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Abstract—Deep Neural Networks (DNNs) have demonstrated
promising performance in accuracy for several applications such
as image processing, speech recognition, and autonomous systems
and vehicles. Spatial accelerators have been proposed to achieve
high parallelism with arrays of processing elements (PE) and en-
ergy efficient data movement using traditional Network-on-Chip
(NoC) architectures. However, larger DNN models impose high
bandwidth and low latency communication demands between
PEs, which is a fundamental challenge for metallic NoC archi-
tectures. In this paper, we propose WiNN, a wireless and wired
interconnected neural network accelerator that employs on-chip
wireless links to provide high network bandwidth and single cycle
multicast communication. We design separate wireless networks
modulated with two different frequency bands one each for the
weights and input. Highly directional antennas are implemented
to avoid noise and interference. We propose multicast-for-wireless
(MW) dataflow for our proposed accelerator that efficiently
exploits the wireless channels’ multicast capabilities to reduce
the communication overheads. Our novel wireless transmitter
integrates on-off keying (OOK) modulator with power amplifier
that results in significant energy savings. Our simulation results
show that WiNN achieves 74% latency reduction and 37.5%
energy saving when compared to state-of-art metallic link-based
accelerators, 38.1% latency reduction and 19.4% energy saving
when compared to prior wireless accelerators for various neural
networks (AlexNet, VGG16, and ResNet-50).

Index Terms—Radio frequency, Wireless interconnect, Com-
puting methodologies, Neural networks

I. INTRODUCTION

Neural network algorithms, such as deep neural networks

(DNNs), have demonstrated outstanding performance in accu-

racy surpassing humans over the past few years in performing

artificial intelligence (AI) tasks, such as object detection,

image recognition and classification [1], [2], [3]. However, the

increase in prediction accuracy of DNNs comes at the cost

of tremendous computation requirements with hundreds of

layers and millions of parameters (60 million [3] to 10 billion

[2]). This poses significant throughput and energy-efficiency

challenges to efficiently compute and move data from memory

to processing elements (PEs).

Spatial accelerators are the de facto solution to execute

such highly parallel DNN workloads instead of using general

purpose CPUs. As these accelerators are deployed at the edge,

they are constrained by stringent power envelops and area

budget. A large body of accelerators aiming at ML inference

have been introduced recently to boost the computing speed

and power efficiency [4]–[12]. Most of these accelerators are

spatial in nature, i.e., an array of interconnected PEs are

used to provide high throughput and parallelism. The on-

chip dataflow between PEs and global buffers is optimized

to maximize the data reuse and thereby, reduce the off-chip

data movement. Reused data are either multicast or broadcast

to PEs by the global buffer by customized dataflow patterns

to improve energy-efficiency [13], [14].

As the number of PEs increases, the system performance

may not scale accordingly due to the overhead of inter-

PE and off-chip memory communication. In a spatial NN

accelerator, the Network-on-Chip (NoC) plays a critical role

in realizing high throughput and low latency. Most neural

network accelerators operate in a pipelined fashion - a PE

operation is triggered by data arrival, and the PE stalls if

the next data to be processed is unavailable due to memory

or network delay. Traditional interconnection system such as

buses or crossbars are inefficient due to fundamental signaling

or scaling limitations with increasing number of PEs [15].

Recent work has focused on energy-efficient and low latency

NoC design specialized for DNN accelerators such as hierar-

chical mesh/buses, light weight micro switch and chubby-tree

structures [10], [15], [16]. Nevertheless, the multicast energy

consumption and high latency of long-distance communication

of wired links limit the scalability of the accelerator.

Emerging wireless technology has the potential to provide

high communication bandwidth, low access latencies, and

high power efficiency [17] [18] [19]. Wireless technology

offers several degrees of freedom including spatial, temporal,

and frequency - all of which make it convenient to deliver

high bandwidth, single-hop, distant independent on-chip com-

munication to multiple receivers simultaneously. Few prior

work have explored deploying the wireless communication

for neural network accelerator. Most prior work have utilized

wireless technology to broadcast or multicast weights or input

activations on a single wireless channel to improve latency

or energy performance [18], [19] [20]. However, none of

the prior work have shown the comprehensive multi-bands

wireless communication for neural network accelerators with

customized dataflow tailored for wireless technology along

with detailed transceiver technology design.

