
Dynamic Voltage and Frequency Scaling to Improve
Energy-Efficiency of Hardware Accelerators

Siqin Liu and Avinash Karanth
School of Electrical Engineering and Computer Science

Ohio University Athens, OH, 45701
Email:ls847719@ohio.edu and karanth@ohio.edu

Abstract—Neural networks (NNs) have been used in a wide
variety of artificial intelligence (AI) applications, including speech
recognition, image recognition, automatic robotics, and games.
State-of-the-art NNs provide high prediction accuracy at the
expense of massive computation that involves large model pa-
rameters which consume substantial energy. Though sparse NNs
have emerged to reduce the computation and storage overhead,
existing specialized DNN accelerators cannot maximize the en-
ergy savings when exploiting both dynamic and static sparsity,
especially for irregular NNs. In this paper, we propose a dynamic
voltage and frequency scaling (DVFS) based hardware acceler-
ator that effectively exploits the dynamic and static sparsity of
NNs with dynamic voltage/frequency (V/F) scaling and power
gating techniques to reduce both static and dynamic power.
To explore the efficiency of DVFS implementation at different
granularities, we evaluate both coarse-grained and fine-grained
DVFS implementation with different design trade-offs. Further,
our proposed DVFS model predicts the dynamic computation
workloads as well as V/F pairs to be supplied to processing
elements (PEs) in the hardware intelligently through pre-trained
weight vectors. The machine learning based prediction algorithm
is deployed to improve the DVFS mode selection accuracy. Our
simulation results on AlextNet, VGG16, and ResNet50 show that
we can achieve an average dynamic energy savings of 59-66%
and an average static power reduction of 69-80% compared to
the baseline.

Index Terms—Dynamic Frequency and Voltage Scaling
(DVFS), Hardware Accelerator, Machine Learning, Neural Net-
works.

I. INTRODUCTION

Many modern artificial intelligence (AI) applications such
as speech recognition, computer vision, autonomous cars,
disease detection, complex games, and many more employ
Deep Neural Networks (DNNs) [1]. DNNs can achieve high
precision in accuracy in many of these areas, even beyond
human intelligence. However, this outstanding performance
is achieved by imposing massive computation and storage
requirements which poses a significant challenge while run-
ning on conventional CPU or GPU platforms. To address this
problem, recent studies have resorted to building specialized
hardware accelerators to augment the computation require-
ments of DNNs (Eg. ShiDianNao [2], DaDiaNao [3], Eyeriss
[4] and others [5], [6]). Most prior designs (i) evaluate the
computation complexity and data movement patterns in the
representative layers, such as convolution or fully connected
layers, (ii) propose hardware accelerators with processing ele-

ment (PE) arrays for parallel computing, and (iii) exploit data
reuse opportunities to reduce energy cost for data movement.

As DNN model sizes continue to increase for higher accu-
racy, researchers explore reducing the number of weights by
pruning the networks without much loss in accuracy. However,
there exist trade-offs between computational efficiency and
pruning of NN models. Pruning the network at a pixel-
level granularity of synapse would break the data matrix
regularity with some of the values pruned to be zero in a
non-deterministic pattern. The irregularity caused by fine-grain
pruning hampers sparsity processing dedicated accelerators
such as SCNN [7], Cnvlutin [8], Cambricon-X [9] and Sigma
[10]. Static synapse sparsity refers to the removed or zero-
valued weights after the pruning. Dynamic neuron sparsity
arises from the non-linearity activation function. Addressing
both sparsity forms in the accelerator design is challenging.
To circumvent the irregularity, researchers study structured
pruning techniques with coarse-grain granularity, claiming that
coarse-grained pruning can achieve comparable sparsity ratio
as unstructured pruning given no loss of accuracy. However,
the regular pruning patterns for DNNs in a wide variety
of applications are not guaranteed to be identical [11]. The
decision to operate either at a coarse-grain or a fine-grain
pruning is a trade-off between the system complexity and
maximum energy savings that can be achieved.

There has been a significant amount of research where
Dynamic Voltage and Frequency Scaling (DVFS) is applied to
various on-chip components including the processor, caches,
memory and Network-on-Chips (NoCs). The supply voltage
is decreased at low workload and any marginal loss in per-
formance is tolerated in order to save dynamic energy. At
medium to high workload, a loss in performance would lead
to saturation and increased latency, and therefore, the supply
voltage is proportionally increased. Prior work [12] has also
shown that machine learning techniques can be applied to
select the optimal voltage level through proactive predictions
of future workload. On the other hand, static power is further
targeted through power-gating, a technique that switches off
the supply voltage to unused or lightly used on-chip compo-
nents to reduce leakage current.

