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Abstract

Cognitive Diagnosis Models (CDMs) are a special family of discrete latent vari-
able models that are widely used in educational and psychological measurement. A
key component of CDMs is the @)-matrix characterizing the dependence structure
between the items and the latent attributes. Additionally, researchers also assume
in many applications certain hierarchical structures among the latent attributes to
characterize their dependence. In most CDM applications, the attribute-attribute
hierarchical structures, the item-attribute (Q-matrix, the item-level diagnostic model,
as well as the number of latent attributes, need to be fully or partially pre-specified,
which however may be subjective and misspecified as noted by many recent studies.
This paper considers the problem of jointly learning these latent and hierarchical
structures in CDMs from observed data with minimal model assumptions. Specifi-
cally, a penalized likelihood approach is proposed to select the number of attributes
and estimate the latent and hierarchical structures simultaneously. An expectation-
maximization (EM) algorithm is developed for efficient computation, and statistical
consistency theory is also established under mild conditions. The good performance
of the proposed method is illustrated by simulation studies and real data applications

in educational assessment.
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1 Introduction

Cognitive Diagnosis Models (CDMs) are a popular family of discrete latent variable models that
have been widely used in modern educational, psychological, social and biological sciences. These
models focus on multivariate discrete noisy observations, and assume the existence of discrete
latent attributes which explain or govern the observed variables. In practice, the discrete latent
attributes often have special scientific interpretations. For example, in educational assessments,
the latent attributes are often assumed to be the mastery or deficiency of target skills (de la
Torre, 2011; Junker and Sijtsma, 2001); in psychiatric diagnosis, they may be modeled as the
presence or absence of certain underlying mental disorders (de la Torre et al., 2018; Templin and
Henson, 2006); and in epidemiological and medical measurement studies, they can be interpreted
as the existence or nonexistence of some disease pathogens (O’Brien et al., 2019; Wu et al.,
2016b,c). A common feature of such latent variable models is that the probabilistic distribution
of the observed responses is governed by the unobserved latent attributes. Upon observing
the responses, one can infer the underlying latent attributes. As such, CDMs can provide
fine-grained inference on subjects’ latent attribute profiles based on their multivariate observed
responses, and the corresponding latent subgroups of a population can also be detected based
on the inferred latent attribute profiles.

In the CDM framework, the dependence structure between the observed variables and the
latent attributes is encoded through a binary design matrix, the so-called @-matrix (Tatsuoka,
1990). Under different item models, the interactions between the observed variables and the
latent attributes are also modeled differently. Two basic models are the Deterministic Input
Noisy Output “AND” gate (DINA; Haertel, 1989) model and the Deterministic Input Noisy
Output “OR” gate (DINO; Templin and Henson, 2006) model, where there are only two levels
of item parameters for each item. de la Torre (2011) proposed the the Generalized DINA
(GDINA) model, where the interactions among all the latent attributes were included. Other
popularly used CDMs include the General Diagnostic Model (GDM; von Davier, 2019), the
reduced Reparameterized Unified Model (reduced-RUM; DiBello et al., 1995), and the Log-
linear Cognitive Diagnosis Models (LCDM; Henson et al., 2009).

In many applications of CDMs, researchers are also interested in hierarchical structures

among the latent attributes. For example, in a learning context, the possession of lower level



skills are often assumed to be the prerequisites for the possession of higher level skills in edu-
cation (Dahlgren et al., 2006; Jimoyiannis and Komis, 2001; Simon and Tzur, 2004; Wang and
Gierl, 2011). Learning such latent hierarchical structures among the latent attributes is not only
useful for educational research, but can also be used to design learning materials and generate
recommendations or remedy strategies based on the prerequisite relationships among the latent
attributes. Leighton et al. (2004) proposed the Attribute Hierarchy Model, a variation of Tat-
suoka’s rule-space approach (Tatsuoka, 1983), which explicitly defined the hierarchical attribute
structures through an adjacency matrix. Under the CDM framework, Templin and Bradshaw
(2014) proposed the Hierarchical Cognitive Diagnosis Models (HCDMs), in which a Directed
Acyclic Graph (DAG) is essentially used to impose hard constraints on possible latent attribute
profiles under hierarchies.

To fit hierarchical CDMs, the ()-matrix, the hierarchical structures among the attributes, the
item-level models, and the number of latent attributes all need to be pre-specified by domain ex-
perts, which however can be subjective and inaccurate. Moreover, in exploratory data analysis,
these prior quantities may be even entirely unknown. An important problem in cognitive diag-
nosis modeling then becomes how to efficiently and accurately learn such latent and hierarchical
structures and model specifications from noisy observations with minimal prior knowledge and
assumptions.

In the literature, many methods have been recently developed to learn the ()-matrix, includ-
ing methods to directly estimate the ()-matrix from the observational data, via either frequentist
approaches (Chen et al., 2015; Li et al., 2022; Liu et al., 2012; Xu and Shang, 2018) or Bayesian
approaches (Chen et al., 2018; Chung and Johnson, 2018; Culpepper, 2019), and methods to
validate the pre-specified Q-matrix (Chiu, 2013; de la Torre, 2008; de la Torre and Chiu, 2016;
DeCarlo, 2012; Gu et al., 2018). Many of these @)-matrix learning or validation methods, how-
ever, do not take the hierarchical structures into consideration, or they implicitly assume the
hierarchical structure is known; moreover, the number of attributes and the item-level diagnostic
models are often assumed to be known.

In terms of learning attribute hierarchies from observational data, Wang and Lu (2021)
recently studied two exploratory approaches including the latent variable selection (Xu and
Shang, 2018) approach and the regularized latent class modeling (regularized LCM, Chen et al.,
2017) approach. However, the latent variable selection approach in Wang and Lu (2021) requires



