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Abstract—Deep Neural Networks (DNNs) have demonstrated
promising performance in accuracy for several applications such
as image processing, speech recognition, and autonomous systems
and vehicles. Spatial accelerators have been proposed to achieve
high parallelism with arrays of processing elements (PE) and en-
ergy efficient data movement using traditional Network-on-Chip
(NoC) architectures. However, larger DNN models impose high
bandwidth and low latency communication demands between
PEs, which is a fundamental challenge for metallic NoC archi-
tectures. In this paper, we propose WiNN, a wireless and wired
interconnected neural network accelerator that employs on-chip
wireless links to provide high network bandwidth and single cycle
multicast communication. We design separate wireless networks
modulated with two different frequency bands one each for the
weights and input. Highly directional antennas are implemented
to avoid noise and interference. We propose multicast-for-wireless
(MW) dataflow for our proposed accelerator that efficiently
exploits the wireless channels’ multicast capabilities to reduce
the communication overheads. Our novel wireless transmitter
integrates on-off keying (OOK) modulator with power amplifier
that results in significant energy savings. Our simulation results
show that WiINN achieves 74% latency reduction and 37.5%
energy saving when compared to state-of-art metallic link-based
accelerators, 38.1% latency reduction and 19.4% energy saving
when compared to prior wireless accelerators for various neural
networks (AlexNet, VGG16, and ResNet-50).

Index Terms—Radio frequency, Wireless interconnect, Com-
puting methodologies, Neural networks

I. INTRODUCTION

Neural network algorithms, such as deep neural networks
(DNNs), have demonstrated outstanding performance in accu-
racy surpassing humans over the past few years in performing
artificial intelligence (AI) tasks, such as object detection,
image recognition and classification [1], [2], [3]. However, the
increase in prediction accuracy of DNNs comes at the cost
of tremendous computation requirements with hundreds of
layers and millions of parameters (60 million [3] to 10 billion
[2]). This poses significant throughput and energy-efficiency
challenges to efficiently compute and move data from memory
to processing elements (PEs).

Spatial accelerators are the de facto solution to execute
such highly parallel DNN workloads instead of using general
purpose CPUs. As these accelerators are deployed at the edge,
they are constrained by stringent power envelops and area
budget. A large body of accelerators aiming at ML inference
have been introduced recently to boost the computing speed
and power efficiency [4]-[12]. Most of these accelerators are

spatial in nature, i.e., an array of interconnected PEs are
used to provide high throughput and parallelism. The on-
chip dataflow between PEs and global buffers is optimized
to maximize the data reuse and thereby, reduce the off-chip
data movement. Reused data are either multicast or broadcast
to PEs by the global buffer by customized dataflow patterns
to improve energy-efficiency [13], [14].

As the number of PEs increases, the system performance
may not scale accordingly due to the overhead of inter-
PE and off-chip memory communication. In a spatial NN
accelerator, the Network-on-Chip (NoC) plays a critical role
in realizing high throughput and low latency. Most neural
network accelerators operate in a pipelined fashion - a PE
operation is triggered by data arrival, and the PE stalls if
the next data to be processed is unavailable due to memory
or network delay. Traditional interconnection system such as
buses or crossbars are inefficient due to fundamental signaling
or scaling limitations with increasing number of PEs [15].
Recent work has focused on energy-efficient and low latency
NoC design specialized for DNN accelerators such as hierar-
chical mesh/buses, light weight micro switch and chubby-tree
structures [10], [15], [16]. Nevertheless, the multicast energy
consumption and high latency of long-distance communication
of wired links limit the scalability of the accelerator.

Emerging wireless technology has the potential to provide
high communication bandwidth, low access latencies, and
high power efficiency [17] [18] [19]. Wireless technology
offers several degrees of freedom including spatial, temporal,
and frequency - all of which make it convenient to deliver
high bandwidth, single-hop, distant independent on-chip com-
munication to multiple receivers simultaneously. Few prior
work have explored deploying the wireless communication
for neural network accelerator. Most prior work have utilized
wireless technology to broadcast or multicast weights or input
activations on a single wireless channel to improve latency
or energy performance [18], [19] [20]. However, none of
the prior work have shown the comprehensive multi-bands
wireless communication for neural network accelerators with
customized dataflow tailored for wireless technology along
with detailed transceiver technology design.