In this paper, we propose a dynamic voltage and frequency
scaling (DVFS) based hardware accelerator that effectively ex-
ploits the dynamic and static sparsity of neural networks (NN)
with dynamic voltage/frequency (V/F) scaling and power-



gating techniques to reduce both static and dynamic power.
Instead of processing sparse data in a regular manner with
dedicated hardware, we track the runtime data pattern of both
weights and activations during the NNs implementation and
predict the workload assigned for each PE for the next epoch.
Based on prediction results, DVFS technique is applied to
the PE array to exploit the sparsity feature in order to save
energy by dynamically scaling the voltages and frequencies.
Our scheme can support both dense and sparse neural networks
due to the runtime data adaptability rather than a specific
pattern of the synaptic weights. Furthermore, based on the
spatial feature of DNN accelerator, we explore fine-grain and
coarse-grain DVFS schemes. We define our fine-grained DVFS
scheme to be implemented for each processing element, while
coarse-grain is for a row/column of PEs in the array. The
machine learning based prediction algorithm is deployed to
improve the DVFS mode selection accuracy. Our simulation
results on AlextNet, VGG16, and ResNet50 show that we can
achieve an average dynamic energy savings of 59-66% and
an average static power reduction of 69-80% compared to the
baseline. In Section III, comparison and trade-offs between
both schemes are discussed. The major contributions of this
work are as follow:

• Applying DVFS to Hardware Accelerator: We evalu-
ated in detail how convolution neural networks (CNNs)
can be mapped to accelerators. Using this analysis,
we applied power-gating to PEs during periods of low
computation to save static power and dynamically scale
voltage and frequency (V/F) during periods of medium to
high computation to reduce dynamic energy consumption.

• Machine Learning based Prediction: We propose a ma-
chine learning based algorithm to predict the DVFS states
using a few neural network features to maximize en-
ergy efficiency and minimize the latency penalty. Offline
training and feature sharing enable minimal overhead and
improved performance.

• Exploration of Applying DVFS at different granu-
larities: The proposed DVFS-based accelerator design is
implemented as coarse-grained and fine-grained schemes
to evaluate the trade-offs in energy savings and the
area overhead. Fine-grained scheme manages each PE
in independent domain, achieves higher V/F state pre-
diction accuracy and energy efficiency, but incurs larger
area overhead, while coarse-grained scheme provides an
alternative solution with relatively lower energy saving,
but better scalability.

II. PROPOSED ARCHITECTURE

A. Accelerator Hardware and Micro-architecture

Architecture Overview: The proposed architecture is
shown in Figure 1. The architecture consists of an on-chip
global buffer (GB), data dispatcher (DD), DVFS predictor
(DP), dynamic voltage and frequency generator (DVFG) and
16 × 16 PE array connected with a mesh-based Network-
on-Chip (NoC). All neurons and synapses are fetched from

Fig. 1. Proposed architecture that handles both dense and sparse NNs.
The proposed architecture consists of on-chip global buffer (GB), data dis-
patcher (DD), DVFS predictor (DP), dynamic voltage and frequency generator
(DVFG) and the 16 × 16 PE array.

off-chip DRAM and all overhead associated with DRAM in
terms of energy and latency are included in the evaluation.

DP and DVFG are the key components that implement
DVFS functionality. The predictor, DP, receives data to be
transmitted to each PE via the data dispatcher (DD) module.
Runtime data are collected and analyzed periodically for a
specific time window, i.e., an epoch. During each epoch,
the predictor counts up the number of non-zero valued data,
including weights and input maps. Based on the collected
amount of sparse workloads, the DVFG resets the voltage and
frequency of the PE for the next epoch. The workloads of
MAC operations with zero-valued operands are calculated as
follows:

SparseWorkload = (F 2 − Sw)O2 − F (F − Sa) (1)

where F × F is the size of weights, O × O is the size
of output activations, Sw is the total number of zero-valued
weights, and Sa is the total number of zero-valued input maps.
The workload percentage of the PE for one epoch is the ratio of
computed sparse workload to the theoretical amount of MAC
operations with no zero-valued operand.

DVFG provides the voltage and frequency to each PE
as well as the interconnection network. To support enough
granularity of voltage scaling and effective energy saving
contrast, the DVFG is designed to offer five voltage and
frequency (V/F) states. Four V/F states are selected from 1.2
V as the highest working state to 0.8 V as the lowest. Power-
gating is regarded as the fifth V/F state, which consumes
no dynamic and static energy when the computation load
predicted for the next epoch is below a certain threshold.

PE Micro-architecture: For the PE micro-architecture, the
machine learning based proactive DVFS is implemented by
a local sparsity detector (SD), cooperating with the global
dynamic voltage/frequency generator (DVFG). Besides spar-
sity units, the microarchitecture consists of three register files,
which stores the sparse weights, input maps, or activations
after the ReLu function of previous layers and the partial sums



Fig. 2. Proposed PE micro-architecture that consists of the Sparsity Detector
(SD), Dynamic Voltage/Frequency Generator (DVFG), register file, an arith-
metic logic unit (ALU), which performs the multiplication and accumulation
functionality, and a post-processing unit, which applies the activation function
(non-linearity layer) on the output neuron.

(Psums); an arithmetic logic unit (ALU), which performs the
multiplication and accumulation; and a post-processing unit,
which applies the activation function (non-linearity ReLu) on
the output neuron. The SD monitors both input activation and
weight registers to ensure that the sparse activations from the
rectified linear activation unit and the sparse weights from
the compressed neural networks can be both exploited. The
SD accumulates the number of non-zero valued weights and
input activations each cycle and outputs the value of the sparse
computation workload for the current epoch using Equation 1.