In this paper, we propose WiNN, a wireless and wired

interconnected neural network accelerator that employs on-

chip wireless links to provide high bandwidth and energy-

efficient single cycle multicast communication of weights and



input activations. We propose multicast-for-wireless (MW)

dataflow for WiNN that efficiently exploits the wireless chan-

nels’ multicast capabilities to reduce the communication over-

heads. The proposed MW outperforms existing state-of-the art

dataflows such as output stationary, weight stationary and row

stationary when designed with wireless technology. Moreover,

by exploring more than two frequency bands, we also provide

the design space of partitioning and mapping MW dataflows

to take advantage of additional frequency bands. The major

contributions of this work are as follow:

• Wireless Accelerator and Dataflow: We propose a hy-

brid wireless and wired interconnected neural network ac-

celerator. By employing wireless for multicasting weights

and input activations, we reduce latency and improve

energy-efficiency for data movement. Our customized

dataflow, MW, exploits the unique wireless channels’ ca-

pabilities of multicast and broadcast to improve execution

latency.

• Multi-band Wireless channels: We use directive antenna

for the x- and y-dimension wireless interconnects, which

enables spatial division multiplexing to distribute weights

and activation separately. We propose multi-band wireless

channels using frequency division multiplexing that sup-

ports flexible partitioning and mapping.

• Energy efficient transceiver: Our novel wireless trans-

mitter integrates on-off keying (OOK) modulator with

power amplifier that results in significant energy saving

for WiNN. A single transistor switch acts as the modula-

tor of such an OOK transmitter. By switching the power

amplifier only when ‘1’ is observed, the average power

dissipated is reduced by 50%.

II. BACKGROUND

A. Deep Neural Networks (DNNs)

Deep Neural network (DNN) is an artificial neural network

(ANN) with multiple middle layers between the input and

output layers that can be trained to model the behavior of

complex non-linear functions. Convolutional Neural Networks

(CNNs) are a class of DNNs that are widely used for image

processing. the computation of the convolutional layer domi-

nates the complexity and energy consumption in the multiple

layers of DNN. Convolutional layers convolve the input in the

form of a raw image or an input activation map (the output

of a previous convolution layer) with a filter to produce an

output feature map as shown in Eq. 1:

O[m][x][y] =B[m] +

C∑

k

S∑

i

R∑

j

I[k][Ux+ i][Uy + j]

×W [m][k][i][j]

0 � m ≤ M, 0 � x ≤ F, 0 � y ≤ E,

E = (H −R+ U)/U, F = (W − S + U)/U

(1)

where S and R are the width and height of the filter volume; W

and H are the width and height of the input map volume; F and

E are the width and height of output map volume respectively.

Fig. 1. An overview of proposed WiNN architecture. The two-dimensional
PE array is connected by inter-PE electrical links and xy- dimension wireless
interconnects.

C is the channel for both weight and input map, M is the

number of filter volumes, and U is a the given stride size.

B. Dataflows and Communication Patterns

Several hardware accelerators have been proposed in the

literature to efficiently implement neural network architectures

over the past few years [5], [8], [11], [12]. The objective is to

increase the throughput by taking advantage of the parallelism

and improve the overall energy-efficiency when compared to

general purpose CPUs. While MAC processing is confined

to the PE array, data movement is dictated by the dataflow

between the buffers and PE array. As dataflow determines the

overall energy-efficiency, different dataflows such as Weight

Stationary (WS), Output Stationary (OS), Row Stationary (RS)

and No Local Reuse (NLR) have been proposed to minimize

the data movement [21]. In WS for example, the weights

remain fixed at the PE and the inputs change every cycle. This

implies that accumulation of computed operations (reduction)

needs inter-PE communication.