In this paper, we propose WINN, a wireless and wired
interconnected neural network accelerator that employs on-
chip wireless links to provide high bandwidth and energy-
efficient single cycle multicast communication of weights and



input activations. We propose multicast-for-wireless (MW)
dataflow for WiNN that efficiently exploits the wireless chan-
nels’ multicast capabilities to reduce the communication over-
heads. The proposed MW outperforms existing state-of-the art
dataflows such as output stationary, weight stationary and row
stationary when designed with wireless technology. Moreover,
by exploring more than two frequency bands, we also provide
the design space of partitioning and mapping MW dataflows
to take advantage of additional frequency bands. The major
contributions of this work are as follow:

o Wireless Accelerator and Dataflow: We propose a hy-
brid wireless and wired interconnected neural network ac-
celerator. By employing wireless for multicasting weights
and input activations, we reduce latency and improve
energy-efficiency for data movement. Our customized
dataflow, MW, exploits the unique wireless channels’ ca-
pabilities of multicast and broadcast to improve execution
latency.

o Multi-band Wireless channels: We use directive antenna
for the x- and y-dimension wireless interconnects, which
enables spatial division multiplexing to distribute weights
and activation separately. We propose multi-band wireless
channels using frequency division multiplexing that sup-
ports flexible partitioning and mapping.

o Energy efficient transceiver: Our novel wireless trans-
mitter integrates on-off keying (OOK) modulator with
power amplifier that results in significant energy saving
for WiNN. A single transistor switch acts as the modula-
tor of such an OOK transmitter. By switching the power
amplifier only when ‘1’ is observed, the average power
dissipated is reduced by 50%.

II. BACKGROUND
A. Deep Neural Networks (DNNs)

Deep Neural network (DNN) is an artificial neural network
(ANN) with multiple middle layers between the input and
output layers that can be trained to model the behavior of
complex non-linear functions. Convolutional Neural Networks
(CNNs) are a class of DNNs that are widely used for image
processing. the computation of the convolutional layer domi-
nates the complexity and energy consumption in the multiple
layers of DNN. Convolutional layers convolve the input in the
form of a raw image or an input activation map (the output
of a previous convolution layer) with a filter to produce an
output feature map as shown in Eq. 1:
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where S and R are the width and height of the filter volume; W
and H are the width and height of the input map volume; F and
E are the width and height of output map volume respectively.
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Fig. 1. An overview of proposed WiNN architecture. The two-dimensional
PE array is connected by inter-PE electrical links and xy- dimension wireless
interconnects.

C is the channel for both weight and input map, M is the
number of filter volumes, and U is a the given stride size.

B. Dataflows and Communication Patterns

Several hardware accelerators have been proposed in the
literature to efficiently implement neural network architectures
over the past few years [5], [8], [11], [12]. The objective is to
increase the throughput by taking advantage of the parallelism
and improve the overall energy-efficiency when compared to
general purpose CPUs. While MAC processing is confined
to the PE array, data movement is dictated by the dataflow
between the buffers and PE array. As dataflow determines the
overall energy-efficiency, different dataflows such as Weight
Stationary (WS), Output Stationary (OS), Row Stationary (RS)
and No Local Reuse (NLR) have been proposed to minimize
the data movement [21]. In WS for example, the weights
remain fixed at the PE and the inputs change every cycle. This
implies that accumulation of computed operations (reduction)
needs inter-PE communication.

No matter which dataflow is deployed, the communication
patterns cause three different traffic within the accelerator
- scatter, gather and local [15]. Scatter is data distribution
from the global buffer (GB) to the PE array. It involves
either unicasting the weight and input map to specific PE,
or multicasting to a row/column of PEs, depending on the
dataflow strategy. Gather is the traffic flow by which multiple
PEs send back data to the GB. It is either unicast or has many-
to-one communication pattern, occurring at the end of the
output computation. Local communication refers to the inter-
PE communication. It could be the input map propagation or
partial sum accumulation between neighbouring PEs.