B. DVFS Models

In this subsection, we describe the selection of DVFS
models with respect to the observed workload. Each DVFS
model consists of one inactive state (power-gated) and four
active states. In an inactive state, the voltage supply to the
specific PE and its outgoing interconnection is reduced to
0 V with no clock applied to the PE. V/F pair for one
PE may switch in every epoch, which is at least 200 ns
duration. This interval constraint ensures sufficient time for
low-dropout (LDO) voltage regulators to generate different
voltages. According to [13], the worst case of power-gating
delay is 8.8 ns, and voltage switching delay is 6.9 ns. As
the power-gated duration is substantially greater than the
wake-up delay, we do not require a wake-up state between
inactive and active states. PE in an active state can operate in
any one of the four different voltage levels. The V/F pairs
used in the DVFS models are {0.8V/2.75ns, 1.0V/2.25ns,
1.1V/2ns, 1.2V/1.8ns} which are numbered as V/F modes 2-5
with power-gated state as mode 1. These voltage levels are
commonly configured in accelerators and selected based on
the principle that when they operate in different modes, the
voltage and frequency are proportionally decreased/increased.
We set up the thresholds in Table I based on the runtime
data distribution when training the datasets. We used different
percentages of workload to determine the bins for the five V/F
configurations. When larger workloads, e.g. >50%, V/F pair
1.2V/1.8ns with the highest voltage and frequency is selected

TABLE I
WORKLOAD DISTRIBUTION AMONG DIFFERENT MODELS AND DVFS

MODES.

DVFS Models 0 V 0.8V/ 1.0V/ 1.1V/ 1.2V/
2.75ns 2.25ns 2ns 1.8ns

Power-Gating <20% 20-30% 30-40% 40-50% >50%
Power-Saving <10% 10-70% 70-80% 80-90% >90%

Balanced <10% 10-30% 30-55% 55-80% >80%
Performance <10% 10-20% 20-30% 30-40% >40%

to provide the shortest propagation latency while incurring the
highest power consumption.

To explore the optimal configuration of the DVFS model,
we present four different DVFS models, i.e., Power-Gating,
Power-Saving, Balanced and Performance models as shown in
Table I. Power-gating model maximizes static power reduction
by assigning more PEs to power-gating mode (<20%) than
any other models. Power-saving model maximizes dynamic
power reduction and assigns the highest portion of workloads
(10-70%) to the lowest V/F mode (0.8V/2.75ns). Performance
model on the contrary, operates the PEs at the highest voltage
whenever the workload percentage is higher than 40% to
enable the highest computation performance. Balanced model
is based on a moderate strategy that evenly allocates the
workloads to all V/F modes.

C. Dataflow and Walkthrough Example

Output stationary (OS) dataflow best suits the proposed
architecture among other alternate dataflows such as weight
stationary, row stationary or column stationary [14], because
psums are accumulated inside the PE, avoiding the require-
ment of synchronization between other PEs at different V/F
modes. However, weights and input maps are required to be
buffered inside each PE when operating at different voltages
and frequencies. Especially when power-gated, PE needs to
buffer all the incoming weights and propagate input activations
after waking up to active voltage stage in the next epoch. A
further explanation is presented in the following walk-through
example.

To illustrate with an example, Figure 3 shows how neu-
rons compute and propagate within PE arrays under different
epochs. To represent generality, we consider a small design
with a 3×3 PE array, a convolutional layer with 3×3 kernel
size, and a small patch of input activation map with 5×5 size,
and 1×1 step size with no padding. We depict the flow for
three cycles in two epochs. For the first epoch, all PEs are
initially configured in regular voltage mode 1.0V, while in
epoch #1, each PE is voltage scaled by the proposed DVFS
system. For simplicity, the timing chart shows the weights,
input activations and voltages for four PEs namely PE0,0 PE0,1

PE1,0 and PE1,1.
Cycle #0, epoch #0: All PEs fetch the first input activation

of the current convolution window from the global buffer
as outlined in red (x00,x01,x10 and x11), while weight w00

is broadcast to all PEs according to the output stationary
dataflow. Each PE performs the multiplication and accumula-



Fig. 3. Walkthrough example of mapping the convolutional layer (convolutional window: 3 × 3; step size: 1 × 1) and an PE array implementation (with 2
× 2 PEs).

tion (MAC) operation and stores the partial sum results in its
local register file for further reduction. In the meanwhile, each
PE transmits the current fetched activation to its neighboring
PE for further reuse. The extra buffer space is reserved for
DVFS modes.

Cycle #1, epoch #0: Convolution sliding window moves one
step to the right and a new column of input maps (x02,x12)
are fed into the PE array. The rest of the data in the window
move to the right and reused by the PEs. The next weight
w01 is broadcast to all PEs, however, only a flag bit needs to
be transmitted to save energy and buffer area due to the zero
value. The MAC computation is completely skipped by the
hardware to further save power.

Cycle #2, epoch #0: Similar to cycle #0, another pixel of
weight w02 is broadcast to all PEs and a new column of input
maps (x03,x13) are fetched with other inputs reused among
PEs. To maximally exploit data reuse, we switch to propagate
the input maps vertically for the next cycle and the new inputs
are only needed by the top row of PEs. The trade-off is the
complexity of the on-chip network supporting both horizontal
and vertical communication.

Cycle #0, epoch #1: PE1,0 and PE1,1 are operating at the
higher voltage levels such as 1.1V and 1.2V respectively. PE0,1

switches to lower voltage level 0.8V. PE0,0 is power-gated due
to few computations to save power, while the buffer inside
PE0,0 is active to store the weights that are broadcast and
input maps that propagate to the power-gated PE.

