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Abstract
lonomics measures elemental concentrations in biological organisms and provides a snapshot of physiology under different conditions. In 
this study, we evaluate genetic variation of the ionome in outbred, perennial switchgrass in three environments across the species' native 
range, and explore patterns of genotype-by-environment interactions. We grew 725 clonally replicated genotypes of a large full sib family 
from a four-way linkage mapping population, created from deeply diverged upland and lowland switchgrass ecotypes, at three common 
gardens. Concentrations of 18 mineral elements were determined in whole post-anthesis tillers using ion coupled plasma mass spectrome­
try (ICR-MS). These measurements were used to identify quantitative trait loci (QTL) with and without QTL-by-environment interactions 
(QTLxE) using a multi-environment QTL mapping approach. We found that element concentrations varied significantly both within and be­
tween switchgrass ecotypes, and GxE was present at both the trait and QTL level. Concentrations of 14 of the 18 elements were under 
some genetic control, and 77 QTL were detected for these elements. Seventy-four percent of QTL colocalized multiple elements, half of 
QTL exhibited significant QTLxE, and roughly equal numbers of QTL had significant differences in magnitude and sign of their effects 
across environments. The switchgrass ionome is under moderate genetic control and by loci with highly variable effects across environ­
ments.
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Introduction
Plants take up most of the elements of the ionome from soil, 
which is highly heterogeneousacross multiple spatial scales 
(Huang and Salt 2016). Studies in many plant species have exam­
ined the genetic architecture of the ionome and discovered strong 
genetic effects underlying elemental composition, and many 
quantitative trait loci (QTL) in genetic mapping experiments 
(Buescher et al. 2010; Lowry et al. 2012; Zhang et al. 2014; Shakoor 
et a 1. 2016). Studies in Arabidopsis thaliana, where transgenic ma­
nipulation is possible, have identified several causal genes con­
trolling elemental variations (Rus et al. 2006; Morrissey et al. 2009; 
Chao et al. 2014). Recent work in A. thaliana has also shown sig­
nals of local adaptation to soil salinity, which could be driven by 
genetic loci that affect the ionome (Busoms et al. 2015). 
Regardless of plant species, studying genetic variation in the ion­
ome can provide insights into how plants adapt to the highly var­
iable soils that comprise the natural landscape, and can lead to 
the discovery of genes involved in elemental accumulation, in­
cluding transporters, transcription factors, and metal-binding 
proteins (Rus et al. 2006; Baxter et al. 2008, 2010; Baxter and Dilkes 
2012). However, previous work has provided limited insights into

how the ionome varies in natural environments. The ionome of 
an individual depends not only on its genetic makeup, but also 
on the environment it experiences. Genetic variation in the 
makeup of the ionome between environments is a type of geno- 
type-by-environment interaction (GxE).

The pattern of phenotypic expression of a single genotype 
across a range of environments is known as a reaction norm. 
Reaction norms make two important points about GxE explicit: 
first, that the phenotype expressed by a given genotype depends 
on the environmental context, and second, that the phenotypic 
effect in a given environment depends on the genotype in ques­
tion (Gomulkiewicz and Kirkpatrick 1992). The reaction norm of a 
particular genotype and its underlying genetic architecture is 
heritable properties of the genome and can evolve. Alleles of a 
gene that affect a reaction norm can do so, and thus exhibit GxE, 
in multiple ways (Des Marais et al. 2013). For continuous pheno­
types like elemental abundances, which have a given mean and 
standard deviation in two environments for a reference allele, 
the alternate allele of that gene can affect the magnitude or 
the sign of the phenotypic effect in one environment relative to 
the second. Differential sensitivity occurs when the magnitude of
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the phenotypic effect of an allele depends on the environment. 
Conditional neutrality is the most extreme case of differential sensi­
tivity, which occurs when an allele affects the magnitude of the 
phenotype in one environment and not in another (Des Marais 
et al. 2013; El-Soda et al. 2014). Antagonistic pleiotropy occurs when 
the sign of the phenotypic effect of an allele depends on the envi­
ronment (Kawecki and Ebert 2004; Des Marais et al. 2013; El-Soda 
et al 2014). Studies of several biological systems in their natural 
environments have found that local adaptation is more often 
caused by conditional neutrality than antagonistic pleiotropy at 
the level of the QTL (Des Marais et al. 2013; Wadgymaret al. 2017).

To date, there has been limited progress in identifying the mo­
lecular mechanisms causing GxE in the plant ionome. GxE could 
not be examined in the many previous studies that identified 
ionomic QTL in a single environment (Loudet et aI. 2007; Norton 
et al. 2010; Baxter et al. 2014; Zhang et al. 2014; Gu et al. 2015). 
These studies have largely focused on characterizing the elemen­
tal accumulation of various plant tissues or species, and though 
they have led to valuable knowledge on the genetic control of ele­
ment accumulation in plants, they offer limited insights into how 
the ionome interacts with environment. More recently, studies 
have begun to identify GxE and QTL-by-environment interactions 
(QTLxE) for the plant ionome (Phuke et al. 2017; Veley et al. 2017; 
Ziegler et al. 2017; Fikas et al. 2019). These studies have been lim­
ited to biparental crosses or diversity panels with limited num­
bers of genotypes, particularly in short-lived, inbred crop species 
such as rice (Oryza satiua) and maize (Zea mays). Studies of GxE in 
the ionome in outbred, perennial systems may reflect different 
patterns of GxE, as these plants must cope with heterogeneous 
environments, including nonoptimal abundances of essential 
and nonessential elements, over their longer lifespans.

Switchgrass (Panicum virgatum) is an outbred, perennial species 
with wide environmental adaptation across the eastern half of 
North America and high biomass productivity across a large geo­
graphic range (Casler et al. 2007). Switchgrass was selected as a 
model bioenergy species by the U.S. Department of Energy in 
1991 (Wright and Turhollow 2010), not only because of its high 
productivity across environments, but also its ecosystem services 
associated with carbon sequestration, soil erosion, and wildlife 
biodiversity (McBride et al. 2011). Switchgrass has substantial 
morphological diversity over its native range, including highly di­
vergent southern lowland and northern upland ecotypes. The 
southern lowland ecotype of switchgrass is typically adapted to 
wet and riparian areas of the southern United States and tends to 
be more biomass-productive and nutrient-use-efficient than the 
northern upland ecotype (Porter 1966; Aspinwall et al. 2013; 
Uppalapati et al. 2013; Lowry et al. 2014). In contrast, the northern 
upland ecotype is often adapted to dry areas of mid and northern 
latitudes, and tends to be more freezing-tolerant (Hultquist et al. 
1997; Casler 2012; Peixoto and Sage 2016). Ionomics research in 
switchgrass has identified significant differences in elemental 
uptake between lowland and upland ecotypes for many elements 
(Yang et al. 2009), including lower nutrient concentrations in low­
land ecotypes; however, the genetic basis of this divergence has 
yet to be mapped. Nutrient elements are always removed along 
with harvested biomass; reduced nutrient removal necessitates 
lower fertilizer inputs to maintain plant productivity and thus 
promotes sustainable biofuel agriculture. High levels of some ele­
ments, particularly alkali metals, can negatively affect the down­
stream conversion to bioenergy and increase the cost of 
bioenergy production (Gouzaye et al. 2014; de Koff and Allison 
2015; Serapiglia et al. 2016). However, marginal soils are likely to 
vary more in their elemental compositions than traditional

arable land, making understanding GxE in the switchgrass ion­
ome all the more essential to identify genes that can promote nu­
trient-efficient growth in these environments. Understanding the 
genetics of ionomic concentration divergence between switch- 
grass ecotypes across their native range will help breeders de­
velop switchgrass as a sustainable biofuel species.