III. WINN ARCHITECTURE

A. Accelerator Architecture

The proposed WiNN architecture is illustrated in Fig. 1.
WiINN consists of a global buffer (GB), which connects the
off-chip DRAM and the on-chip processing element (PE)
array. Each PE consists of a local memory, computation
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Fig. 2. Proposed PE microarchitecture. Wireless transceiver modules in red
receive and demodulate input activations at 60GHz center frequency. Green
transceiver modules correspond to weights that are demodulated with 70GHz
carrier. The input activation register files (pink) obtain data either through
wireless channels or through inter-PE electrical interconnects depending on
the PE control.

unit, and wireless transceivers. GB stores weights and input
feature maps that can be reused by the PE array. Wireless
transceiver array (green and red boxes) assigns one transmitter
and antenna for each row and column of the PE array,
which comprises a X-Y dimension-order wireless network. We
modulate the wireless channels of X-Y axis in different center
frequencies to minimize the interference at the cross points.
This ensures that weights and input maps are available to all
the PEs at the same time regardless of the communication
distance, thanks to frequency multiplexing and high-directivity
of the antennas. Wired interconnects (blue line arrow) remain
between the PEs for inter-PE data propagation to facilitate
exchange of input features and output partial sums.

The fig. 2 shows the microarchitecture of the processing
element (PE) where two wireless receivers obtain weights and
input activations through the external antenna respectively. The
two front-end filters work at different band-pass frequencies
(for instance, green receives at 70GHz and red receives at
60GHz) to separately demodulate weights and input activa-
tions. Under the PE Control, the adder and multiplier fetch
data from the register files and perform a multiplication and
accumulation (MAC) operation per cycle. The partial sum
(psum) to be accumulated is accessed either from the local
psum register file or from the neighboring PE according to
the specific dataflow.

B. Multicast for Wireless (MW) Dataflow

To best exploit the multicast capabilities of wireless chan-
nels, we propose a new dataflow MW, multicast-for-wireless.
In essence, MW deploys the x- dimension wireless channels
to multicast weights for each PE row and y- dimension
wireless channels to multicast input activations for each PE
column. Each PE is connected to adjacent PEs using wired
interconnects to propagate the reused input activations. The
psums are accumulated inside each PE.

To illustrate with a detailed walkthrough example, consider
Fig. 3 which shows the proposed MW dataflow. Fig. 3(a)
shows the convolution of a 3 x 3 filter on a 5 x 5 input map to
obtain a 3 x 3 output map with a stride of one and no padding

on a 3 x 3 PE array. Fig. 3(b) shows the data movement using
both wireless and wired interconnects and the computation
within each PE per cycle. At tg, transmitters in the x-dimension
transceiver array multicast W to all PEs (PEqg, PEg1, ... and
PE5,) on frequency channels Fry, Fro, and Fgr3 respectively.
Transmitters in the y-dimension multicast input maps in the
convolution Sliding Window (SW) 1 to the PEs connected
along each column on different frequency channels (PEq,
PE10 and PE20 on FCl; PEOl, PE11 and PE21 on FCQ and
PEq2, PE;5 and PEss on Fe3 using directive antenna. As each
PE only requires one input pixel from the multicast traffic,
one extra cycle is spent by the PE to index the expected data
according to the physical address of the PE. At cycle to, SW 1
shifts to SW 2. W, is multicast to all PEs in all rows, similar
to tg. A new column of input maps (Ips, I;3, and I53) are
fetched and multicast by the wireless channel (F¢3) to the PEs
in the column. Fr; and Foo are set to the idle state. The rest
of PEs retrieve the input map from neighboring PE through
wired links (for instance, PE, receives Iy; from PEg;). The
wireless input map distribution for each column also takes two
cycles. When it reaches SW 3 and moves to SW 4 at tg, W2
is multicast in one cycle. Input maps are unicast to the bottom
row of PEs (PEyg, PE21, PEgs), taking only one cycle because
no input map index is required. Throughout the process, psums
are always accumulated inside each PE until the convolution
sliding window traverses the end of input maps. The pseudo
code for the MW dataflow algorithm is presented in Algorithm
1.