Cycle #1, epoch #1: PE0,0 and PE1,1 function similarly as
in epoch #0 as the frequency difference between 1.1V mode

and 1.2V mode is not sufficient to incur a delay in cycles.
PE0,1 lags behind compared to prior epoch. The current weight
w01 and input activation x02 need to be buffered until the prior
weight (w00) and input activation (x01) are computed. PE0,0 is
in power-gated mode and the dedicated buffer is used to store
the incoming weight and input.

Cycle #2, epoch #1: Buffer for PE0,0 continues to store the
data and propagate the input activations until waking up into
active voltage mode for the next epoch. These light workloads
are consequently merged into the next epoch, switching the PE
into 1.2V mode for the highest throughput. The epoch period
determines the size of the required buffer, which is a trade-off
between hardware cost and prediction accuracy. Experiments
are conducted to show the design space in the next section.

In fine-grained DVFS scheme, each PE is working in
independent power domain, whereas the data dispatcher keeps
sending the data from the global buffer at a fixed frequency
to maintain the dataflow stream. Dedicated buffer is assigned
to each PE for storing the weights and input activations so
that each PE can execute the computation at its own frequency
without dropping any input data. The buffer size is determined
by the rate of data consumption and differs according to the
V/F mode predicted. With a large epoch duration, the input
weights and activations would accumulate in low-frequency
PEs, incurring huge buffer overhead. This becomes worse
in power-gating state as the incoming data is not consumed
in the local PE and all the data has to be buffered for the
next working epoch. On the other hand, if the epoch size
is too small, the DVFS predictor has to frequently generate



the V/F state of the PE and the dynamic V/F generator
frequently updates the V/F state as well, which leads to
extensive dynamic energy cost. In Section III, we performed
detailed experiments to study the design trade-off between the
buffer size, the time interval of an epoch and the hardware
overhead.

In the coarse-grained DVFS scheme, instead of controlling
the voltage and frequency for each PE, a row of PEs in the
array are grouped together to share one voltage domain. The
workload for a row of PEs are predicted together by the DVFS
predictor and the dynamic V/F generator assigns the same
voltage and frequency to the entire row of PEs. Since the PEs
are synchronized in one row, the buffer size is only determined
by the different data consumption rates between the PEs from
different rows, thus buffer overhead is smaller than that of the
previously discussed fine-grained DVFS scheme. Furthermore,
as shown in the walk-through example, weights are broadcast
to the PE array. Data reuse can be deployed by sharing the
buffer within one row of PEs. However, the input activations
are unicast to PEs and should be buffered separately, which
constitutes the major overhead of the shared buffer design in
coarse-grained DVFS scheme.

D. Machine Learning-based DVFS States Selection

We discovered through simulation that the statistical work-
load assigned for each PE diverges significantly with various
mapping algorithms and the input images that need to be
classified. Manually approximating the function of runtime
workload for each PE is impractical. To address this challenge,
we deploy machine learning to learn the feature from the run-
time data distribution of all the PEs through our experiments.
After training through the collected datasets, the machine
learning model enables us to predict the workload of current
PE for the next epoch based on the learned features.

Figure 4 shows the proposed machine learning based DVFS
mode prediction. A compact neural network is used to approxi-
mate the relationship between feature sets and the labelled V/F
modes for the current epoch. The input layer carries the feature
sets. The last is the output layer with a Softmax layer to do the
classification, which predicts the V/F mode. The dataset for
training the network is collected when implementing bench-
mark CNNs. We simulate AlextNet, VGG16 and ResNet50
and map them onto the 16 × 16 PE array. The feature sets are
carefully crafted and tuned with machine learning algorithm
such that prediction accuracy is maximized while overhead is
kept to a minimum. The DVFS models are trained offline using
Algorithm 1. The trained parameters are applied to the DVFS
predictor in hardware to implement voltage and frequency
prediction as Algorithm 2.

III. PERFORMANCE AND EVALUATION

A. Simulation Setup

We evaluate the our DVFS based accelerator on three
representative CNNs, i.e. AlexNet [15], VGG16 [16] and
ResNet50 [17] as benchmarks. All the networks are trained
and evaluated on the same dataset of CIFAR-10 [18]. The

Algorithm 1 Training of the neural network for DVFS state
prediction
1: Total number of processing element N
2: One-hot encoding of weight and activation matrix w, a
3: Aggregate number of non-zero valued weights and activations W,A
4: Number of MAC operations M
5: Dataset Collection:
6: for each PEi, 0 ≤ i < N do
7: for each epoch t, 0 ≤ t < T do
8: Wt =

∑
i wi, if(wi ̸= 0)

9: At =
∑

j aj , if(ai ̸= 0)

10: Mt = Wt×O2−F × (F −Xt), F,O denotes the size of weight
and output maps as Equation 1

11: end for
12: W =

∑T
t Wt

13: A =
∑T

t At

14: end for

15: Training:
16: Initialize parameter vector v = vl1, vl2, vl3 at random
17: repeat
18: Create input X = {W,X,Wt, At}.
19: Compute the input of the Softmax layer:

f(X) = relu(vl2 × relu(vl1 ×X))
20: Compute the cross entropy:

y = crossentropy((vl3 × f(X)),Mt)
21: Do backpropagation
22: Update vl1, vl2, vl3
23: until Convergence, y ≤ 0.01
24: return v as the parameter vector for current voltage state epoch.