In this study, we expand the scope of GxE research in ionomics 
by evaluating the genetic architecture and reaction norms of the 
ionome in switchgrass. We use an outbred mapping population 
derived from a four-parent cross of lowland and upland ecotypes 
(Milano et al. 2016). We clonally propagated and planted the four 
parents, the two hybrid Fi genotypes, and approximately 750 F2 
individuals at three common gardens, then quantified the accu­
mulation of 18 elements. The 18 elements included macronu­
trients (Mg, P, K, and Ca), micronutrients (B, Mn, Fe, Co, Cu, Zn, 
Se, and Mo), analogs of macronutrients (Rb and Sr), and others 
that can be harmful to plant growth (Al, As, Cd) and that can be 
harmful or beneficial to plant growth (Na) (Marschner 2012). 
With these data, we evaluated the reaction norms of particular 
QTL for elements in the ionome. Our results allow us to address 
the following questions: (1) What is the genomic basis for varia­
tion in elemental abundances in the switchgrass ionome? (2) 
What fraction of QTL for distinct elements colocalize, suggesting 
possible common genetic architectures underlying their abun­
dances? (3) How frequently do ionomic QTL show GxE? and (4) 
Which QTL colocalize with candidate genes, suggesting avenues 
for future molecular characterization of the switchgrass ionome?

Materials and methods
Experimental design and phenotyping
The details of the creation of the mapping population can be 
found in Milano et al. (2016). In brief, the genetic mapping popula­
tion was produced from two initial crosses of two pairs of highly 
divergent southern lowland and northern upland ecotypes: low­
land AP13 (A) x upland DAC6 (B), and lowland WBC3 (C) x upland 
VS16 (D). The F2 hybrids (A x B, C x D) were then intercrossed 
reciprocally to create a large full sib family that we utilize as a 
four-way linkage mapping population (F2).

The details of the experimental design are described in Lowry 
et al. (2019). Briefly, the grandparents, F2 hybrids, and the F2 prog­
eny were propagated clonally in 3.8-L pots at the Brackenridge 
Field Laboratory, Austin, TX in 2013-2015, and then transported 
to and planted at the three field sites (Austin, Texas, hereafter 
TX; Columbia, Missouri, hereafter MO; and Hickory Comers, 
Michigan, hereafter MI) in May-July of 2015. Woven ground cover 
(Sunbelt 3.2 OZ, Dewitt Company) was used to suppress weeds, 
and holes were cut in a honeycomb fashion for planting of the ex­
perimental plants. Edge effects were prevented with a row of bor­
der plants. Plants were hand-watered as needed through the 
summer of 2015 to facilitate establishment, with no further sup­
plemental irrigation after this point. Multiple replicates of the 
grandparent clones were grown at each site. However, our experi­
mental design was unreplicated at the local field site level in 
terms of progeny; that is, we grew one single-spaced plant repre­
senting each progeny from the cross at each of the three common 
gardens, and these progeny were randomly arrayed across each 
common garden. The three common garden locations have dis­
tinct soil and climatic conditions. TX site (30.384°N, -97.73°W) 
has clay soil, MO (38.897°N, -92.22°W) common garden is located 
on a silt loam soil, and MI (42.420°N, -85.37°W) site has a loam 
soil. The concentrations of mineral P, K, Ca, Mg, Fe, Zn, Mg, Cu, 
Bo, and Na at each of the three sites were measured on a soil
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sample consisting of equally mixed proportions of soil samples 
(0-15 cm depth) from three locations spanning the entire garden 
on the diagonal. Soil samples were analyzed by the Soil, Water, 
and Forage Testing Laboratory at Texas A&M University (http:// 
soiltesting.tamu.edu), and measurements of these minerals are 
presented in Table 2. The average temperatures in 2016 for TX, 
MO, and MI sites were 21.9, 13.6, 10.4°C, respectively. The annual 
precipitation in 2016 for TX, MO, and MI sites were 829, 928, and 
975 mm, respectively.

Samples of developmental^ staged phytomers (post-anthesis 
tillers) from the canopy of single-spaced plants (i.e., approxi­
mately 700 plants) were collected at each of the three sites at the 
end of the 2016 growing season, after approximately two years of 
growth in natural soils in each of the common garden. These till­
ers were dried and ground, then the ground tissue was sampled 
for ionomic analyses. Specifically, tiller samples were first ground 
with a knife mill (Wiley Model 4, Thomas Scientific) to pass 
through a screen size of 2 mm and subsequently ground with an 
inducted air abrasion mill (Cyclone Mill, UDY corporation) to 
pass through a 1 mm screen. The milled samples were homoge­
nized and aliquots were sent to the Donald Danforth Plant 
Science Center to determine tissue concentrations of 18 elements 
(P, K, Ca, Mg, Rb, Sr, Mn, Zn, Cu, Co, Fe, Mo, B, Se, Al, Na, Cd, and 
As). Details of the process can be found in Ziegler et al. (2013). 
Briefly, tissue samples were weighed and digested in nitric acid at 
room temperature overnight, and then heated at 100"C for 
3hours. Elemental concentrations were measured by ICP-MS 
(Perkin Elmer NexION 350D). Measurements were corrected for 
potential variation in sample preparation and instrument drift 
using both internal standards and matrix matched controls as 
described in Ziegler et al (2013). Outliers and negative values 
yielded due to machine error were further excluded from analy­
sis. Comparisons of elemental concentrations among the four 
grandparents at each common garden and comparisons of ele­
mental concentrations of the F2 progeny among the three envi­
ronments were performed using Welch one-way tests with a 
significance level of a = 0.05.