No matter which dataflow is deployed, the communication

patterns cause three different traffic within the accelerator

- scatter, gather and local [15]. Scatter is data distribution

from the global buffer (GB) to the PE array. It involves

either unicasting the weight and input map to specific PE,

or multicasting to a row/column of PEs, depending on the

dataflow strategy. Gather is the traffic flow by which multiple

PEs send back data to the GB. It is either unicast or has many-

to-one communication pattern, occurring at the end of the

output computation. Local communication refers to the inter-

PE communication. It could be the input map propagation or

partial sum accumulation between neighbouring PEs.

III. WINN ARCHITECTURE

A. Accelerator Architecture

The proposed WiNN architecture is illustrated in Fig. 1.

WiNN consists of a global buffer (GB), which connects the

off-chip DRAM and the on-chip processing element (PE)

array. Each PE consists of a local memory, computation



Fig. 2. Proposed PE microarchitecture. Wireless transceiver modules in red
receive and demodulate input activations at 60GHz center frequency. Green
transceiver modules correspond to weights that are demodulated with 70GHz
carrier. The input activation register files (pink) obtain data either through
wireless channels or through inter-PE electrical interconnects depending on
the PE control.

unit, and wireless transceivers. GB stores weights and input

feature maps that can be reused by the PE array. Wireless

transceiver array (green and red boxes) assigns one transmitter

and antenna for each row and column of the PE array,

which comprises a X-Y dimension-order wireless network. We

modulate the wireless channels of X-Y axis in different center

frequencies to minimize the interference at the cross points.

This ensures that weights and input maps are available to all

the PEs at the same time regardless of the communication

distance, thanks to frequency multiplexing and high-directivity

of the antennas. Wired interconnects (blue line arrow) remain

between the PEs for inter-PE data propagation to facilitate

exchange of input features and output partial sums.

The fig. 2 shows the microarchitecture of the processing

element (PE) where two wireless receivers obtain weights and

input activations through the external antenna respectively. The

two front-end filters work at different band-pass frequencies

(for instance, green receives at 70GHz and red receives at

60GHz) to separately demodulate weights and input activa-

tions. Under the PE Control, the adder and multiplier fetch

data from the register files and perform a multiplication and

accumulation (MAC) operation per cycle. The partial sum

(psum) to be accumulated is accessed either from the local

psum register file or from the neighboring PE according to

the specific dataflow.

B. Multicast for Wireless (MW) Dataflow

To best exploit the multicast capabilities of wireless chan-

nels, we propose a new dataflow MW, multicast-for-wireless.

In essence, MW deploys the x- dimension wireless channels

to multicast weights for each PE row and y- dimension

wireless channels to multicast input activations for each PE

column. Each PE is connected to adjacent PEs using wired

interconnects to propagate the reused input activations. The

psums are accumulated inside each PE.

To illustrate with a detailed walkthrough example, consider

Fig. 3 which shows the proposed MW dataflow. Fig. 3(a)

shows the convolution of a 3×3 filter on a 5×5 input map to

obtain a 3×3 output map with a stride of one and no padding

on a 3×3 PE array. Fig. 3(b) shows the data movement using

both wireless and wired interconnects and the computation

within each PE per cycle. At t0, transmitters in the x-dimension

transceiver array multicast W00 to all PEs (PE00, PE01, ... and

PE22) on frequency channels FR1, FR2, and FR3 respectively.

Transmitters in the y-dimension multicast input maps in the

convolution Sliding Window (SW) 1 to the PEs connected

along each column on different frequency channels (PE00,

PE10 and PE20 on FC1; PE01, PE11 and PE21 on FC2 and

PE02, PE12 and PE22 on FC3 using directive antenna. As each

PE only requires one input pixel from the multicast traffic,

one extra cycle is spent by the PE to index the expected data

according to the physical address of the PE. At cycle t2, SW 1

shifts to SW 2. W01 is multicast to all PEs in all rows, similar

to t0. A new column of input maps (I03, I13, and I23) are

fetched and multicast by the wireless channel (FC3) to the PEs

in the column. FC1 and FC2 are set to the idle state. The rest

of PEs retrieve the input map from neighboring PE through

wired links (for instance, PE00 receives I01 from PE01). The

wireless input map distribution for each column also takes two

cycles. When it reaches SW 3 and moves to SW 4 at t6, W12

is multicast in one cycle. Input maps are unicast to the bottom

row of PEs (PE20, PE21, PE22), taking only one cycle because

no input map index is required. Throughout the process, psums

are always accumulated inside each PE until the convolution

sliding window traverses the end of input maps. The pseudo

code for the MW dataflow algorithm is presented in Algorithm

1.