specification of the number of latent attributes and a known identity sub-matrix in the Q)-matrix.
The regularized LCM approach may not require the number of latent attributes, but the number
of latent classes needs to be selected. Based on the simulation in Wang and Lu (2021), the
performance of the regularized LCM was less satisfactory — the accuracy of selecting correct
number of latent classes was often below 50% and the accuracy of recovering latent hierarchy
was almost 0 in some cases. In Gu and Xu (2019a), the authors proposed a two-step algorithm
for structure learning of hierarchical CDMs. However, their algorithm also assumed that the
number of latent attributes was known and they only considered the DINA and DINO models.
In this paper, to overcome the limitations of the aforementioned methods, we propose a regu-
larized maximum likelihood approach with minimal model assumptions to achieve the following
four goals simultaneously: (1) estimate the number of latent attributes; (2) learn the latent
hierarchies among the attributes; (3) learn the Q-matrix; and (4) recover item-level diagnostic
models. Specifically, we employ two regularization terms: one penalty on the population pro-
portion parameters to select significant latent classes, and the other on the differences of item
parameters for each item to learn the structures of the item parameters. After the significant
latent classes and the structure of the item parameters are learned, a latent structure recovery
algorithm is used to estimate the number of latent attributes, the latent hierarchies among the
attributes, the ()-matrix, and the item-level models. For the estimation, we develop an efficient
Penalized EM algorithm using the Difference Convex (DC) programming and the Alternating
Direction Method of Multipliers (ADMM) method. Consistent learning theory is established
under mild regularity conditions. We also conduct simulation studies to show the good perfor-
mance of the proposed method. Finally we demonstrate the application of our method to two
real datasets and obtain interpretable results which are consistent with the previous research.
The paper proceeds as follows: the model setup of hierarchical CDMs is provided in Section
2. The proposed penalized likelihood approach and its theoretical properties are presented in
Section 3. An efficient algorithm is developed and related computational issues are discussed
in Section 4. Simulation studies are presented in Section 5. In Section 6, the model is applied
to two real data sets of international educational assessment. Finally, Section 7 concludes with
some discussions. The proof of the main theorem and detailed derivations for the proposed

algorithm are presented in the supplementary material.



2 Model Setup

In this section, we introduce the general model setup of hierarchical CDMs and illustrate the
connections between hierarchical CDMs and restricted latent class models, which motivates the
proposed approach in Section 3. In the following, for an integer K, we use [K] to denote the set

{1,2,..., K}, and we use | - | to denote the cardinality of a set.

2.1 Hierarchical Cognitive Diagnosis Models

In a CDM with J items which depend on K latent attributes of interest, two types of subject-
specific variables are considered, including the responses R = (Ry,...,Ry), and the latent
binary attribute profile @ = («v, ..., ak). In this paper, both the responses R and the latent
attribute profile a are assumed to be binary. The J-dimensional vector R € {0,1}” denotes
the binary responses to the set of J items, and the K-dimensional vector o € {0,1}* denotes
a profile of possession of K latent attributes of interest. Since each latent attribute ay is
binary, the total number of possible latent attribute profiles o = (avy, ..., ag) is 2%. For each
latent attribute profile, we use m, to denote its proportion parameter, and the latent attribute
profile a is modeled to follow a categorical distribution with the proportion parameter vector
m = (7o : a € {0,1}¥). The proportion parameter vector lies in the (2% — 1)-simplex and
satisfies o € [0,1] and 3_ g 1yx Ta = 1.

A key feature of hierarchical CDMs is that there exist certain hierarchical structures among
the latent attributes. For example, in cognitive diagnosis modeling, the possession of lower-level
skills are often regarded as the prerequisites for the possession of higher-level skills (Leighton
et al., 2004; Templin and Bradshaw, 2014). With such an attribute hierarchy, any latent attribute
profile a that does not respect the hierarchy will not exist and have population proportion
To = 0. For 1 <k #1< K, we use oy, — o (or k — [) to denote the hierarchy that attribute
oy, is a prerequisite of attribute ay. We assume such hierarchy oy — oy (or k — [) exists if and
only if there are no latent attribute profiles such that o; = 1 but o = 0, or equivalently, we have
o = 0 if oy = 1 but o, = 0. We denote an attribute hierarchy by a set of prerequisite relations
E = {k — [ : attribute k is a prerequisite for attribute [, 1 < k # [ < K}, and denote the
induced set of existent latent attribute profiles by A = {a € {0,1}¥ : 74 # 0 under £}. One



can see that an attribute hierarchy results in the sparsity of the proportion parameter vector
7, which will significantly reduce the number of model parameters especially when K is large.
Example hierarchical structures and the corresponding induced sets of existent attribute profiles

are shown in Figure 1.
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Figure 1: Examples of hierarchical structures of latent attributes. For ¢« = 1,...,4, each A;

represents the induced set of existent attribute profiles under the hierarchical structure above
it, where each row in A; represents an attribute profile a with 7, # 0.

In CDMs, the structural matrix Q = (g;x) € {0,1}7*¥ is an important component which
imposes constraints on items to reflect the dependence between the items and the latent at-
tributes. To be specific, gj, = 1 if item j requires (or depends on) attribute k. Then the jth
row vector of @ denoted by g; describes the full dependence of item j on K latent attributes.
In many applications, the matrix @ is pre-specified by domain experts (George and Robitzsch,
2015; Junker and Sijtsma, 2001; von Davier, 2005) to reflect some scientific assumptions. See
Figure 2 for the illustration of the ()-matrix and the corresponding graphical representation.

As in classical latent class analysis, given a subject’s latent attribute profile a;, the responses

to J items are assumed to be independent, which is known as the local independence assumption,
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Figure 2: Illustration of Q-matrix

and follow Bernoulli distributions with parameters 0, 4, ..., 04, which are called item param-
eters. Specifically, we have 6, := P(R; = 1 | «). Under the local independence assumption,
the probability mass function of a subject’s response vector R = (Ry, ..., R;) € {0,1}7 can be

written as

PR|©,m) = > 7a]]00(1—0a)"". (1)

ac{0,1}¥ Jj=1

So far we have a latent attribute profile a for a subject to indicate the subject’s possession of
K attributes, and a structural vector g for an item to reflect the item’s dependence on K latent
attributes. Moreover, the structural matrix @ puts constraints on item parameters to reflect
the diagnostic model assumptions. One important and common assumption is that the item
parameters 0;, only depends on whether the latent attribute profile a contains the required
attributes by item j, that is, the attributes in the set K; = {k € [K] : ¢; = 1}, which is the set
of the required attributes of item j. Therefore, for item j, the latent attribute profiles which are
only different in the attributes outside of KC; have the same item parameters. In this way, the
structural matrix @ forces some entries in the item parameter matrix © to be the same. The
dependence of item parameters on the required attributes are modeled differently in different

CDMs, as shown in Example 1 and Example 2.

Example 1 (DINA and DINO Models) We first consider the Deterministic Input Noisy
output “And” (DINA) (Junker and Sijtsma, 2001) and the Deterministic Input Noisy output
“Or” (DINO) (Templin and Henson, 2006) models, where there are only two levels of item pa-
rameters for each item. Specifically, we use 9; and 0 to denote the two levels for item j. We
introduce a binary indicator matriz T = (T4 : j € [J],a € {0,1}5) € {0,1}7%2" | which corre-
sponds to the ideal responses under the DINA and DINO models. Under the DINA model, which

assumes a conjunctive “And” relationship among the binary attributes, the indicator matriz is



defined as
K
ro — TLat = I . 2
k kE’Cj
Under the DINO model assuming a conjunctive “Or” relationship among the latent attributes,

we have

The indicator I'; o in the DINA model indicates whether a subject possesses all the required
attributes of item j, while that in the DINO model indicates whether a subject possesses any of
the required attributes of item j. In both models, the item parameters only depend on the set of

the required attributes of an item K;, and the item parameters are defined as:

J J

where 0 is also called the guessing parameter and 1 — HJJF the slipping parameter.

