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Abstract: Estimation of the high-dimensional banded covariance matrix is widely
used in multivariate statistical analysis. To ensure the validity of estimation,
we aim to test the hypothesis that the covariance matrix is banded with a cer-
tain bandwidth under the high-dimensional framework. Though several testing
methods have been proposed in the literature, the existing tests are only pow-
erful for some alternatives with certain sparsity levels, whereas they may not be

powerful for alternatives with other sparsity structures. The goal of this paper
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is to propose a new test for the bandedness of high-dimensional covariance ma-

trix, which is powerful for alternatives with various sparsity levels. The proposed
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new test also be used for testing the banded structure of covariance matrices
of error vectors in high-dimensional factor models. Based on these statistics, a
consistent bandwidth estimator is also introduced for a banded high dimensional
covariance matrix. Extensive simulation studies and an application to a prostate
cancer dataset from protein mass spectroscopy are conducted for evaluating the

effectiveness of the proposed adaptive tests blue and bandwidth estimator for the
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banded covariance matrix.
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1. Introduction

Statistical testing of covariance matrix plays an important role in multi-
variate and high-dimensional statistical analysis, for example, in principle
component analysis, multivariate regression analysis, and factor analysis
(see Anderson 2003; Bai and Yin 2008; Johnstone 2001; Cai and Liu 2011;
Fan et al. 2015).

Many researchers have studied testing high-dimensional covariance ma-
trices from different aspects. One aspect is to test Hgy : 3 = 3, where X
is the population covariance matrix, and X is a given positive definite ma-
trix. For instance, Ledoit and Wolf (2002) proposed a robust statistic for
testing Hy; based on the Frobenius norm under the Gaussian assumption.
Without the Gaussian assumption, Bai et al. (2009) developed a corrected
likelihood ratio test (LRT) for the identity test issue when the dimension
p of data is smaller than the sample size n. Jiang et al. (2012) studied the
asymptotic distribution of the corrected LRT for normal random vectors

when p/n — y € (0,1]. Later, Wang et al. (2013) redefined the above



statistics and introduced two tests that can accommodate data with un-
known mean and non-Gaussian distribution. Moreover, Chen et al. (2010)
and Cai and Ma (2013) constructed sum-of-squared type tests through U-
statistics as n, p — oo. Another aspect is to test Hpy : X = ¢Xg, where c¢ is
an unknown positive number. For the sphericity testing, Ledoit and Wolf
(2002) and Chen et al. (2010) proposed sum-of-squared type statistics, the
former directly used the sample covariance matrix S,, in substitution for 3
and the latter adopted unbiased U-statistics. Furthermore, Wang and Yao
(2013) developed a corrected LRT (p < n) and John’s test. Jiang and Yang
(2013) extended the corrected LRT to the case of p/n — y € (0,1], and
Li and Yao (2016) proposed a quasi-LRT allowing p/n — oo. In addi-
tion, researchers also are interested in testing a general linear structure
of covariance matrices. Zheng et al. (2019) studied the problem of testing
Hys - ¥ = 01A + - + 0 Ak, where 04, ...,0 are unknown parameters
and Ay, ..., Ax are known basis matrices. Furthermore, Zhong et al. (2017)
introduced an adjusted goodness-of-fit test that examines a broad range of
covariance structures to assess the adequacy of specified covariance struc-
tures.

In this paper, we are interested in testing the banded structure of co-

variance matrices which has numerous applications in biological science, cli-



mate, econometrics, finance, etc (see, Andrews 1991; Ligeralde and Brown
1995). For instance, in high-dimensional data analysis, a popularly used
covariance matrix estimation method is banding or tapering the sample co-
variance matrix (e.g., Bickel and Levina, 2008). Although the large-sample
consistency of the corresponding estimators has been established for the co-
variance matrices in the “bandable” class, it remains questionable whether
or not the underlying covariance matrix belongs to the “bandable” class.
The considered hypothesis testing on the banded structure of covariance
matrices will provide a practical statistical guideline to this issue.

Several methods for testing the bandedness of the high-dimensional co-
variance matrix have been proposed. In particular, Qiu and Chen (2012)
developed a test using a linear combination of sample U-statistics by col-
lecting the sum-of-squares of all covariance differences between the null
and alternative hypotheses. The above sum-of-squares-type test is power-
ful against dense alternatives because there are many nonzero components
in the covariance differences between the null and alternative hypotheses.
However, it is not powerful when the alternative is sparse. To address this
problem, Cai and Jiang (2011) proposed a maximum-type statistic by cap-
turing the maximum componentwise sample covariance difference for multi-

variate normal random vectors. Shao and Zhou (2014) restudied the above



statistic and suggested using chi-square distribution instead of the type
I extreme distribution to improve the convergence rate of maximum-type
statistic. Furthermore, Xiao and Wu (2013) relaxed the normality assump-
tion based on the normalized maximum componentwise sample covariance
difference. The maximum-type test is powerful when the alternative is
sparse, while less powerful for dense alternatives. In practice, however, it
is often unclear whether the alternative hypothesis is dense, sparse, and
in-betweens. What is more, neither type of these tests are powerful when
the alternative hypothesis is denser or less sparse, which will be shown in
Section 3.

Motivated by this, we propose two adaptive tests based on a series of
unbiased U-statistics for the banded structure of high-dimensional covari-
ance matrices, following the idea of the adaptive test in Xu et al. (2016)

and He et al. (2021). Our contributions are as follows.

(i) We derive the joint asymptotic distribution of the series of U-statistics
under the null hypothesis. Furthermore, we show that the U-statistics
are asymptotically independent and jointly normally distributed un-

der certain regularity conditions.

(ii) We establish the asymptotic distribution of the series of finite order

U-statistics under a local alternative hypothesis. Furthermore, we



compare the power performance of these U-statistics and show the

consistency of these tests.

(iii) We proposed two adaptive tests by combining the p-values of the U-
statistics, and their consistency will be guaranteed by those single
U-statistics. These adaptive tests will select the test with the most
significant result and yield high powers under a broad spectrum of

alternative hypothesis scenarios.

(iv) We provide an adaptive estimator for the bandwidth of the high-

dimensional banded covariance matrix and establish its consistency.