Algorithm 1 MW algorithm on WiNN.

1: All weights are denoted as W[i, j], in which 0 ≤ i < R, 0 ≤ j < S
2: All input activations are denoted as I[p, q], in which 0 ≤ p < H , 0 ≤ q < W
3: All PEs have identifier PE[x, y], in which 0 ≤ x < X , 0 ≤ y < Y
4: for each input channel, 0 ≤ c < C do
5: Initialize all the PEs with W[0, 0] and I[p,q] (0 ≤ p < R, 0 ≤ q < S)

respectively
6: for each weight, 0 ≤ i < R, 0 ≤ j < S do
7: // Weight distribution:
8: for each PE, 0 ≤ y < Y , 0 ≤ x < X do
9: PE[x, y] = Global Buffer[W[i,j]] // multicast through horizontal wireless

channel Fx

10: end for
11: // Input activation distribution:
12: for each PE, 0 ≤ y < Y , 0 ≤ x < X do
13: if j == S − 1 then
14: if x == X − 1 then
15: PE[x, y] = Global Buffer[I[i + R − 1, j + S − 1]] // unicast

by vertical wireless channels Fy

16: else
PE[x, y] = PE[x + 1, y] // vertical inter-PE propagation

17: end if
18: else
19: if y == Y − 1 then
20: PE[x, y] = Global Buffer[I[i+R− 1, j +S − 1]] // multicast

by vertical wireless channels Fy

21: else
22: PE[x, y] = PE[x, y + 1] // horizontal inter-PE propagation
23: end if
24: end if
25: Psum[x, y] + = W[i,j] × I[i + R − 1, j + S − 1]
26: end for
27: end for
28: end for
29: Clear the psum register file in PE and send the output back to GB through wired

links



Fig. 3. A walkthrough example of WiNN architecture with multicast-for-wireless (MW) dataflow. (a) shows 3×3 filters (blue) and 5×5 input maps (yellow)
are convolved to obtain 3 × 3 output maps (red). (b) shows the data movement of both wireless and wired interconnects and the computation cycle of PEs
when (a) is implemented in WiNN. (c) shows the WiNN design with 3× 3 PEs and inter-PE input map propagation at t0 and t3.

C. Scalability

WiNN architecture can be scaled to accommodate more PEs

in different ways. One method to scale the architecture is to

increase the concentration factor. By grouping 4 PEs together,

we can multicast either the weight or input map to the PE

cluster. These scaling approaches have been proposed for on-

chip communication to reduce the router complexity [22].

WiNN architecture can be scaled also by expanding the PE

array with more wireless frequency bands. Since transmitters

work at the same power, integrating more PEs for x-dimension

communication (weights) has no significant impact. However,

for the y-dimension different input maps are sent to different

columns. With multiple frequency bands, these input maps

can be simultaneously sent on different frequencies. Multi-

ple receiver circuits and antennas at different demodulation

frequencies have to be integrated into the PE to achieve this

multi-band design which can incur higher area cost. As shown

in Fig. 3(c), three rows of PEs use 60GHz frequency and three

columns of PEs use 70GHz. Since two frequency bands are

used, we name the design WiNN-2. By applying multi-band

channel for y-dimension, we develop WiNN-n architecture,

where n represents the number of bands used by the wireless

channels. In WiNN-4 for example, each y-dimension wireless

channel carries 3 frequency bands, which provide dedicated

channel for each PE in the column. Then, a column of input

maps can be sent to the PEs in one cycle, instead of one

additional cycle for indexing as depicted in Fig. 3(b). The

total execution time for the example 3(a) on WiNN-4 is 10

cycles, 1.6 times faster than the baseline (WiNN-2).

