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Abstract

Latent class models with covariates are widely used for psychological, social, and
educational research. Yet the fundamental identifiability issue of these models has
not been fully addressed. Among the previous research on the identifiability of la-
tent class models with covariates, Huang and Bandeen-Roche (2004, Psychometrika,
69:5-32) studied the local identifiability conditions. However, motivated by recent
advances in the identifiability of the restricted latent class models, particularly Cog-
nitive Diagnosis Models (CDMs), we show in this work that the conditions in Huang
and Bandeen-Roche (2004) are only necessary but not sufficient to determine the local
identifiability of the model parameters. To address the open identifiability issue for la-
tent class models with covariates, this work establishes conditions to ensure the global
identifiability of the model parameters in both strict and generic senses. Moreover, our
results extend to the polytomous-response CDMs with covariates, which generalizes

the existing identifiability results for CDMs.
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1 Introduction

Latent class models are extensively applied in numerous scientific fields, including educa-
tional assessments, biological research, and psychological measurements, to infer the latent
subgroups of a population as well as each subject’s latent classification information. For
instance, one application of latent class models in cognitive diagnosis is to classify individ-
uals with different latent attributes based on their observed responses to items, for which
reason they are key components in educational measurements (Junker & Sijtsma, 2001;
von Davier Matthias, 2008), psychiatric evaluations (Templin & Henson, 2006), and dis-
ease detections (Wu, Deloria-Knoll, & Zeger, 2017). In addition to understanding the basic
parameters in latent class models, researchers are also interested in studying the relations
between latent class parameters with the observed covariates, such as subjects’ gender, race,
education level, and other characteristics (Formann, 1985; Collins & Lanza, 2009; Huang &
Bandeen-Roche, 2004).

Latent class models with covariates can help to improve the classification accuracy of
the latent classes and are useful in testing whether the covariates are related to the latent
class membership probability or response probability. Such latent class models involving
covariates have been studied in many works in psychometrics and statistics literature, where
covariates were mostly constrained to be discrete at early stage (Clogg & Goodman, 1984;
Formann, 1985), and further extended to be in general forms (Dayton & Macready, 1988;
van der Heijden, Dessens, & Bockenholt, 1996; L. Muthén & Muthén, 2017). The models
have been popularly applied in educational, psychological, and behavioral sciences (Collins
& Lanza, 2009; B. Muthén & Masyn, 2005; Reboussin, Ip, & Wolfson, 2008; Bakk, Tekle,
& Vermunt, 2013; Park, Xing, & Lee, 2018). The related estimation problems have also
received great interest from researchers in the psychometrics field, such as estimating the
covariate coefficients (Petersen, Bandeen-Roche, Budtz-Jorgensen, & Groes Larsen, 2012),
adjusting for the bias in the estimation (Bakk et al., 2013), and estimating the number of
latent classes (Huang, 2005; Pan & Huang, 2014).



For latent class models with or without covariates, identifiability is one of the most fun-
damental issues as it is the prerequisite for parameter estimations and statistical inferences.
Identifiability could be interpreted as the feasibility of recovering the model parameters based
on observed responses, i.e., the parameters in identifiable models should be distinct given
the probabilistic distribution of the observations. A rich body of literature have studied
identifiability issues, dating back to Koopmans (1950) and Koopmans and Reiersol (1950).
Specifically, McHugh (1956) proposed conditions to determine the local identifiability for the
binary-response latent class models, and Goodman (1974) further extended the local identi-
fiability conditions to the polytomous-response models. In the sense of strict identifiability,
Gyllenberg, Koski, Reilink, and Verlaan (1994) found that the binary-response latent class
models can not be strictly identifiable. Nonetheless, Allman, Matias, and Rhodes (2009)
considered the concept of generic identifiability and established sufficient conditions for the
generic identifiability of latent class models, where a model is said to be generically identi-
fiable if the model parameters are identifiable except for a measure-zero set of parameters.
However, their generic identifiability conditions can only be applied to the unrestricted la-
tent class models, but not directly to the restricted latent class models. To address this
issue, Xu (2017) and Xu and Shang (2018) established the results for the identifiability of
the @Q-restricted binary-response latent class models. For the polytomous-response models,
Culpepper (2019) and Fang, Liu, and Ying (2019) established strict identifiability conditions
based on the algebraic theorems proposed by Kruskal (1977). Moreover, Gu and Xu (2020)
studied the generic and partial identifiability of the restricted binary-response latent class
models and extended their conditions to the polytomous-response models as well.

Among existing research, most focus on the identifiability of general or restricted latent
class models without covariates, whereas few investigate the identifiability of latent class
models with covariates. As the observed covariates represent characteristics of certain ho-
mogeneous groups, incorporating covariates into latent class models would help to explain
the association of these characteristics with latent classes. The regression latent class mod-

els with covariates are general extensions of latent class models without covariates. In other



words, the regular or restricted latent class models can be viewed as a special family of la-
tent class models with covariates, where all covariates values are zero. Technically speaking,
existing identifiability results for regular or restricted latent class models cannot be directly
applied to the regression latent class models due to the existence of covariates, and new tech-
niques are needed to establish the identifiability of the corresponding regression coefficients
for those covariates, which do not exist in the regular or restricted latent class models. In the
literature, Huang and Bandeen-Roche (2004) was among the first to study the identifiability
of latent class models with covariates. The authors studied the local identifiability conditions
for the model parameters, that is, the conditions to ensure that the model parameters are
identifiable in a neighborhood of the true parameters.

However, as to be shown in the paper, the proposed identifiability conditions in Huang
and Bandeen-Roche (2004) are only necessary but not sufficient for the local identifiability
of latent class models. Our argument borrows ideas from the recent developments in the
identifiability of Cognitive Diagnosis Models (CDMs), a special family of the restricted la-
tent class models. Besides, the results in Huang and Bandeen-Roche (2004) only concern the
local identifiability but not the global identifiability. In light of these, our work establishes
identifiability conditions to check the global identifiability for latent class models with co-
variates. Furthermore, we also establish the identifiability results for CDMs with covariates,
which is a special family of the regression latent class models. Our results extend many
identifiability conditions for the binary-response CDMs to the polytomous-response CDMs
with covariates, and these conditions are beyond results in the existing literature related to
CDMs identifiability (Xu, 2017; Culpepper, 2019; Gu & Xu, 2020).

The organization of this paper is as follows. Section 2 introduces the setup of the regres-
sion latent class models with covariates as well as the regression CDMs, and reviews some
existing identifiability results. Section 3 discusses the necessity and sufficiency of the exist-
ing identifiability conditions for the regression latent class models. Section 4 presents our
main results for both strict and generic identifiability of the regression latent class models

as well as the regression CDMs. Section 5 uses a Trends in Mathematics and Science Study



(TIMSS) dataset as an example to illustrate the application of the identifiability results in
educational assessments. Section 6 gives a discussion. The proofs for the main theorems and

propositions are provided in the Supplementary Material.

2 Model Setup and Existing Works

2.1 Regression Latent Class Models (RegLCMs)

We start with the setup of latent class models without covariates. Suppose there are N
subjects responding to J items. The response of subject i is denoted as R; = (R;;;j =
1,...,J), where R;; denotes the response of subject i to item j, for ¢ = 1,..., N. And
R;; € {0,...,M; — 1}, where M; denotes the number of possible values for R;;. Denote
S = >< 1{O — 1} as the set of all response patterns, and its cardinality is denoted
as S = |S| = szl M;. The case at M; = 2 corresponds to the binary-response models.
Consider there are C' latent classes and denote L; as the latent class membership for subject i.
Assume the N subjects are independent; for c =0,...,C'—1, L; = ¢ implies that the subject
i is in the cth latent class category and 7. = P(L; = ¢) defines the latent class membership
probability, i.e. the probability for subject i being in the cth latent class. The latent class
membership probabilities are summarized asp = (n.;¢c=0,...,C—1). Forany j =1,...,J,
r=20,...,M;—1,and ¢ =0,...,C — 1, we use 0, = P(R;; = r | L; = ¢) to denote the
conditional response probability, i.e. the probability of the response to item j being r given
the subject 7 is in the cth latent class. Let the vector 8. = (joc, - -, &j(a;-1)c) to denote
the probability vector for item j given the latent class membership ¢. The conditional
response probabilities are summarized as @ = (0jc;7 = 1,...,J,¢ =0,...,C —1). The

conditional probability mass function for R;; is P(R;; | L; = ¢, 0j.) = T Hg;{,f” ="}

, and
the probability mass function of R; is
c-1 J M;—1
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To introduce the regression latent class models, following the model setting in Huang and
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Bandeen-Roche (2004), we let the latent class membership probability 7.’s and the condi-

tional response probability 6;,.’s to be functionally dependent on covariates. Denote (x;, 2;)

to be the covariates of subject i, where x; = (1, x;1, - -, :cip)?;) +1)x1 are the primary covariates
related to the latent class membership 7, for c =0,...,C—1, and z; = (z;1, - -, ZZ'J),;Z;Xq with
Zij = (Zij1, -+, Zijq) w1 are the secondary covariates associated with the conditional response

probability 8;,. forany j =1,...,J,r=0,...,M; —1,and ¢ =0,...,C — 1. The z; and
2ijs can be categorical covariates representing gender, race or marital status. They can also
be continuous, such as the subject’s age. As in some applications, we may have certain prior
knowledge on the set of the covariates related to 1, and that of the covariates related to 0.,
where the two sets may or may not contain the same covariates. Hence we follow the general
framework in Huang and Bandeen-Roche (2004) by applying different notations, x; and z;,
to distinguish the covariates related to 1. and 6;,., while allowing the x; and z; to have some
overlapped covariates.

Before presenting the generalized linear model framework, we need to clarify some no-
tations. In models without covariates, e.g., latent class models or CDMs to be discussed
in Section 2.2, we use 7. and 6;,. to denote the corresponding latent class membership
probability and conditional response probability, respectively. When covariates are involved
in models, the parameters are dependent on the covariates. In this situation, we denote
nt = P(L; = ¢ | x;, 2;) to be the latent class membership probability for subject i, and
0.

i=1,...,N.