Example 2 (GDINA model) The Generalized DINA model (GDINA, de la Torre, 2011) is
a more general model where all the interactions among the latent attributes are considered. The

item parameters for the GDINA model are written as

K K K K
055”“‘ = Bjo+ Z B ks + Z Z Bik e @ kG + - + B,k H argir (4
k=1 k=1

k=1 k/'=k+1
= Bjo + Z Bj ko + Z Bik oo + -+ + Bix; H Q. (5)
kek; k! €K kAR kek;

The coefficients in the GDINA model can be interpreted as following: B;o is the probability of a
positive response for the most incapable subjects with none required attributes present; B; is the
increase in the probability due to the main effect of latent attribute au; B2, k 1S the change in
the positive probability due to the interaction of all the latent attributes. In the GDINA model,
the intercept and main effects are typically assumed to be nonnegative to satisfy the monotonicity
assumption, while the interactions may take negative values. By incorporating all the interactions

among the required attributes, the GDINA model is one of the most general CDMs.



2.2 CDMs as Restricted Latent Class Models

CDMs in fact can also be viewed as Restricted Latent Class Models (RLCM, Xu, 2017), a
special family of more general Latent Class Models (LCMs). We first give a brief description of
the general model setup of LCMs (Goodman, 1974). In an LCM, we assume that each subject
belongs to one of M latent classes, m = 1,--- , M. For each latent class, we use 7, to denote its
proportion parameter for m € [M]. The latent classes follow a categorical distribution with the
proportion parameter vector w = (m,, : m € [M], 7, > 0,35 M 7, = 1). As in classical finite
mixture models, responses to items are assumed to be independent of each other given the latent
class membership, and we use © = (6;;) € [0,1]”7** to denote the item parameter matrix. To
be specific, for a subject’s response R = (Ry, Ry, ..., Ry), we have §;,, = P(R; = 1 | m). Then

the probability mass function of an LCM can be written as

M J
P(R|O,m) =Y mn [ 051 —0m) " (6)
m=1 7j=1

This unrestricted LCM is saturate in the sense that no constrains are imposed on the latent
classes’ response distributions.

CDMs can be viewed as special cases of LCMs with M = 2K latent classes and additional
constrains imposed on the components’ distributions. Recall that in CDMs with K latent
attributes, each latent attribute profile a is a K-dimensional binary vector and has a proportion
parameter m,. We can use a one to one correspondence from {a : a € {0,1}%} to {m : m =
1,...,25} such as m = Yi o - 281 + 1. Then in a CDM with K latent attributes and
no hierarchical structure, we have M = 2% latent classes. In hierarchical CDMs, the number
of allowed latent attribute profiles is smaller than 2% and we have M = |AJ, as discussed in
Section 2.1. Moreover, in CDMs, there are additional restrictions on the item parameter matrix
® through the @-matrix. Under these restrictions, for each item, certain subsets of item-level
response probabilities will be constrained to be the same. Thus, a CDM with or without any

hierarchical structure can be viewed as a submodel of a saturated LCM.



3 Regularized Estimation Method

3.1 Motivation and Proposed Method

To fit hierarchical CDMs, the @)-matrix, the hierarchical structures among the attributes, the
item-level models, and the number of latent attributes are often needed to be pre-specified by
domain experts, which however can be subjective and inaccurate. An important problem in cog-
nitive diagnosis modeling then becomes how to efficiently and accurately learn these quantities
from noisy observations.

In this section, we propose a unified modeling and inference approach to learn the latent
structures, including the number of latent attributes K, the attribute-attribute hierarchical
structure, the item-attribute )-matrix, and the item-level diagnostic models. In particular,
based on the observation in Section 2.2, we propose to learn a hierarchical CDM with minimal
model assumptions starting with an unrestricted LCM. We use the following discussion and

examples to first illustrate the key idea.

e As discussed in Section 2.1, when there exist hierarchical structures among the latent
attributes, the number of truly existing latent attribute profiles is smaller than 2%. For
example, in Figure 1, when K = 4, the total number of possible attribute profiles without
any hierarchical structure is 2% = 16. Under different hierarchical structures as shown
in Figure 1, the numbers of existing attribute profiles are all smaller than 16. Therefore,
to learn a hierarchical cognitive diagnosis model, we need first select significant latent

attribute profiles that truly exist in the population.

e Furthermore, to reconstruct the (J-matrix and item models in hierarchical cognitive di-
agnosis models, it is also essential to examine the inner structure of the item parameter
matrix. One key challenge here is that under certain model assumptions, there may exist
some equivalent ()-matrices. Here we say two (J-matrices are equivalent under certain
hierarchical structure £, denoted by Q; L Qq, if they give the same item parameter matri-
ces, that is, @(Q1, As) = O(Qq, Ac), where Ag is the induced latent attribute profile set
under hierarchy £. As we introduced in Example 1, for the DINA model, the item param-

eters only depend on the highest interactions among the required latent attributes. For
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such models, we have equivalent ()-matrices under hierarchical structures. For example,

consider three latent attributes with linear hierarchy, that is, £ = {1 — 2= 3}. We have

1 00 1 00 1 00
Q(l) =101 0 £ Q(2) =111 0 £ Q(*) =1]x 1 0], (7)
0 0 1 1 11 * % 1

where “x” can be either 0 or 1. However, when the underlying model is the GDINA model,
since all the interactions among the latent attributes are considered, there would not exist
such equivalent )-matrices. For example, consider the second item of the Q-matrices in (7),
for QW qgl) = (0,1,0) and the corresponding item parameter vector under the GDINA
model is 0&1) = (Bo, Bo, Bo+ P2, Bo+ B2). For QP qu) = (1,1,0) and the corresponding
item parameter vector under the GDINA model is 0&2) = ( Bo, Bo+ P, Bo+ B+ Pa+
P12, Bo+ 1+ P2 + Bi2), which is different from that of QW and thus, the equivalence
no longer holds under the GDINA model. Therefore, to learn the ()-matrix and infer
the item models in hierarchical CDMs, it is also necessary to learn the item parameter
matrix and investigate the inner constraint structure of it. Moreover, after learning the
item parameter matrix, we can get the partial orders among the selected latent classes,
which in turn enable us to recover the latent hierarchies, the ()-matrix and item models.