D. Wireless Channel and Transceivers

In MW, the transmission along the rows and columns takes

place simultaneously using two adjacent but different fre-

quency channels. The use of the directional antennas alleviates

the design of multiple transceiver in different frequency bands,

thus avoiding design complexity and migration to power

hungry BiCMOS or III-V technology if we were to scale

up in frequency. Thanks to recent advances [23], [24], [25]

especially in additive manufacturing and 3D chip integration,

such highly directive antennas are easier to pursue either by

in-plane dielectric engineering, structural guiding via etching,

bonding or packaging elements. While certainly non trivial

to build and test, use of directive antennas can ensure higher

flexibility for dataflow in the proposed WiNN accelerator, as

evident in the link budget analysis below (Fig. 4).

As an illustration of the concept and indicative of the

potential of WiNN, the current design proposes to use 60 GHz

and 70 GHz as the two frequency bands for transmission for

the weights and inputs, respectively. A quarter wave monopole

antenna with a very high directivity (around 5 dBi) has been

considered for the MW. Such high-directivity requires either

the use of metasurfaces or superstructures over the chip surface

[24], [25] or loaded dielectrics [23] along with a quarter-wave

monopole antenna.

Link Budget: A link budget is evaluated for the wireless

communication of the transmitter data considering multiple

design environments. As can be seen from Fig. 4(a) (b), the

required transmit power decreases significantly with increasing

antenna directivity for both distance and frequency. Fig. 4(c)

shows the minimum dissipated DC power of the amplifier

(Class-A) driving the antenna at the appropriate signal levels.

Thus we can estimate how the overall TRx power changes with

antenna directivity and frequency. The DC power is computed

from the Power Added Efficiency (PAE) of 25% and the RF

output power of the PA.

OOK Transceiver: The wireless communication in WiNN is



Fig. 4. The link budget analysis for 3 different antenna directivity including
isotropic: (a) The RF power dissipation for different distance, (b) The RF
power dissipation for different frequency, and (c) The estimated minimum
DC power dissipation for different frequency.

Fig. 5. The OOK transmitter circuit: Block diagram and the circuit imple-
mented in 45nm FinFET technology. The single transistor switch, M5, acts
as the OOK modulator

Fig. 6. The OOK receiver circuit: Block diagram and the circuit implemented
in 45nm FinFET technology

achieved using the incoherent Amplitude Shift Keying (ASK)

based On-Off Keying (OOK) modulation. The modulation

scheme uses an integrated modulator and power amplifier in

the transmitter and an envelope detector at the receiver for the

demodulation as depicted in Fig. 5 and 6. The proposed CGM-

FinFET transmitter consists of a differential LC oscillator and

a two-stage cascade common-source power amplifier, stage

one of which also acts as the OOK modulator. The data is

fed into the driver transistor M4 when there is logic ‘1’ that

enables the switch M5. The single transistor switch thus acts as

the modulator of such an OOK transmitter. The OOK receiver

uses an energy efficient Low Noise Amplifier (LNA) and an

envelope detector to demodulate the OOK modulated signal.

An energy and area efficient active Dickson Rectifier [26] has

been modified in the 45 nm CGM FinFET technology for the

envelope detection of the OOK modulated signal.

Transceiver Performance: The OOK modulation ensures the

Fig. 7. (a) Gain of the PA (b) Gain of the LNA (c) OOK Modulation and
Demodulation of the digital data.

power efficiency of the transceiver by avoiding the design of

phase shift keying (PSK) modulators and phase locked loops

(PLL). The output power of the power amplifier is -2 dBm to

ensure sufficient energy to transmit to the maximum distance

of 28 mm as envisaged for the WiNN architecture. Since

the separation between the transmitter and the receiver are

in the range of few millimeters, the gain of the amplifier is

intentionally kept low at a peak gain of 3 dB to minimize

the power dissipation. As depicted in Fig. 7(a), the 3-dB

bandwidth is ∼12 GHz ranging from 55 GHz to 67 GHz at

2.25 dB satisfying the data rate requirement of the transmitter.

The LNA in the receiver achieves a peak gain of 8 dB (Fig.

