Parallel Dot Products Using Silicon Photonics

Andy Wolff, Kyle Shiflett, and Avinash Karanth
School of Electrical Engineering and Computer Science, Ohio University
Email: {aw415517, ks117713, karanth} @ohio.edu

Abstract—This paper proposes a parallel photonic architecture for computing dense dot products, such as those found during
deep neural network (DNN) inference, and quantifies the architecture’s computation error induced by crosstalk and noise.
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I. INTRODUCTION

The recent proliferation of machine learning (ML) applications, specifically deep neural networks (DNN), is attributed to
their high accuracies on classification and regression tasks. As DNN architectures scale in both size and complexity, general
purpose processors have failed to exploit sufficient parallelism for energy-efficient and low-latency inference. This has caused
a shift towards heterogeneous computation architectures, where domain-specific hardware accelerators are tasked with carrying
out computationally demanding operations. Silicon photonics has been proposed as an alternative technology for scaling DNN
inference, and new computing architectures have been developed using microring resonators (MRR) [2] and programmable
Mach-Zehnder interferometer (MZI) meshes [5]. The inherent parallelism of optics can be utilized through wavelength-division
multiplexing (WDM), a technique used in fiber and on-chip interconnects for increasing bandwidth density, which can be taken
advantage of to increase computational density in photonic devices. Furthermore, optics are suitable for broadcast and multicast
data distributions such as those found in DNNs, because optical signals can be passively split and distributed via waveguide
Y-branches, couplers, and free propagation regions. In this paper, we present a photonic building block that leverages these
properties for computing highly parallel dot-products, such as those found in convolutional neural networks (CNN).

II. PHOTONIC DOT PRODUCT ARCHITECTURE

The basic building block for the proposed dot product architecture is the adder-subtractor crossbar (ASC), which performs
analog arithmetic on input optical signals. The ASC is comprised of switching MRRs that drop a signal on an accumulation
waveguide (WG), and there is a positive accumulation WG and a negative accumulation WG. Input operand values are carried
by optical power amplitudes on separate wavelengths, so there is no signed representation of values. A values sign must be
explicitly represented by switching into the appropriate accumulation WG. The summation of values is performed by a balanced
photodiode (PD) pair, which subtracts the negative accumulation WG’s induced current from the positive accumulation WG’s
current. The ASC is shown in Figure 1(a) for two inputs @ and b.

Photonic dot products are implemented by including a MZI at the input ports of the ASC. The modulating MZI’s output
is 0 < Py < Py, which gives the multiplication with some weight 0 < W < 1. Assuming positive input signals A, which
is the case for activations in a CNN layer produced by a nonlinear activation function like the rectified linear unit (ReLU),
accumulation WG switching is dependent only on the multiplying weight’s sign. The dot products in convolutional layers of
CNNs often share weights, which can be leveraged using WDM and using multiple ASCs for a single multiplying MZI. This
allows a single MZI to multiply several input signals at once, and the MZI must utilize Y-branches that have a broadband
response to keep computation consistent across the different input wavelengths. The parallel dot product architecture is shown
in Figure 1(b), which depicts two ASCs used for computing two results of the convolution operation. Note that W is shared
by inputs Ag and Ay, and W is shared by inputs A; and As, since the convolution window in the input vector A that the
weight vector W is applied to is slid by one element, which corresponds to the following dot products being computed in
parallel: Og = AgWo+ A1 W1 +...An_1Wyx_1 and O1 = A;Wy+ As W1 +... AWy _1. This parallel dot product architecture
is the fundamental structure of the Albireo accelerator [7], which improved latency by 4.8 X, reduced energy consumption by
4.9X, and reduced energy-delay product by 23.9 X when compared to DEAP-CNN [2] for CNN inference.

III. EVALUATION AND RESULTS

The proposed architectures were modeled and evaluated using Synopsys OptSim Circuit, and the photonic device parameters
used are tabulated in Figure 1(c). Two parallel dot product architectures were evaluated, a two-input and a four-input variation,
and input powers ranged from -3mW to +3 mW at 1 mW intervals. Figure 2(a) shows the summation current output by the
balanced PD pair for the two-input circuit and the absolute error for each result caused by noise, crosstalk, and losses. Each
color represents a different summation bin, and the top plot contains a one-dimensional projection of the data to illustrate the
separation between sum results. Figure 2(b) shows the results for a four-input circuit, where there is some overlap between
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Device Parameter Value
WG Theff, Thg (2.33, 4.68) @ A\=1550nm
prop. loss 1.5 dB/cm (straight) [3]
radius Sum
MRR | coupl. coeff. k? 0.03
WG prop. loss 3.8dB/cm (bent) [3]
Y-branch loss 0.36dB [4]
MZI mod. loss 1.2dB [1]
PD responsivity 1.1A/W [6]
dark current 25pA @ 1V [6]
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Fig. 2. (a) Two-input dot product circuit error, (b) Four-input dot product circuit error, and (c) Four-input dot product probability densities. Each
color represents a separate summation result.

summation bins due to MRR crosstalk. The probability density for each summation bin is shown in Figure 2(c), and the overlap
between bins indicates there is a small probability of error during operation.

IV. CONCLUSIONS

This paper proposed a new scheme for computing parallel dot products using silicon photonics, motivated by the recent
need for fast and efficient DNN inference. A two-input and a four-input photonic dot product architecture was evaluated, and
the computation errors were quantified by taking crosstalk and noise into consideration.
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