Genotyping and map construction
Details on the genetic map construction can be accessed on 
https://datadryad.Org/stash/dataset/doi:10.5061/dryad.ghx3ffbjv 
(Lovell et al. 2020) and in Bragg et al. (2020). In brief, Illumina frag­
ment paired end libraries from each of the four grandparents 
were aligned to the P. virgatum reference genome v5 via bwa mem 
(Li and Durbin 2009) and used for single-nucleotide polymor­
phism (SNP) calling. Then a kmer-based approach was used to 
capture multiple variant and distinguish each grandparent when 
genotyping the progeny. The resulting genotype matrix was pol­
ished via sliding windows across the physical V5 switchgrass ge­
nome position and markers were re-ordered within linkage 
groups (Lowry et al. 2019; Lovell et al. 2020). Genotypes for progeny 
were based on grandparental haplotypes and thus are fully infor­
mative. For computational efficiency in GxE analysis, the genetic 
map was reduced to 738 markers, with an average distance of 
2cM between markers.

Heritability estimates and genetic correlation
We estimated quantitative genetic variation for the measured 
ionomic features within our full sib family using marker-based 
realized relationship matrices and linear mixed models imple­
mented in the Sommer package (Covarrubias-Pazaran 2016) in R 
Core Team (2020). Due to potentially high correlation between 
the additive and dominance relationship matrices in a full sib

family, it was not feasible to cleanly partition additive from non­
additive components of variance (Hill 2013). As such, our analy­
ses based on the additive kinship matrix alone could be biased 
upwards by any dominance variance which occurs. We thus re­
port our estimates from the additive kinship matrix as genetic 
variance (V3), and our heritabilities as broad-sense heritability 
(H2), which was calculated as Vg/\7p, where Vp is the total pheno­
typic variance. For genetic correlation estimates, combinations of 
phenotypic data from the three sites were used as response varia­
bles in the multivariate model for each ionomic trait.

We further tested for GxE on the trait level using the 
same mixed model approach (Covarrubias-Pazaran 2016, https:// 
cran.r-project.org/web/packages/sommer/vignettes/v4.sommer. 
gxe.pdf, last accessed in Aug, 2020). In other words, we tested 
whether Vg differed by site for each element. Specifically, we 
used a likelihood-ratio test to compete two models. The first 
model (i.e., main effect model) assumed that there is no GxE and 
that the inclusion of two parameters, the genetic variance plus 
the fixed effect for environment, was sufficient for modeling the 
data. The alternative model (i.e., unstructured model) also 
accounts for GxE, and additionally freely estimates a unique ge­
netic variance and covariance (a 3 x 3 unstructured variance-co- 
variance matrix) within and across environments. Significance of 
the likelihood-ratio test for GxE was assessed at the level of 
a — 0.05.

Multi-environment QTL mapping
Details of the mapping procedures and implementation for the 
four-way population using Genstat are described in Malosetti 
et al. (2013), Lowry et al. (2019), and Bragg et al. (2020). Specifically, 
we used the “single trait under multiple environments” multi-en­
vironment mixed model for each ionomic element for a cross- 
pollinated (CP) families as implemented in Genstat v.19 (VSN 
International 2020). Our experimental population contained four 
possible QTL alleles: those designated A and B corresponded to 
marker alleles of the first pair of grandparents (APIS and DAG), 
and those designated C and D corresponded to marker alleles of 
the second pair of grandparents (WBC and VS16). The initial step 
for QTL mapping using Genstat was to identify the best variance- 
covariance matrix model for the phenotypic data (Malosetti, et al. 
2013). Subsequently, simple interval mapping (SIM) was per­
formed for a preliminary scan of the genome using the 738 
markers (genetic predictors). The identified QTL were then used 
as cofactors in a follow-up composite interval mapping (CIM) 
scan. QTL scanning was performed with a window size of 5 cM 
and 50 cM was used as the minimum cofactor distance in the 
CIM scans. CIM was performed three times consecutively to en­
sure the stability of identified QTL in our study.

QTL identified through CIM were simultaneously incorporated 
into a mixed effect model with the variance-covariance matrix 
selected for the trait of the form:

trait = p + E + ^QTL + ^ (QTLxE) + e (1)

where p represents the population mean; E represents the envi­
ronment effect; 53 QTL = 53 (aal + aa2 + ad), represents the total 
effect from the additive effect from the first grandparent [i.e., the 
difference between A (API3) and B (DAG) alleles], o'21, the second 
grandparent [i.e., the difference between C (WBC) and D (VS16) 
alleles], aa2, and the dominance effect [i.e., the intralocus interac­
tion], ad; ^3 (QTLxE)represents the QTL x environment interac­
tions; and e represents the error term. QTL significance was
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assessed using the Wald test statistic, and the final model was 
selected using a backward selection procedure based on the 
Akaike’s Information Criterion (AIC, Akaike 1974). Genome-wide 
QTL and QTL x E significance were assessed at a = 0.05 with a 
Bonferroni correction (Li and Ji 2005). QTL were localized based 
on a 1.5 LOD statistic drop from the highest LOD score, and used 
the flanking markers associated with a 1.5 LOD statistic drop 
from the peak as the confidence interval for the QTL peak.

Candidate gene search and GO enrichment 
analyses
We consider the genes located in the 1.5-LOD confidence inter­
vals around the detected significant QTL as candidate genes. We 
then determined if homologs from rice (v7), A. thaliana (TAIL. 10), 
and a curated list of genes that affect the plant ionome (Whitt 
et a1. 2020) were overrepresented in our QTL regions. The annota­
tion file for switchgrass was accessed on JGI (Joint Genome 
Institute) Phytozome 13 website: https://njp-spin.jgi.doe.gov/ 
(last accessed in Aug, 2020). The Gene Ontology (GO) enrichment 
analysis was conducted using fisher’s exact test for each GO 
term via R package “topGO” (Alexa and Rahnenfuhrer 2020). GOs 
with adjusted P < 0.05 were considered significant.

Data availability
The supplemental materials are available at figshare: https:// 
doi.org/10.25387/g3.14479185.

Results
The genetic basis of elemental concentration 
variation and covariation at three common 
gardens
To understand the genetic component of ionomic variation in 
switchgrass, we determined concentrations of 18 elements for 
both the P0 “grandparent” genotypes and for the outbred P2 geno­
types at three common gardens. Average concentration varied 
over six orders of magnitude among elements across environ­
ments: Co, Se, Mo, and Cd had the lowest concentrations (~1 x 
1CT2 pg g-1 dry weight) and K had the highest concentration (~1 x 
104 pg g-1dry weight). After correction for multiple testing, con­
centrations of 11 of the 18 elements differed significantly be­
tween the four grandparents (APIS, DAC6, WBC, and VS16) at one 
or more gardens (Welch one-way test, Table 1). Concentrations of 
three elements (Ca, P, and Na) differed significantly between the 
four grandparents at every garden after correction for multiple 
testing, and Sr and Mg concentrations also differed at every gar­
den before this correction (Welch one-way test, Table 1). 
Interestingly, there were just as many significant differences in 
elemenf'garden concentrations (16) between the two lowland 
genotypes, APIS and WBC, as there were between the upland and 
lowland parents. In contrast, there were only two significant dif­
ferences in elemenf'garden concentrations between the two up­
land parents (data not shown).