7(b)). The observed noise figure and the 1-dB compression

point is 7 dB and -5 dBm respectively. The 3-dB bandwidth

is ∼15 GHz ranging from 60 GHz to 75 GHz at a gain of 5

dB. The Dickson Rectifier demodulates the OOK modulated

signal to retrieve the digital data at the receiver (Fig. 7(c)).

Both the transmitter and receiver has been designed with the

UC Berkeley CGM technology model at 45 nm [27].

IV. PERFORMANCE EVALUATION

A. Simulation Setup

We evaluate the proposed WiNN on three representative

DNNs, i.e. AlexNet [1], VGG16 [2] and ResNet-50 [3] on

CIFAR-10 dataset [28]. The propagation delay, power con-

sumption and area overhead of each electrical component

(Table I) are obtained through the RTL-level simulation by

Design Compiler Ultra from Synopsys with FreePDK45 [29],

a 45nm technology node design kit, released as an open-source

model by NCSU. The transceiver circuit is implemented

in the CGM 45 nm FinFET technology model from UC

Berkeley [27]. We use a cycle accurate network simulator to

obtain the latency and throughput of implementing the DNN

benchmarks. A power model is further created to evaluate the

energy consumption of WiNN when compared to other metal-

lic NoC based accelerators. These include traditional mesh-

based network, bus-based network, accelerators optimized

NoC Microswitch [15] and hierarchical mesh as proposed

in Eyeriss-v2 [10]. We also compare WiNN to two wireless

interconnected DNN accelerators such as WiNoC [19] and

WIENNA [20].



TABLE I
WINN AREA AND POWER BREAKDOWN WITH 256 PES AT 45 NM

TECHNOLOGY NODE. WIRELESS RX AND TX ARE SIMULATED RESULTS

FROM FIG 5 AND 6 WITH 60 GHZ CENTER FREQUENCY.

Wireless Rx Wireless Tx PE (256x) +Mem Global Buffer

Area (mm2) 0.5 0.7 10.1 4.2

Power (mW) 8 25 307 147

B. Power and Area Model

Table I shows the simulation results of area overhead and

power consumed by various components in WiNN architec-

ture. The TRx area are largely contributed by inductors. We

propose a power estimation model (equation 2) to fairly eval-

uate the energy performance of proposed WiNN architecture

as well as other counterparts. In equation 2, l is index of a

neural network layer, n is the index of an active PE, i is the

index of a inter-PE electrical link, j is the index of a wireless

channel, m is index of a wireless transceiver at global buffer,

T denotes total number of cycles for one layer, Ppe denotes

the power of PE, Pel denotes the power of electrical link, Pwl

denotes the power of wireless link, and Pwt denotes the of

power of wireless transceiver. We simulated a wired link with

8 Gbps and obtained 4.7pJ/bit energy consumption, which is

used to compute the overall energy consumption of inter-PE

wired interconnects in WiNN.

EnergyCost =

layers∑

l

(

Npe∑

n

Ppe × Tpen +

Nel∑

i

Peli
× Teli

+

Nwl∑

j

Pwll
Twlj

+
T∑

t

Nwt∑

m

Pwtt )

(2)

C. Simulation Results

Execution Time: Fig. 8 shows the latency of WiNN on

AlexNet, VGG16 and ResNet-50 with WS and MW dataflow

for 256 PEs. Since RS and OS have identical number of

multicast data that are transferred, we limit our comparison

of MW to WS only. Micro-switch achieves up to 26% latency

reduction on WS and 29% latency reduction on MW when

compared to mesh network because of the compact switch

architecture that achieves single-cycle unicast communication.

Compared with traditional mesh and bus networks. H-Mesh

reduces the latency by an average of 72% on WS and 85%

on MW due to hierarchical design. WiNoC and WiNN both

deploy wireless interconnects and achieve lower latency than

other metallic counterparts due to the low latency, distance

independent and one-cycle multicast communication. WiNN

reduces the latency further by up to 14% on WS and 38%

on MW compared to WiNoC as WiNoC only supports the

broadcast of weights. The advantages of WiNN architecture

are more pronounced on MW dataflow because WS dataflow

emphasizes input features to be multicast/broadcast and inter-

PE psum reduction, whereas MW dataflow emphasizes multi-

casting both weights and input activations.