Algorithm 1 MW algorithm on WiNN.

1: All weights are denoted as W[, 5], in which0 < i < R,0< j < S

2: All input activations are denoted as I[p, g], in which 0 < p < H,0< g < W

3: All PEs have identifier PE[z, y], in which0 < z < X,0<y <Y

4: for each input channel, 0 < ¢ < C' do

5: Initialize all the PEs with W[0,0] and I[p,q] (0 < p < R, 0 < ¢q < S)
respectively

6: for each weight, 0 < i < R,0<j < S do

7 /I Weight distribution:

8: foreachPE, 0 <y <Y,0<z < X do

9: PE[z, y] = Global_Buffer[W[i,j]] // multicast through horizontal wireless

channel F,.

10: end for

11: // Input activation distribution:

12: foreachPE,0 <y <Y,0<z < X do

13: if j == S — 1 then

14: if t == X — 1 then

15: PE[z, y] = Global_Buffer[I[¢ + R — 1,j + S — 1]] // unicast

by vertical wireless channels F,,
16: else

PE[z, y] = PE[z + 1, y] // vertical inter-PE propagation
17: end if

18: else

19: if y ==Y — 1 then

20: PE[z, y] = Global_Buffer[I[i + R — 1, j + S — 1]] // multicast

by vertical wireless channels F,,

21: else

22: PE[z, y] = PE[z, y + 1] // horizontal inter-PE propagation

23: end if

24: end if

25: Psum[z,y] + = W[i,jl X [[i + R — 1,5 + S — 1]

26: end for

27: end for

28: end for

29: Clear the psum register file in PE and send the output back to GB through wired
links
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Fig. 3. A walkthrough example of WiNN architecture with multicast-for-wireless (MW) dataflow. (a) shows 3 x 3 filters (blue) and 5 x 5 input maps (yellow)
are convolved to obtain 3 X 3 output maps (red). (b) shows the data movement of both wireless and wired interconnects and the computation cycle of PEs
when (a) is implemented in WiNN. (c) shows the WiNN design with 3 X 3 PEs and inter-PE input map propagation at ty and t3.

C. Scalability

WiNN architecture can be scaled to accommodate more PEs
in different ways. One method to scale the architecture is to
increase the concentration factor. By grouping 4 PEs together,
we can multicast either the weight or input map to the PE
cluster. These scaling approaches have been proposed for on-
chip communication to reduce the router complexity [22].

WiNN architecture can be scaled also by expanding the PE
array with more wireless frequency bands. Since transmitters
work at the same power, integrating more PEs for x-dimension
communication (weights) has no significant impact. However,
for the y-dimension different input maps are sent to different
columns. With multiple frequency bands, these input maps
can be simultaneously sent on different frequencies. Multi-
ple receiver circuits and antennas at different demodulation
frequencies have to be integrated into the PE to achieve this
multi-band design which can incur higher area cost. As shown
in Fig. 3(c), three rows of PEs use 60GHz frequency and three
columns of PEs use 70GHz. Since two frequency bands are
used, we name the design WiNN-2. By applying multi-band
channel for y-dimension, we develop WiNN-n architecture,
where n represents the number of bands used by the wireless
channels. In WiNN-4 for example, each y-dimension wireless
channel carries 3 frequency bands, which provide dedicated
channel for each PE in the column. Then, a column of input
maps can be sent to the PEs in one cycle, instead of one
additional cycle for indexing as depicted in Fig. 3(b). The
total execution time for the example 3(a) on WiNN-4 is 10
cycles, 1.6 times faster than the baseline (WiNN-2).