Algorithm 2 Implementation of DVFS prediction with pre-
trained parameters
Input:

Number of Non-zero valued weights and activations ratio in current epoch
Wt, At

Aggregate number of non-zero valued weights and activation W,A
Current DVFS state S

Output:
Voltage and Frequency state for the next epoch.

1: Initialize start voltage 1.2V and state S0 = 4,
2: Load parameter vector v
3: for each epoch do
4: Collect feature sets X = {W,X,Wt, At} from Data Dispatcher and

Sparsity Detector
5: f(X) = relu(vl2 × relu(vl1 ×X))
6: Softmax Classification as predicted workload

t = argmax(wl3 × f(X))

7: Switch voltage =



power − gated, if(t ≤ 10%)

0.8V , if(10% ≤ t < 20%)

1.0V , if(20% ≤ t < 30%)

1.1V , if(30% ≤ t < 40%)

1.2V , if(t ≥ 40%)
8: Update state St+1

9: end for

energy, latency and execution time of implementing these tasks
are collected and analyzed to compare the performance of the
proposed DVFS models with different design strategies. The
intermediate activations and trained weights as well as pruned
ones are monitored every window for each PE and the work-
load percentages are collected and transformed into datasets
for our ML-based algorithm for predicting the DVFS mode.
After training and optimization, the ML-based algorithm is
applied to the CIFAR-10 test dataset to validate the DVFS
prediction accuracy and estimate the energy performance.



Fig. 4. Machine Learning based DVFS states prediction algorithm.

TABLE II
STATIC/DYNAMIC POWER, AREA AND TIMING OF HARDWARE MODULES

UNDER THE 1.2V/1.8NS DVFS MODE.

Module Area Static Dynamic Latency
(um2) (uW) (mW) (ns)

Register 4096 13.57 1.72 0.94
Adder 145 0.63 0.08 1.29

Multiplier 2214 2.75 0.35 6.22
ReLu Activation 36.6 0.08 0.01 0.14
Sparsity Detector 38,792 7.5 0.95 2.32

Dynamic V/F Generator 15,053 9.95 1.26 1.53
DVF Predictor 57,612 38.51 5.38 10.35

Data Dispatcher 1,255 4.22 0.77 0.92
Weights Memory 357,400 53.56 10.32 33.25

Activation Memory 72,349 10.71 2.06 5.34

We use Design Compile Ultra from Synopsys [19] to
compile and synthesis the RTL design to obtain the power
consumption and latency of the hardware components.
FreePDK45 [20], a 45nm technology node design kit, is used
as the target library. To simulate the hardware metrics under
the predefined V/F modes, we manually change the voltage
level and frequency inside the library setup file. In Table
II, area, static power, dynamic power and latency of each
submodule of the accelerator are shown under 1.2V/1.8ns
configuration for 45nm technology node. For other V/F pairs,
the area cost remains the same. Dsent [21] is used to model
the accelerator and the communication cost to obtain the
dynamic and static energy. Baseline is defined as the hardware
accelerator with no sparsity unit (highlighted by yellow in
Figure 1). The V/F pair for baseline is fixed at 1.2V/1.8ns.

B. Simulation Results

To explain the motivation of deploying DVFS techniques
to address the sparsity issues, we randomly sample successive
epoch windows and capture the workload distribution in each
epoch in Figure 5 when implementing benchmark neural
networks on CIFAR-10 dataset. The expected V/F mode to
be supplied to PEs for each epoch varies according to the
workload-voltage setting in DVFS models. Figure 5 shows
the experiment results and the corresponding V/F modes in
DVFS Performance and Power-saving models. We conduct
experiments on the benchmarks with the four DVFS models
(Power-gating, Power-saving, Balanced and Performance) to
explore the optimal energy efficient model and the trade-
off between throughput reduction and energy saving. In the

highlighted epoch in Figure 5, 56% of the workload is assigned
to 1.2V voltage level in Performance model (second plot),
whereas in Power-saving model (third plot), 0.8V is expected
for this workload.

In Figure 6, we demonstrate the distribution of compu-
tational workload for all layers of ALextNet, VGG16 and
ResNet50 respectively with the four DVFS models. Figure 6
shows the results where the workload is distributed among
the five V/F modes. When a PE is assigned to a certain V/F
setting, it will operate at this specific V/F for the entire epoch
duration until the DP predicts a different V/F mode for the PE
in the next epoch.

With the distribution of workloads for each DVFS model,
we further display the breakdown of energy cost as shown in
Figure 7. The value of energy cost is presented in percentage
form for each DVFS model to demonstrate the importance of
contributing to the total energy cost. As power is completely
gated and no clock is supplied in power-gating state, the
energy cost is zero and not seen in the figure. The baseline
model exploits no sparsity in CNNs and operates always
at the highest voltage level with the fastest frequency. It
fetches one weight and input map pixel and does the MAC
(multiplication and accumulation) operation each clock cycle
no matter whether the weight or input map pixel is zero or
not. In all networks, power-saving model achieves the lowest
energy cost, because a large portion of sparse workload are
processed at the lowest voltage level as shown in the bar.
Contrary to the expectation, Power-gating model performs the
worst. The main reason is that constant switching from power-
gated to active mode leads to huge energy cost, which could
be optimized in the future. Figure 8 further displays the energy
cost divided into dynamic and static energy normalized to
that of the baseline. Power-saving model shows the lowest
dynamic energy cost in all the three neural networks with 69%
to 80% average static energy savings, because the dynamic
energy cost dominates the total energy cost. However, if one
aims to reduce static power consumption, Balanced mode or
Performance mode demonstrates better performance depends
on which neural network is applied. More than 83% static
power cost is reduced in Balanced model on AlexNet, making
it the optimal choice if reducing static power is the highest
priority. .