Energy Consumption: The energy consumption of AlexNet,

VGG16 and ResNet-50 with 256 PEs is shown in Fig. 9, which

Fig. 8. Execution latency of (a) AlexNet (b) VGG16 and (c) ResNet-50 with
weight stationary (WS) dataflow, (d) AlexNet (e) VGG16 and (f) ResNet-50
with multicast-for-wireless MW dataflow.

Fig. 9. Overall energy consumption of (a) AlexNet, (b) VGG16, and (c)
ResNet-50 in WiNN with 256 PEs.

shows that WiNN has the highest energy efficiency among

these networks. WiNN reduces the energy consumption by

up to 37.5% compared to H-Mesh and 19.4% compared to

WiNoC. The energy saving is essentially from the reduced

latency of wireless multicast communication and the low

power OOK transceiver. The weight multicast and input map

propagation between neighboring PEs in MW is simpler than

regular mesh topologies, which also contributes to the energy

saving. The energy improvement through wireless communica-

tion can also be seen in WiNoC when compared to the metallic

link based architectures. For instance, WiNoC reduces the

energy consumption by 28.3% as compared to H-Mesh due to

the efficient broadcasting of wireless interconnects. However,

WiNoC is 19.4% less energy efficient than WiNN in ResNet-

50 as WiNoC lacks support to multicast the input activations.

Scalability: We simulate multiple PE array sizes to evaluate

the scalability of WiNN. Figure 10(a) shows the energy

consumption of running AlexNet with 16× 16, 32× 32, and

64× 64 PE arrays. As discussed in section 3.3, the PE array

can be expanded to 32×32, as well as the number of wireless

transceivers. However, we scale the PE array from 32 × 32
to 64 × 64 by increasing the concentration factor because of

limited available wireless frequency bands. As shown in Figure

10, the mesh based accelerator scales the worst with 5.6 times

more energy consumption when increasing from 256 PEs to

1024 PEs, while the increase is only 2.5 times for WiNN

architecture. Figure 10(b)(c) show the energy breakdown of

WiNN with 256 PEs and 4096 PEs, in which total energy

consumption ratio of data movement (through both wired and



Fig. 10. Overall energy consumption of AlexNet on different PE array sizes
of 256 PEs, 1024 PEs and 4096 PEs. Power breakdown for (b) 256 PEs and
(c) 4096 PEs.

Fig. 11. Normalized energy, delay, and EDP for WiNN under different number
of wireless bands configurations on (a) AlexNet, (b) VGG16 and (c) ResNet-
50 network.

wireless) decreases from 34% to 28%. That is, the wired and

wireless interconnection scheme in WiNN improves energy

efficiency for large PE arrays.

Energy-Delay Product: Figure 11 shows the energy, delay,

and energy delay product (EDP) of WiNN for AlexNet,

VGG16, and ResNet-50 networks with multi-band wireless

channel configurations. We normalized the results on the

baseline version WiNN-2, in which two frequency bands are

used for the wireless channels, one for the x- dimension, the

other for the y- dimension. As shown in the figure, WiNN-4,

WiNN-8, and WiNN-16 reduces the delay of running ResNet-

50 by 11%, 21%, and 35% respectively when compared to

WiNN-2. More frequency bands in y- dimension reduces the

overall delay of the networks by alleviating input activation

indexing, that is, PEs in a column receive the corresponding

input activation in one cycle without requirement of discarding

inputs from the multicast communication. Although incor-

porating multiple bands in one wireless channel increases

the complexity of transceiver circuit and the overall energy

consumption, multi-band channels achieves lower EDP values.

For example, WiNN-4, WiNN-8, and WiNN-16 reduces the

EDP of running ResNet-50 by 9%, 17%, and 30% respectively

when compared to WiNN-2.