D. Wireless Channel and Transceivers

In MW, the transmission along the rows and columns takes
place simultaneously using two adjacent but different fre-

quency channels. The use of the directional antennas alleviates
the design of multiple transceiver in different frequency bands,
thus avoiding design complexity and migration to power
hungry BiCMOS or III-V technology if we were to scale
up in frequency. Thanks to recent advances [23], [24], [25]
especially in additive manufacturing and 3D chip integration,
such highly directive antennas are easier to pursue either by
in-plane dielectric engineering, structural guiding via etching,
bonding or packaging elements. While certainly non trivial
to build and test, use of directive antennas can ensure higher
flexibility for dataflow in the proposed WiNN accelerator, as
evident in the link budget analysis below (Fig. 4).

As an illustration of the concept and indicative of the
potential of WiNN, the current design proposes to use 60 GHz
and 70 GHz as the two frequency bands for transmission for
the weights and inputs, respectively. A quarter wave monopole
antenna with a very high directivity (around 5 dBi) has been
considered for the MW. Such high-directivity requires either
the use of metasurfaces or superstructures over the chip surface
[24], [25] or loaded dielectrics [23] along with a quarter-wave
monopole antenna.

Link Budget: A link budget is evaluated for the wireless
communication of the transmitter data considering multiple
design environments. As can be seen from Fig. 4(a) (b), the
required transmit power decreases significantly with increasing
antenna directivity for both distance and frequency. Fig. 4(c)
shows the minimum dissipated DC power of the amplifier
(Class-A) driving the antenna at the appropriate signal levels.
Thus we can estimate how the overall TRx power changes with
antenna directivity and frequency. The DC power is computed
from the Power Added Efficiency (PAE) of 25% and the RF
output power of the PA.

OOK Transceiver: The wireless communication in WiNN is
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Fig. 5. The OOK transmitter circuit: Block diagram and the circuit imple-
mented in 45nm FinFET technology. The single transistor switch, M5, acts
as the OOK modulator
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Fig. 6. The OOK receiver circuit: Block diagram and the circuit implemented
in 45nm FinFET technology

achieved using the incoherent Amplitude Shift Keying (ASK)
based On-Off Keying (OOK) modulation. The modulation
scheme uses an integrated modulator and power amplifier in
the transmitter and an envelope detector at the receiver for the
demodulation as depicted in Fig. 5 and 6. The proposed CGM-
FinFET transmitter consists of a differential LC oscillator and
a two-stage cascade common-source power amplifier, stage
one of which also acts as the OOK modulator. The data is
fed into the driver transistor M4 when there is logic ‘1’ that
enables the switch MS5. The single transistor switch thus acts as
the modulator of such an OOK transmitter. The OOK receiver
uses an energy efficient Low Noise Amplifier (LNA) and an
envelope detector to demodulate the OOK modulated signal.
An energy and area efficient active Dickson Rectifier [26] has
been modified in the 45 nm CGM FinFET technology for the
envelope detection of the OOK modulated signal.

Transceiver Performance: The OOK modulation ensures the
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Fig. 7. (a) Gain of the PA (b) Gain of the LNA (c) OOK Modulation and
Demodulation of the digital data.

power efficiency of the transceiver by avoiding the design of
phase shift keying (PSK) modulators and phase locked loops
(PLL). The output power of the power amplifier is -2 dBm to
ensure sufficient energy to transmit to the maximum distance
of 28 mm as envisaged for the WiNN architecture. Since
the separation between the transmitter and the receiver are
in the range of few millimeters, the gain of the amplifier is
intentionally kept low at a peak gain of 3 dB to minimize
the power dissipation. As depicted in Fig. 7(a), the 3-dB
bandwidth is ~12 GHz ranging from 55 GHz to 67 GHz at
2.25 dB satisfying the data rate requirement of the transmitter.
The LNA in the receiver achieves a peak gain of 8 dB (Fig.
7(b)). The observed noise figure and the 1-dB compression
point is 7 dB and -5 dBm respectively. The 3-dB bandwidth
is ~15 GHz ranging from 60 GHz to 75 GHz at a gain of 5
dB. The Dickson Rectifier demodulates the OOK modulated
signal to retrieve the digital data at the receiver (Fig. 7(c)).
Both the transmitter and receiver has been designed with the
UC Berkeley CGM technology model at 45 nm [27].