In the P2 genotypes, variation in the concentration of each ele­
ment followed a continuous, unimodal distribution within each 
garden (figure 1A). Within gardens, the majority of the element 
concentrations were not strongly phenotypically correlated 
(r < 0.5); fewer than 3% of element pairs had positive correlations 
greater than 0.5 (Supplementary Table SI). Among these, Ca con­
centration was positively correlated with Sr concentration at 
each site (0.8-0.9), and A1 concentration was positively correlated 
with fe concentration at MI (0.8) and TX (0.5).

All element concentrations had low to moderate broad sense 
heritabilities (0<H2 < 0.6, figure IB). The majority of the ele­
ments (K, Ca, Mg, P, Mn, Pe, Zn, Cu, Mo, Se, Sr, Rb, Na, Al, and Cd) 
had moderate heritabilities (0.2 < H2 < 0.6) for at least one garden, 
while B, Co, and As had low heritabilities (H2 < 0.2) everywhere. 
There were moderate heritabilities for 8 elements in the TX gar­
den (none unique to TX), 12 elements at the MO garden (Na and 
Al concentration were moderately heritable only at MO), and 15 
elements at the MI garden (K, Zn, Se, and Cd concentration were 
moderately heritable only at MI). The low heritabilities of some 
elements at certain sites (B, K, Co, As, and Se) were due to both 
the large error variance (Ve) and the near zero genetic 
variance (V3) for the concentrations of these elements 
(Supplementary Table S2). Likelihood-ratio tests between models 
with genetic effects only and models with genetic and GxE effects 
indicated that GxE existed for 16 of the 18 elements (all but B and 
Se) at the trait level (P< 0.05). Thus, switchgrass exerted genetic 
control of elemental accumulation in an environmentally sensi­
tive fashion for the majority of the elements of the ionome.

The distributions of all 18 element concentrations also differed 
significantly among gardens (all P< 0.002, Welch one-way tests, 
Table 2). These distinct phenotypic distributions were undoubtedly 
affected by soil element concentrations and availability, which var­
ied in ways that affected plant element concentrations in both in­
tuitive (Ca and K) and nonintuitive (Mg, P, and Na) fashions (Table 
2). They were also underlain by moderate to strong positive genetic 
correlations for the majority of the elements among gardens 
(Supplementary Table S3). Positive genetic correlations less than 
one indicate the presence of GxE at the trait level, and likely mag­
nitude-changing instead of sign-changing patterns of GxE at the 
level of QTL across the common gardens for the elemental concen­
trations. Only one negative genetic correlation was observed, for B 
concentration in the TX and MO gardens (-0.46). Negative correla­
tions indicate a possible trade-off in loci controlling B concentra­
tion. It should be noted, however, that B concentration 
heritabilities were low at both of these gardens, reducing our power 
to identify QTL. The genetic correlations for two elements (As and 
Se) could not be determined because the concentrations of these 
elements had close to zero genetic variance.

We next identified QTL and QTLxE interactions using indepen­
dent multi-environment mixed models for each of the 18 ele­
ments. We detected 77 significant QTL with LOD thresholds 
above 3.5 for concentrations of 14 elements (figure 2a, by 
category; Supplementary figure SI, within category and 
Supplementary Table S4 for QTL position, LOD statistics, and 
so on). Thirty-eight (49%) of these QTL exhibited QTLxE 
(Supplementary Table S4). No significant QTL were detected for 
B, As, Co, and Se, almost certainly because of the low heritabil­
ities of the tissue concentrations of these four elements (figure 
IB). The remaining elements had between two (Na, Pe, Mo, Cd) 
and 14 (P) significant QTL. We determined if the number of QTL 
we identified varied by element type by dividing the 18 elements 
into four types: macronutrients, micronutrients, nonessential 
analogs to nutrients, and other nonessential elements. The pres­
ence of more elemental QTL in a category than expected indi­
cates ecotype-specific genetic divergence, while the presence of 
fewer than expected might indicate that purifying selection has 
removed genetic variation for these elements. If QTL had been 
equally distributed across the elements, we would have expected 
17, 34, 8, and 17 QTL in these classes, respectively. However, 
there were more QTL than expected for both macronutrients 
(2.05x, binomial test P< 0.001) and nonessential analogs (1.99x, 
binomial test P = 0.002), and fewer QTL than expected for
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Table 1 Element concentration (pig g means, standard errors, and comparisons by Welch one-way 
individuals at the TX, MO, and MI gardens

test of the four F0 “grandparent”

Element Site APIS DAG VS16 WBC P-valuea

macronutrient MI 72,584 ± 3744 46,484 ±4744 34,645 ± 3024 66,643 ± 42,666 <0.0004'
K MO 54,865 ± 5447 44,609 ± 44,478 24,443 ± 8032 83,490 ±40,820 0.0449

TX 54,444 ± 5224 59,728 ±43,856 39,467 ± 5242 67,527 ±7067 0.0525
MI 4644 ± 48 2046 ± 402 4463 ± 48 4454 ± 423 <0.0004'

Ca MO 4445 ± 47 4395 ± 80 1101 ±24 1736 ±155 0.0002'
TX 2947 ± 449 5293 ± 362 3953 ±456 2468 ± 82 <0.0004'
MI 4367 ± 50 4044 ± 73 4059 ± 50 4686 ± 442 <0.0004'

Mg MO 857 ±25 767 ± 47 784 ± 50 1497 ± 117 0.0475
TX 949 ± 55 1333 ±101 1154 ±42 4027 ± 52 0.0482
MI 296 ±40 394 ± 24 386 ± 48 444 ±24 <0.0004'

P MO 645 ± 44 378 ± 43 346 ±5 854 ± 39 <0.0004'
TX 346 ±42 758 ± 53 650 ± 44 300 ±46 <0.0004'

micronutrient MI 47.3 ± 2.44 52.22 ±3.88 53.39 ±3.76 33.605 ±2.882 0.0009
Mn MO 67.04 ±3.74 70.9 ±7.88 404.45 ± 24.06 76.523 ±7.952 0.5783

TX 25.56 ± 4.49 39.85 ±3.64 38.86 ±3.47 44.242 ± 4.224 <0.0004'
MI 32.33 ±4.24 44.7 ± 3.58 34.27 ± 4.84 30.499 ±4.448 0.0458