The rest of the paper is organized as follows. In Section 2, we first introduce
a series of U-statistics, deriving their joint asymptotic distributions under
the null and local alternative hypotheses. Furthermore, we propose two
adaptive tests and reduce the computation burden of the U-statistics. At
last, we also present a bandwidth estimator for the banded covariance ma-
trix and show its consistency. In Section 3, extensive simulation studies are
demonstrated. In Section 4, we analyze a prostate dataset to demonstrate
our procedures. Section 5 concludes the paper and discusses the potential
work of this paper. Main technical proofs and more simulation results are

relegated to the Supplementary Material.



2. New Test Methods

Let x; = (w;1,...,2;,)", for i = 1,...,n, be independent and identi-
cally distributed (i.i.d.) samples from a p-dimensional population x =
(z1,...,2,)" with mean vector g = (uy,...,u,)" and covariance matrix
3 = (0j,4,)pxp- The population covariance matrix X = (0, ,)pxp is said to
be banded if there exists an integer k € {0, ...,p—2} such that o;,,, = 0 for
|71 — j2| > k. The smallest k such that X is banded is called the bandwidth
of X. Let Br(X) = (0,5, 11}j,—ja|<k})pxp D€ the banded version of 3 with
bandwidth k, where 174 is an indicator function. When k = 0, By(X) is

the diagonal version of ¥. In this paper, we are interested in testing

Hk,O Y= Bk(E) V.S. Hk71 X 7& Bk(E) (21)

for a certain positive integer k. We further rewrite the hypothesis testing
(2.1) as

Hyo:E=0 wvs. Hpp:E#0,

where € = {0},;, : k < |j1 — j2| < p} is the parametric set we are interested

n.



2.1 A series of U-statisticss

2.1 A series of U-statistics

Motivated by He et al. (2021), we consider a series of measurements of &,
1/a
defined by ||€]]. = > (0j,5,)% , and intend to construct test
k<|j1—j2|<p
statistics that are powerful against ||£||, for different finite positive integer

a. Since E(x4, j, %, jo — Tiy j1Tinjs) = Ojyjp for 1 < iy # iy < n, we propose

the U-statistic

a
L{(a) = Z (ngz)_l Z H("L’izzq,hzimq,jz - xiZlflvjlxiﬂij)

k<|ji—72|<p 1<iy# - #iga <n I=1

as an unbiased estimator of ||£]|%, where P, = n!/(n — 2a)! denotes the

number of 2a-permutations of n. A straightforward calculation shows that

70RO S W LRSS

k<‘j1—j2\<p c=0 1§i15£"'3é7;a+c§n

a—c a a+c
H(Iildlxihh) H Lig, 1 H Liy,ja- (22)
=1 s=a—c+1 t=a+1

The form of U(a) in (2.2) plays an essential role in deriving the theoretical
properties of our proposed statistics. Specifically, to obtain the expression in

(2.2), we define ; ;, = E(2;j,7,) and 05,5, = E[(zi5, — p15,) (@i, — pj,)] =



2.2 Asymptotic properties of U-statistics under null hypothesis9

©jrjs — Mg 1bj,- For any finite positive integer a, we have

Z Oje = Z (©jrje = My tg,)"

k<|j1—jel<p k<|j1—jel<p

- Y (v @)

k<|j1—j2|<p ¢=0

Since x;; and z; j, ; j, are the unbiased estimators of 11; and ¢;, j,, respec-
tively, for 1 < iy # -+ # dqqe < n, it follows that E(T,77 i, 5, %0 [ 1o ein

a+c _ a—c , . c c . .
Ti gy [limaiq Tivga) = 05, jabt§, 15, Thus, we obtain the expression (2.2).

Remark 1. If we only consider the term of ¢ = 0 in (2.2), we have

Z/N[(CL) = (P;)_l Z Z H(xihjlxil,jz)v (24)

k<|j1—j2|<p 1<i1#F#ia<n I=1

which will be shown to be a leading term of (2.2) under certain regularity
conditions specified in Section 2.2 and be used for our theoretical analysis

in the Supplementary Material.

2.2 Asymptotic properties of U-statistics under null hypothesis

Before deriving the theoretical properties of U-statistics under the null hy-
pothesis, we first introduce some notations as follows: u,, = o(v,,), if

M sup,, , o0 |Unp/Vnp| = 05 Upp = O(vyp), if 0 < liminf,, ;o0 [Unp/Vnp| <
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im sup,, , o0 |Unp/Vnp| < 00 and

W ...ge = El(wrg, — py,) - (20, — p,))- (2.5)

We assume the following regularity conditions in our analysis:

o . L . 8 . . L . 2
Condition 1. ph_}lrgo max El(x; —pj)®] < oo and pli)n;lo 121;ng[(@ 1i)?] > 0.

Condition 2. A sequence of random variables z = {z;,7 > 1} is said to
be a-mixing if lim a,(s) = 0, where a,(s) = sup,~{|P(AN B) —

5$—00 el
P(A)P(B)| : A € F},B € Fp2,} with F? being the o-algebra gener-

ated by {z4, 2411, .-, 2o}. Under Hy, we assume X is a—mixing with

ax(s) < Mo*®, where § € (0,1) and M is some positive constant.

The regularity conditions are similar to those of Theorem 2.1 in He et al.
(2021), which studied the problem of testing the diagonality of the covari-
ance matrix, a special case of (2.1) with & = 0. Specifically, Condition
1 requires that the eighth marginal moments of x are uniformly bounded
from above and the second marginal moments are uniformly bounded from
below. Condition 2 prescribes weak dependence among the column com-

T in a-mixing type, which is

ponents of random vector x = (z1,...,2,)
satisfied when x is m-dependent random vector or Gaussian distributed

random vector with banded covariance matrix. There are several strong



2.2 Asymptotic properties of U-statistics under null hypothesisi1

mixing conditions, such as ¢-mixing, 1¥)-mixing, p-mixing, and S-mixing. In
the classical theory, these five strong mixing conditions have emerged as the
most prominent ones, and the a-mixing condition is the weakest one among
those (e.g. Bradley (2005)). The a-mixing condition has also been imposed
in many research works, such as Xu et al. (2016); Chen et al. (2019). In
our work, the a-mixing condition to these mixture moments E(][;_, z;,)
for 2 < s < 8 ensures the asymptotic independence of different finite order
U-statistics. In addtion, Bai and Saranadasa (1996) assumed the indepen-
dent component structure x = p + I'z to describe the weak dependence
among the components of x. The random vector x is a-mixing when I is

a p X p upper triangular matrix with ~;, ;, = 0 for j; — j, > k.