IV. PERFORMANCE EVALUATION

A. Simulation Setup

We evaluate the proposed WiNN on three representative
DNNs, i.e. AlexNet [1], VGG16 [2] and ResNet-50 [3] on
CIFAR-10 dataset [28]. The propagation delay, power con-
sumption and area overhead of each electrical component
(Table I) are obtained through the RTL-level simulation by
Design Compiler Ultra from Synopsys with FreePDK45 [29],
a 45nm technology node design kit, released as an open-source
model by NCSU. The transceiver circuit is implemented
in the CGM 45 nm FinFET technology model from UC
Berkeley [27]. We use a cycle accurate network simulator to
obtain the latency and throughput of implementing the DNN
benchmarks. A power model is further created to evaluate the
energy consumption of WiNN when compared to other metal-
lic NoC based accelerators. These include traditional mesh-
based network, bus-based network, accelerators optimized
NoC Microswitch [15] and hierarchical mesh as proposed
in Eyeriss-v2 [10]. We also compare WiNN to two wireless
interconnected DNN accelerators such as WiNoC [19] and
WIENNA [20].



TABLE I

WINN AREA AND POWER BREAKDOWN WITH 256 PES AT 45 NM
TECHNOLOGY NODE. WIRELESS RX AND TX ARE SIMULATED RESULTS
FROM FIG 5 AND 6 WITH 60 GHZ CENTER FREQUENCY.

Wireless Rx Wireless Tx PE (256x) +Mem Global Buffer
Area (mm?) 0.5 0.7 10.1 4.2
Power (mW) 8 25 307 147

B. Power and Area Model

Table I shows the simulation results of area overhead and
power consumed by various components in WiNN architec-
ture. The TRx area are largely contributed by inductors. We
propose a power estimation model (equation 2) to fairly eval-
uate the energy performance of proposed WiNN architecture
as well as other counterparts. In equation 2, [ is index of a
neural network layer, n is the index of an active PE, i is the
index of a inter-PE electrical link, j is the index of a wireless
channel, m is index of a wireless transceiver at global buffer,
T denotes total number of cycles for one layer, P,. denotes
the power of PE, P,; denotes the power of electrical link, P,
denotes the power of wireless link, and P,; denotes the of
power of wireless transceiver. We simulated a wired link with
8 Gbps and obtained 4.7pJ/bit energy consumption, which is
used to compute the overall energy consumption of inter-PE
wired interconnects in WiNN.

layers Npe Ngg
EnergyCost = Z (Z Pye X Tpe,, + Z Pey; X Ter,
1 n i (2)

Nl T Nyt

+ Z Pty T +Z Z Puyt,)
I t m

C. Simulation Results

Execution Time: Fig. 8 shows the latency of WiNN on
AlexNet, VGG16 and ResNet-50 with WS and MW dataflow
for 256 PEs. Since RS and OS have identical number of
multicast data that are transferred, we limit our comparison
of MW to WS only. Micro-switch achieves up to 26% latency
reduction on WS and 29% latency reduction on MW when
compared to mesh network because of the compact switch
architecture that achieves single-cycle unicast communication.
Compared with traditional mesh and bus networks. H-Mesh
reduces the latency by an average of 72% on WS and 85%
on MW due to hierarchical design. WiNoC and WiNN both
deploy wireless interconnects and achieve lower latency than
other metallic counterparts due to the low latency, distance
independent and one-cycle multicast communication. WiNN
reduces the latency further by up to 14% on WS and 38%
on MW compared to WiNoC as WiNoC only supports the
broadcast of weights. The advantages of WiNN architecture
are more pronounced on MW dataflow because WS dataflow
emphasizes input features to be multicast/broadcast and inter-
PE psum reduction, whereas MW dataflow emphasizes multi-
casting both weights and input activations.