Fe MO 39.64 ±2.4 83.06 ±52.69 32.4 ±4.78 45.764 ± 6.237 0.4069
TX 54.5 ±2.75 78.42 ±42.89 50.78 ± 7 44.089 ± 4.489 0.4662
MI 7.54 ± 0.934 7.54 ± 0.406 44.39 ±2.796 8.436 ±4.636 0.6080

Zn MO 22.43 ± 3.802 44.36 ±0.942 44.58 ±0.898 28.504 ±40.996 0.0754
TX 49.34 ±43.966 440.94 ± 86.947 45.75 ± 2.458 48.849 ± 4.485 0.4489
MI 3.223 ± 0.444 5.333 ±0.264 4.949 ± 0.425 3.332 ± 0.464 <0.0004'

Cu MO 8.745 ±0.538 42.848 ± 4.049 8.03 ± 0.294 9.949 ±0.836 0.4985
TX 4.205 ± 0.229 6.452 ±0.727 4.444 ± 0.403 5.094 ±0.378 0.0729
MI 3.447 ± 0.247 4.42 ± 4.488 3.294 ± 0.434 3.32 ± 0.502 0.9330

B MO 3.402 ± 0.704 3.496 ±0.673 3.349 ± 2.247 2.476 ± 0.273 0.6658
TX 4.925 ± 0.424 7.244 ± 0.432 6.852 ±0.537 4.402 ± 0.349 0.0005'
MI 0.046 ± 0.002 0.039 ± 0.003 0.054 ± 0.003 0.044 ± 0.003 0.0603

Mo MO 0.087 ± 0.004 0.056 ± 0.005 0.053 ± 0.045 0.422 ± 0.009 0.0443
TX 0.092 ± 0.044 0.044 ±0.005 0.053 ± 0.007 0.447 ± 0.048 0.0004'
MI 0.029 ± 0.002 0.066 ± 0.046 0.046 ± 0.007 0.026 ± 0.004 0.0356

Co MO 0.249 ± 0.057 0.324 ±0.486 0.445 ± 0.025 0.468 ± 0.036 0.6059
TX 0.082 ± 0.008 0.449 ± 0.047 0.489 ± 0.422 0.44 ± 0.033 0.4476
MI 0.04 ± 0.004 0.042 ± 0.004 0.007 ± 0.002 0.044 ± 0.003 0.4384

Se MO 0.042 ± 0.003 0.05 ± 0.047 NA 0.422 ± 0.009 0.4384
TX 0.044 ±0.004 0.048 ± 0.04 0.038 ± 0.006 0.447 ± 0.048 0.4384
MI 3.834 ± 0.44 5.834 ±0.977 3.258 ± 0.204 3.709 ± 0.333 0.0448

analog Sr MO 9.093 ± 0.575 8.84 ±0.768 6.27 ±0.224 9.684 ±0.899 0.0044
TX 6.362 ±0.263 8.866 ±0.287 9.502 ± 0.482 5.604 ± 0.234 <0.0004'
MI 4.509 ± 0.084 0.966 ±0.442 0.728 ± 0.07 3.026 ± 0.284 <0.0004'

Rb MO 2.923 ±0.462 4.245 ± 0.429 0.94 ±0.036 3.749 ±0.222 <0.0004'
TX 4.565 ±0.423 1.5 ±0.305 1.451 ±0.21 2.079 ± 0.203 0.4954
MI 50.5 ±3.48 8.67 ±4.64 42.74 ±4.98 47.892 ± 6.447 <0.0004'

Other Na MO 460.83 ±7.53 44.87 ± 4.43 40.08 ± 4.34 59.685 ±7.239 <0.0004'
TX 422.87 ±42.37 35.46 ± 5.04 65.56 ± 44.28 424.885 ± 45.274 <0.0004'
MI 48.79 ±2.46 69.49 ±44.38 59.73 ± 5.04 49.204 ±3.266 0.4845

Al MO 402.47 ± 40.24 95.78 ±30.36 77.56 ±10.51 84.234 ± 5.996 0.5487
TX 68.36 ±5.2 400.48 ± 46.74 77.55 ±7.45 56.923 ±4.699 0.0656
MI 0.04 ± 0.004 0.049 ± 0.004 0.042 ± 0.004 0.044 ± 0.004 0.4384

As MO 0.046 ± 0.003 0.022 ± 0.047 NA 0.022 ± 0.003 0.4384
TX 0.044 ± 0.004 0.047 ± 0.005 0.042 ± 0.004 0.04 ± 0.004 0.4384
MI 0.046 ± 0.004 0.022 ± 0.002 0.042 ± 0.004 0.043 ± 0.002 0.0027

Cd MO 0.03 ± 0.044 0.028 ± 0.04 0.045 ± 0.006 0.047 ± 0.002 0.6442
TX 0.002 ± 0 0.003 ± 0 0.002 ± 0 0.002 ± 0 0.0246

“Asterisks in this column indicate P-values that are significant after a Bonfeironi correction for 54 independent Welch one-way tests.

micronutrients (0.50x, binomial test P< 0.001) and other nones­
sential elements (0.47x, binomial test P = 0.013).

QTL colocalization across elements of the ionome
Using our 77 QTL, we next identified QTL where distinct elements 
colocalized. Co-localization suggests either linked genes affecting 
element accumulation, or may indicate co-transport of elements 
using the same channel. The latter is more plausible for elements 
that are most commonly bioavailable in the soil as similar ions. 
We considered QTL colocalizing if there was any overlap in the

genomic region with LCDs within 1.5-LOD of the maximum LOD 
score. Twenty-one sets of QTL colocalized, and 20 QTL (26.0%) 
did not overlap another ionomic QTL, and hence were singletons 
(Figure 2B). Mg was the only element with a majority of singleton 
QTL, with both more noncolocalizing and fewer colocalizing QTL 
than expected (chi-square test, P = 0.005). P had the most colocal­
izing QTL. Colocalizing P QTL always colocalized with elements 
which are most abundant in soil as cations with 1+ or 2+ charge. 
Ca QTL always colocalized, either with P (2 QTL) or with elements 
most abundant in soil as 2+ or 3+ cations (3 QTL). Al QTL is also
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Table 2 Element concentration (pg g means ± standard errors 
one-way test at the three common gardens

of the outbred F2 mapping population, and comparisons by Welch

Element® TX garden MO garden MI garden P-valueb

Macronutrient K 60,162 ± 882 60,032 ± 1010 55,912 ±958 0.002'
SoilK 246 144 63 CL: 125c
Ca 3768 ±35 1420 ± 12 1408 ±15 <0.001'
Soil Ca 23,596 3631 1476 CL: 180b
Mg 1530 ±14 1144 ±8 1309 ±11 <0.001'
Soil Mg 262 448 150 CL: 50c
P 421 ±4 485 ±7 294 ±3 <0.001'
Soil P 4 16 28 CL: 50c