Theorem 1. Under Conditions 1, 2 and Hy o, for any finite positive inte-

gers ay, ..., a,,, we have

T
<L{(a1)"” ’Z/{ am)) 2>/\/(O,Im), n,p — 00, (2.6)
where

Uz(a) = Var[bl(a)] = (P:)_la! Z (Hj17j2,j3,j4>a + O(n_ap2) (2'7>

k<|j1—j2l<p
k<lizg—ial<p
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with || defined in (2.5).

J1,J2,73,74
Because 02(a) is unknown, we obtain the following theorem where o%(a)

is replaced by an estimator 6%(a) provided in (2.9). To ensure the consis-

tency of 6%(a), the following Condition 3 will be needed.

Condition 3. For a finite positive integer a, lim max E[(x; — p;)*] < oo.
p—00 1<j<p

Theorem 2. Under Conditions 1, 2 and Hyy, for any positive integers

Ay, ..., Gy satisfying Condition 3, we have

T
) 2y N(0, 1), n,p— oo, (2.8)

where 62(a)/o(a) S 1 and

6%(a) = 2(P}) 2a! Z Z H;[(!’fim —Zj) (Tie — Ty

k<lit—i2l<p 1<iy e Fia<n
k<[jz—ijal<p
ld1—dg|<k,liz—ial<k

(2.9)

Theorem 2 shows that U(ay)/d(ay), ..., U(an)/d(am) are asymptoti-
cally independent and normally distributed. The theoretical results in The-
orems 1-2 extend those in He et al. (2021) from testing the diagonality of
the covariance matrix to testing a general banded structure, which is of-

ten of practical interest in high-dimensional covariance matrix estimation.
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Technically, the general banded structure makes the analysis more involved,

the details are presented in the supplementary file.

Remark 2. For an extreme case, as an even number a — oo, we have

1/a

||g||a = Z O-;'lm'z — ||g||oo = k<\§?—a;:|<p |Uj1j2|'
k<|j1i—jel<p

Thus, the performance of the statistic U(a) would be similar to the mazximum-
type statistics when the even order a is large. This phenomenon was also
observed in Xu et al. (2016) and He et al. (2021). He et al. (2021) pro-
vided the asymptotic independence between the finite order U-statistics and
infinite order U-statistic (mazimum-type statistic) when the components of
the random vector x are uncorrelated. We also expect a similar result under
certain regular conditions in our setting. However, it is challenging to es-
tablish the asymptotic joint distribution of the maximum-type statistic and
finite order U-statistics because the banded covariance structure is much
more complicated than the i.i.d. case due to the dependence, which was

pointed out in Cai and Jiang (2011). We will investigate it in the future.
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2.3 Power analysis

In this section, we investigate the limiting distributions of the series of U-
statistics under the local alternative hypothesis Hj 4 : ¥ = ¥4, which is
described in Condition 4. For a given bandwidth k, we denote the set of
locations of the signals by Ja = {(j1,J2) : 05,4, # 0,k < |j1—J2| <P, j1,J2 =
1,...,p}, and the cardinality of J4 by |Ja| which stands for the sparsity
level of ¥ 4. The sparsity level of the alternative hypothesis decreases as
|J4| increases. We introduce two conditions for presenting the asymptotic

distribution under the local alternative hypothesis.

Condition 4. Assume |J4| = o(p?) and for any (j1, j2) € Ja, |0j5| = O(p),
where p = Z(j1,j2)EJA ‘Uj1j2‘/|JA|‘
Condition 5. For t < 8, we assume that there exists constant « such that

M1, o = #B(TLy 2,), where 1< gy, o < pand (z1,..., 2)7 ~

N(0,3).

Theorem 3. Under Conditions 1, 4 and 5, for any positive integers ay, . . ., G,

if p= O(|Ja|"Yupt/an=12) fort =1,... m, we have

(L{(al) ~Ea(w)] | Ulan) = Eald

(am)] 5 D
oa(ar) ’ oa(an) ) = N(0,1,), n,p— o0,
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where Ex[U(a)] = 3 of,, and o%(a) ~ 2(P))alk® YD ol 0%
(J1,42)€J 4 i1 —ds| <k

li2—dal<k
with the order ©(n=%p?).

Given the asymptotic properties under the local alternatives, the power

function of a single U-statistic U(a) is

Bla) = P<Z;% > 21 _q

1) (- B

where z;_, and ®(-) are the (1 — a)th quantile and cumulative distribu-
tion function of standard normal distribution, respectively. The signal-
to-noise ratio SNR, = E4[U(a)]/c4(a) plays an important role in affect-
ing the power performance of the U-statistic U(a). For any finite or-
der a € Z, we define the corresponding average standardized signal as
Pa = D (1 ja)edn n“/2a;-’1j2/|JA|. Based on Theorem 3, the asymptotic power
function B(a) — 1 if p~'|Ja|ps — oo because E[U(a)] = > (rin)eda T

a

and o4 (a) are of order n=%2p. In other words, if p, is of order higher than
plJa|™t, Ba) — 1 as n — oc.

Another attractive work is to investigate the relationship between the
order of the U-statistic with the highest asymptotic power and the sparsity

level |J4|. We give a criterion to compare the power performance of two

finite order U-statistics U (ay) and U (az). We call U(ay) is better than U(as)
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if pa, < pa, when they attain the same asymptotic power. Particularly, we
consider a special case where the signal strength is fixed at the same level,
Tjj, = p > 0 for (j1,J2) € Ja and 0,4, = 0,5, = v > 0 for [j; — js| < k

and |jo — j4| < k. In this case,

a
Z(jl g2)€da Tjjo

(P)=ralk® Y e<e(0, 43 0 aga ) 12
|jo—dal<k

SNR, ~ o

Hence, the power function f(a) — (I>< — 2o t+ m%’:ﬂ/zp,), where

p=02k+1)/(p—k—1)(p—k).

pa = (MY /| T4/ (@) 25 2om /2, (2.11)

achieves the asymptotic power ®(—z,_, +M/v/2) of U(a), where M is some
constant. Proposition 1 establishes the relationship between the sparsity

level and the order of the U-statistic.