Energy Consumption: The energy consumption of AlexNet,
VGG16 and ResNet-50 with 256 PEs is shown in Fig. 9, which
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Fig. 9. Overall energy consumption of (a) AlexNet, (b) VGG16, and (c)
ResNet-50 in WiNN with 256 PEs.
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shows that WiNN has the highest energy efficiency among
these networks. WiNN reduces the energy consumption by
up to 37.5% compared to H-Mesh and 19.4% compared to
WiNoC. The energy saving is essentially from the reduced
latency of wireless multicast communication and the low
power OOK transceiver. The weight multicast and input map
propagation between neighboring PEs in MW is simpler than
regular mesh topologies, which also contributes to the energy
saving. The energy improvement through wireless communica-
tion can also be seen in WiNoC when compared to the metallic
link based architectures. For instance, WiNoC reduces the
energy consumption by 28.3% as compared to H-Mesh due to
the efficient broadcasting of wireless interconnects. However,
WiNoC is 19.4% less energy efficient than WiNN in ResNet-
50 as WiNoC lacks support to multicast the input activations.
Scalability: We simulate multiple PE array sizes to evaluate
the scalability of WiNN. Figure 10(a) shows the energy
consumption of running AlexNet with 16 x 16, 32 x 32, and
64 x 64 PE arrays. As discussed in section 3.3, the PE array
can be expanded to 32 x 32, as well as the number of wireless
transceivers. However, we scale the PE array from 32 x 32
to 64 x 64 by increasing the concentration factor because of
limited available wireless frequency bands. As shown in Figure
10, the mesh based accelerator scales the worst with 5.6 times
more energy consumption when increasing from 256 PEs to
1024 PEs, while the increase is only 2.5 times for WiNN
architecture. Figure 10(b)(c) show the energy breakdown of
WINN with 256 PEs and 4096 PEs, in which total energy
consumption ratio of data movement (through both wired and
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Fig. 10. Overall energy consumption of AlexNet on different PE array sizes
of 256 PEs, 1024 PEs and 4096 PEs. Power breakdown for (b) 256 PEs and
(c) 4096 PEs.
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Fig. 11. Normalized energy, delay, and EDP for WiNN under different number
of wireless bands configurations on (a) AlexNet, (b) VGG16 and (c) ResNet-
50 network.

wireless) decreases from 34% to 28%. That is, the wired and
wireless interconnection scheme in WiNN improves energy
efficiency for large PE arrays.

Energy-Delay Product: Figure 11 shows the energy, delay,
and energy delay product (EDP) of WiNN for AlexNet,
VGG16, and ResNet-50 networks with multi-band wireless
channel configurations. We normalized the results on the
baseline version WiNN-2, in which two frequency bands are
used for the wireless channels, one for the x- dimension, the
other for the y- dimension. As shown in the figure, WiNN-4,
WiNN-8, and WiNN-16 reduces the delay of running ResNet-
50 by 11%, 21%, and 35% respectively when compared to
WiNN-2. More frequency bands in y- dimension reduces the
overall delay of the networks by alleviating input activation
indexing, that is, PEs in a column receive the corresponding
input activation in one cycle without requirement of discarding
inputs from the multicast communication. Although incor-
porating multiple bands in one wireless channel increases
the complexity of transceiver circuit and the overall energy
consumption, multi-band channels achieves lower EDP values.
For example, WiNN-4, WiNN-8, and WiNN-16 reduces the
EDP of running ResNet-50 by 9%, 17%, and 30% respectively
when compared to WiNN-2.

Accelerator Comparisons: A comprehensive comparison be-
tween the architectural parameters for different accelerators
as well as their performance on AlexNet are given in Table
II. Eyeriss V2 is a metallic interconnection based accelerator
with a hierarchical mesh network optimized to configurably
support multicast and unicast. When compared to Eyeriss
V2, WiNN achieves 1.7x higher performance-per-watt and
consumes 1.6x less energy. WiNoC and WIENNA are two
accelerators with the wireless hybrid interconnection. WiNoC
employs one wireless channel for low latency weight broad-
cast. When compared to WiNoC, WiNN achieves 1.9x higher
performance-per-watt and consumes 1.1x less energy, even

TABLE II
HARDWARE PARAMETER SET UP AND PERFORMANCE COMPARISON OF
WINN WITH EYERISS V2, WINOC, WIENNA.