Micronutrient Mn 27.46 ± 0.31 80.63 ± 0.97 48.27 ±0.58 <0.001'
Soil Mn 4.62 19.90 40.32 CL: 1.00b
Fe 43.48 ± 0.4 32.88 ± 0.41 27.69 ±0.25 <0.001'
Soil Fe 5.55 29.65 21.09 CL: 4.25b
Zn 18.819 ± 0.349 10.995 ± 0.147 6.509 ± 0.096 <0.001'
Soil Zn 0.93 0.48 0.52 CL: 0.27b
Cu 4.926 ± 0.058 8.325 ±0.117 3.801 ± 0.036 <0.001'
Soil Cu 0.62 0.61 0.36 CL: 0.16b
B 5.565 ± 0.059 2.645 ± 0.046 3.233 ± 0.06 <0.001'
Soil B 1.03 0.31 0.22 CL: 0.60b
Mo 0.053 ± 0.001 0.059 ± 0.001 0.032 ± 0 <0.001'
Co 0.065 ± 0.001 0.14 ±0.004 0.028 ± 0 <0.001'
Se 0.047 ± 0.001 0.039 ± 0.001 0.009 ± 0.001 <0.001'

Analog Sr 8.459 ± 0.073 8.534 ±0.078 3.846 ±0.04 <0.001'
Rb 1.788 ± 0.027 2.436 ± 0.026 1.087 ± 0.019 <0.001'

Other Na 70.46 ± 1.47 25.56 ±0.53 9.72 ±0.17 <0.001'
Soil Na 14 24 8
A1 58.96 ±0.73 76.17 ±0.71 41.06 ± 0.5 <0.001'
As 0.01 ± 0 0.013 ± 0 0.01 ± 0 <0.001'
Cd 0.003 ± 0 0.024 ±0.001 0.03 ± 0.001 <0.001'

“When the element indicated is prefaced by the word “Soil” the row contains average soil elemental concentration at this garden.
b Asterisks in this column indicate p-values that are significant after a Bonferroni correction for 18 independent Welch one-way tests.
c CL: Critical level. The point at which the Soil, Water, and Forage Testing Laboratory of Texas A&M University recommends no additional nutrient input.
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always colocalized, with Sr in 3 of 4 QTL, and with Fe for both Fe 
QTL. The partial colocalization of QTL between Ca and Sr, and be­
tween A1 and Fe, may underlie some of the high phenotypic cor­
relation in these traits in the F2 genotypes (Supplementary Table
51) . Three QTL sets colocalized four or more elements. One of 
these sets was located at 6.63-33.56 Mb on Chr02N with Ca, Zn, 
Rb, and Sr QTL, one at 0.97-41.75 Mb on Chr04N that included 
Mg, K, Fe, and A1 QTL, and the third at 33.91-51.66 Mb on Chr07K 
that included Al, Ca, Mn, Fe, Zn, and Sr QTL (Figure 2A).

Ionomic QTLxE frequencies and QTL reaction 
norms
We next explored patterns of effect sizes, and types of QTLxE, in 
the 77 QTL, particularly the 38 QTL exhibiting QTLxE (Figure 3 
and Supplementary Figure S2). The design of the crosses that 
generated the four-way population also allowed quantification of 
differences in allelic effects for two distinct lowland us upland 
crosses, APIS us DAC (A x B) and WBC us VS16 (C x D). In addition 
to looking at patterns of GxE within these crosses, we could also 
determine if we had captured variation in effects between these 
crosses, for both QTL with and without QTLxE effects. For the 39 
QTL without QTLxE, most effects (75%) had the same effect direc­
tion in both lowland us upland contrasts (Supplementary Figure
52) . Thus, most QTL without QTLxE exhibited differences in QTL 
effects between the upland and lowland sets of parents, and few 
exhibited differences in QTL effects between the two upland or 
the two lowland parents. Of the 10 QTL without QTLxE but with 
within-ecotype variation, two QTL were singletons, and four colo­
calized with elements which had no significant QTLxE. The 
remaining four QTL colocalized with elements which did have 
QTLxE. These four QTL may well be caused by multiple linked 
loci; however, if these four colocalizing QTL are due to single loci 
that affect the concentration of multiple elements, then these

QTL represent an interesting case of GxE caused by changes in 
pleiotropy at a single locus.

For the 38 QTL, and 76 allelic contrasts with QTLxE, 35 con­
trasts (46%) had differential sensitivity in their reaction norm 
across gardens, and 15 of these contrasts were statistically signif­
icant after a multiple testing correction (Bonferroni t-test, 
P< 0.000198, Supplementary Figure S2). These differentially sen­
sitive effects were observed in either one or both lowland us up­
land allelic contrasts for the same QTL. For instance, the effect of 
QTL 2N@24.04 for the macronutrient Ca was differentially sensi­
tive in both allelic contrasts (Figure 3A), while the effect of QTL 
2N@10.06 for the micronutrient Mn was differentially sensitive 
only in the A x B contrast (Figure 3B). The other 41 allelic con­
trasts (54%) exhibited antagonistic pleiotropic effects (i.e., a sign 
change) across gardens, and 13 of these contrasts were statisti­
cally significant after a multiple testing correction (t-test, 
P< 0.000198, Supplementary Figure S2). The majority of the an­
tagonistic effects were present in only one allelic contrast. For ex­
ample, the effects of QTL 3K@36.09 for the micronutrient Zn were 
antagonistic for the C x D contrast, but not the A x B contrast 
(Figure 3C). Overall, QTL for the same element with QTLxE did 
not have similar patterns across environments. For example, the 
QTL 2N@78.05 and 3K@26.18 for the macronutrient P had the 
largest effects in TX, while the other two QTL 3N@56.03 and 
4K@6.08 for P had the largest effect in MO (Figure 3D).