Figure 9 displays the results of the circuit delay and EDP
to demonstrate the trade-offs between latency penalty and
energy reduction. The value of delay and energy are both



Fig. 5. Example workload percentages (first plot) when implementing AlexNet on CIFAR-10 and the expected voltage levels by DVFS Performance model
(second plot) and Power-Saving model (third plot).

Fig. 6. Workloads breakdown of each DVFS voltage state (Power gated, 0.8V, 1.0V, 1.1V and 1.2V) for different proposed models (Power-Gating, Power-
Savings, Balanced and Performance) on different neural networks (AlexNet, VGG16 and ResNet50) compared with the baseline.

Fig. 7. Energy breakdown of the five DVFS voltage states (Power gated, 0.8V, 1.0V, 1.1V and 1.2V) for the four proposed DVFS models (Power-Gating,
Power-Savings, Balanced and Performance model) on different neural networks (AlexNet, VGG16 and ResNet50), compared with the baseline.

normalized to those of the baseline. The execution delay varies
under different voltage settings. We average the total delay
based on the amount of workload under each voltage mode
for each DVFS model. For the Power-saving model with the
highest energy efficiency, the EDP is also the best in VGG16
and ResNet50 and almost the same as in Balanced model in
AlexNet. The throughput reduction of 11-14% in Power-saving
model is the traded-off to achieve the 60-67% savings in total
energy.

One deciding factor to explore for the design space is
the epoch size, which has a direct impact on the prediction
accuracy and the buffer size requirement that dominates the
area overhead of the DVFS scheme. We simulate the prediction
accuracy for all benchmarks with different epoch sizes for fine-

grained DVFS scheme and the results are shown in Figure 10.
The prediction accuracy increases initially with larger epoch
size, because coarse granularity of prediction provides the
algorithm with more input data. However, increasing epoch
size over 50 cycles does not incur further improvement in
prediction accuracy. This is due to the inherent randomness
of data distribution inside the neural networks. Inconsistency
and signal noise in input images also contribute to the upper
bound of prediction accuracy. Polynomial-16 achieves higher
overall accuracy with more complex feature pre-processing.

The energy saving of the DVFS scheme comes at a critical
overhead of on-chip buffer area. Figure 11 shows that on
ResNet50, epoch size with 100 cycles achieves best energy
efficiency for fine-grained DVFS scheme. Larger epoch size



Fig. 8. Normalized dynamic and static energy cost for the baseline and the four DVFS models (Power-Gating, Power-Savings, Balanced and Performance
model) on AlexNet, VGG16 and ResNet50, compared with the baseline.

Fig. 9. Normalized energy, delay and EDP for the baseline and the four DVFS models (Power-Gating, Power-Savings, Balanced and Performance)

Fig. 10. Prediction accuracy with ranging epoch sizes for AlexNet, VGG16
and ResNet50.

Fig. 11. Buffer size requirement with ranging epoch sizes and energy cost
on ResNet50.

does not benefit prediction accuracy; in fact, with larger buffer
size only energy consumption increases. Smaller epoch size
induces more energy due to lower prediction accuracy. The
buffer size requirement escalates with the number of cycles
of an epoch, because more weights and input activations
need to be buffered for asynchronous PEs under different
voltage domains. In Figure 11, the value of the buffer size
is normalized to that of Eyeriss [14], which contains 196 PEs

and 96KB total on-chip SRAM and scaled linearly to 256 PEs
for fair comparison. Epoch size with 50 cycles provides the
best performance with 24% on-chip memory overhead.

Figure 12 compares the buffer size between fine-grained
and coarse-grained DVFS schemes. Coarse-grained scheme
proves to be an effective alternate approach with moderate
buffer overheads and better scalability. At an epoch size of
200 cycles, the buffer size is reduced by more than 6 times
compared to the fine-grained scheme. Although the coarse-
grain scheme combines 16 PEs (one row) in one voltage
domain and the weights only need to be stored once for
the entire row, the improvement can not reach 16 times
because input activations are stored separately for each PE
in the buffer. Figure 13 shows the energy cost, delay and
EDP for both schemes. For example, in AlexNet, the energy
for the coarse-grained scheme is 2.25 times more than that
of fine-grained scheme. The buffer saving in coarse-grained
scheme is marginal in terms of energy cost, because in fine-
grained scheme, each PE is controlled independently and V/F
can be adjusted to the optimal level. However, the coarse-
grained scheme performs better in terms of delay. For AlexNet,
coarse-grained scheme achieves 18.2% delay reduction when
compared to the fine-grained scheme. The combined workload
distribution for the entire row of PEs reduces the probability of
power-gated states, thus making it run faster than fine-grained
scheme.