Proposition 1. For a given bandwidth k, under the special case described
above, given n,p,|Ja| and M, by considering (2.11) as a function of integer

order a, we have
(i). when |Ja| > Mp', the minimum of p, is achieved at a = 1;

(i1). when |J4| < Mp', the minimum of p, is achieved at some a, which



2.4 Two adaptive testing proceduresi7

increases as Mp'/|Ja| increases.

When |J4] > Mp', the alternative is very dense, U(1) is the most
powerful test. When |J4| < Mp', as Mp'/|J4| increases, the sparsity level
of the alternative hypothesis increases, the U-statistic with larger order
will perform better. This result is consistent with the analysis in He et al.

(2021), and we extend their result to the banded covariance matrix setting.

2.4 Two adaptive testing procedures

For the proposed family of U-statistics, U (a) is powerful against the alter-

native with large [|£||7 = > 09,,- The power performance of U(a)
k<|j1—jal<p

is determined by the sparsity and the strength of signals. The test with a
smaller order a would be preferred for a denser alternative. For example,
U(1) is the most powerful one when the alternative is very dense as shown
in Section 3.1. In practice, it is often unclear which test statistic should be
chosen because the true alternative is usually unknown. Therefore, moti-
vated by the idea in Xu et al. (2016) and He et al. (2021), we develop the
adaptive tests by combining the information from U-statistics with different
orders, which would yield high powers against various alternatives.

We propose two adaptive tests: one based on the minimum combination

method and the other based on Fisher’s method. Suppose that we have a



2.4 Two adaptive testing proceduresi8

candidate set Z = {ay,...,an}, |Z| = m, where |Z| denotes the cardinality
of Z. Let p, be the p-value of test U(a) as p, = 2(1 — ®(|U(a)/5(a)|)).
Minimum combination method: Rejecting Hy if paapumin < o wWhere

|z

pademin =1- (]- - Tademin) ‘a Tademin = Iglei%lpaa (212)

with the nominal significance level . The type I error of the minimum
combination method can be controlled by P(padpumin < &) = P(Tadpumin <
p) — a, where pi, = 1 — (1 — o)/l and the asymptotic independence of
U(ar)/o(ar), ..., Ulan)/d(ay,) are used.

Fisher’s method: We have Toqous = —2 3,7 10g pa 2, X3z, where X3z,
is distributed as a chi-square distribution with degrees of freedom 2|Z|. We

reject Hy if pagpur < o with

padef =1- \II(Tadef), (213)

where U(-) is the cumulative distribution function of Xg\I\ with degrees of

freedom 2|Z|.

Remark 3. For the two adaptive statistics, we have:

Eal(a)] )
oa(a)

(7') P(Tademm = Iileijl:_lpa < pj;) Z P(pa < pz> — (I)( - Zl—pg +



2.4 Two adaptive testing procedures19

(”) P(Tadef = -2 Z lnga > Cl—oe) > P(_2logpa > Cl—a) - (I)(_Zl—cj;‘l'
acl
Ealt(a)]
oa(a)

), where ¢, = e~3%< qnd c,_, is the (1—a)th quantile ofxgm.
The asymptotic power of the proposed adaptive tests converge to 1 asn — 0o

if there is a U-statistic U(a) satisfies average standardized signal p, is of

order higher than p|Ja| ™" with po = 37, iy, %055, /1 Jal.

Remark 4. Our proposed adaptive tests are versatile in the sense that they
can adapt to the unknown sign and sparsity level of the signal set £ under
the alternative hypotheses. Their performances depend on the selection of
the order set L. The U-statistics with odd order may lose their power per-
formance quickly because the differences across the sign of the elements in

& leads to the cancellation of positive and negative o¥ In this case, we

1j2°
suggest using U-statistics with even order to construct the adaptive tests.
However, the U-statistics with odd order are still more suitable when the
elements in € are all in the same direction. For example, U(1) is a repre-
sentative of the burden tests based on genotype pooling or collapsing which
has been discussed in Morgenthaler and Thilly (2007); Li and Leal (2008);
Pan et al. (2014). Without the information of the directions of signals, we
suggest using both odd and even order U-statistics. Furthermore, the theo-

retical arguments on power analysis and extensive simulation studies indi-

cate that the order of the best U-statistic will increase as the sparsity level
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decrease. To address sparse alternative hypotheses, we select the biggest
order to be 6 because the performance of U(6) is good enough compared to
the maximum-type statistic, as shown in the first figure in Figure 1. The
discussions in Xu et al. (2016) and He et al. (2021) also support our sug-

gestion.

Remark 5. [t is exciting to study whether the proposed U-statistics can
achieve the optimal detection/testing boundary at different sparsity levels.
Such a problem for the U-statistics, however, differs from existing stud-
ies (e.g. Donoho and Jin (2004)) due to the differences among the studied
testing problems, and needs new theoretical development to handle the de-
pendence structure of the banded covariance matriz. When testing ¥ =1,
Cai and Ma (2013) showed that U(2) is rate optimal in terms of the Frobe-
nius norm for the testable region and the non-testable region. It would be
interesting to extend this result to the U-statistics with different orders for
testing the banded covariance matriz, and we would like to leave that as a

future study.

2.5 Simplifying computation

The costs of directly calculating U(a) in (2.2) and 6%(a) in (2.9) are as

expensive as O(n?*p?) and O(n?p?), respectively. To reduce the computa-
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tional cost, we mainly employ the Algorithm 1 proposed in He et al. (2021)
by changing the input s;;, that reduces the computation cost across ¢ from
O(n*) or O(n®) to O(n).