Our QTL mapping strategy allowed us to test for both additive 
parental effects and for intralocus interaction (dominance) be­
tween additive effects (Equation 1). Of the 77 detected QTL, 15 
(19%) have significant dominance terms, and half of these 
showed dominance by environment interactions (Supplementary 
Table S5). The majority of the intralocus interaction effects were 
complex, with only a few (4) showing clear upland or lowland 
dominance patterns. In general, dominance effects were small 
relative to additive effects (9.80% on average).
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Figure 3 Representative differentially sensitive and antagonistically pleiotropic reaction norms for element concentrations (pg g-1) additive QTL effects 
across three common gardens (TX, MO, and MI). Two allelic contrasts are shown: panels A and B show QTL effects for the lowland APIS \ upland DAC 
cross, and panels C \ D show QTL effects for the lowland WBC \ upland VS16 cross. (A) Ca (macronutrient): 2 N@24.04 shows differential sensitivity in 
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Ionomic QTL colocalization with candidate genes
To explore avenues for future molecular characterization of the 
switchgrass ionome, we determined the genetic content of the 77 
QTL intervals for genes and gene ontology (GO) terms. We first 
examined QTL colocalization with candidate genes from ionomic 
mapping studies in other plant species, and found six important 
candidate genes (Supplementary Table S6) in the QTL intervals 
affecting element concentration in switchgrass. For example, 
Pauir.9NG231800, a homolog of MOT 1, is located within the 
1.5-LOD interval of the largest Mo concentration QTL 
(Chr09N@43.81). MOT 1, which encodes a molybdate transporter, 
is responsible for the natural variation in Mo accumulation in 
A. thaliana and in rice (Baxter et al. 2008; Huang et al. 2019), and 
may play an important role in adaptation to acidic soils 
(Poormohammad Kiani et al. 2012). Pamr.7kq41647Q, a homolog of 
HKT1, was a candidate gene in the QTL interval on Chr07K which 
colocalized for six elements. HKT1 encodes a Na transporter, and 
is responsible for the variation of Na content in A. thaliana (Rus 
et al. 2006; Baxter et al. 2010), rice (Ren et al. 2005), and wheat 
(Munns et al. 2012). Interestingly, this candidate gene was in the 
QTL interval for Al, Ca, Fe, Mn, Sr, and Zn, and did not contain a 
QTL for Na concentration in our mapping population. Candidate 
genes for heavy metal-associated ATPases, which are homologs 
of HMA in A. thaliana and rice, were found in Cu (Chr01K@14.42 
and Chr07K@26.27), Cd (Chr02N@85.72), and Zn (Chr02N@71.96) 
QTL intervals. These genes are responsible for Cu, Cd, and Zn 
transport. A sixth candidate gene, Pauir.9KG014451, was associ­
ated with the homolog of A. thaliana MYB36. MYB36 is a MYB do­
main transcription factor that regulates the expression of genes 
involved in the formation of the Casparian strip. The absence of 
the Casparian strip results in changes in leaf concentrations of 
Na, Mg, Zn, Ca, Mn, and Fe in A. thaliana (Kamiya et al. 2015). This 
candidate gene was in the QTL colocalizing Ca (Chr09K@20.05), 
Mg (Chr09K@18.15), and Mn (Chr09K@20.05) concentrations.

To elucidate the cellular pathways associated with ion con­
centrations in switchgrass, we also looked at GO term enrich­
ment based on the gene content in the 77 QTL. We identified 405 
unique enriched GO terms across the ionomic traits (P< 0.05). 
Overall, these QTL regions were enriched for GO terms of 
DNA-binding transcription factor activity, heme binding, and oxi- 
doreductase activity (Supplementary Table S7). Among the mac­
ronutrients and analogs of macronutrients, the QTL regions of 
Mg were significantly enriched for GO terms of carbohydrate 
binding, protein transport, cell wall biogenesis, and signal peptide 
processing, among the 34 ontologies. Mg is involved in protein 
synthesis (approximately 75% of leaf Mg), is associated with chlo­
rophyll (15-20% of total Mg), and functions as a cofactor for a se­
ries of enzymes involved in photosynthetic carbon fixation and 
metabolism (Cakmak and Kirkby 2008; White and Broadley 2009). 
K QTL regions were significantly enriched for GO ontologies of ox- 
idoreductase activity, calcium and iron ion binding, and in partic­
ular, antioxidant activity. K has a regulatory function in several 
biochemical processes related to protein synthesis, carbohydrate 
metabolism, and enzyme activation. K can enhance antioxidant 
defense in plants, which protects plants from oxidative stress in 
adverse environments (Hasanuzzaman et al. 2018).

Among the micronutrients, Mn concentration QTL intervals 
were significantly enriched for GO ontologies of photosynthesis, 
mitochondria, carbohydrate binding, the photosystem I reaction 
center, and electron transfer activity. Mn functions as a major 
contributor to various biological systems including photosynthe­
sis, respiration, and nitrogen assimilation in plants among other

functions (Andresen et al. 2018; Alejandro et al. 2020). Cu concen­
tration QTL regions were significantly enriched for GO ontologies 
of cell wall macromolecular catabolic process, oxidoreductase ac­
tivity, calcium ion binding, and regulation of transcription among 
the 36 ontologies. Cu is an essential cofactor for numerous pro­
teins, an essential player in electron transport. Cu is also involved 
in the control of cellular redox state (a major Cu-binding protein 
is the Cu/Zn superoxide dismutase) and remodeling of the cell 
wall (Cohu and Pilon 2010; Andresen et al. 2018). Among nones­
sential elements, Cd QTL regions were significantly enriched for 
GO ontologies of metal ion binding, photosynthesis (light harvest­
ing), and cell growth among others. Cd is one of the most toxic 
heavy metals for plants and can displace essential metals (such 
as Zn, Fe, and Ca) from a wealth of metalloproteins and disturb 
normal physiological processes. It can also cause severe develop­
mental aberrance such as chloroplast structure change, reactive 
oxygen species (ROS) production, and cell death (Wan and Zhang 
2012).

Discussion
Ionomics is a powerful tool for determining the elemental status 
of plants, and can be combined with mapping populations to de­
termine the genetic architecture responsible for variation in ele­
mental composition. Our study not only examined the genetic 
basis of the switchgrass ionome, but also how individual ionomic 
loci responded to three environments (i.e., expressed GxE) across 
the native range of this perennial species. We detected 77 signifi­
cant QTL across the 18 elements, half of which had significant 
QTLxE effects. This indicated the importance of the environmen­
tal context in elemental concentration variation at the QTL level. 
We observed common QTL colocalization between elements, 
which supports a partially shared regulatory network for element 
uptake, transportation, or accumulation, as previously suggested 
(Baxter et al. 2014; Dhanapal et al. 2018). Understanding the 
genetic architecture of elemental accumulation in our outbred 
population of divergent switchgrass ecotypes is the first step in 
uncovering the potential for ionomic adaptation in switchgrass 
across variable environmental conditions.