In Table III, we compare the proposed DVFS-based ac-
celerator design with Eyeriss V2 [4] and Cambricon-S [22],
two state-of-art sparse accelerators for DNN. For fairness, we
attempt iso-resource comparison, where the peak throughput
constraint is fixed to 256 GOP/s. In order to get accurate
area and energy values, we re-implement eyeriss V2 and
Cambricon-S in the same FreePDK45 45nm CMOS library.



Fig. 12. Buffer size requirement with ranging epoch sizes between the fine-
grained and coarse-grained DVFS Schemes.

Fig. 13. Energy, delay and EDP for the fine-grained and coarse-grained DVFS
Schemes, compared with the baseline.

The PE array size is 16×16 for both Cambricon-S and the
proposed architecture while Eyeriss V2 only consists of 128
PEs due to the SIMD-based PE design with two MACs to
retain the peak throughput constraint. The original throughput
for Eyeriss V2 and Cambricon-S is 153.6 GOP/s with 200MHz
and 512 GOP/s with 1GHz respectively. To match the V/F
settings (from 1.2V/363 MHz to 0.8V/555 MHz in table
I), we scaled up the frequency for Eyeriss-V2 and scaled
down for Cambricon-S. The energy efficiency is presented
as the number of images processed in a second. It must
be noted that the result is lower when compared to the
original design(e.g., 664.6 inference/J in Eyeriss-V2 for sparse
AlexNet). The main reason is the different working frequency
and process technology simulation library. The total on-chip
SRAM consists of global buffer and register files in each PE.
Our proposed architecture has a higher ratio of SRAM to
the total area because of extra buffers that are required to
synchronize data flow through the PEs under different V/F
domains and to restore the weights and activations after the
PE is completely power gated. The last two rows present the
overheads of the specific sparsity components, which refer to
the DVFS predictor, dynamic voltage and frequency generator
and sparsity detector (from Figure 1 and 2). Although the fine-
grained DVFS control at each PE involves higher hardware
overheads, it is still more energy efficient than Cambricon-
S because the energy savings brought by power-gating and
low V/F pair dominates in highly sparse NNs. Moreover, the
hardware cost for adapting the generic PE to sparse weights
with irregularity is non-trivial as in Cambricon-S (36.8% of
total area). Eyeriss V2 uses compressed sparse column (CSC)
format for both on-chip processing and off-chip accesses.

Only CSC decorder and encoder are implemented within the
PE design, which occupies smaller portion in the PE area
breakdown [4]. It is proved in Table III that Eyeriss V2
achieves the lowest area and power overheads for sparsity
components when compared to Cambricon-S and our proposed
DVFS work.

TABLE III
COMPARISON WITH STATE-OF-ART DESIGNS.

Items Everiss V2 Cambricon-S DVFS
Area Cost 2.12(mm2) 3.24(mm2) 2.58(mm2)

Peak Throughput 256GOPs 256GOPs 256GOPs
Number of PEs 128 256 256
On-chip SRAM 164KB 26.5KB 528KB

Power 500.2 433.8 329.0
(mW) (mW) (mW)

AlexNet Energy Efficiency 346 399 526
(inference/J) (inference/J) (inference/J)

Sparsity Components Area <1% 36.8% 13.4%
Sparsity Components Power <1% 24.3% 5.8%

IV. RELATED WORK

A. Sparsity

Researchers have found promising parameter redundancy in
dense DNNs. Various efforts have been made to identify and
prune the unnecessary overfitting parameters with no loss in
accuracy, including algorithm-level (e.g., Deep Compression
[23] and [24] and architecture-level (e.g., short-bits represen-
tation and approximate computing). Before exploiting sparsity,
most DNN accelerators focus on addressing the dataflow
and data reuse to improve energy efficiency. Eyeriss-v1 [25]
fully discusses the dataflow in CNN layers and proposes
row stationary dataflow for both neuron and synapse reuse.
ShiDianNao [2] maximizes the neuron reuse and eliminates
the DRAM. Although these accelerators can achieve high
throughput and low energy, they can not fit with modern
sparse and compressed neural networks. Therefore, sparsity-
related accelerators are proposed to exploit the sparsity to skip
data movement and computation of the pruned synapses with
corresponding neurons. Cambricon-X [9] develops the key
Index Module to select the necessary neurons based on the
index of compressed synapses, but it fails to exploit dynamic
neuron sparsity (DNS). The proposed DVFS based accelerator
benefits from both dynamic and static sparsity regardless of
irregularity from pruning techniques, thus a more efficient
design.

B. DVFS

DVFS has been applied at different levels of granularity
to various fields, from personal computers, laptops to data
warehouse servers. The core of DVFS is the adjustment of
voltage and frequency settings on an electrical component
to optimize resource allotment for tasks and maximize the
energy-saving [26], [27]. For DNN implementation, prior
works apply the DVFS technique to trade-off performance and
power. [28] exploits DVFS setting of GPU platform, monitors
the server’s load, and adjusts the precision to optimize the
power consumption, but it is a task level and coarse DVFS



scheme, more precisely, a job scheduler. It takes no consid-
eration of the sparsity of DNN. The DVFS technique is an
intuitive approach to addressing the dynamic workloads to
save energy at a very fine level. Sparse workloads based DVFS
scheme has not been applied to hardware accelerators to the
best of our knowledge.