= P(R;; =1 | L; = ¢, x;, z;) to be the conditional response probability for subject ¢, for

Under the framework of generalized linear model, we use logit link function to relate n’’s

and 9§Tc’s to covariates (x;, z;). We let the log-odds be linearly dependent on the covariates

and characterize the ReglLCMs by the following equations

10g<%) = Boc + Brctin + -+ + BpeTip, (1)
)

fori=1,...,N,e=1,...,C —1, and

i

e'rc
log( - ) = Yjre T AjrZigt + - -+ Agjrijgs (2)

i
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fori=1,...,N,5=1,....J,r=1,--- ,M;—1and ¢ = 0,...,C — 1, where 3,7, \ are
regression coefficient parameters. We want to point out that the identifiability conditions
to be shown in Section 4 still hold for RegLCMs when the logarithmic function in (1) and
(2) is replaced with other monotonic functions. The key component in establishing the
identifiability conditions for the coefficient parameters is the function monotonicity, which
build the bijective mapping between identifiable (1, ®) and identifiable (3,4, ). In this
work, without loss of generality, we shall focus on the popularly used logit link function.

From (1) and (2), we equivalently express 7’ and 6%, as

i = exp(Boc + Biexin + -+ + Bpeip)
Col+ Zlcz_ll exp(Bor + Puzir + -+ + ﬁplxip)’

fori=1,...,N,¢c=0,...,C—1, and

i eXp('yjrc + Aljrzijl ot )\quzijq)
jrc T M;—1 ’
! L4+ 25 exp(Vjse + Aujszijn + - + Agjszijg)

(4)

fori=1,...,.N,5=1,...,J,r=0,---,M;—1and ¢ = 0,...,C — 1. From the above
expressions, we see that 7. and 6}, are functionally dependent on the linear functions a3
and v,. + zg;-)\j, where 8 = (Be;¢=0,...,C = 1)pr1)xc with B, = (Bie; 1 =0, ... ’p)z;)-i-l)Xl’
Yie = (Yjres™ = 0,..., My — D)ixn;, and Aj = (Njs7 = 0,..., Mj — 1)gunr; with Aj =
Myril = 1,00, )Ty

Here following Huang and Bandeen-Roche (2004), in the conditional probability model
(1), the regression parameters (/3) are latent class specific. In the conditional probability
model (2), we allow the intercept parameters () dependent on the latent class, the response
level, and the item index, while the regression coefficients parameters (\) are dependent
on the response level and the item index but not the latent class membership, which, as
pointed in Huang and Bandeen-Roche (2004), is a logical assumption to prevent possible

misclassification by adjusting for the associated covariates. The following two assumptions

proposed by Huang and Bandeen-Roche (2004) hold for all RegL.CMs.

1. The latent class membership probability 7’ is dependent on @; only and the conditional



response probability ¢ . is dependent on z; only:

jre

P(Rilzrla"' 7RiJ:TJ‘Liawi7zi) = P(Rﬂ:ﬁa"' 7RiJ:TJ‘Liazi)-

2. The measurements for different items are independent given the latent class and z;

(that is, the local independence assumption):

P(Ry =11, Ry =7, | Li,z:) = [ [ P(Rij = r; | Li, z:).
j=1

When the coefficients fic, - - -, Bpe in (1) and Ayjp, - - -, Agjr in (2) are zeros, RegLCMs will
be reduced to latent class models without covariates, which is a special case in the family of
RegLL.CMs. Next, we will introduce a special family of RegL.CMs, Cognitive Diagnosis Models
(CDMs), which is a family of the restricted latent class models and has been substantially
studied in educational and psychological measurement. From there we further introduce the
regression CDMs. The two special Reg.CMs (CDMs and regression CDMs) are important
in the subsequent discussions about the identifiability conditions for RegL.CMs.

2.2 Cognitive Diagnosis Models as Special ReglLLCMs

In CDMs, each latent class corresponds to a distinet vector o = (ay, -+ ,ax) € A = {0, 1}
where aq, - - - , ag denote K binary latent attributes respectively and A denotes the attribute
pattern space. The vector a represents a unique latent profile with the kth entry a5 = 1
implying the mastery of the subject on the kth latent attribute and a; = 0 implying his
deficiency of it. The number of latent classes is C' = | A| = 2%. For notational convenience, we
follow the idea in Culpepper (2019) by introducing a tool vector v = (25-1 282 ... )T
and denote the latent class membership as L = afv = ¢ € {0,---,2% — 1}. The key
characteristics of CDMs is its introduction of the latent attributes and let the combinations
of mastery or deficiency of each attribute to represent the latent class memberships in the

restricted latent class models.



The relationship between the response R = (Ry,---,R;) and the attribute profile
for any subject could be summarized through a binary matrix ) . x. Denote the jth row
in -matrix to be q; = (g1, -+ ,¢jk), where ¢jz € {0,1} and ¢ = 1 means that the
kth attribute is required for subjects to solve item j. Similar to RegLCMs, we consider
the general polytomous responses R; € {0,---,M; — 1}. Given a subject’s latent profile
a with a’v = ¢, each R; follows a categorical distribution with the probability vector to
be Ojc = (Bjoc, -~ 0j(a,-1)c), where 0, = P(R; = r | a’™v = ¢) is the probability for
getting response value r in item j. The conditional probability mass function for R; is
P(R; | aTv =c, 0;.) =[5 Q%fj ="} and the probability mass function for R is

2K 1

J j
P(R|n,0)= Y P =[] P(R;|a"v =c,8;) = Z H H o=,
j=1 '

=0

Following the generalized DINA (G-DINA) model framework, we decompose the log-
odds of 0j,. into a sum of attribute effects as follows. This framework was introduced in
de la Torre (2011) for G-DINA model with binary responses, and extended to G-DINA with
polytomous responses in J. Chen and de la Torre (2018). Specifically, given a latent profile

a=(wo,...,ak), we have
0 K K-1
log(eﬁc) = ]TO_I_Zb]quﬂcak_l_ > b (giron) (gwaw) + -+ bjra. KHC]gkOék> (5)
30e k' =k+1 k=1 k=1
where bjro,bjr1,- 5 bjric, bjri2, -+ bjrk—1)K, -+ 5 bjri2..x are the coefficients in the gen-

eralized linear regression of the log-odds of conditional response probability on all latent
attribute mastery situations, that is, all the subsets of {g;1a1,- -, gjxax }. Specifically, b,
is the intercept of the log-odds; b;,1,- - -, bjrx are the main effects of attributes, representing
the change of log-odds due to the mastery of the single attribute of aq,...,ax respec-
tively; bjr12, -+, bjrk—1)K, -+ 5 bjri2..x are the interaction effects of attributes, representing
the change of log-odds due to the mastery of the combination of two or more attributes of
a1, ..., 0.

For subjects with covariates values being zeros, the log-odds in G-DINA model (5) is

equivalent to general log-odds setting (2), which is the log-odds for RegLCMs and written
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as
ejrc
log(e—) = Vire + Mjrzin + o+ Agirzjg = YVjre + 0+ -+ 0 = Yjpe, (6)
70c
which could be further expressed as

exp(Yjre)
M, 1 :
1 + Zszjl eXp(Wj“)

for y =1,...,J;r =1,...,M; —1 and ¢ = 0,...,C — 1. We can show (5) and (6)

6)jr’c -

are equivalent. Because in (5), the log-odds of conditional response probability are lin-
ear combinations of all the subsets of {g1cn, -+, ¢jkax}, and are dependent on la-
tent profile & = (ay,---,ak) only, equivalently dependent on ¢ at ¢ = a’v. When
covariates are zeros, the latent class category information is entirely captured by the in-
tercept 7j,. in (6), implying that for given j and r, each ~;,. is bijectively corresponding
to a € A, which further implies that there exist a bijective linear correspondence between
{0jr0, 0515 -+ s bjrkc, bjraas - bjr(k—1)is - 5 bjrize } and {Yjpe e =0,--- ,C =1}

When covariates are involved in CDMs, we introduce the regression CDMs (RegCDMs)
by the following equations (7) and (8) adapted from (1) and (2), with the additional charac-

teristics of CDMs that each latent membership c is represented by a latent profile av. To make

notations clear in this case, we denote the latent attributes of subject i as a; = (a1, - . ., ik )
fori =1,..., N. And similarly as in RegLCMs, we use ! = P(afv = ¢ | x;, ;) to denote the
latent class membership probability for subject ¢, and use 0%, = P(R;; = r | o v = ¢, x;, z;)

to denote the conditional response probability for subject ¢ when these parameters are de-
pendent on covariates.

Assuming that the latent membership ¢ = 0 denotes the latent profile that the subject ¢
does not master any of K attributes, i.e. a; = 0g«1, we model

10g<%) = Boc + Brctin + -+ + BpeTip, (7)
0

fori=1,...,N and afv = ¢ with a; € {0, 1} \ 0x;, and

i

e'rc
log(ez ) = Yjre + Aljrzijl + -+ )‘qu’ZijQ’ (8)

j0c
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fori=1,....N,j=1,...,J,r=1,...,M; — 1, and ! v = c with a; € {0, 1}*. RegCDMs
combine the regression setting on covariates from Regl.CMs and the latent attribute repre-
sentation from CDMs, which is to use binary latent profiles to represent latent classes. In

addition, Assumptions 1 and 2 in Section 2.1 are also assumed for RegCDMs.

2.3 Identifiability Conditions in Existing Literature

Before discussing our main results for the identifiability of the models introduced in Sec-
tions 2.1 and 2.2, we give a review of the existing studies. The identifiability conditions for
latent class models have been extensively investigated in the existing literature. In particu-
lar, McHugh (1956) studied the binary-response latent class models and proposed sufficient
local identifiability conditions. Extending McHugh’s work, Goodman (1974) presented a
fundamental method to determine the local identifiability of the polytomous-response la-
tent class models, stating that if the Jacobian matrix formed by the derivatives of response
probability vector with respect to parameters has full column rank, then the parameters are
locally identifiable. This condition is intuitively straightforward but empirically nontrivial
to apply. When the number of latent class C' or the number of possible responses to items
M; increases, the dimension of the Jacobian matrix would increase at a fast rate. Moreover,
this method could only guarantee the local identifiability for latent class models but leave
the global identifiability undiscussed.