When E(z;;) is known, we assume E(z;;) = 0 without loss of generality.
In this case, U(a) degenerates into U(a) in (2.4). (1). In computing U(a),
we specify s;; = x; j,2;j, in Algorithm 1, where ¢ =1,...,nand [l € £ =
{(j1,42) : k < |j1 — J2| < p}. (2). Similarly, we compute 6%(a) with
Sia = (@i j, — Tj,) (@i jy, — Tjy) (%4 jy — T4y ) (24,5, — T4,), where i =1,...,n and
L€ L= {1, J2,J3,Ja) 1 k < |j1 —Jal < pk <ljz—Jal <p,lj1— sl <
k|2 — Jal < K}

When E(z;;) is unknown, we present the following proposition to discuss

the computation of U(a).

Proposition 2. The forms of U(a) with different order a are as follows.

(i) Whena=1,U(1) = 3 {07 3 @20 (P3) 7 ( X @i 2 i

k<|ji—j2|<p i=1 i1=1 io=1
n
— > @iy Tigy) )
=1

(i) When a =2, U(2) 1‘ ; |<{(P2")‘1U0(2) —2(PM) UL (2) + (P!

Uz(2) }, with Up(2) = (3 @i, 3,)* — 2o (Tiuwi,)% Ur(2) = (3 @iy,
= =

=1
xi,js)z—(; x5 )} —
2Uy(2)—4U(2) with Ur1(2) = (32 @i gy ) (D Tije) =D Ti i Ti gy, Ur2(2) =
=1 =1 i—

=1

U (2) = Ua2) = Un(2) and Us(2) = TT{(3)

s=1 i=1



2.6 Adaptive bandwidth estimation22

n

n n n n
(Z T; jlwmz)(zl Tija) — Zl af 2}, Uis(2) = (2 wi,jlx?,h)@ Tija) —
i=1 = 1= 1= 1=
n
2 i,J1 2 J2°

(i) Whena 2 3, let Uo(@) = (P ¥ % Ty -
k<|j1—jo|<p 1<i1#Fia<n

zj,) (%4, 5, — Tj,). Under the Conditions 1, 2, 3 and Hy, if a is odd,

p = o(n™*); if a is even, p = o(n*/?). Then {U(a) ~Us(a)}/o(a) &>

0.

When a = 1,2, we directly compute U (a) using Proposition 2.(i)—(ii).
When a > 3, U(a) can be replaced by U.(a) induced by Proposition 2.(iii).
We compute U, (a) with Algorithm 1 by setting s;; = (2;.j, —Zj, ) (Zij, — T, ),

wherei =1,...,nand l € L ={(j1,72) : k < |j1 — 72| < p}.

2.6 Adaptive bandwidth estimation

Based on the by-product of the studied U-statistics, we propose a method
to estimate the bandwidth parameter of the high dimensional banded co-
variance matrix 3. Our method is motivated by Qiu and Chen (2012). To
facilitate the illustration, we define some notations. For a given bandwidth
parameter k, we denote the corresponding statistic U(a) in (2.2) as Uy, its
asymptotic standard deviation o(a) and asymptotic standard deviation es-
timator 6(a) as o, and &, , respectively. Following Qiu and Chen (2012),

we consider a banded covariance matrix with true bandwidth ky,. We define
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Tak =1 Uy /00, and rewrite it as T, = Tox1 + Tak2, Where

Ua e — Mak Tak Hak Cako Oak
_1Ua, wh Tok  and T, = ntHak Jake o

Oa,k Oa,k Oaky Oak Oak

Tok1i=n

sy

Since {Uak — far}/0ax is stochastically bounded and o, /0, k L, 1, then

Tara = Op(n~1). In addtion, since both o, 4, and o, , are order of ©(n=%?p),

—1 a
—1 Hak _ " Zk<\j1*j2\<1) %5142
Ta,kq [(Pr)~1al Zk0<\j1*j2\<p(Hj17j2,j37]’4)a}1/2
ko<liz—ijal<p

cially, if all the signs of the covariances o;, ;, are positive with |j; — jo| < k,

Ta k2 is determined by n Spe-
it can be checked that ™'y, /00, > 0 for k < ky and n™ g p/00r, =0
for k > kq. It inspires us to consider an estimator based on the difference
between successive statistics d, = 7ok — Tak+1 for a given finite order
a € Z. We multiply n’ on 7T, with a small positive § € (0,1) to increase
the magnitude of 7,2 and ensure that 7,1 converges to 0 in probability
with a quick rate. For any a € Z, we define d‘;k = n%(Tor — Takt1), and

come up with the bandwidth estimator
k50 = min{k : |d} | < 0}. (2.14)

By combining the influence induced by different orders, we finally propose
an adaptive bandwidth estimator /%579 = maIx ]%a,(g’g. We conduct a simulation
ac

study to illustrate the motivation of 12:5,9 in the appendix of supplmentary
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file. We also present the consistency of the bandwidth estimator 1%5,9.

Proposition 3. Under Conditions 1, 2, 3 and liminf, {inf, -k, (ftar—tar+1)}
> 0, for any banded covariance matrixz with bandwidth ko, then 1%579—k0 LN 0,

for any 0 >0 and 6 € (0,1).

In Proposition 3, lim inf,, {infy<y, (ttar — tlar+1)} > 0 excludes the case
that there exists a zero sub-diagonal followed by nonzero sub-diagonals as
one moves away from the main diagonal. The performance of the adaptive
estimator 12:579 may be affected by the tuning parameters # and §. As pointed
out in Qiu and Chen (2012), the multiplier n° leads to 6 being “free ranged”
as long as # > 0. We suggest practitioners to choose = 0.5 to trade off the
converge rate of 7,1 and the performance of 7, ;2. The performance of
our adaptive bandwidth estimator 1%579 with Monte Carlo simulation studies

is presented in Section 3.2 .

