep learning systems. CoRR
abs/1904.00759 (2019). arXiv:1904.00759 http://arxiv.org/abs/1904.00759

David Macédo, Tsang Ing Ren, Cleber Zanchettin, Adriano LI Oliveira, and Teresa
Ludermir. 2021. Entropic out-of-distribution detection. In 2021 International Joint
Conference on Neural Networks (IJCNN). IEEE, 1-8.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2015.
DeepFool: a simple and accurate method to fool deep neural networks. CoRR
abs/1511.04599 (2015). arXiv:1511.04599 http://arxiv.org/abs/1511.04599

RT. Ng and Jiawei Han. 2002. CLARANS: a method for clustering objects for
spatial data mining. IEEE Transactions on Knowledge and Data Engineering 14, 5
(2002), 1003-1016. https://doi.org/10.1109/TKDE.2002.1033770

Xiao Qin, Lei Cao, Elke A. Rundensteiner, and Samuel Madden. 2019. Scalable
Kernel Density Estimation-based Local Outlier Detection over Large Data Streams.
In Advances in Database Technology - 22nd International Conference on Extending
Database Technology, EDBT 2019, Lisbon, Portugal, March 26-29, 2019. 421-432.
Shreyas Ramakrishna, Zahra Rahiminasab, Gabor Karsai, Arvind Easwaran, and
Abhishek Dubey. 2021. Efficient Out-of-Distribution Detection Using Latent
Space of S-VAE for Cyber-Physical Systems. arXiv preprint arXiv:2108.11800
(2021).

Erich Schubert and Peter J. Rousseeuw. 2018. Faster k-Medoids Clustering:
Improving the PAM, CLARA, and CLARANS Algorithms. CoRR abs/1810.05691
(2018). arXiv:1810.05691 http://arxiv.org/abs/1810.05691

BW. Silverman. 2018. Density Estimation for Statistics and Data Analysis. 1-175
pages. https://doi.org/10.1201/9781315140919

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2014. Deep Inside
Convolutional Networks: Visualising Image Classification Models and Saliency
Maps. CoRR abs/1312.6034 (2014).

Vijaya Kumar Sundar, Shreyas Ramakrishna, Zahra Rahiminasab, Arvind
Easwaran, and Abhishek Dubey. 2020. Out-of-distribution detection in multi-
label datasets using latent space of f-vae. In 2020 IEEE Security and Privacy
Workshops (SPW). IEEE, 250-255.

Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. 2020. Csi: Novelty
detection via contrastive learning on distributionally shifted instances. arXiv
preprint arXiv:2007.08176 (2020).

Ashish Tiwari, Bruno Dutertre, Dejan Jovanovi¢, Thomas de Candia, Patrick D
Lincoln, John Rushby, Dorsa Sadigh, and Sanjit Seshia. 2014. Safety envelope
for security. In Proceedings of the 3rd international conference on High confidence
networked systems. 85-94.

Vladimir Vovk, Ilia Nouretdinov, and Alexander Gammerman. 2003. Testing
exchangeability on-line. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03). 768-775.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image Quality
Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on
Image Processing 13, 4 (April 2004), 600-612. https://doi.org/10.1109/TIP.2003.
819861

Ev Zisselman and Aviv Tamar. 2020. Deep residual flow for out of distribution
detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 13994-14003.

A APPENDIX

A.1 Hyperparameter experiments

100 100

— d:0.2T/W:5/5
—— d: 0.2 T/W:5/10
— d: 0.2 T/W:5/15

— d: 0.2 T/W:5/5
—— d: 0.2 T/W:5/10

— d: 0.2 T/W:5/15

80 80

60 60
40 40

20

False Positive Rate
False Negative Rate

20

o o

0.80 0.85 0.90 0.95 1.00 1.05
Probability Density Threshold

0.80 0.85 0.90 0.95 1.00 1.05
Probability Density Threshold

(a) False Positive Rate (b) False Negative Rate

Figure 10: Out-of-distribution episode detection results for

detecting OODs due to heavy rain

A.2 Overview of the AEBS system

<— Environment «———

v,

Ego Vehicle

Camera .
Velocity
Braking
command

Q

ey ull
oo

8]
O
o}

Distance

RL controller

Perception LEC

Figure 11: Closed loop of the AEBS from [9]

A.3 0ODs Data Set Case Study 1

Fog dataset: the OOD frame starts from the 1st frame. The average
length of foggy episodes is 123 frames.

Figure 12: Example sequence in Fog Dataset (we gradually
increase the level of fog)

Night dataset: the OOD frame starts from the 10th frame. The
average length of night episodes is 123 frames.

235

Figure 13: Example sequence in Night Dataset (we gradually
increase the darkness parameter)

A.4 Heatmap Generation Algorithm

As mentioned in section 6.3.1, in addition to use the SSIM value to
indicate whether the test frame is similar to each memory, we can
also compute the contribution of each corresponding pixel to the
SSIM distances using ComputeFullSSIM. ComputeFullSSIM com-
putes and returns the local differences for individual pixels between
two images. By highlighting the pixels with high contribution in
the heatmap, we can visualize the most dissimilar parts between
the test frame and its closest memory.

Algorithm 4 Heatmap Generation

Input: Time Series Data x; € R™*", Closest Memory m,
Output: Heatmap x| € R™*"

Parameter : Color Distance Threshold d;,;0,

1: Instantiate x; < x;

2: Dy € R™*" « ComputeFullSSIM(x;,m.)

3 for1 <m’ < mdo

4 for1<n’ <ndo

5 if Dy [m’,n’] > d;oj0, then

6 x;[m’,n’] < PaintPixel(x;[m’, n'])

7: return x;