V. CONCLUSIONS

This paper discusses a DVFS based technique applied to
DNNs, along with a hardware accelerator architecture that
efficiently implements a DVFS scheme to improve energy-
efficiency. The experimental results show that the DVFS
based accelerator can significantly reduce total energy cost
by as much as 67% when compared to the baseline. Various
DVFS models with different voltage-workload settings are
used for comparative purposes and to highlight the trade-
offs between the energy efficiency and DVFS model costs.
Two DVFS implementation schemes (coarse-grained and fine-
grained scheme) are also explored to evaluate the trade-offs
between the energy saving efficiency and the area cost. More-
over, our proposed research shows how to combine the non-
blocking power-gated scheme and the smart proactive DVFS
state selection model to achieve energy-efficiency. We also
demonstrate ways of exploring the machine learning algorithm
of DVFS state prediction to further improve the performance
of the DVFS model.

ACKNOWLEDGMENT

This research was partially supported by NSF grants CCF-
1513606, CCF-1703013, and CCF-1901192. We sincerely
thank the anonymous reviewers for their excellent feedback.

REFERENCES

[1] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, vol.
105, no. 12, pp. 2295–2329, 2017.

[2] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the
sensor,” in 2015 ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA), 2015, pp. 92–104.

[3] T. Luo, S. Liu, L. Li, Y. Wang, S. Zhang, T. Chen, Z. Xu, O. Temam,
and Y. Chen, “Dadiannao: A neural network supercomputer,” IEEE
Transactions on Computers, vol. 66, no. 1, pp. 73–88, 2017.

[4] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9,
no. 2, pp. 292–308, 2019.

[5] B. Asgari, R. Hadidi, T. Krishna, H. Kim, and S. Yalamanchili, “Al-
rescha: A lightweight reconfigurable sparse-computation accelerator,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2020, pp. 249–260.

[6] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang,
“Tensaurus: A versatile accelerator for mixed sparse-dense tensor com-
putations,” in 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2020, pp. 689–702.

[7] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An
accelerator for compressed-sparse convolutional neural networks,” in
2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), 2017, pp. 27–40.

[8] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in 2016 ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA), 2016, pp. 1–13.

[9] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-x: An accelerator for sparse neural networks,” in
2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2016, pp. 1–12.

[10] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “Sigma: A sparse and irregular gemm ac-
celerator with flexible interconnects for dnn training,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 58–70.

[11] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing dnn pruning to the underlying hardware paral-
lelism,” in 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA), 2017, pp. 548–560.

[12] H. Jung and M. Pedram, “Supervised learning based power management
for multicore processors,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 29, no. 9, pp. 1395–1408,
2010.

[13] M. Clark, Y. Chen, A. Karanth, B. Ma, and A. Louri, “Dozznoc:
Reducing static and dynamic energy in nocs with low-latency voltage
regulators using machine learning,” in 2020 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2020, pp. 1–11.

[14] Y. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks,” in 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA),
2016, pp. 367–379.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[16] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[18] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[19] P. Kurup and T. Abbasi, Logic synthesis using Synopsys®. Springer
Science & Business Media, 2012.

[20] R. Thapa, S. Ataei, and J. E. Stine, “Wip. open-source standard cell
characterization process flow on 45 nm (freepdk45), 0.18 µm, 0.25
µm, 0.35 µm and 0.5 µm,” in 2017 IEEE International Conference on
Microelectronic Systems Education (MSE), 2017, pp. 5–6.

[21] C. Sun, C. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L. Peh,
and V. Stojanovic, “Dsent - a tool connecting emerging photonics with
electronics for opto-electronic networks-on-chip modeling,” in 2012
IEEE/ACM Sixth International Symposium on Networks-on-Chip, 2012,
pp. 201–210.

[22] X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou, L. Li,
T. Chen, and Y. Chen, “Cambricon-s: Addressing irregularity in sparse
neural networks through a cooperative software/hardware approach,” in
2018 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2018, pp. 15–28.

[23] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
in International Conference on Learning Representations, 2016.

[24] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J. Dally,
“Exploring the regularity of sparse structure in convolutional neural
networks,” arXiv preprint arXiv:1705.08922, 2017.

[25] Y. Chen, J. Emer, and V. Sze, “Using dataflow to optimize energy
efficiency of deep neural network accelerators,” IEEE Micro, vol. 37,
no. 3, pp. 12–21, 2017.

[26] R. Jain, P. R. Panda, and S. Subramoney, “Machine learned machines:
Adaptive co-optimization of caches, cores, and on-chip network,” in
2016 Design, Automation Test in Europe Conference Exhibition (DATE),
2016, pp. 253–256.

[27] X. Chen, Z. Xu, H. Kim, P. V. Gratz, J. Hu, M. Kishinevsky, U. Ogras,
and R. Ayoub, “Dynamic voltage and frequency scaling for shared re-
sources in multicore processor designs,” in 2013 50th ACM/EDAC/IEEE
Design Automation Conference (DAC), 2013, pp. 1–7.

[28] S. M. Nabavinejad, H. Hafez-Kolahi, and S. Reda, “Coordinated dvfs
and precision control for deep neural networks,” IEEE Computer Archi-
tecture Letters, vol. 18, no. 2, pp. 136–140, 2019.