To study global identifiability, Kruskal (1977) established algebraic results to ensure
the uniqueness of factors in the decomposition of a three-way array. This work defined
Kruskal rank which is analogous to the normal rank of a matrix. And it proved that if
the Kruskal ranks of a triple product of matrices satisfy a certain arithmetic condition, the
matrix decomposition will be unique. Based on Kruskal’s theorems, Allman et al. (2009)
extended the conditions to the decomposition into more than three variates and used them in
the identifiability conditions for the latent class models with finite items. Besides, Allman et
al. (2009) argued that even the parameters are not identifiable, the inference on parameters

can be valid empirically when the model is generically identifiable, that is, the parameters are
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identifiable except for a zero-measure set of parameters. The generic identifiability results
allow us to circumvent the complex calculation on the column rank of the Jacobian matrix.

In the recent literature, the identifiability of the restricted latent class models, such
as CDMs, has also been studied. Related identifiability results on restricted models with
binary responses were developed in Y. Chen, Liu, Xu, and Ying (2015), Xu and Zhang
(2016), Xu (2017), Xu and Shang (2018), Gu and Xu (2019), Gu and Xu (2020), etc. For
the restricted latent class models with polytomous responses, Culpepper (2019), Fang et
al. (2019), Y. Chen, Culpepper, and Liang (2020), and Gu and Xu (2020) proposed the
identifiability conditions dependent on the Q)-matrix.

The above research focuses on the identifiability of the general or restricted latent class
models without covariates. For the identifiability of latent class models with covariates,
Huang and Bandeen-Roche (2004) generalized the result of Goodman (1974) and derived
local identifiability conditions for RegLCMs. Under the setting of RegLCMs, denote S’ as
the response pattern space S with a reference pattern removed (e.g., 0), so the number of

distinct response patterns in &’ is then S — 1. Define

D = (¢pe;c=0,...,C = 1)5-1)xC;

where each column ¢, is of dimension S — 1 in which each element corresponds to a response

pattern r = (ry,--- ,r;) € § and is defined as
J SVirje
@f:HR:r\L:qz:m:111+zﬁﬁéw, (9)
where ;... are defined as in (2) with r = r; and we set vjo. = 0 for all j = 1,...,j and

¢c=0,...,C — 1. Huang and Bandeen-Roche (2004) proposed that RegLCMs are locally
identifiable at free parameters of (8,7, A) = {Bac; Vjre» Mjr 1 J = 1,..., Jor = 0,..., M; —
1,c=0,...,C—=1,d=0,...,p,t =1,...,q} if the following conditions are satisfied,

(A1) [T, My — 1> (X My — ) +C — 1;

(A2) Free parameters Yj,e, Agjr, Bpe and covariate values w;, z;;, are all finite;

12



(A3) The design matrix of the covariates

T
I 1 r11 T1p
X = . =
T
Ty 1 IN1 " INp
and
T
1 le 1 211 21jq
Zij=1: =1 : : : ;o J=10d
T
1 ZNj 1 ZNj1 " INjq

have full column rank;
(A4) ¢o,- - ,¢pc—1 are linearly independent.

Remark 1. As in Huang and Bandeen-Roche (2004), if we consider F' to be the number of
pre-fized conditional probabilities ;.. = 0 or 1, then Condition (A1) should be extended to
H}']:1 M;—-1> C’(z:;]:1 M; —J)+C —1—F. For simplicity, we assume F = 0 throughout
the paper.

Remark 2. Condition (A1) implies the number of independent response probabilities

J
HMj—lzcard({P(Rl:rl,...,RJ:rJ):rj:O,...,Mj—l,jzl,...,J}),

i=1

exceeds the number of independent parameters in (1, ©),

J
CO M=)+ C—1=card({n..0jc: j=1,.... Jor=1,...,M;—1,c=0,....C—1}).

j=1

Condition (A1) is necessary, without which the observed response information may produce
infinite parameter solutions and lead the model to be not identifiable. For technical rig-
orousness, Condition (A2) as proposed in Huang and Bandeen-Roche (2004) specifies the
model parameters and covariates ;p, 2;jq are finite. In practice, the observed covariates are
documented as finite values, and thus the finite condition on x;;, and zjq s automatically

satisfied.
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For RegL.CMs without covariates, which are equivalent to RegLCMs with &; = (1,0;,)"
and z; = 0,4, Huang and Bandeen-Roche (2004) gave a reduced form of identifiability
conditions. They claimed an equivalence between the full column rank condition on the
Jacobian matrix and linear independence condition on the columns of marginal probability

matrix W defined as
v = (vvbc;C:Ow"aC_ 1)(5—1)><C’

where each column %, is of dimension S — 1 in which each element corresponds to a distinct
response pattern r = (r,--- ,r;) € 8" and

M;—1

J J
bre=P@R=r|L=c)=]] ] 67" =[] bm. (10)
j=1 r=0 j=1

Here for notational convenience, we let 0}, to denote 0;,. defined in Section 2.1 with r = 7;.
Under the particular covariate latent class models with x; = (1,01XP)T and z; = 07,
Huang and Bandeen-Roche (2004) proposed that (n,0) = {n., 0, : j = 1,...,J,;r =
0,...,M; —1,¢=0,...,C — 1} are locally identifiable if Condition (A1) and the following

conditions are satisfied:
(A2*) For all free parameters, 6;,. > 0 and . = P(L = ¢) > 0;
(A3*) g, -+ ,¥Pc_ are linearly independent.

We see that Conditions (A1)—(A3) and Condition (A2*), are necessary for the respective
latent class models. The necessity of Conditions (Al) and (A2) are discussed in Remark
2. Condition (A2*) guarantees that the latent class membership probabilities and condi-
tional response probabilities are non-zero. Condition (A3) ensures 3, 4 and A are uniquely
identifiable when 1 and © are identifiable. As for Condition (A3*), it is related to the con-
dition that the Jacobian matrix has full column rank. In the next section, we show under
the assumption that Conditions (A1) and (A2*) hold, Condition (A3*) is necessary for the
local identifiability of the special ReglLCMs without covariates, but is actually not sufficient.
Similarly, for ReglLCMs with covariates, under Conditions (A1)—(A3), Condition (A4) is a

necessary identifiability condition but not a sufficient condition.
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3 Necessity but insufficiency of Huang and Bandeen-

Roche (2004)

In this section, we show that the identifiability conditions in Huang and Bandeen-Roche
(2004) are not sufficient. Following the discussion in Section 2.3, we first present the ne-
cessity of Condition (A4) for RegLCMs and that of Condition (A3*) for RegLCMs without

covariates, respectively.

Proposition 1. For RegLCMs, Condition (A4) is necessary for the identifiability of (3,7, A)
under Conditions (A1)-(A3). For RegLCMs without covariates, Condition (A3*) is neces-
sary for the identifiability of (n, ®) under Conditions (A1) and (AZ*).

Despite the necessary results, we next show that satisfying Conditions (A1), (42*) and
(A3*) or satisfying Conditions (A1)—(A4) is not sufficient to guarantee the local identifiability
of ReglL.CMs without or with covariates, respectively. Our non-sufficient results are motivated
by the existing works in the literature related to the identifiability of CDMs, which are a
special family of Regl.CMs as shown in Section 2.2. Specifically, we next present a proposition
to show Conditions (A1), (A2*) and (A3*) are not sufficient for CDMs without covariates,
and thus not sufficient for the identifiability of Regl.CMs without covariates. Further, we
show Conditions (A1)—(A4) are not sufficient for RegCDMs, and thus not sufficient for the
identifiability of Regl.CMs in general.

Proposition 2. Consider the setting of CDMs with polytomous responses. We assume
Conditions (A1)-(A83) hold for RegCDMs, and Conditions (A1) and (A2*) hold for RegCDMs
without covariates, i.e., CDMs. If the following conditions hold:

(P1) Some latent attribute is required by only one item;
(P2) After rows permutation, the Q-matriz contains an identity matriz Ly .

Then we have
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(i) For CDMs, the matriz ¥ in Condition (AS*) has full column rank but (n,®) are not
identifiable;

(ii) For RegCDMs, the matriz ® in Condition (A4) has full column rank but (8,7, \) are
not identifiable.

According to Proposition 2, the -matrix as shown in the following form satisfies Con-

ditions (P1) and (P2),

The above (Q-matrix is complete as the top K x K block is an identity matrix Zx. From
the (K + 1)th row to the Jth row, the entries in the first column are 0;_g, and the entries
in the remaining columns are denoted as a submatrix @Q*. The first result (i) in Proposition
2 is derived by extending a similar conclusion for CDMs with binary responses in Gu and
Xu (2020) to CDMs with polytomous responses. With a complete @-matrix, the matrix ¥
in Condition (A3*) can be shown to have full column rank, or equivalently, 1, -, ¥c_1
are linearly independent. And further, we can show that for RegCDMs, the matrix & in
Condition (A4) has full column rank, that is, ¢y, -, ¢c_1 are linearly independent.

With Proposition 2, we see that ReglLCMs without covariates may not be identifiable
when Conditions (A1), (A2*) and (A3*) are satisfied. Specifically, consider CDMs without
covariates, given Conditions (P1)—(P2) of Proposition 2 are satisfied, Condition (A3*) will be
true since 1y, - - - , ¥c_1 are linearly independent. However, Proposition 2(i) shows that such
CDMs are not identifiable. Therefore Conditions (Al), (A2*) and (A3*) are not sufficient
for the identifiability of CDMs.

Similarly, RegLCMs may not be identifiable provided that Conditions (A1)—(A4) hold.
For RegCDMs, given Conditions (A1)—(A3) and Conditions (P1)—(P2) of Proposition 2 are

met, Condition (A4) will be true since ¢y, - ,¢pc_1 are linearly independent, but such
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RegCDMs are not identifiable according to Proposition 2(ii). Therefore Conditions (Al)-
(A4) are not sufficient for the identifiability of RegCDMs.

4 Sufficient and Practical Identifiability Conditions

As shown in Section 3, Conditions (A1)—(A4) are necessary but not sufficient for the iden-
tifiability of ReglLLCMs. To address the issue, this section provides sufficient conditions to
determine the identifiability of RegLCMs. In addition, we also establish sufficient identifia-
bility conditions for RegCDMs, which are of great importance in cognitive diagnosis.