We leave the details of the reconstruction of these quantites in Section 4.2.

Motivated by the above discussions and the fact that CDMs are a special family of LCMs with
additional restrictions, we propose to start with an unrestricted latent class model and then put
additional regularization terms, to select significant latent classes and learn the item parameter
matrix simultaneously. Specifically, we start with a latent class model with M latent classes,
where M is a large number, serving as an upper bound for the true number of latent classes. If
the true number of latent classes is smaller than M, some of the proportion parameters will be
zeros. Let @ = (my,...,my) be the proportion parameter vector, and © = (6;;,) € (0,1)”*M be
the item parameter matrix of the LCM, with 6; = (0, k = 1,..., M) being the jth item’s item

parameter vector. Then for a response data matrix R = (R;; : i € [N],j € [J]) € {0,1}V*/,
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where N is the sample size, the likelihood can be written as

N M

Ly(m, ©:R) H(Z wkﬂejk (1— 0)' Rw)) (8)

i=1 =1

And the log-likelihood is

In(m,©;R) Zlog(i H 05 (1 — ;) R”)> (9)

We consider the following objective function with two additional penalty terms:
M J
Iv(m, ©;R) — A Y log, T — A2 Y J(8)), (10)
k=1 j=1

where A; and Ay are two nonnegative tuning parameters. The terms logy, m and J (6,) are
two penalties and we discuss them one by one as follows.

The term log, | mx = logmy - ]I(7rk > pN) + log pn - ]I(7r;.C < pN), is a log-type penalty (Gu
and Xu, 2019b) on the proportion parameters, where py is a small threshold to circumvent
the singularity of the log function at zero. Following Gu and Xu (2019b), we can take py to
be a small value, such as N~ for some d > 1. The log penalty is imposed on the proportion
parameters, which forces small values in the proportion parameters to be zero. This log-type
penalty also makes computation efficient in the E-step, as shown in our EM algorithm in Section
4.1. We can also interpret this log penalty from a Bayesian perspective, where we use a Dirichlet
prior with parameter 1 — A; for the proportions. When 1 — A\; < 0, it’s not a proper Dirichlet
distribution. But allowing 1 — A; < 0 would help us select significant proportion parameters
more efficiently compared to the traditional proper Dirichlet priors. As shown in Figure 3, when
A1 < 1, the density concentrates more in the interior of the parameter space, while with A\; > 1
the density concentrates more on the boundary encouraging sparsity of the proportion parameter
vector. Therefore, it is essential to allow A; to be nonnegative and even larger than 1 for the
purpose of selecting the significant latent classes.

The penalty J(0;) is enforced on the item parameters for different latent classes item-wisely,
which aims to learn the inner structure of the item parameter matrix. In particular, as discussed

in Section 2.1, due to the restrictions of the ()-matrix and item model assumptions, for each
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density

Figure 3: (a): probability density function of 3-dimensional Dirichlet distribution with param-
eters all equal to 1 — A; = 1; (b): (improper) probability density function of 3-dimensional
Dirichlet distribution with parameters all equal to 1 — A1 = —0.9.

item, some subset of latent attribute profiles have the same item parameters; and such constraint
structure of the item parameter matrix can be used to further estimate the hierarchical structure
and Q-matrix. Therefore, in order to learn the set of latent classes that share the same item
parameters we put the penalty function J(-) on the differences among the item parameters for
each item. A popular choice for shrinkage estimation is the Lasso penalty, which however is
known to produce biased estimation results. To overcome this issue, we propose to use the

grouped truncated Lasso penalty (Shen et al., 2012),

J-(6;) = Y TLP(|6; — 0l 7),
1<k<I<M
where TLP(z;7) = min(|z|,7), and 7 here is a positive tuning parameter. Figure 4(a) provides
an example for the TLP with 7 = 1. Moreover, since we only focus on the item parameters for

significant latent classes, we use

Trpn(0;) = Y TLP(|f — 6;1];7).
1<k<I<M,
T >PN,TE>PN

A key feature for the truncated Lasso penalty is that it can be regarded as L penalty for a small
|z| < 7, while it does not put further penalization for a large |z| > 7. In this way, it corrects the
Lasso bias through adaptive shrinkage combining with thresholding. It discriminates small from

large differences through thresholding and consequently is capable of handling low-resolution
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difference through tuning 7.

s In Chen et al. (2017), the authors used the Smoothly Clipped Absolute Deviation (SCAD)
penalty (Fan and Li, 2001), which can also be used to merge similar item parameters. The
SCAD penalty is similar to the TLP, while there is a quadratic spline function between the
Ly penalty for small values and the constant penalty for large values. Specifically, the SCAD

penalty is expressed as below

e

Azl if x| < A,
PSCAD (1) = _<%) if A <z < ah,
(a+21))\2 if |x| > a.
\

Figure 4(c) plots the SCAD penalty with A = 0.5 and a = 2. Here, we want to mention
several additional advantages for using the truncated Lasso penalty. First, it performs the model
selection task of the Ly function by providing a computationally efficient surrogate. When 7
is sufficiently small, the truncated Lasso penalty has a good approximation to the Ly penalty.
Moreover, although it is not a convex function, it is piecewise linear and can be decomposed into
a difference of two convex functions as illustrated in Figure 4(a) and Figure 4(b), which allows
us to use Difference Convex (DC) programming (Tuy, 1995), gaining computational advantages.

TLP also has nice likelihood oracle properties studied in previous literatures (Shen et al., 2012).

g el . EE)
" J,x:1)
16 o
"
0s
1

(a) (b) (c)

Figure 4: (a): truncated Lasso function TLP(z;7) with 7 = 1; (b): the DC decomposition into
a difference of two convex functions Ji(z) and Jy(x;1); (¢): SCAD penalty with A = 0.5 and
a=2.

Remark 1 Our approach shares some similarities with the regqularized LCM approach in Chen

et al. (2017) that both use exploratory LCM to estimate the latent structures. However, in
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Chen et al. (2017), the number of latent classes is pre-specified or selected in a way that all the
possible values should be considered. This could require significantly more computational efforts
when the number of latent attributes K is large since there will be 25 possible latent classes. For
instance K = 10 would lead to 2% = 1024 possible candidate M values. On the contrary, in
our method, we only need an upper bound for the number of latent classes, and our model would
perform the selection of significant latent classes more efficiently through the added log penalty.
Moreover, we also develop in Section 4 a novel estimation algorithm to recover the number of
latent attributes, the hierarchical structures among the attributes, and the QQ-matrix, based on

the proposed reqularization estimation results.