Accelerator Comparisons: A comprehensive comparison be-

tween the architectural parameters for different accelerators

as well as their performance on AlexNet are given in Table

II. Eyeriss V2 is a metallic interconnection based accelerator

with a hierarchical mesh network optimized to configurably

support multicast and unicast. When compared to Eyeriss

V2, WiNN achieves 1.7× higher performance-per-watt and

consumes 1.6× less energy. WiNoC and WIENNA are two

accelerators with the wireless hybrid interconnection. WiNoC

employs one wireless channel for low latency weight broad-

cast. When compared to WiNoC, WiNN achieves 1.9× higher

performance-per-watt and consumes 1.1× less energy, even

TABLE II
HARDWARE PARAMETER SET UP AND PERFORMANCE COMPARISON OF

WINN WITH EYERISS V2, WINOC, WIENNA.

Eyeriss V2 WiNoC WIENNA WiNN

Technology 45nm 45nm 65nm 45nm

Area (mm2) 9.5 14.2 1699 16.5

PE 256 256 16384 256

Core Frequency (MHz) 500 500 500 500

Peak Throughput GMACS 256 128 8192 128

Global Buffer (kB) 256 192 13312 192

Local SRAM (Byte) 410 128 / 128

Wireless Bandwidth (Gbps) / 16 8-16 8

Wireless Frequency (GHz) / 60 60 40-140

AlexNet Inference/J 625.4 884.9 / 1004.3

AlexNet TOPS/W 0.92 0.81 2.37-3.15 1.53

AlexNet Energy (mJ) 1.63 1.14 1.91-2.35 1.02

with a half of the wireless bandwidth. WIENNA relies on one

wireless channel for high bandwidth interposer connection in

2.5D. When compared to WIENNA, WiNN achieves 2.3×
less energy for AlexNet. Although WIENNA demonstrates

at least 1.5× higher performance-per-watt, these numbers are

simulated on their 64 PEs × 256 chiplets model, which cannot

be directly compared to planar accelerators such as WiNN

without 2.5D integration.

V. RELATED WORK

A significant amount of accelerators have been proposed

recently to augment the parallelism and energy efficiency

of DNN [4], [5], [6], [8], [10], [11], [12], [16]. Shidiannao

[4] employed mesh-based interconnects for data distribution.

Dadiannao [8] and Cambricon-X [6] relied on fat tree for bal-

anced data transfer between the global buffer and PEs. Eyeriss

[5] proposed separate buses to enhance the multicast commu-

nication but bandwidth was insufficient for DNN applications

which hindered performance. Eyeriss V2 [10] addressed this

challenge by proposing a hierarchical mesh network, which

flexibly supported high bandwidth and data reuse. Kwon, et al.

[15] analyzed traffic flows for DNN accelerators and proposed

Microswitch network to achieve single-cycle communication

for scatter and gather communication. Maeri [16] proposed

a chubby-tree for efficient multicast and constructed the PE

array with an adder tree to best exploit the interconnection for

optimizing data movement.

Few prior work have applied wireless technology to DNN

accelerators [19], [20]. WiNoC [19] proposed a hybrid wireless

and wired interconnection for the accelerator to broadcast

weights. WIENNA [20] is a wireless network of package

(NoP) based 2.5D DNN accelerator, that employs wireless

interconnects for high bandwidth and low latency interposer.

Chiplets receive the inputs from the global buffer through

wireless interconnects, while within the chiplet, PEs are in-

terconnected by electrical links. These prior work have both

relied on one wireless channel for communication at global

buffer end to PE/chiplets. In WiNN, we incorporate multiple

wireless bands and separate wireless channels in both x and

y dimension of the accelerator to multicast both weights and

input activations.



VI. CONCLUSIONS

In this paper, we proposed WiNN, a wireless and wired

interconnected neural network accelerator that employs on-

chip wireless links to provide high bandwidth and single cycle

multicast communication. We further discussed the proposed

multicast-for-wireless (MW) dataflow that efficiently exploits

the wireless channels’ multicast. We proposed a novel wireless

transmitter with high energy efficiency. We ultimately eval-

uated the performance of WiNN as well as MW dataflow

across several neural network accelerator architectures. Out

simulation results show that WiNN achieves 74% latency

reduction and 37.5% energy saving when compared to state-of-

art metallic link-based accelerators, 38.1% latency reduction

and 19.4% energy saving when compared to prior wireless

accelerators for various neural networks (AlexNet, VGG16,

and ResNet-50).
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