Genotype by environment interactions are common across 
many different species, phenotypes, and environments. Previous 
work has found that GxE is often caused by differential sensitivity 
in response to the environment, and that antagonistic pleiotropy 
(or trade-offs) at the individual gene level are relatively rare or 
weak (Des Marais et al. 2013; Wadgymar et al. 2017; Lowry et al. 
2019). Our study found not only differentially sensitive effects, 
but also substantial antagonistic pleiotropy (54%) across the 
ionomic QTL with QTLxE, indicating that alleles commonly had 
opposing effects on element concentrations in different environ­
ments. This result suggests that the plant ionome may play an 
important role in local adaptation, as both model and empirical 
work have suggested that there should be strong trade-offs in­
volved in local adaptation at the level of QTL (Felsenstein, 1976; 
Bradshaw and Schemske 2003; Kawecki and Ebert 2004). Our 
cross design also allowed us to compare allelic effects for two dis­
tinct lowland us upland crosses and determine if there was varia­
tion in effects between these crosses. Interestingly, some ionomic 
QTL showed differential sensitivity in one cross but antagonistic 
pleiotropy in the other. This suggests that the same set of loci 
may not be consistently responsible for divergence between low­
land and upland switchgrass ecotypes, and implies that substan­
tial ionomic variation also exists within upland and lowland 
ecotypes. In essence, these results suggest that different loci
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contribute to ionomic variation across the range of the species, 
and that ionomic divergence among ecotypes was not based on 
fixed differences between the ecotypes.

QTL for multiple elements typically colocalized in our study. 
This may not be surprising, as maintaining ion homeostasis 
requires a network of ion uptake, transportation, trafficking, and 
sequestration mechanisms, and not all genes in this regulatory 
network will be ion-specific (Clemens 2001). We found substan­
tial colocalization of P QTL with cation QTL, always with ele­
ments most abundant in soil as cations with 1+ or 2+ charge. P is 
a component of key molecules of plants such as ATP, nucleic 
acids, and the form of P most readily accessed by plants, inor­
ganic P, is likely co-transported with positively charged ions 
(Schachtman et al. 1998). Colocalization of P QTL with cation QTL 
in our study might thus reflect co-transport of P and cations at 
the gene level. Indeed, we found a few cation transporters anno­
tated for A. thaliana in the P QTL intervals, including high-affinity 
K+ transporter, ZIP metal ion transporter family, and Ctr copper 
transporter family. P QTL colocalized with K and/or Ca QTL at 
three positions (8 K@10.7, 9K@60.9, and 9N@2.4). P, K, and Ca are 
all macronutrients, which plants need in large quantities. 
Although different populations may have adapted to soil types 
with different quantities of these elements, the need for these 
macronutrients in large quantities could have facilitated the evo­
lution of similar or shared mechanisms or networks to take up 
these elements from soils, thus yielding colocalizing QTL. 
Alternatively, colocalization could be coincidental and/or simply 
due to multiple linked genes. In support of this view, P also had 
many QTL that were singletons (5 noncolocalizing QTL out of 14), 
as did the macronutrient Mg (6 noncolocalizing QTL out of 9). 
P and Mg deficiencies in soils are often widespread (Maathuis 
2009); thus, a potential adaptive scenario is that switchgrass 
plants were under stronger selection to increase uptake or toler­
ate lower levels of accumulation of these two macronutrients, 
the segregation of which drove the increase in variation for con­
centrations of these elements and led to ion-specific QTL. Indeed, 
our study identified significantly more QTL for macronutrients 
than expected (2.05x enrichment, binomial test P< 0.001). 
Identification of these QTL and their reaction norms is the 
first step in testing hypotheses of local adaptation in natural 
environments.

We detected fewer QTL than expected for micronutrients 
(0.5x, binomial test P< 0.001), and most micronutrient QTL colo­
calized with QTL of other elements. Taken together, these results 
suggest that there may have been only weak selection on accu­
mulation of micronutrients in switchgrass populations. It is pos­
sible that switchgrass obtains sufficient quantities of these 
micronutrients from any soil. This may be consistent with a re­
cent study of the influence of Mn availability on switchgrass bio­
mass production, showing that even low shoot tissue Mn allows 
switchgrass to maintain biomass production (Guo and Fritschi 
2021). We also found little variation in concentration of poten­
tially harmful elements (Al, As, and Cd), and fewer QTL than 
expected for these elements (0.47x, binomial test P = 0.013). It 
may be that harmful elements impose such strong selection that 
beneficial alleles have been fixed, and deleterious alleles purged, 
at least in the populations from which the four grandparents 
were sampled. Alternatively, harmful elements may not be pre­
sent in sufficient quantities in the commonly encountered soils 
and in the three common garden soils for the four grandparents, 
and thus there may have been only weak selection against spe­
cific or nonspecific accumulation of these elements. We also 
found more QTL than expected for nonessential analogs (1.99 x,

binomial test P = 0.002). The nonessential analog Sr was pheno- 
typically correlated with its chemical analog Ca at every garden, 
and they shared colocalized QTL at the two large clusters on 
Chr02N (at the top) and Chr07K in our cross. Strong correlations 
between Sr and Ca have been reported in other species (Broadley 
and White, 2012; Shakoor et al. 2016). The colocalization of QTL of 
Sr with other elements also likely reflects its nonessential nature, 
in that it is seldom the target of uptake by plants, and instead 
only accumulates via nonion-specific mechanisms.

We found multiple candidate genes within our QTL regions 
which may affect element concentrations. These candidate 
genes provide targets for future fine-mapping research in 
switchgrass. Among these, we found a homolog of HKT1, 
Pavir.7kg416470, in the QTL on Chr07K. This candidate gene was 
in the QTL interval for the six elements, Al, Ca, Fe, Mn, Sr, and 
Zn, but not in either of the two Na accumulation QTL intervals. 
HKT1, which encodes Na transporter, was responsible for the 
variation in Na accumulation in A. thaliana (Rus et al 2006; 
Baxter et al. 2010), rice (Ren et al. 2005; Kobayashi et al. 2017), 
wheat (Munns et al. 2012), and maize (Zhang et al. 2018). 
However, Na accumulation in these studies were assayed in 
plant leaves, while Na accumulation in our study was assayed 
from whole tillers, which included both leaves and shoots. It 
seems likely that different tissues could accumulate elements 
at different levels, but our data represents a composite picture 
of several tissues. In addition, soil Na was not particularly vari­
able in our gardens (i.e., 11, 12, and 10ppm for TX, MO, and MI, 
respectively), and some of these elements do compete with Na 
uptake from soil (Mass et al. 1972; Cramer et al. 1989; Tuna et al. 
2007). It is also possible that the lack of variability of soil Na rel­
ative to these other elements masked a QTL effect for Na but 
allowed detection of this QTL for other elements.

Overall, our results suggest that ionomic variation, and iono­
mic variation across environments, are common in switchgrass. 
This variation, controlled by a combination of genes and the envi­
ronment, offers critical material for adaptation of switchgrass 
metabolism and development across different environments. 
The identification of loci that affect nutrient concentration in 
these environments will facilitate the development of switch- 
grass varieties with high nutrient-use efficiency for sustainable 
biofuel production. When combined with harvested biomass, 
plant elemental concentrations can be linked to nutrient removal 
from the soil and impact biofuel conversion efficiency and future 
soil fertility.
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