For completeness, we first review the fundamental method to check the local identifiability
before discussing the strict and generic identifiability. In Section 2.3, we have introduced the
results of the local identifiability conditions proposed by Goodman (1974). The conditions
can be generalized to finite many items and under the setting of ReglL.CMs.

We first consider RegL.LCMs without covariates. The definitions of conditional response
probabilities 6;,. follow from Section 2.1. For r = (r1,---,7;) € S, recall that we denote

the response probability as

Cc-1 c-1 J
P(R:T):ZnCP(R—'I"|L—C /r/CHHjT’jC‘
c=0 c=0 j=1

The local identifiability condition proposed by Goodman is associated with the Jacobian

matrix

J = (va ) Jncfu J91107 T J91(le1)o7 T JGJl(C—l)’ B JGJ(MJA)(CA)) :

The row dimension of J is S — 1 and the column dimension is C (2;’21 M; - J)+C—1,
where each row index corresponds to one response probability P(R = r) for r € §’ and each
column index corresponds to one free parameter from {n:,- - ,nc—1, 6110, -, O1(ar,—100, " -
O51c-1), 0y, -1)c-1) }- Fore=1,...,C =1, J,_is a vector of dimension S — 1. Each

entry is a partial derivative of the response probability P(R = r) with respect to 7, at true
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value of 7., which is computed to be

. J

J
%n_r) = H erjc — H ejrjO'
c ; 7j=1

Jj=1

Andfor j=1,...,J,r=1,...,M; —land c=0,...,C =1, Jy, _ is a vector of dimension

jre
S — 1. Each entry is a partial derivative of the response probability P(R = r) with respect

to 0, at true value of 6},., which is computed to be

(

Ne Hd;ﬁj edrdca if ry=r,

ij N e Hd;ﬁ] Hdrdm if T = 07

0, otherwise.
\

Theorem 1 (Local Identifiability for LCMs and CDMs). Consider RegLCMs without co-
variates or CDMs. Under Conditions (A1) and (AZ*), (n,®) are locally identifiable if and
only if the following condition holds.

(A8*) The Jacobian matriz J formed above has full column rank.

To better present the following local identifiability theorem for Regl.CMs and RegCDMs,
we consider a “hypothetical” subject with all covariates being zeros, that is, = (1,0;,,)"
and z = 04, Denote the parameters of this particular subject to be n° and ©°. The
Jacobian matrix J° formed by the derivatives of conditional response probabilities with
respect to parameters n° and @0 is equivalent to the computation of Jacobian matrix J of
general restricted latent class models shown in Theorem 1. Next, we present a theorem to

associate the J° with the local identifiability of (3,~, A).

Theorem 2 (Local Identifiability for RegLCMs and RegCDMs). Consider RegLCMs or
RegCDMs. Under Conditions (A1)-(A3), (B,~,A) are locally identifiable if and only if the

following condition holds.

(A4') The Jacobian matriz J° formed from the hypothetical subject with covariates being

zeros has full column rank.
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Theorems 1 and 2 are intuitively straightforward but nontrivial to apply in practice.
When the number of latent classes C' and the number of item responses M; increase, the
dimension of the Jacobian matrix would increase, making it challenging to compute the rank
of the Jacobian matrix.

Moreover, the conditions introduced in Theorems 1 and 2 only guarantee the local identi-
fiability, while the global identifiability is not discussed. To ensure the sufficiency for global
strict identifiability, we combine Goodman’s idea with the algebraic results from Kruskal
Theorem to establish our conditions. Recall that ® = (¢p.;¢c = 0,...,C — 1) defined in (9)
is a matrix of dimension (S — 1) x C. And ¢. is a vector where each element corresponds
to one response pattern and is denoted as ¢, = P(R =17 | L = ¢,z = 0). To apply Kruskal
Theorem and to establish the strict identifiability conditions, we consider a three-way de-
composition of ® and propose the linear independence condition regarding the decomposed
matrices instead of ®. We divide the total of J items of ® into three mutually exclusive
item sets Ji, J> and J3 containing .J;, Jo and J3 items respectively, with J; + Jo + J3 = J.
For t = 1,2 and 3, each set J; can be viewed as one polytomous variable 7T; taking on values
in {1,---, K} with cardinality x; = [] e, Mj to be the number of response patterns for this
set. And each variable T; is used to construct a k; x C' submatrix ®,;, where its row indices
arise from the response patterns corresponding to 7;. The linear independence condition is
then regarding to the Kruskal ranks of ®; rather than normal column rank of ®, where for
any matrix ®,, its Kruskal rank I; is the smallest number of columns of ®; that are linearly

dependent.

Theorem 3 (Strict Identifiability for Regl.CMs). Continue with the notation definitions
in Section 2.3. For RegLCMs, under Conditions (A1)-(A8) and the following condition,
(8,7, ) are strictly identifiable.

(C4) The matriz ® can be decomposed into ®1, ®o and ®3 with Kruskal ranks I, I and
[3 satisfying ]1 + [2 + [3 > 2C + 2.

Theorem 3 is sufficient to guarantee the strict identifiability for ReglLCMs, including
RegCDMs. Compared with the local identifiability conditions in Huang and Bandeen-Roche
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(2004), Theorem 3 keeps Conditions (A1)—(A3) and replaces Condition (A4) concerning
the column rank of ® with a stronger Condition (C4) concerning the Kruskal ranks of the
decomposed matrices from ®. This condition is based on the algebraic result in Kruskal

(1977). We next present identifiability conditions tailored to RegCDMs.

Proposition 3 (Strict Identifiability for RegCDMSs). For RegCDMs with polytomous re-
sponses, under Conditions (A1)-(A3) and the following condition, (3,7, ) are strictly iden-
tifiable.

(C4*) After rows permutation, Q-matriz takes the form Q = (Ix,Zx,Q*)T containing two
identity matrices Lx and one submatrix Q’(*J_QK)XK. And for any different latent

classes ¢ and ', there exist at least one item j > 2K such that (Bjoc, - - - ,Hj(Mj_l)c)T #+

(Bjocr -+, 0iar,—1ye) "

It has been established that Condition (C'4*) itself is a sufficient condition for the iden-
tifiability of general restricted latent class models with binary responses (Xu, 2017). In
addition, Xu and Shang (2018) showed that the @-matrix is also identifiable under Con-
dition (C4*). This condition is further extended to the restricted latent class models with
polytomous responses in Culpepper (2019). Compared to the previous literature, the ma-
jor contribution of Proposition 3 is to extend this constraint to the polytomous-response
RegCDMs that the @Q-matrix contains two identity matrices and the conditional response
probability (€joc, - -, 0 Mj_l)C)T is distinct among different latent classes.

In practice, the theoretical results in Theorem 3 and Proposition 3 may need further
adjustments to accommodate the empirical needs. As previously discussed, generic identifi-
ability is commonly used in practice as it guarantees the identifiability of most parameters
other than a measure-zero set of parameters (Allman et al., 2009). The following theorem
and proposition will provide us with an easy way to determine the generic identifiability of

RegLLCMs and RegCDMs.

Theorem 4 (Generic Identifiability for RegL.CMs). For RegLCMs, under Conditions (A1)-
(A3) and the following condition, (B,,A) are generically identifiable.
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(C/') The matrix ® can be decomposed into ®1, ®y and ®3 with row dimensions ki, Ko

and k3 satisfying min{C, K1} + min{C, ko } + min{C, k3} > 2C + 2.

Remark 3. Under the special case that the number of possible responses to each item are
identical, My = --- = My, we have a reduced form of Condition (C}') in Theorem 4. This
finding is based on Corollary 5 and its related discussions from Allman et al. (2009). They
show that for these special cases, the decomposition can be carefully chosen to maximize
min{C, k1 } + min{C, ko} + min{C, k3}, which results in a simpler form of identifiability
condition.

Consider RegLCMs with binary responses M; =2 for j =1,...,J, we have (8,7, ) to
be generically identifiable if we replace Condition (C'4') with the condition J > 2 [log, C'] +1.
More generally, for the RegLCMs with M; = M for j = 1,...,J, we have (8,7, ) to be
generically identifiable if Condition (C') is replaced with the condition J > 2 [log,; C'] + 1.
For these special models, the reduced conditions provide researchers with simpler ways to
determine the generic identifiability compared with Condition (C'}') as they only concern the

number of items J and the number of latent classes C'.

Compared with the strict identifiability conditions in Theorem 3, Theorem 4 makes it
more practical to check the identifiability of RegLCMs as the variables in Condition (C4’)
are row dimensions rather than the Kruskal ranks of the decomposed matrices. But Theorem
4 does not apply to all latent class models. For instance, the parameter space of restricted
latent class models may lie in the nonidentifiable measure-zero set from the parameter space
of general latent class models. Therefore, Theorem 4 does not apply to restricted latent class
models with covariates such as RegCDMs. To address this issue, Proposition 4 is established

to determine the generic identifiability for RegCDMs with polytomous responses.

Proposition 4 (Generic Identifiability for RegCDMSs). For RegCDMs with polytomous re-
sponses, under Conditions (A1)-(A3) and the following condition, (8,7, ) are generically
identifiable.

(C4") After rows permutation, Q-matriz takes the form Q = (Q1, Q2, Q*)T containing one

submatriz QE‘J_QK)XK in which each attribute is required by at least one item, and
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two submatrices Q1 and Qo in the following form,

1 =% *
| *

Qi = , 1=1,2 (11)
* ok 1

(13 2

where “x 7 indicates the entry is either 1 or 0.

Condition (C4") was first proposed by Gu and Xu (2020) to determine the generic identi-
fiability of CDMs. For RegCDMs, Proposition 4 gives more flexible conditions than Proposi-
tion 3 as Condition (C4”) puts less constraints on the @-matrix than Condition (C'4*) does.
Condition (C'4*) requires the -matrix to contain two identity submatrices, whereas in the
@-matrix form required by (C4”), the two identity matrices are replaced by two matrices
as shown in (11), which allows more flexibility on the off-diagonal entries. Under this new
condition, the parameters may not be strictly identifiable but are identifiable in the generic
sense.

Proposition 4 provides sufficient conditions to guarantee the generic identifiability of
RegCDMs. Under certain special cases, we can show that those conditions are also necessary.
Next, we introduce a particular example where the conditions in Proposition 4 are not only

sufficient, but also necessary for the generic identifiability of the parameters (3,4, A).