3. Simulation Study

In this section, we conduct comprehensive simulation studies to evaluate
the performance of our adaptive tests and estimator.We generate n random
vectors x; = (x;1,...,%;)" from two populations: (i). multivariate normal
distribution: N (0, X); (ii). multivariate t distribution with seven degrees of

freedom: ¢7(0,X), where ¥ = I'T'T. We choose the index set Z = {1,...,6}.
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3.1 Adaptive Testing Methods

Fora € Z, let “U(a)” denote the testing procedure with the rejection region
{x1,...,x, : [U(a)]/5(a) > qi—a/2} and ¢i_q/2 being the (1 — a/2)100%
quantile of N(0,1). Denote “adpUmin” and “adpUf” as our proposed
testing procedures in (2.12) and (2.13). We also compare “adpUmin”,
“adpUf” with “U(1)”, “U(2)", “U3)", “U(4)”, “UB)”, “U(6)", “QC" in
Qiu and Chen (2012) and “XW” in Xiao and Wu (2013). We take n =
100, p = 50, 100, 200, 400, 600, 800, 1000 to present the empirical sizes, and
n = 100, p = 600, 1000 to investigate the empirical powers. The popula-
tion covariance matrix ¥ = I'T'T varies under three different settings as
follows. Before introducing the settings, we use J;,x to present a set of
|Ja| random positions (ji, jo) which satisfy jo — j; > k.

Setting 1. Let T' = (Vj,j, )pxp, When jo—j1 = 1, 75,5, = 1; when (j1, jo) €
J1 741> Vije = P, otherwise, 7, ;, = 0. We investigate the empirical sizes
with |J4| = 0, and the empirical powers by varying the signal magnitude
p € (0,1) and the sparsity level |J4| = 2,400, 1200, 2400. In this setting,
the bandwidth k£ = 1 under Hy .

Setting 2. Let T' = (Vj,5,)pxp, When jo — j3 = 1, 5, = 0.8; when
Jo—J1 = 2, Vj1jo = 0.6; when (j1, j2) € Jjs4).2, Vjrjo = Pa, otherwise 75,5, = 0.

We investigate the empirical sizes with |J4| = 0, and the empirical powers
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by varying the signal magnitudes p4 which are generated from Unif(0, 2p)
with p € (0,1) and the sparsity level |J4| = 2,400,1200,2400. In this
setting, the bandwidth & = 2 under Hy, .

Setting 3. Let T' = (7, )pxp, When jo —j1 = 1,...,5, 7;,;, = 0.6; when
Jo — 1 =5 +a, v, = p, otherwise v;,;, = 0. We investigate the empirical
sizes with a = 0, and the empirical powers by varying the signal magnitude
p and the sparsity level a = 1, 3,6, 10, 15, 25.

The simulation replication times are 1000 and the nominal test level
a = 5%. Table 1 presents the empirical sizes with multivariate normal
populations for different combinations of n and p under Setting 1. The
simulation results show that the empirical sizes of all the compared tests
are close to the nominal level 5%. Table 2 exhibits the empirical sizes with
multivariate t random samples with degrees of freedom seven. The empirical
sizes of these single U-statistic tests and our proposed adaptive tests are
still close to 5%. However, the empirical sizes of “QC” and “XW” are far
away from the nominal level. Figure 1 summarizes the empirical powers
under Setting 1 for multivariate normal random vectors. The empirical

power profiles in Figure 1 show that

e For extremely sparse alternatives with |J4| = 2, U(6) performs well;

e For moderately sparse alternatives with |J4| = 400, U(4) performs
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well;

e For dense alternatives with |J4| = 1200 and 2400, U(1) and U(2)

perform well;

e When |.J4| increases, the empirical power of “QC” also increases, but
the empirical power of “XW?” decreases. Nonetheless, our proposed
two testing procedures “adpUmin” and “adpUf” always maintain high
empirical powers regardless of small |.J4| or large |J4|. It also appears

that “adpUf” generally performs better than “adpUmin”.

In summary, the adaptive tests either achieved the highest powers or
were close to the test with the highest power in any setting, indicating their
good performance across a wide range of situations. Due to space limitation,
we present other simulation results in Section S9.1 of the Supplementary

Material. The conclusions are similar to those of Tables 1-2 and Figure 1.

3.2 Adaptive Bandwidth Estimator

We compare our proposed adaptive bandwidth estimator (Adaptive) with
the estimator (BLa) discussed in Bickel and Levina (2008) and the fixed
estimator (QC) in Qiu and Chen (2012). For bandwidth estimation, we set
the parameters 6 = 0.5 and # = 0.06 in our proposed estimator 1%579 and

QC estimator. The parameter setting of BLa estimator is chosen to be the



3.2 Adaptive Bandwidth Estimator2s

same as theirs. We set n = 100,200 and p = 50, 200, 400, 600, 1000 in the
following Models 1-4 with true bandwidth k = 2,5, 10, 15, respectively.

Model 1. Let T' = (7,1, )pxp, When jo — 53 = 1, 75,5, = 0.8; when
J2 — Jj1 = 2, V5, = 0.6, otherwise, 7;,;, = 0.

Model 2. Let T' = (vj,j,)pxp, When jo — g1 = 1,....5, 7,5, = 0.6,
otherwise, v;,j, = 0.

Model 3. Let T' = (Vjju)pxp, When jo — g1 = 1,....5, 75,5, = 0.2;
Jo—j1 =6,...,10, v, = 0.4, otherwise ~;,;, = 0.

Model 4. Let T' = (7,4, )pxp, When jo—j1 = 1,...,10, 7j,;, = 0.2; when
Jo— g1 =11,...,15, v;,;, = 0.4, otherwise, ~;,, = 0.

Table 3 reports the average empirical bias and standard deviations with
the innovations from normal distribution based on 100 replications. From
Table 3, we observe that our proposed estimator performs well compared to
BLa since the smaller bias and standard deviation. The bias and standard
deviation of the BLa estimator increase as the dimension p gets larger owing
to the inappropriate estimation of the covariance matrix under the high-
dimensional setting. Similar results of these estimators with ¢7(0, %) are

presented in Tabel 5 in Section S9.2 of the supplementary file.
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Figure 1: Empirical power comparison under Setting 1 for multivariate normal
distribution: n = 100, p = 1000.
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Table 1: Empirical sizes under Setting 1 for N(0,3) and n = 100 (in percentage).

p 50 100 200 400 600 800 1000
adpUmin 470 640 670 720 560 510 4.30
adpUf 560 6.80 630 6.90 580 570 4.80
U(1) 460 570 490 560 610 500 5.00
U(2) 540 440 460 520 480 550  5.50
U(3) 510 510 440 550 560 4.80  5.40
U(4) 510 620 7.40 640 6.0 7.00 4.10
Us) 480 610 510 570 470 580  4.60
U(6) 320 3.90 480 620 610 6.70 5.40
QC 450 390 490 500 490 590 6.20
XW 440 400 550 6.00 370 490 5.50

4. Data Analysis

In this section, we applied our proposed procedures to a prostate cancer

data set from a protein mass spectroscopy study (Adam et al., 2002), which

analyzed the constituents of the proteins in the blood for two groups of

people — the healthy group and the cancer group. The data set has also been

studied in Levina et al. (2008) and Qiu and Chen (2012). For each blood

serum sample ¢, the data consist of the intensity X;; for a large number

of time-of-flight values ¢;, which is related to the mass over charge ratio

of the constituent proteins. We analyzed the standardized data set, which

consists of 157 healthy and 167 cancer patients, with a 218-dimensional

intensity vector for each individual.