Remark 2 In Wang and Lu (2021), the authors also studied the latent variable selection ap-
proach, which, however, required a pre-specified number of latent attributes and a known identity
sub-matriz in the Q-matriz. Moreover, a hard cutoff for proportion parameters was used to
select significant latent classes. For example, they chose 0.05 as the cutoff when K = 3 and
0.025 when K = 4. This hard cutoff in fact plays a decisive role in determining the significant
latent classes. However, there is neither a systematical way nor theoretical guarantee to select

this cutoff, making it less practical in real applications.

3.2 Theoretical Proporties

In this section, we present statistical properties of the regularized estimator obtained from (10).
We first present some identifiability results of hierarchical cognitive diagnosis model from Gu
and Xu (2019b). Then we will show that, under suitable conditions, the regularized estimator
is consistent for model selection. In the following, for two vectors a and b of dimension n, we
saya <bifa; <bfori=1,....n,anda>=bifa; >b;fori=1,...,n.

The identifiability of the model parameters depends on the restrictions of the item parameter
matrix. To characterize the identifiability conditions, we introduce an indicator matrix of most
capable classes as T' := (I{0;,, = max,yepn Oim},j € [J],m € [M]) € {0,1}7*M indicating
whether the latent classes possess the highest level of each item’s parameters. Let I'.,, denote
the mth column vector of the I' matrix. Based on the indicator matrix, we can define a partial
order among latent classes. For 1 < m; # my < M, we say latent class m, is of a larger order

than latent class mqo under I' if T'. ,,,, = T ,,,,. See Figure 5 for an illustrative example, where
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we use a Directed Acyclic Graph (DAG) to represent partial orders, where I'. ,,,, points to I'. ,,,,
I, T,

o= (0202 08), r=[001) )
02 0.2 0.8 0 01

Figure 5: Indicator matrix and partial orders

As in Gu and Xu (2019b), for CDMs, we define the indicator matrix for a set of latent
attribute profiles A as T := (I{0;o = maxaeabja} : j € [J], a € A) € {0,1}/*. Note
that if we take the set of latent classes as the set of attribute profiles, the indicator matrix of
an LCM is equivalent to that of a CDM. Similarly, we define the proportion parameter vector
and item parameter matrix for a set of latent attribute profiles A as w4 = (7ra D€ A) and
O4 = (0ja: j€|J], a€A). Following Gu and Xu (2019b), for any subset of items S C [J],
we define a partial order among the latent attribute profiles. For a,a’ € A, we say a =g o’
under TA if I‘}‘}a > F;‘}a, for j € S. And for two item sets Sy and Sy, we say “>=g,=rg,” if for
any o, @’ € A, we have a >=g, o' if and only if a =g, @’. Note that if we take the item set
to be the set of all items, the definitions of indicator matrix and partial orders are the same as
those in Section 3.1. For a subset of items S C [J] and a set of attribute profiles A, we define
the corresponding indicator matrix I'®> 4 = (T4 : j €5, a € A).

We first state the definition of strict identifiability for latent hierarchy and model parameters.

Definition 1 (strict identifiability, Gu and Xu (2019b))

Consider a CDM with a hierarchy & and the induced latent attribute profile set Ag. Ay is said
to be (strictly) identifiable if for any indicator matriz T4 of size J x |A| with |A| < |A|, any
proportion parameter vector ™ and any valid item parameter matrizc @4 respecting constraints

given by T4, the following equality
P(R| x4, 04 =P(R | ™, %) (11)

implies A = Ag. Moreover, if (11) implies (ﬂ'A,@A) = (77“40,@“40), then we say the model

parameters (w40, ©4°) are (strictly) identifiable.
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The following theorem provides sufficient conditions for strict identifiability of latent hierar-

chies and model parameters.

Theorem 1 (strict identifiability, Gu and Xu (2019b))
Consider a CDM with a hierarchy & . The hierarchy is identifiable if the following conditions of

the indicator matriz T corresponding to the induced latent attribute profile set Ay are satisfied:

(1) There ezist two disjoint item sets Sy and Sy, such that 'S A has distinct column vectors

fori=1,2 and “»g, "=“~g,” under T4,

(2) For any o, € Ay where o' =5, a under T4 for i = 1 or 2, there exists some j €

(Sl U SQ)C such that ng #* ng,.

(3) Any column vector of T4 is different from any column vector of T4, where A5 = {0, 1}

Ay.

Moreover, under Conditions (1) - (3), the model parameters (w40, ©4°) associated with Ay are

also identifiable.

Theorem 1 provides conditions for strict identifiability of hierarchical structures and model
parameters. The strict identifiability can be relaxed to generic identifiability, where the hierarchy
and model parameters can be identified expect for a zero measure set. The definition of generic

identifiability is defined below.

Definition 2 (generic identifiability, Gu and Xu (2019b))

Consider a CDM with a hierarchy & and the induced latent attribute profile set Ay. Denote
the parameter space of (w40, @A) constrained by T4 by Q. We say Ay is generically iden-
tifiable, if there exists a subset V C €2 that has a Lebesque measure zero, such that for any
(who, @) € O\ V, Equation (11) implies A = Ay. Moreover, for any (w40, @%4) € Q\ V,
if (11) implies (71'“47 @A) = (71'“40, @AO), then we say (71'“40, @AO) are generically identifiable.

The next theorem presents the generic identifiability results of latent hierarchies and model

parameters.

Theorem 2 (generic identifiability, Gu and Xu (2019b)) Consider a CDM with a hier-
archy & . The hierarchy is generically identifiable, if the following conditions of the indicator

matriz T4 corresponding to the induced latent attribute profile set Ay are satisfied:
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(A) There ezist two disjoint item sets Sy and So, such that altering some entries from 0 to 1
in TS1U52 A0) yields g TE1YS2 A0) satisfying that TO» 40 has distinct column vectors for

i=1,2 and “=g,"=“=g,” under T4,

(B) For any o, € Ay where o =g, a under T4° for i = 1 or 2, there exists some j €

(51 U SQ)C such that f‘fg #+ f;‘g/

(C) Any column vector of T4 is different from any column vector of T46, where A5 = {0, 1}5\

Ap.

Moreover, under conditions (A) - (C), the model parameters (w40, @A) associated with Ay are

also generically identifiable.

Theorem 2 establishes generic identifiability conditions where the hierarchical structure and
model parameters can be identified except for a zero measure set of parameters. To establish

consistency results, we need to make the following assumption.

Assumption 1 [Iy(7*, O*)—In (70, (;)0)} /N = O,(N~9), for some1/2 < § < 1, where (7*, ©*)
is the mazimum likelihood estimator (MLE) directly obtained from (9), and (7o, @) is the Oracle
MLE obtained under the condition that the number of latent attributes, the hierarchical structure,

the QQ-matriz and item-level diagnostic models are known.