Example 1. Consider a special RegCDM with binary responses and two latent attributes,
i.e. K =2 and M; =2. Under Conditions (A1)-(A83), Condition (C4") in Proposition 4 is
necessary and sufficient for the generic identifiability of (8,7, ). For instance, after rows

permutation, the Q-matrix takes the following form

1 *

Q/
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(13 7

where “x7 is either zero or one and Q' is a matrix with at least one entry to be 1 in each
column. Proposition 3 in Gu and Xu (2021) shows that Condition (C'4") is necessary and
sufficient condition for generic identifiability for QQ-matriz, ® and n. Hence for RegCDMs,
we have (n', ©Y) identifiable. As for the identifiability of (B3,4,\) in RegCDMs, under
Condition (A3) that X and Z;’s have full column rank, (n°, ©") are identifiable if and only
if (B,7,) are identifiable, which can be seen from Steps 2-3 of the Proof of Theorem 2 in
Supplementary Material. Therefore, (B,7,A) are identifiable for the considered RegCDMs
with two attributes if and only if Condition (C4") in Proposition 4 holds.

5 Data Example

In this section, we use a real data set to demonstrate an application of the proposed iden-
tifiability conditions in educational assessments. Trends in Mathematics and Science Study
(TIMSS) is an international and large-scale assessment to evaluate the mathematics skills
and science knowledge of students in different grades. We consider a TIMSS 2007 4th Grade
dataset, which was studied in Park and Lee (2014) and is accessible from the R package
“CDM” (George, Robitzsch, Kiefer, Grof}, & Unlii, 2016; Robitzsch, Kiefer, George, & Unli,
2020). The dataset contains N = 698 Austrian 4th grade students’ binary responses (M, = 2)
to J = 25 items together with their gender information. The gender is denoted as a binary
variable with g; = 1 for female students and ¢g; = 0 for male students.

We model the TIMSS 2007 dataset using RegCDMs and study their identifiability. We
consider gender g; as covariates with @; = (1,¢;,)7 and z;; = (¢;) for i = 1,..., N and
7 =1,...,J, under the assumption that both n and ® can be associated with the gender.
Following Park and Lee (2014), the test assesses K = 7 latent attributes in the domains
of (a;) Whole numbers; (asy) Fractions and Decimals; (a3) Number Sentences, Patterns,
& Relationships; (a4) Lines and Angles; (a5) Two- and Three-Dimensional Shapes; (ag)
Location and Movement; (a7) Reading, Interpreting, Organizing, & Representing. As shown
in Park and Lee (2014), the seven latent attributes can be further aggregated into K’ =

general domains: (o) Number; (o) Geometric Shapes and Measures; (af) Data Display.
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We first show that the RegCDM with K = 7 attributes is generically identifiable by
Proposition 4. As there are C' = 27 = 128 latent classes, Condition (A1) holds as H;.Izl M; —
1— C(Z;}:l M;—J)—C+1=2%—-2"x25—-2" > (0. Condition (42) holds as the
binary covariates are finite and coefficient parameters are free since we have no constraint

on coefficients. Condition (A3) holds as the design matrices

1 [%1 1 0
1 10

x=z;=| "= | foj=1..
1 gy 11

have full column rank given the sample has both female and male students. Lastly for
Condition (C'4"), the @-matrix after rows permutation from Park and Lee (2014) is presented
in Table 1. The @-matrix implies that Condition (C4”) holds as the matrices @; and @5
have diagonal entries to be ones and each column of the sub-matrix * contains the value
one for at least once. According to Proposition 4, the RegCDM is generically identifiable.
However, the (Q-matrix is not complete, so the RegCDM is not strictly identifiable.

We next show that the RegCDM with K’ = 3 attributes is generically identifiable as well
by Proposition 4. As there are C' = 23 = 8 latent classes, Condition (A1) holds because
H}]:1 M;—1- C’(z:;.]:1 M;—J)—C+1=2%-2%x25-2%> 0. As the items, the students’
responses, and the covariates are unchanged, we have Conditions (A2)—-(A3) hold by the same
arguments as in the RegCDM with K = 7. In assessing the three general attributes, the
@-matrix used in Park and Lee (2014) is given in Table 2 after rows permutation. This Q-
matrix contains (; and )5 with diagonal entries to be ones and the sub-matrix QQ* with each
attribute column containing the value one for at least one entry. Therefore, Condition (C'4”)
holds and Proposition 4 shows the RegCDM with K’ = 3 is generically identifiable. However,
the @-matrix does not contain an identity matrix as the o is not singularly required by any

item. So the RegCDM with K’ = 3 is not strictly identifiable.
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Item No. | o1 oy a3 au a5 o o

1 10 0 0 0 0 O

3 11 0 O O 0 O

bt 10 1 0 0 0 O

Q1 10 o 0 o 1 1 0 O

9 o 0 0 o0 1 0 O

6 o 0 0o o0 1 1 0

12 1 0 0 0 0 0 1
_"___15____1___O___O___O___O___O___O__

4 11 0 0 O 0 O

17 1 0 1 0 0 0 0

Q> 11 10 0 1 0 0 0

24 o 0 0 0 1 0 O

22 o 0 0o o0 1 1 0

13 r 0 0 0 0 0 1
_"___2_____0___1___0___0___0___0___0__

8 10 0 0 1 0 0

7 o 0 o 1 1 1 0

Q" 14 11 0 O O 0 1

16, 23 10 0 0 0 0 O

18, 20 10 1 0 0 0 0

19, 25 r 0 0 0 0 0 1

21 1 0 1 0 0 0 0

Table 1: The Q-matrix for TIMSS 2007 Data at K = 7.

6 Discussion

This paper studies latent class models with covariates, in particular, RegLCMs. Under
the setup of RegLCMs and its special family RegCDMs, we focus on the identifiability
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Item No. of o o

1 1 0 0

O 6 0 1 0

12 10 1
S 2 | 1___0___0__

Q2 7 0 1 0

13 1 0 1
Clss1518,21,23) 1 0 0

| 910,22, 24 0 1 0

“ 14, 19, 20, 25 1 0 1

8, 11 1 1 0

Table 2: The @-matrix for TIMSS 2007 Data at K = 3.

conditions for the coefficient parameters of the covariates. We show that Huang and Bandeen-
Roche (2004) presented necessary but not sufficient conditions for the local identifiability of
ReglLCMs. Then we establish conditions for the local and global identifiability of Regl.CMs
and RegCDMs.

The classical and fundamental method for local identifiability is based on Goodman’s
results, which is to ensure the full column rank of the Jacobian matrix formed by the deriva-
tives of general response probabilities with respect to parameters. We propose sufficient and
practical conditions based on Huang and Bandeen-Roche (2004) to replace the previous lin-
ear independence condition on the marginal probability matrix with the linear independence
condition concerning three decomposed probability matrices. Noticing the empirical conve-
nience of the generic identifiability, we present specific conditions to ensure the generic iden-
tifiability as well. The conditions for generic identifiability involve more accessible variables
from decomposed submatrices. In addition to the global identifiability of general Regl.CMs,
the conditions for the global identifiability of RegCDMs are dependent on the Q-matrix, and

these conditions are extended from the binary-response CDMs to the polytomous-response
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CDMs.

Regarding the consistency of estimation, Gu and Xu (2020) proved that for general
restricted latent class models, the latent class membership probability and conditional re-
sponse probability can be consistently estimated with maximum likelihood estimators. The
estimation consistency is retained for the parameters in RegLCMs because the parameters
are linearly related with the log-odds and the design matrices of covariates have full column
ranks. The proposed conditions are sufficient and practical, but may not be necessary in
strict identifiability cases. For generic identifiability, we discuss the sufficient and necessary
conditions for the binary-response CDMs with binary attributes in Example 1, except which
the necessary side of identifiability conditions is still under research. For future works, we
plan to investigate the sufficient and necessary conditions for the identifiability of latent class

models with covariates.
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Supplemental Material to “Identifiability of Latent Class Models

with Covariates”

This supplementary material contains two sections. Section A provides the proofs of
propositions and theorems from Section 3 and Section 4 of the main article. Section B gives

the proofs of lemmas introduced in Section A.

A Proofs of Propositions and Theorems

In this section, we first introduce a lemma motivated from Proposition 3 in Huang and
Bandeen-Roche (2004), which is an important tool in later proofs to associate the identifia-
bility of parameters (3, v, A) with the identifiability of (n’, %) = {n’, 9;-7,0 g=1,...,J,r=
0,....M;—1,¢=0,...,C—1},fori=1,...,N.

Lemma 1. For any subjecti =1,..., N, we define transformed variables (€', w') = {€l, w},. :

j=1...,J;r=0,...,.M; —1,¢=0,...,C — 1} such that (n*,©") and (€', w") are related

through the following equations,

) e @
n = }gi(fC) — ¢ = 0,...,C—1,;
1+ 3 2 exp(el)
. exp(wh,.) ‘ .
ejTC: 5 ] - ]_,...,J,

M,—1 i
1+ Zs:Jl exp(szc>
r = 0,...,M; -1,

c = 0,...,C—1.
Then (1%, ©") are identifiable if and only if (€', w') are identifiable.
The proof of Lemma 1 is presented in Section B.

Proof of Proposition 1. We first prove the second part of Proposition 1 that Condition (A3*)
is necessary for the identifiability of Regl.CMs without covariates under Conditions (A1) and
(A2*). Tt is equivalent to show that if b, - ,%c_1 are not linearly independent, (7, ®)

are not identifiable. We prove it by the method of contradiction and assume the contrary
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that ) are identifiable. Recall that the definitions in Section 2, 7 = (19, -+ ,nc—1)7 denotes
the latent class membership probability, where . = P(L = ¢) for ¢ = 0,--- ,C — 1. And
W = (b, - ,%c_1) denotes the marginal probability matrix, where each entry .. in .

corresponding to a response pattern r € &’ is written as
J
bre=PR=r|L=0)=]]0e c=0--.0-1
j=1
Based on the above definitions, we write the response probability vector as
[P(R=7r):reS] =U.q. (13)
As we assume 7 is identifiable, there exist no n’ # n such that P(R=1r | V,n) = P(R =
r | ¥,n'). According to (13), P(R=7r |V,n)=P(R=1r | V,n’) implies V-0 =V - n’.
However, under the condition that g, - - - ,%c_1 are not linearly independent, there could
exist n’ # n such that ¥ . (n —n’) = 0, and by the contradiction, 7 is not identifiable.
Next, we prove the first part of Proposition 1, the necessity of Condition (A4) for the
identifiability of RegLCMs under Conditions (A1)—(A3). That is, if ¢o, - ,pc—1 are not

linearly independent, then (8,,A) are not identifiable. This proof includes the following
three steps.