We focus on testing a string of null hypotheses Hyo : ¥ = By(X),
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Table 2: Empirical sizes under Setting 1 for multivariate ¢7(0,¥) and n = 100
(in percentage).

D 50 100 200 400 600 800 1000
adpUmin 6.50 6.10 6.10 6.00 830 5.80 7.20
adpUf 800 7.00 570 560 770 580 6.50
U(1) 3.80 460 430 540 570 5.00 4.40
U(2) 6.00 6.30 550 440 590 590 6.60
U(3) 6.00 500 470 6.10 530 4.30 5.00
U4) 520 6.00 5.10 530 590 550 540
U(5) 540 590 570 6.00 580 510 6.40
U(6) 430 520 490 450 530 590 5.60
QC 17.4 18.5 20.3 19.6 19.2 21.5 19.6
XW 1.20 1.60 080 0.80 090 0.80 0.70
k=0,1,...,216 and estimating the bandwidth of the covariance matrices

of the healthy and cancer groups. In particular, we choose § = 0.5 and
6 = 0.005 in analyzing the real data with our adaptive estimator, which
is consistent with the choice of Qiu and Chen (2012). We exhibit some
representative p-values in Table 4 and bandwidth estimates in Table 5.
All p-values of “adpUmin” and “adpUf” tests are very close to zero
borrowing strength from ¢(5) and U(6), and the estimated values of our
proposed adaptive estimator are 203 and 216 for the healthy group and
cancer group. In practice, a covariance matrix with large bandwidth may
not be valuable because it will not significantly reduce the number of pa-
rameters. Thus, these small p-values and bandwidth estimates suggest that

the covariances of both the healthy group and cancer group may not be
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Table 3: Averaged empirical bias and standard deviation in parentheses of
three bandwidth estimators with normal innovations: our proposed adaptive
bandwidth estimator with 6 = 0.5 and # = 0.06, the estimators proposed in
Bickel and Levina (2008) (BLa) and Qiu and Chen (2012) (QC).

Bandwidth

n p Methods 2 5 10 15
100 50 Adaptive 0.04(0.243) 0(0) 0(0) -0.03(0.171)
BLa  0.15(0.411) -0.37(0.691) -0.89(1.144) -0.96(1.809)
QC 0(0) 0(0) 0(0) -0.02(0.141)

200 Adaptive  0(0) 0(0) 0(0) 0(0)
BLa  0.38(0.663) 0.27(1.062) 0.14(1.128) -0.44(1.641)

QC 0(0) 0(0) 0(0) 0(0)
400 Adaptive  0(0) 0(0) 0(0) 0.01(0.100)
BLa  0.56(1.258) 0.84(1.631) 0.50(1.554) 0.12(1.653)

QC 0(0) 0(0) 0(0) 0(0)

600 Adaptive  0(0) 0(0) 0(0) 0(0)
BLa  0.91(1.518) 0.74(1.574) 0.41(1.615) 0.59(2.216)

QC 0(0) 0(0) 0(0) 0(0)

1000 Adaptive  0(0) 0(0) 0(0) 0(0)
BLa  1.61(2.260) 1.44(2.328) 1.22(2.389) 0.69(2.862)

QC 0(0) 0(0) 0(0) 0(0)
200 50 Adaptive  0(0) 0.01(0.100)  0.04(0.243)  0.04(0.315)
BLa  0.11(0.345) 0.09(0.637) 0.19(0.929) 0.22(1.630)

QC 0.01(0.100)  0.01(0.100) 0(0) 0(0)

200 Adaptive  0(0) 0(0) 0(0) 0(0)
BLa  0.29(0.537) 0.34(0.879) 0.14(0.899) 0.05(1.290)

QC 0(0) 0(0) 0(0) 0(0)

400 Adaptive  0(0) 0(0) 0(0) 0(0)
BLa  0.71(1.028) 0.70(1.087) 0.44(1.122) 0.43(1.513)

QC 0(0) 0(0) 0(0) 0(0)

600 Adaptive  0(0) 0(0) 0(0) 0(0)
BLa  0.88(1.17) 1.02(1.463) 0.75(1.344) 1.14(1.809)

QC 0(0) 0(0) 0(0) 0(0)

1000 Adaptive  0(0) 0(0) 0(0) 0(0)
BLa  1.23(1.399) 1.50(1.957) 1.15(1.822) 1.41(2.396)

QC 0(0) 0(0) 0(0) 0(0)
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banded. In the meanwhile, the heatmaps in Figure 2 display that most of
the sample correlations in the whole matrices of the healthy group and the
cancer group are non-negligible, leading to non-banded structures. It also

supports our conclusion.

f u Healthy group i i—j Cancer group

S =

W
N

Figure 2: Heatmaps for the sample covariance matrices of the healthy and the
cancer group. Blue represents negative correlation, red represents positive corre-
lation, and the color deepens as the correlation increases.

A similar conclusion is obtained with the XW test as they also provided
very small p-values for all hypotheses. However, the QC test gave different
conclusions, where the smallest k such that Hj is not rejected is 116 for
the healthy group, while is 191 for the cancer group. Note that the statistic
values of U(2) test are as same as that of QC test. We found that the
performance of the QC test is different from U(2) test with large k. One
possible reason is that the variance estimation of the statistic in QC test

is based on the assumption that tr(3?)/tr*(3?) = O(p~!), which may not



Table 4: The p-values (%) of various tests applied to the prostate cancer data set.