When § = 1, Assumption 1 corresponds to the usual root-N convergence rate of the estimators,
while 1/2 < § < 1 corresponds to a slower convergence rate. Here we make a general assumption
to cover different situations. In Gu and Xu (2019b), the authors made a similar assumption about
the convergence rate of the likelihood.

We use (7% ©°) to denote the true model parameter and M, := |Ay| to denote the true
number of latent classes, where Aj is the reduced latent attribute profile set under the true
hierarchical structure &,. For (ﬁ',é)) obtained from optimizing (10), we define the selected
latent classes as {m : 7, > py, m € [M]}, and the number of selected latent classes M :=
|{m : #n > py, m € [M]}|. For the true item parameter matrix ©°, we defined the set
SO = {(j, k1 k) = 09, = 09,1 < k1 < ky < Mp,1 < j < J} to indicate the constraint
structure of the item parameter matrix. Similarly, for (7, é), we define S = {( Jy k1, k2) éj,kl =

éj,lm, 1 <k < ky <M, Tty > pN, Tgy > pN}. We say S ~ SO if there exists a column
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permutation o of © such that S, = S°. Given the above assumptions, we have the following

consistency results.

Theorem 3 (consistency) Suppose the identifiability conditions in Theorem 1 are satisfied
and Assumption 1 holds. For A\, Xy, T and py satisfying N'*7|log pn|™' = o(A\1), A1 =
o(N|log px|™1) and Aot = o(A|log py|), we can select the true number of latent classes consis-
tently, that is,

IP’(M # My) — 0, as N — oo. (12)

Moreover, the estimated parameter (7, 0) is also consistent of (7%, @°). If we further assume
A = o(NY2), Ao = o(NY?), \yN~Y2 — 00 and TNY? — oo, up to a column permutation, the

identical item parameter pair set S° is also consistently estimated,
P(S = S%) =0, as N — oo. (13)

Theorem 3 implies that with suitable choices of hyperparameters, we can correctly select the
number of latent classes and learn the inner structure of the item parameter matrix consistently
as sample size N goes to infinity. For example, we can take py ~ N~ for some d > 1,
AL~ N%_El, Ao ~ Nzt and 7 ~ N~=% for some small positive constants €, €5, €3 satisfying that
0<e<0—1/2, 0 < ey <e3<1/2and e3 — €3 > €. Moreover, if the conditions in Theorem 2
are satisfied, we can consistently estimate the true number of latent classes and inner structure
of the item parameter matrix except for a zero measure set of model parameters. In practice, we
can use information criteria, such as the Bayesian Information Criterion (BIC, Schwarz, 1978),
to help select the tuning parameters, which will be further discussed in Section 4.1. The proof
of the theorem is presented in the supplementary material.

Based on the learned latent classes and estimated item parameter matrix, we develop a latent
structure recovery algorithm outlined in Algorithm 2 in Section 4. Specifically, we recover the
number of latent attributes, the latent hierarchies, and the ()-matrix based on the partial orders
among the selected latent classes. Under the identifiability conditions, due to the consistency of
the item parameter estimator © and the inner structure S established, we can also consistently
recover the partial orders among the latent classes, which ultimately leads to the consistency

of the estimated number of latent attributes, the hierarchical structures and the @-matrix. For
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algorithm details, please see Section 4.

4 Learning Algorithms

4.1 Penalized EM Algorithm

In this section, we develop an efficient EM algorithm for the proposed model. For an LCM, the

complete data log-likelihood function can be written as

N M
i=1 k=1

where ¢(R;; 6;) = H;] 1(9Jk”(1 —01)' "% and z € {0,1}V*M is the latent variable in which

2y indicates whether the ith subject belongs to the kth latent class. Then in an EM algo-

rithm without additional penalty, we maximize the following objective function at the (c+ 1)th

iteration: N u
© @0©) — (c) .
max Q(m,0 | w9 60'9) Zl ; sir. (log mi + log i (Ri; 01)), (15)
where © ©
(c) Tk @k(ngC)

Sir = Er @z = 1| R] = © ~
Zk/ T gpk, (R 0( ))

With the additional penalty terms in (10), the new objective function denoted as G(m,® |

7w, ©) becomes:

: 0 @l 1 c
I"{_l’lélG(ﬁ,@|7T(),@()):—NQ(7T,®|7T ,0) +AlzlogpN]7rk+)\2;JTpN ), (16)

where \; = A1/N and Ay = Ao/N.

As we mentioned in Section 3.1, the truncated Lasso penalty can be decomposed into a
difference of two convex functions. Therefore we can utilize DC programming (Tuy, 1995) to
optimize G. Moreover, we also exploit the Alternating Direction Method of Multipliers (ADMM,
Boyd et al., 2011) method to facilitate solving the problem. There are several advantages
of using ADMM to perform optimization here. Updating the parameters in an alternating or

sequential fashion takes advantage of the decomposability of dual ascent, while using the method
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of multipliers enables superior convergence properties (Boyd et al., 2011). In practice, we also

observe that the ADMM algorithm converges within a few tens of iterations in our simulation

and real data studies. The algorithm is summarized in Algorithm 1 and the derivations of the

algorithm is presented in the supplementary material.

Algorithm 1: PEM: Penalized EM with log-penalty and truncated Lasso penalty

Data: Binary response matrix R =
Set hyperparameters A\, Ao, 7,y and p.

(Ri,j)NxJ‘

Set an upper bound for the number of latent classes M.
Initialize parameters 7, ©, and the conditional expectations s.

while not converged do
In the (¢ + 1)th iteration,

for (i,k) € [N] x [M] do
(c+1) _ 7ok (Ris0)
L zfr,i?)som 6,5)’

for k € [M] andﬂk > p do

c+1
Aot _ R s N-A
k 1-MX\

A(c+1)
d(c+1) (0]]{2
Jkl ST(9 (c+1)

~(c+1) A( (c+1)
jkl Jkl + d]kl

(;utput: {7”1', E:), .§}

where SD<RM ek) H;] 1 0]]6”(

Y log(ejk) —

where ST(x;v) = (Jz| —

— i) T

SN s~ Ry)
N

log(l — ij)

H(c) ~(c)\2
(O —0;) + :ujkl)

for (j,k) € [J] x [M] and '™ > p do
N o J©Op
015 = argmin{ ~ iz Sie iy
i ar%gun N
L
Z Jkl
>k
'7
Z Jlk
I<k

(6 NEY
(05 —0) + :ujllc) }

forje[J,1<k<I<M and 7™ > p, 7 > p do

. ﬂ]kz) (|d]kl| > 7')

H(CH) - :u]kl?>‘ /v) - 1(| Aﬁ)ﬂ <7),
v)+x/|z|.
(ej(erl) . 6](‘?+1))

We want to note that our algorithm can naturally handle missing values. If R =

(Robsa Rmiss)

is the decomposition of the full data matrix into the observed part R..s and the missing part

Rmiss, then after marginalization over the missing values, the initial likelihood I(R; 7, ®) is
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simplified to I(Reps; 7w, ®). Then a natural implementation could be based on indexing the
inference procedure so that the posterior conditionals only involve sums over the observed values.
The detailed Penalized EM algorithm with missing values is summarized in the supplementary
material.