Step 1: we prove if ¢, -+, pc_1 are not linearly independent, then ), - -, 95 _, are
not linearly independent for i = 1,..., N, where each entry in %’ corresponds to a response
pattern r = (ry,--- ,r;) € 8 and is defined as

exXp(Vjrje + Ajr; Zigt + ++ + Agjrs Zigq)

J
Yi.=P(Ri=7|L=cuazz)=]] o
o LD exp(jse + Ayjszijn + - + AgjsZijg)

for c = 0,...,C — 1. Equivalently, we need to prove if there exists subject ¢ such that
Yo, -+, P&, are linearly independent, then ¢y, -+, ¢c—_1 are linearly independent. We
use similar techniques as in the Proof of Proposition 2 in Huang and Bandeen-Roche (2004).
First, we associate the linear combinations of ¢.’s with .'s as follows. For any linear

combination of ¢.’s with coefficients a.’s, there exist b.’s and Y such that the following

equation holds,
c—-1 c-1
> ach. = <Z bcq,z;;) oY (14)
c=0 c=0
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where ® denotes the element-wise multiplication and

T

' J 1 '
Y'! = | | . . r = Ce
J=1 exp(Aijr; zigi+e-+Aqgjr; 2ijq) (7“1, ’r‘]) €S Sx1

M;—1
g 14 > exp(Yjse + Ajszijn + -+ Agjszijg)

be = a]] =1 —— . (15)
j:1 1+ Z e'\/jsc

s=1

To show ¢.’s are linearly independent, we need to show that ZC 0 acqbc = 0 implies ag =

- =ac_1 = 0. Based on (14), we have 3.7, o 4. = 0 implies ZC " bl = 0. Under the

condition that 4}, ..., 1%, are linearly independent, the equation
c-1
S beap! = bowh + -+ bo 19, = 0 (16)
c=0
implies by = - -+ = bo_1 = 0. And by (15), we have ag = - - - = ac—1 = 0. Hence, ¢y, ..., pc_1
are linearly independent when 1, ..., 1% _, are linearly independent and we complete the

proof for Step 1.

Step 2: We next introduce parameters €.’s and w},.’s and show that they are not identifi-
able when 4}, - - - , 1% _, are not linearly independent. By the similar arguments in proving
the necessity of Condition (A3*), (1%, ©) are not identifiable when b}, - - 15 _; are not
linearly independent for any subject i = 1,..., N. Recall in RegLCMs, (n‘, ©") are func-
tionally dependent on the linear functions @] 8 and ~;. + 2; )\J, respectively, following the

definitions of (1%, ®%) and (3,~,A) from (3) and (4) in main article. Next, we let
€ = wiTﬁc = Boc + BicTin + -+ + Bpcip.
fori=1,...,N,c=0,...,C—1. And
Wire = Vjre + Zgg)\jr = YVire + Ajrzijt + -+ + Agjrzijq-

fori =1,...,.N,5=1,...,J,r=0,--- ,M;—1and ¢ = 0,...,C — 1. Then according
to Lemma 1, €/’s and w},.’s are not identifiable when (n‘, ©") are not identifiable. Hence,
€.’s and W}, 's are not identifiable when 4, - - -, %¢_; are not linearly independent and we

complete the proof for Step 2.
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Step 3: Lastly, we prove that (3,4, ) are not identifiable when €'’s and w?, s are not

jre
identifiable by the method of contradiction. Assume to the contrary that 3 is identifiable
given €.’s and w?, s are not identifiable. By the definition of identifiability, P(R | 8%, v, A) =

P(R | 3,v,A) implies that 8* = 3. Because X has full column rank and according to the
definition of € that

€ Iz - @y Boo - Bowc-1)
€= : =1 Y : =X,

€ 1 zn1 0 Znp Boo - Bpic-1)

we have € = X 3" equivalent to € = X 3. So for all subject i, P(R; | €*,v,A) = P(R; |
€”, 7, ) would result in €* = €”, which contradicts the non-identifiability of €'’s. Therefore
B3 is not identifiable. Using similar techniques, we can prove =, A are not identifiable.
Combining Steps 1-3, we prove the first part of Proposition 1, and thus complete the
proof of Proposition 1. O

Proof of Proposition 2. First, we show that for polytomous-response CDMs or RegCDMs,
the parameters are not generically identifiable under Condition (P1) that some attribute is
required by only one item. This is motivated from the proof of Theorem 4.4 (a) in Gu and Xu
(2020), where they showed that the binary-response CDMs are not generically identifiable if
some attribute is required by only one item. Consider the polytomous-response CDMs and

let the @-matrix to be

1 u

0 @
This @-matrix implies that «; is required by the first item only. For any (1, ®), we can
construct (7, ®) # (n,0) such that P(R =r | n,0) = P(R = r | 7§, 0), which shows
that (n, ®) are not identifiable. To better illustrate the idea, we next use a to replace ¢ in
all parameter subscripts, i.e. 7o = 7. and ;.4 = 0;,. given a’v = c. When j # 1, we let
Ne = Tey Ojre = Ojpe for r = 0,...,M; —1 and ¢ = 0,...,C — 1. When j = 1, we denote

o = (042, s ,OéK) c {0, 1}K_1 and for all r = O, . .,Ml - 1, we let 9717«1(07&/) = ‘91711(0,0‘/),
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and

1 1
_97" o 1—=
gimae (1= F

where E is a constant in a small neighborhood of 1 and F # 1. So we have §1r1(17a/) +

6)717‘1(1,04’) = )917"1 (0,a')>5

O1ri(1,00)- We also let

Noay = Moy + (1= E) nua),

Na,ay = E'n(l,a’)-

Hence, we have

Ne) T N0,y = Nia) + 00,0, (17)
01 (1,0 TT(1,00) + Ot (0,00 T0.0) = O (1,0 (1,00) F+ Ot (0,00) (0,00 - (18)
So for any r = (ry,---,ry) € S, we use ¥, to denote the row in ¥ corresponding to the

response pattern . By the definition of the conditional response probability, we write

P(R:r|\ij>"_7):7])r,~'ﬁ: Z Urala

ac{0,1}X
- Z H{HQTJ (a1,a’) }H{RJ_TJ} [{lel(la }H{Rl Tl}n(la +{91r1(0a }{ = 7’1}77](0 ’)]
a’e{0,1}5-1 j>1
a1€{0,1}

p

> I1 {éjrj(al,a’)}H{Rj:Tj}ﬁ(al 10111010y + O (0,000 ), Bi =11

a’e{0,1} K1 j5>1

— 0516{0,1}
{E}K ) Ell{éjmal,a'>}“R”:”}ﬁ<a1,a'>V?(La’) + 70.e)); Ry #1
a’e{0,1}2~1 7
0516{0,1}

\
P

Z H {ejrj(al,a’)}H{Rj:Tj}n(al,a’)[elrl(l,a’)n(l,a’) + 917"1 (0,04’)7](0,0/)]7 Rl =n
a’c{0,1}K-15>1
— 0516{0,1} (19)
> T 010 5= 00000 [0y + 0,00, Ry #n

a’c{0,1}K-1j5>1
a1€{0,1}

\

= Z H{ejrj(ala }H{RJ_TJ} [{elrl(la }{Rl Tl}n(la +{91r1(0a }{Rl ”}77( ’)]

a’c{0,1}K-1j>1
a1€{0,1}

= P(R=r7r|V¥,n).
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Equation (19) is derived based on (18) as well as the assumption that 1, = 7., 0;,. = H_jm for
all j=2,...,J,7r=0,...,M; —1and ¢ =0,...,C — 1. With this construction, we show
different (1, ®) could result in the same conditional response probability and therefore we
prove that (n, ®) are not identifiable under Condition (P1) in Proposition 2.

For polytomous-response RegCDMs, we have similar results by following the above proof.
That is, (n’, ©") are not identifiable under Condition (P1) for i = 1,..., N. Then following
the same arguments as in Steps 2-3 from the Proof of Proposition 1, we show that (3,7, A)
in RegCDMs are not identifiable given (n’, @) are not identifiable.

Next we prove the remaining part, that is, the matrix ¥ in CDMs and the matrix ® in
RegCDMs have full column ranks under Condition (P2). Before presenting the proof, we
introduce another probability matrix T-matrix of size S x C', where each row corresponds to
one response pattern r € S and each column corresponds to one latent class ¢ =0,...,C—1.
Each entry of T-matrix is defined as T,. = P(R = r | L = ¢), where > means that for any
item j =1,...,J, R; > r;. According to a similar argument in Appendix Section 4.2 in Xu
(2017), T-matrix has full column rank under the condition that the corresponding @-matrix
contains an identity submatrix Zy.

There exists a relation between the two probability matrices, T-matrix and W. Because
W excludes a reference response pattern, it has dimension of (S — 1) x C. Denote &' =
(e, Wl )" where W, is the row corresponding to the reference pattern. And W, is
linearly dependent on the rows in ¥ because ), . sP(R=17|L =c) =1 So ¥ has full
column rank if and only if ¥’ has full column rank. Further, ¥’ has full column rank if and
only if T-matrix has full column rank, because ¥’ is bijectively corresponding to T-matrix
according to their definitions. In conclusion, ¥ in the CDMs has full column rank when
@-matrix contains an identity submatrix Zx. According to the Proof of Proposition 2 in
Huang and Bandeen-Roche (2004), the matrix ® has full column rank when the matrix ¥
has full column rank. So for RegCDMs, ® has full column rank when ()-matrix contains an

identity submatrix Zy. O

Proof of Theorem 1. Following the similar idea in Huang and Bandeen-Roche (2004) at page
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15, we let f(R;m,®) to denote the likelihood function, and

R T]a H P ]I{R—'r}

resS

J
where § = ><j=1{0’ BRI M]_l} Let E = {nla s Ne-1, 91107 U 791(M1—1)07 e >9J1(C—1)7 )

61(m,-1)c-1)}, the Fisher information matrix is written as

E' dlog £\ [dlog f\7T
( 0¢ )( 0 )

. {R =7} OP(R =) {R=r}oP(R=7))
N ~PR=1) 0 ZPR=r) 0

-2 P(Rlz r) (8]3(1;&: T)) (8]3(1;5: r>)T

resS
P(R1:T1) 0 0
1
_ 37 0 P(R=r3) 0 J
0 0 !