Eyeriss V2 | WiNoC | WIENNA WiIiNN
Technology 45nm 45nm 65nm 45nm
Area (mm?) 9.5 14.2 1699 16.5
PE 256 256 16384 256
Core Frequency (MHz) 500 500 500 500
Peak Throughput GMACS 256 128 8192 128
Global Buffer (kB) 256 192 13312 192
Local SRAM (Byte) 410 128 / 128
Wireless Bandwidth (Gbps) / 16 8-16 8
Wireless Frequency (GHz) / 60 60 40-140
AlexNet Inference/J 625.4 884.9 / 1004.3
AlexNet TOPS/W 0.92 0.81 2.37-3.15 1.53
AlexNet Energy (mJ) 1.63 1.14 1.91-2.35 1.02

with a half of the wireless bandwidth. WIENNA relies on one
wireless channel for high bandwidth interposer connection in
2.5D. When compared to WIENNA, WiNN achieves 2.3x
less energy for AlexNet. Although WIENNA demonstrates
at least 1.5x higher performance-per-watt, these numbers are
simulated on their 64 PEs x 256 chiplets model, which cannot
be directly compared to planar accelerators such as WiNN
without 2.5D integration.

V. RELATED WORK

A significant amount of accelerators have been proposed
recently to augment the parallelism and energy efficiency
of DNN [4], [5], [6], [8], [10], [11], [12], [16]. Shidiannao
[4] employed mesh-based interconnects for data distribution.
Dadiannao [8] and Cambricon-X [6] relied on fat tree for bal-
anced data transfer between the global buffer and PEs. Eyeriss
[5] proposed separate buses to enhance the multicast commu-
nication but bandwidth was insufficient for DNN applications
which hindered performance. Eyeriss V2 [10] addressed this
challenge by proposing a hierarchical mesh network, which
flexibly supported high bandwidth and data reuse. Kwon, et al.
[15] analyzed traffic flows for DNN accelerators and proposed
Microswitch network to achieve single-cycle communication
for scatter and gather communication. Maeri [16] proposed
a chubby-tree for efficient multicast and constructed the PE
array with an adder tree to best exploit the interconnection for
optimizing data movement.

Few prior work have applied wireless technology to DNN
accelerators [19], [20]. WiNoC [19] proposed a hybrid wireless
and wired interconnection for the accelerator to broadcast
weights. WIENNA [20] is a wireless network of package
(NoP) based 2.5D DNN accelerator, that employs wireless
interconnects for high bandwidth and low latency interposer.
Chiplets receive the inputs from the global buffer through
wireless interconnects, while within the chiplet, PEs are in-
terconnected by electrical links. These prior work have both
relied on one wireless channel for communication at global
buffer end to PE/chiplets. In WiNN, we incorporate multiple
wireless bands and separate wireless channels in both x and
y dimension of the accelerator to multicast both weights and
input activations.



VI. CONCLUSIONS

In this paper, we proposed WiNN, a wireless and wired
interconnected neural network accelerator that employs on-
chip wireless links to provide high bandwidth and single cycle
multicast communication. We further discussed the proposed
multicast-for-wireless (MW) dataflow that efficiently exploits
the wireless channels’ multicast. We proposed a novel wireless
transmitter with high energy efficiency. We ultimately eval-
uated the performance of WiNN as well as MW dataflow
across several neural network accelerator architectures. Out
simulation results show that WiNN achieves 74% latency
reduction and 37.5% energy saving when compared to state-of-
art metallic link-based accelerators, 38.1% latency reduction
and 19.4% energy saving when compared to prior wireless
accelerators for various neural networks (AlexNet, VGG16,
and ResNet-50).
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