To address the computational bottleneck when faced with large scale datasets, we can also
use a stochastic version of the aforementioned EM algorithm. In each iteration, we randomly
subsample a subset S, of rows (subjects), and a subset S, of columns (items). Then update the
conditional expectation sz(»c) for i € S, with items in S.. Updates in M-step remain the same,
which will give us an intermediate model parameter (7(+1/2 @(¢+1/2)) Then we use a weighted
average of (709, 0©) and (7(=t1/2 @(+1/2)) to update the model parameters. Appropriate
weights will provably lead to convergence to a local optimum (Delyon et al., 1999).

In terms of hyperparameter tuning, we use BIC defined as below:

J
BIC(w, ©) = —2y(m,©) +log N (M,, — 1+ ) dim(6;)) (17)
j=1
where Iy is the log-likelihood, M,, = |{m : 7, > py,m € [M]}| is the selected number of

latent classes, and dim(6;) is the number of distinct values in the set {6, ,, : m, > pn, m € [M]},
that is, the number of distinct item parameters for item j corresponding to the selected latent
classes. Our simulation results in Section 5 show that BIC performed well. We can also use other
selection criteria such as EBIC (Chen and Chen, 2008) when the number of latent attributes
K is large. From the matrix completion perspective, we may also perform cross validation to

choose tuning parameters.

4.2 Recover Latent Hierarchies and ()-matrix

Once we fit the model and get the estimates of the model parameters including the number of
significant latent classes M , proportion parameters 7t and item parameter matrix (;), our next
goal is to recover the number of latent attributes, the latent hierarchical structure, the Q)-matrix

and item models.
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To this end, we develop an algorithm based on the indicator matrix

r.— (H{éj,m = lrg[%éj,l}; jel[J], me [M]) e {0,1}7M

indicating whether a latent class possesses the highest level of an item’s parameters. One common
assumption in CDMs is that more capable subjects have higher item parameters and thus larger
indicator vectors, that is, I'. o, = I'. o+, if & = a*. Based on this assumption, we can get partial
orders among the latent classes. Then we can find the smallest integer K such that some binary
representations with K digits satisfy these partial orders, and the binary representations can
be treated as the learned latent attribute profiles. With these reconstructed latent attribute
profiles, we can subsequently recover the hierarchical structures among the latent attributes and
the Q-matrix.

Specifically, based on the indicator matrix, we get the partial orders among the latent classes.
We use a matrix P € {0, 1}M <N g, represent the partial orders, where P,,, ,,, = 1 indicates that
I, XTI, Since we only want to include direct partial orders, for any (my,ms) such that
(P

since my here is an intermediate latent class between m; and mgs, we will not include the partial

g 0, we set Py, m, = 0. For example, if . ,,, <T.,,, T, XTI ,,andI.,, ST ..,
order I'. ,,,, X T, in P. From P, we can get a partial order set {m; — ma : Py m, = 1},
based on which a DAG can be plotted, where I'.,,,, points to I'. ,,,, if I". ,,, < T ,,,. One can
see the partial order matrix P in fact is the adjacency matrix of the DAG. An example of the
indicator matrix, the partial order matrix and the corresponding DAG is shown in Figure 6. In
a DAG, we call a node at the start of an arrow as a parent node, and a node at the end of an
arrow as a child node. Note that since we always include the most basic attribute profile with
all attributes being 0 and the most capable attribute profile with all attributes being 1, and any
other latent attribute profile will lie between them, there is always a path passing each latent
attribute profile from the most basic one to the most capable one.

o1, pofoor). CoCTy
0 1 000

I =

o O O

Figure 6: Indicator matrix, partial order matrix and corresponding DAG

After we plot the DAG, we then recover the binary representations of the latent classes. We
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start from the most basic one and move forward layer by layer. Specifically, when we construct

binary representations, we can find its parent nodes, and follow two rules below:

e If the node has only one parent node, then we need to add a dimension in the binary

representations.

e [f the node has several parent nodes, then we set the binary representation of the node to

be the union of all of its parent nodes.

We use examples in Figure 7 and Figure 8 to illustrate the procedures of recovering binary
representations. In the upper plot of Figure 7, I'. 5 only has one parent node I'. ;, then we need
to add a dimension in the binary representations. In the middle plot of Figure 7, I'. 3 has two
parent nodes I'.; and I'. 5. Since there is no partial order between I'. ; and I'. 5, then there are at
least two dimensions in which I'.; and I'. » have different values. Then we should set I'. 3 to be
the union of I'.; and I'. 5, which will be larger than I'.; and I'. ;. A more general case is shown
in the lower plot of Figure 7. In Figure 8, we provide a more complicated example. Since I'. 5
only has one parent node I'. ;, we need one binary digit for I". , and set I".; = (0) and I'. o = (1).
Since I'. 3 and I'. 4 also have only one parent node, we need two additional dimensions, and set
I's =(1,1,0) and I"., = (1,0,1). Next because I'. 5 has two parent nodes I'. 3 and I'. 4, we set
I's = (1,1,1). Lastly since I'. g has one parent node I'. 5, we need one more dimension and
set I''¢ = (1,1,1,1). Therefore, in total we have four latent attributes and the reconstruction
process is highlighted in blue in Figure 8. We want to point out that when we recover the
latent structures using Algorithm 2, we choose the smallest K such that the corresponding
binary representations of the latent classes satisfy the partial orders. A larger value of K is
possible and may not be unique, but here we use the smallest one to make the latent structure
concise. Moreover, researchers can also use their domain knowledge to help specify these binary
representations.