P(R=rs)
From the above results, we see the Fisher information matrix is non-singular if and only if
J has full column rank. According to Theorem 1 of Rothenberg (1971), (1, ®) are locally
identifiable if and only if the Fisher information matrix is non-singular when the true values of
(1, ®) are regular points of the information matrix. Therefore (1, @) are locally identifiable

if and only if the Jacobian matrix J has full column rank. O

Proof of Theorem 2. As introduced in Section 4, we consider a hypothetical subject with all
covariates being zeros and denote its Jacobian matrix as J°. We use the following three steps
to prove that (3,7, ) are identifiable if and only if J° has full column rank.

Step 1: We first show that for subject i = 1,..., N, the Jacobian matrices J*, containing
the derivatives of conditional response probabilities with respect to parameters in n° and ©°,
have full column rank if and only if J° has full column rank. This proof is adapted from the

Proof of Proposition 1 in Huang and Bandeen-Roche (2004).
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First, we need to set up a few notations. The Jacobian matrix J is written as

J = (JZ T Jém,...’j e e )

Ui nc—1’ 0101y -1)0? 10 51(0-1)° P05y —1)(C-1)

Each entry in ch is a partial derivative of response probability P(R = r) with respect to 7’

at true value of n’, which is computed to be

OP(R - -
(aT H jrjc H §ri0 = _1/):“0

[

And each entry in J;_ is a partial derivative of response probability P(R = r) with respect

to 0% . at true value of §° . which is computed to be

jre jres
772 Hd;éj etiirdm if ry=Tm,
orR=r) _ )
. e [ ag; Oarger 175 =0,
0, otherwise.
or summarized as
OP(R=r Hr, =r H{r, =0
(R=r) _ e Hri=r) =0}
80]7“0 9]7”0 9]0c

In addition to J?, we also define the following two sets of vectors for this proof. Denote 7’ =

{¢8,.. e JU{nd (ry =1} /05, )09l j=1,...,Jr=0,...,M;—1,c= ., C—1}
and J' = {v,bé,...,v,/)g_l}u{né(l{rj r}/ jrc) oY j=1,....J;r = O,...,Mj —1l,¢c=
0,...,C — 1}, where I{r; = r} is a (S — 1)-dimensional vector containing all I{r; = r} for
r=(ry,...,r;) €S’. With the notations defined, we then introduce a useful lemma which

simplify the arguments in proving the linear independence of the columns in J° and J°.

Lemma 2. The Jacobian matriz J° has full column rank if and only if T’ are linearly
independent. The Jacobian matriz J° has full column rank if and only if T are linearly

independent.

The proof of Lemma 2 is presented in Section B. According to Lemma 2, to prove J? has
full column rank if and only if J° has full column rank, we can equivalently show that J

are linearly independent if and only if 7’ are linearly independent. First, we associate the
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linear combinations of J' to that of J° as follows. For any linear combinations of J' with

i
jrer

S S5 e (1577) o)

j=1 r=0 c=0

coefficients ¢/, u’,,, there exist t2, uj,. and W* such that the following equation holds

! Mile {r;=r} -
(e Y fua () out ) ow
c=0 j=1 r=0 ¢=0 Jre
where
i J T
W' = (Hj:l eXp()\le’jZijl ++ )\QJTjZijq) r= (Tla cee 7TJ) € S/>S><1 ’
M;—1
J 14 > elise

0o _ 7 s=1
0 = #]] T : (21)

IZH1 4 Y0 exp(Yjse T Aijsign o0 AgjsZijg)

s=1
0 o i eXp(ﬂlcxil ++ ﬁpcxip)
ujrc - Jre
GXP(/\ljerz’jl + o+ Agjiry Zijq)

M' 1
{1+ Z e {1+ Z exp(Vise + Arjs2igt + 0+ AgjsZije) }
X

_ M;—1
{1+ Z exp(for + Buzin + -+ + Bpwip) H1 + 2—31 eise}

=1
M;—1

J 1+ > evise
s=1
<] T . (22)

IZH 14 Y0 exp(Yjse + Aijsign + -0 AgjsZijg)
s=1

The next two parts prove that J' are linearly independent if and only if 7’ are linearly
independent in two directions.

Part (i): We prove T are linearly independent if 3 are linearly independent. To show
J' are linearly independent, we need to show that

gti Y ZCZ{ et (N5 ) ot} —o, (23)

j=1 r=0 ¢=0 Jre

implies ¢, = 0 and u},, = 0. By (20), for any t., u/,. such that (23) holds, we have

Zt% +iMJZlCZI{ ud e ( H{Téo })G)z/Jc}—O.

j=1 r=0 c=0 Jre
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Under the condition that J° are linearly independent, we have t2 = 0 and uﬁ,c = 0. Then
by (21) and (22), we have ¢, = 0 and u},, = 0 for j = 1,...,J, r = 0,...,M; — 1 and
c=0,...,0—1. So T are linearly independent.

Part (ii): We prove 3 are linearly independent if J' are linearly independent. This part
is similar to Part (i). To show T’ are linearly independent, we need to show that

iZ_:W%i i Z{ it (=) outf —o (24)

jre

implies ) = 0 and u},, = 0. By (20), for any ¢, such that (24) holds, we have

0 U
_ M;—10—
IS Z{ st o vt 0
=0 j=1 r=0 =0 jre
Under the condition that J' are linearly independent, t. = 0 and uﬂc 0, and hence t? = 0
and u]TC—Oby (21) and (22), for j=1,...,J,r=0,...,M; —land ¢=0,...,C — 1. So
T’ are linearly independent.

Combining Part (i) and Part (ii), we show T are linearly independent if and only if T
are linearly independent. And therefore J¢ has full column rank if and only if J° has full
column rank.

Step 2: We introduce (€', w') and prove that they are identifiable if and only if J* has full
column rank. By following similar arguments in the Proof of Theorem 1, we have (n', ©%)
are identifiable if and only if J* has full column rank, for i = 1,..., N. Next, we define
(€', w') and the remaining is to show that they are identifiable if and only if (n’, ©") are

identifiable. Following the same arguments as Step 2 in Proof of Proposition 1, we let
€ = w?ﬁc = Boc + Brcit + - - -+ Bpeip.
forc=0,...,C —1. And
Whpe = Vjre + Z5Ajr = Vjre + MjrZit + -+ + AgjrZijg-

forj=1,...,J,r=0,---,M;—1and ¢ = 0,...,C — 1. Then according to Lemma 1,
(€', w') are identifiable if and only if (n°, ®") are identifiable. Hence the proof for Step 2 is

complete.
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Step 3: The final step is to show (3,7, ) are identifiable if and only if (€', w') are
identifiable. We have shown that (3,4, A) are not identifiable when (€’, w’) are not identi-
fiable in the Proof of Proposition 1. So all left to show is the necessary part that (3,7, A)
are identifiable when (€, w') are identifiable. We prove this result by the method of con-
tradiction. Assuming the contrary that B3 is not identifiable, there exist 8 # B such that
P(R; | B,v,A) = P(R; | B,7,A). According to the system of linear equations

€ I oz -0 a2y Boo - 50(0—1)

€ 1 zn1 0 Znp Boo - Bpc-1)

and because the full rank X is an injective mapping, we have 3 # 3’ implies that € = X 3
is different from € = X3 for at least one € # €’*. However, since €'’s are identifiable, there
exist no €' # €' such that P(R; | €,w') = P(R; | €*,w"). By this contradiction, we prove
B is identifiable. Using similar arguments, we can show -, A are also identifiable and hence
complete the proof.

Combining Steps 1-3, we prove that (3,7, A) in RegCDMs are identifiable if and only if
J? has full column rank under Conditions (A1)-(A3). O

To prove the main results in Section 4, we next introduce other useful lemmas and
corollaries from existing works in literature. Lemma 3 and Corollaries 1-2 summarize the
conditions for the global identifiability of general restricted latent class models proposed by
Allman et al. (2009), which is based on the algebraic results in Kruskal (1977).

Before presenting these lemmas and corollaries, we introduce the decomposition of W
and some notation definitions. The decomposition of W is similar as the decomposition
of ® defined in Section 4 in the main text. We divide the total of J items into three
mutually exclusive item sets J;, J> and J3 containing .J;, Jo and J3 items respectively, with
Ji+ o+ J3=J. Fort =12 and 3, let S;, be the set containing the response patterns
from items in J; with cardinality of Sj, to be r; = |S;,| = [[,c, M;. The submatrix ¥; has

dimension k; x C'. The definition for the entries in W, is the same as in (10), except that each

42



row of W, corresponds to one response patterns r € S;, while each row of ¥ corresponds to

red.

Lemma 3. (Kruskal, 1977) Fort = 1,2 and 3, denote Oy = rankyx (W) as the Kruskal rank
of W, where W, is a decomposed matriz of ¥. If

O1+ 0y + 03 > 20 +2,

then W1, Wy and W3 uniquely determines the decomposition of W up to simultaneous permu-

tation and rescaling of columns.

Corollary 1. (Allman et al., 2009) Consider the restricted latent class models with C' classes.
Fort=1,2 and 3, let ¥, denote a decomposed matriz of W and O, denote its Kruskal rank.

If
O1+ 0y + 03 > 20 +2,

then the parameters of the model are uniquely identifiable, up to label swapping.

Corollary 2. (Allman et al., 2009) Continue with the setting in Corollary 1. Fort =1,2,3,

let W, denote a decomposed matrix of ¥ and k; denote its row dimension. If
min{C, 1} + min{C, ko } + min{C, k3} > 2C' + 2,

Then the parameters of the restricted latent class models are generically identifiable up to

label swapping.