Bandwidith
Test 5 86 106 109 116 125 150 200 216
Health adpUmin 0 0 0 0 0 0 0 0 0
Group adpUf 0 0 0 0 0 0 0 0 0
ula) 0 6.03 99.54 75.87 32.32 8.39 0.19 1.21e-03  1.08e-03
U2) 0 <1.0e-13 <1.0e-13 <1.0e-13  1.4e-07 4.47e-6 1.7e-12 <1.0e-13 <1.0e-13
UB) 0 <1.0e-13 16.71 16.87 2.4e-09 <1.0e-13 <1.0e-13 <1.0e-13 <1.0e-13
ui4) 0 0 0 <1.0e-13 <1.0e-13 <1.0e-13 <1.0e-13 0 0
Uub) 0 0 <1.0e-13  2.4e-03 <1.0e-13 <1.0e-13 0 0 0
UuwoG) 0 0 0 0 0 0 0 0 0
QC 0 2.06e-7  2.06e-7 0 5.64 10.36 12.92 42.69 49.95
XW 0 0 3.4e-07  4.9e-06  1.6e-03  2.2e-2 2.2e-2 3.1e-2 8.5e-2
Bandwidith
Test 5 52 61 67 91 150 191 200 216
Cancer adpUmin 0 0 0 0 0 0 0 0 0
Group adpUf 0 0 0 0 0 0 0 0 0
ula) 0 6.19 45.20 96.22 3.3e-01  2.8¢-10 4.1e-10  4.1e-09  2.4e-07
U2) 0 <1.0e-13 <1.0e-13 <1.0e-13 <1.0e-13 <1.0e-13 <1.0e-13 <1.0e-13 <1.0e-13
UB) 0 <1.0e-13  19.85 <1.0e-13 0 0 0 0 0
ui4) 0 0 0 0 0 0 0 0 0
Uub) 0 0 0 0 0 0 0 0 0
UuwoG) 0 0 0 0 0 0 0 0 0
QC 0 0 0 0 0 1.3e-8 5.66 22.52 49.79
XW 0 0 6.0e-12  2.7e-11  2.7e-11  8.0e-11  8.0e-11  8.0e-11  7.8e-07

U(a), the proposed tests based on U-statistics with different values of a; adpUmin, the adaptive test based on the
minimax method; adpUf, the adaptive test based on the Fisher combination; QC, test of Qiu and Chen (2012); XW, test
of Xiao and Wu (2013).

28
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Table 5: The estimated bandwidths of various procedures applied to the prostate
cancer data set.

Method UI) U@2) UB) UM) UB) UB) Adaptive QC

Healthy Group 132 120 193 123 203 128 203 121
Cancer Group 120 74 171 173 175 216 216 212

be satisfied by the real data, while our method does not rely on such an
assumption to estimate the variance of U(2). To explain the difference
between U (2) test and QC test, we considered a special case with testing
Hio : ¥ = Bp(X), where ¥ = I'TT and T' = (7,5, )pxp With 75,5, = 1,
Vi, ~ Unif(0,5) for 0 < j; — jo < k with £ = 5 and 200. We generated
1000 datasets with the sample size n = 157 and the dimension p = 218
from N(0,X) under Hyp . Table 6 shows that the ASD and AEASD of the
QC test are too far away from the MCSD, the type I error of the QC test
is therefore very small compared to the nominal level 5% when k = 200. In
this scenario, tr(X%)/tr?(£2) = 0.944 and 1000~ 3,2 tx(S2 ) /tr*(S2,) =
0.936, where S,;, = (n — 1)t 37 (x” — x®)(x" — xO)T with x® =
n~t Z?:lxgb), and {ng), . ,XS’)} is the b-th sampling from N(0,X). It
indicates that the QC test may give an overestimation of the variance of the

statistic when tr(3%)/tr?(X?) is large and thus violates their assumption.

QC test still works well when tr(X4)/tr?(3?) is small, e.g. tr(X*)/tr?(X?) =
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0.024 and 1000~' 37", tr(Sy,,) /tr*(S;,) = 0.041 with & = 5. In the real
data analysis, for the health and cancer groups, tr(S?t)/tr?(S?) = 0.907 and
0.820, respectively, indicating a possible overestimation of the variance of

the QC test statistic.

Table 6: Results based on 1000 multivariate normal samples under Hj o : ¥ =
Bi(%).

Casel1: k=5

ASD AEASD MCSD  Type I Error
U2) 20498.76 20242.96  21317.02 0.069
QC  21059.26 21079.46  21317.02 0.054

Case 2 : k = 200

ASD AEASD MCSD  Type I Error
U2) 96270.76 92689.35  94453.38 0.046
QC 152093323 151994013 94453.38 0

ASD, asymptotic standard deviation of statistic; AEASD, average of estimations
of the asymptotic standard deviation of the statistics based on 1000 replications;
MCSD, sample standard deviation of the statistics based on 1000 replications.

5. Discussion

In this paper, we propose adaptive tests based on a series of U-statistics for
testing the bandedness of the high-dimensional covariance matrix. We in-
vestigate the asymptotic joint distribution of the U-statistics under the null
hypothesis and specific local alternative hypotheses. Further, we take ad-

vantage of the asymptotic independence of multiple U-statistics to construct
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two proposed adaptive tests by combining the p-values of U-statistics. The
simulation studies show that the proposed tests are powerful across a wide
range of alternatives, whereas the existing tests are only powerful for either
dense alternatives or sparse alternatives. We also propose a new consistent
bandwidth estimator motivated by the by-product of the U-statistics.

The bandwidth £ is usually unknown in practice. Instead of testing a
general bandedness structure of covariance matrix with a given k, it is of
great interest to regard the bandwidth £ as a tuning parameter and examine
the asymptotic properties of a series U-statistics based on ) ; <lj1—ial<p 05 s>
where k is the estimation of the true bandwidth k. As shown in Zhong et al.
(2017), the plug-in estimator k may incur some leading order effects. We

will examine this topic in the future.

Supplementary Materials
The Supplementary Materials contain detailed proofs of the theoretical

results and more simulation results.
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