Combining all these results as well as Proposition 2 in Huang and Bandeen-Roche (2004),

we present Lemma 4, which is the key in the proof of Theorem 3.

Lemma 4. For the polytomous-response RegLCMs, (1%, @) are strictly identifiable if Con-
ditions (A1) ,(A2) and (B3.a) hold, and are generically identifiable if Conditions (A1), (A2)
and (B3.b) hold.

(B3) The matriz ® can be decomposed into ®1, ®y, ®3, with Kruskal rank of each ®; to be

I, and the dimension of each ®; to be k; x C'. We have either
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(B3.a) I + I, + I3 > 2C' + 2; or

(B3.b) min{C, k1} + min{C, ko } + min{C, k3} > 2C + 2.
The proof of Lemma 4 is provided in Section B.

Proof of Theorem 3. From Condition (C4), the Kruskal rank I, of ®, satisfy the arithmetic
condition of Condition (B3.a) in Lemma 4. As we assumed in Theorem 3, Conditions (A1)
and (A2) also hold. According to Lemma 4, RegLCMs are strictly identifiable at (n‘, ©?)
for i = 1,..., N. Following the similar arguments in Steps 2-3 from the Proof of Theorem
2, we show that (3,4, A) in RegLCMs are identifiable given (n’, ©") are identifiable under
Condition (A3). Hence we complete the proof. O

Proof of Proposition 3. As mentioned in Section 4, (C4*) is the sufficient condition for the
identifiability of general restricted latent class models with binary responses according to
Theorem 1 in Xu (2017). This condition is further extended to restricted latent class models
with polytomous responses by Theorem 2 in Culpepper (2019). So for RegCDMs, (n!, ©9)
are strictly identifiable given Condition (C4*) fori =1,..., N. Then based on the the similar
arguments in Steps 2-3 from the Proof of Theorem 2, (3,7, A) in RegCDMs are identifiable
given (n°, ©") are identifiable. O

Proof of Theorem 4. For t = 1,2 and 3, the decomposed matrix ®; and the decomposed
matrix ¥, have the same row dimension x;. So given Condition (C'4’), Condition (B3.b)
in Lemma 4 holds. According to Lemma 4, RegL.CMs are generically identifiable at (n°,
Q') for i = 1,...,N. Based on the similar arguments in Steps 2-3 from the Proof of
Theorem 2, (3,7, ) in RegLCMs are generically identifiable given (1%, @) are generically
identifiable. O

Proof of Proposition 4. In Proposition 5.1(b) of Gu and Xu (2020), Condition (C4”) is suf-
ficient for the generic identifiability of CDMs. So for RegCDMs, (n°, ©") are generically
identifiable under Condition (C4”) for ¢ = 1,..., N. Based on the the similar arguments in
Steps 2-3 from the Proof of Theorem 2, (3,7, ) in RegCDMs are generically identifiable
given (n', ©") are generically identifiable. 0O
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B Proofs of Lemmas

Proof of Lemma 1. For notational convenience, we use 17, ®, € and w to denote the pa-

rameters 1, ©°, € and w' of a general subject i. According to the definition of iden-

tifiability, (m,®) are identifiable means that there exist no (n,®) # (n’, ®’) such that
P(R=r|n,0)=PR=r]|n,0). To prove Lemma 1 that (n, ©) are identifiable if

and only if (€, w) are identifiable, we need to show that the transformation from (n, ®) to

(e, w) is bijective. We next illustrate this bijective mapping from 1 to € holds by showing

(M0, +++ yne—1) = (Mg, -+ + s M) if and only if (€0, -+, €c—1) = (€, - -~
First, we show that (no, -+ ,nc-1) = (), - -+, N_,) implies (g, - - -

For ¢=0,...,C — 1, under the condition that

650 eﬁlc ,
Ne = 1 = e

I+ Es 1 € 1 + 250:1 e

we can write

€0 € €C—1
e efe e 1—1—2816

L €C_1)-

760—1) = (667 e 76/0—1)'

=== —=.-.

- /
€ € €c_1 el
e efe e 1—1—5816

. /
where € denotes the common ratio among all e /ef. Hence

d=¢e—¢€, ¢c=0,---,C—1.

c)

Substituting every €, with €. — ¢ into the equation 7y = 7, we have

e€o e€o— -4

I+ 2 e 1T e

Further simplifying the above equation gives

1+ 2802—11 ecs  ed 4 20:11 ees’
and then we have

c-1 c-1
e5+g eﬁszl—l—g e,
s=1 s=1

(25)

which has unique solution § = 0. Taking 6 = 0 back into (25), we have e¢. = €. for all

c=0,...,C —1. Therefore € = (ep,- -+ ,€c—1) is equivalent to € = (ep, - ,€x_;)-
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Next we prove (€, -+, €c—1) = (€, ,€p_y) implies (no, -+ ,1mc—1) = (M- ,7c_1)-
This part is straightforward as (e, - ,€c—1) = (€, ,€n_,) implies that for any ¢ =
0,...,C —1, we have

exp(ec) eXp( 1)
1+, exp(es) 1+ 35 exple)
Equivalently, we show n, = 7., for any ¢ =0,...,C — 1. So (o, ,nc—-1) = (M, ,Np_1)-

Combining the above arguments, we prove n = n’ if and only if € = €.
Similar arguments can be applied to show © = @’ if and only if w = w’. Hence (1, ©)
are identifiable if and only if (€, w) are identifiable. O

Proof of Lemma 2. We prove the the first part, that is, J° has full column rank if and only
if 377 are linearly independent. The second part regarding J* can be similarly proved.

To show the linear independence of J° or jo, we need to establish the relationship between
the two linear combinations as follows. For any linear combinations of the columns in J°

lOa

with coefficients h2’s and s, there exist a?’s and Y, .’s such that the following equation

jre jre
holds.
Cc-1 J Mj-1Cc-1
Hr,=1r {r;=0
S+ 30 X 3 {ma M=o gl )
c=1 j=1 r=1 =0 Jjre J0c
c-1 J M;j—-1C-1 I{r r}
=D ait ), ) {b;?mm ) © wS}, (27)
=0 j=1 r=0 c=0 jre
where
hY, if ¢ # 0,
al = (28)

and forany j=1,...,J,¢=0,...,C —1,

19 if r #£ 0,

jres

(29)

jrc T

(9. + —|—l](M ne)y i =0.

With the above relationship established, we next show that J° has full column rank if and

only if 3" are linearly independent. When 3’ are linearly independent, (27) = 0 implies
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a? = 0 and b?m = 0, which further implies h° = 0 and 19

Jre

= 0 by (28) and (29). So (26)
= 0 implies AY = 0 and [9,. = 0. Hence, J° has full column ranks. Similarly, when J° has

jre

full column ranks, (26) = 0 implies h2 = 0 and %, = 0 which further implies a? = 0 and

jre

=0 by (28) and (29). So (27) = 0 implies a® = 0 and ¥,, = 0. Hence, J' are linearly

jre jre

independent. 0

Proof of Lemma 4. This proof is motivated from the Proof of Proposition 2 in Huang and
Bandeen-Roche (2004). Before presenting the proof, we set up a few notations. In Section
4, ® can be decomposed into ®;, Py and P53, where each ®, has Kruskal rank I; and row
dimension ;. And in Appendix A, ¥ can be decomposed into W%, ¥, and W%, where each
P! has Kruskal rank O! and the same row dimension x; as ®;. Denote the columns in ®; to
be ¢y, - -+, Pyc—1) and the columns in ¥} to be 9y, - - - ,v,/)ti(c_l). Conditions (A1) and (A2)
are shown to be necessary in Section 2 and assumed to hold. To prove Condition (B3.a) is
sufficient for the strict identifiability of (n*, @), we first need to show that for ¢ = 1,2 and
3, given ®; has Kruskal rank I, the equation O} > I, holds, so that I} + I, + I3 > 2C + 2
from Condition (B3.a) implies O} + O} + O% > 2C + 2. Then based on Corollary 1 that (n’,
") are strictly identifiable under the condition that O} + O} + O} > 2C + 2, we complete
the proof of strict identifiability.

The remaining part is to show O! > I, for t = 1,2 and 3 and for i = 1,..., N. With-
out loss of generality, we only show O! > I, then O) > I, and O} > I3 can be similarly

proved. Under the condition that any set of I; columns in ®; are linearly independent,

P1o1)s s Pro(ny) are linearly independent for any permutation o on {1,...,I;} such that
{o(1), 0(2),--, o(I1)} € {0,---,C —1}. To show O; > I, we need Pi, ), ¥,
to be linearly independent for any permutation set {o(1), o(2),---, o(l1)}. The lin-
ear combinations of @i,(1), -, Pis(1,) can be associated with the linear combinations of
v,bio(l), e ,1,[1{0( ) 8s follows. For any permutation o and a, ), there exists by and Y7 such
that

11 11

> G0 WPio = (D booProt0) © Yy (30)

c=1 c=1
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where
YY) = (H exp(Aujr, Zij1 + -+ Agjry Zigq) 1T = (11,...,75) € SJ1> ,
jejl k1 X1

M;—1
L4370 el
bo) = o) || e : (31)
i 1222 exp(Yiso(e) + Aujszijn + o+ + Agjszijg)

To show v,[)io(l), . ,T/Jig(h) to be linearly independent, we need to show Y27 ao(c)'l,big(c) =
0 implies a,) = 0 for any o. Based on (30), we have 2?21 ao(C)Q/Jia(C) = 0 implies
Z?:l bo(c)P1o(c) = 0. Under the condition that ¢i,(1), -, 1,1, are linear independent,
Z?:l bo(e)P10(c) = 0 implies by1y = -+ = by(r;y = 0. And by (31), asq) = -+ = ay,) = 0.
Hence i,y, ¥, are linearly independent for any o. Hence we show Of > I; for
1=1,..., N and complete the proof for strict identifiability.

For Condition (B3.b), because each ¥} has row dimension k; the same as ®; does and
we have min{C, x1} + min{C, o} + min{C, k3} > 2C + 2, according to Corollary 2, (n°, ©%)
are generically identifiable under Condition (B3.b) for i =1,..., N. O
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