After we reconstruct binary representations of the latent classes, we can infer the attribute
hierarchy accordingly. Specifically, we can get partial orders among latent attributes. For
the example in Figure 8, our reconstructed latent attribute profile matrix A is shown in Fig-
ure 9, where rows of A are the binary representations of the latent classes. We can see that
A, = A for all k£ € [K], which indicates that the first latent attribute is the most basic

one and the prerequisite for all the other latent attributes. Moreover, the fourth attribute

24



Partial Orders Binary Representations

Figure 7: Examples of binary representations from partial orders

Partial Orders Binary Representations

@ (0, 0, 0, 0)

o) (1, o,lo, 0)

/\
€.q] . (1, %0, 0) (1, 0™1, 0)

(1,1,1,0)

(1, 1,l1, 1)

Figure 8: A more complicated example of binary representations from partial orders

is 1 only if all the other attributes are 1, indicating that the fourth attribute is the highest
and requires all the other attributes as prerequisites. Formally, we can use & = {k — [ :
attribute k is a prerequisite for attribute [} introduced in Section 2.1 to denote the prerequisite
relationship set, where & — [ if A, = A.;. For latent attribute profile matrix A4 in Figure 9, we

have E ={1 -2, 1 -3, 2 =4, 3 — 4}. We can also plot a DAG according to the prerequisite
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relationship set £ as shown in the right plot of Figure 9.

Latent Attribute Profile Matrix Attribute Hierarchy
0000
1 000
1 100
A= 1 010
11 10
11 11

Figure 9: Latent attribute profile matrix and attribute hierarchy; rows of A are the binary
representations of the select latent classes in Figure 8.

Finally we need to reconstruct the ()-matrix, which can be done by comparing the indicator
matrix I and the reconstructed latent attribute profile A. Specifically, since capable subjects
have the same highest item parameters, for each item, the row in the )-matrix will equal to the
smallest latent attribute profile such that the corresponding indicator is 1. To be more formal,

let g; be the jth row of the Q-matrix, we have

g; = A, such that I';,,, = 1 and for any m’ with ',y = 1, A,,. < Ay, for j=1,...,J,

where A, . denotes the mth row vector of the latent attribute profile matrix A4, i.e., the binary

representation of the mth latent class in I'. The procedures are summarized in Algorithm 2.

5 Simulation Studies

In this section, we conducted comprehensive simulation studies under various settings to evaluate
the performance of the proposed method.

For the underlying models, we considered three settings. In the first setting, all the items
conformed to the DINA model. In the second setting, half of the items were from the DINA
model and the others followed the DINO model. In the third setting, we considered the GDINA
model as the underlying data generating model. To satisfy identifiability conditions (Gu and
Xu, 2019b,c; Xu and Zhang, 2016), in the DINA setting, the @-matrix contained two identity
sub-matrices and the remaining items were randomly generated. In the DINA + DINO setting,

the @-matrix contained an identity sub-matrix for each type of the models and the remains

26



Algorithm 2: Recover Latent Attribute Profiles, Hierarchical Structure and @-matrix
Input : Item parameter Matrix ©
Step 1 : Construct the indicator matrix I' = (]I{ijm = MaX;e[um] 9j7l}).
Step 2 : Construct P based on the partial orders among the columns of T';
plot a DAG based on P.
Step 3 : Reconstruct binary representations and get latent attribute profile set A:
for node from top to bottom do

if the node has only one parent node then
| add a dimension in the binary representations

if the node has more than one parent node then
| set the binary representation to be the union of all of its parent nodes

Step 4 : Construct prerequisite relationship set £ and thus recover latent hierarchy.
Step 5 : Reconstruct the Q-matrix Q = (qj);']:f

q; = A, such that T, = 1 and for any m’ with I'; ., =1, A4, < Ay, for j=1,...,.J

Output: Latent attribute profile set A, prerequisite relationship set £ and the
@-matrix Q.

were randomly generated. For the GDINA setting, we had two identity sub-matrices, and the
remaining items were randomly generated and required at most 3 latent attributes.

We considered four hierarchical structures shown in Figure 1 with K = 4. The test length was
set to 30 (J = 30). For the DINA and DINA + DINO settings, we considered two sample sizes
with N = 500 or 1000. Two different signal strengths for true item parameters were included:
{67 =09, 6; =0.1; j € [J]} and {#] = 0.8, 6; = 0.2; j € [J]}. For the GDINA setting,
we considered two different sample sizes, N = 1000 or 2000. The sample sizes considered in
the GDINA settings are relatively larger than those for the DINA and DINA + DINO settings,
since in the GDINA model there are more item parameters to be estimated. As before, we set
two different signal strengths, where the highest item parameter was 0.9 or 0.8, and the lowest
item parameters was 0.1 or 0.2. The other item parameters in between were equally spaced. For
each scenario, we performed 50 independent repetitions. All model parameters were randomly
initialized and the implementations were done in Matlab.

To tune hyperparameters for the proposed method, we used a two-stage training strategy.
In the first training stage, we primarily tuned A1 and Xy to select significant latent classes, and
used a fixed relatively large 7. In the second stage, we did not put penalty on the proportion

parameters (i.e. A1 was set to 0), and fine-tuned Xy and 7 for the TLP penalty term to further
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merge identical item parameters. Specifically, in the first stage, the candidates for Ay were set to
relatively small and the value of the threshold 7 was set to relatively large. In this work, we chose
7 = 0.3 and selected \; € {0.01,0.015,...,0.05} and X, € {0.001,0.005,0.01,0.015}. The reason
to use a small penalty coefficient and a relatively large threshold for the TLP penalty during the
first training stage is that we mainly aim to select the correct number of latent classes instead
of learning identical item parameters. A small TLP penalty would facilitate the shrinkage of
the proportion parameters, while a large TLP penalty would merge the latent classes too fast.
After we selected the significant latent classes from the first stage, we next moved to the second
stage where we used a larger A and a smaller threshold 7 for the TLP penalty to further merge
identical item parameters. Specifically, the penalty for the proportion parameters \; was set to 0,
and we selected log(S\g) € {—1,0,1,2,3} and 7 € {0.03,0.05,0.1}. For the v parameter, similarly
to Wu et al. (2016a), we used a fixed « for simplicity with v = 0.02. If computation allows,
we could also tune for v or adaptively select it in each iteration (Wang and Liao, 2001). The
candidate sets of all the other tuning parameters were the same across the simulation settings.
In total there were 480 possible combinations of tuning parameters, while using the two-stage
training procedure, the number of combinations was reduced to around 50. On average, the
computation time in our simulation study was less than 2.0 seconds per repetition per set of
hyper-parameters. We can also try larger candidate sets for these hyperparameters, but our
simulation results below showed that the aforementioned candidate sets were enough to provide
good results.

Following Chen et al. (2017) and Wang and Lu (2021), we also fitted the regularized LCMs
under the same settings for comparison. For the regularized LCM method, the number of
latent classes and the coefficient for the penalty term need to be selected according to some
information criteria. As suggested in Chen et al. (2017), we used GICy to select these tuning
parameters in regularized LCMs. In our simulation, for the number of latent classes, we chose
M € {My—2,My— 1, My, My + 1, My + 2}, where M, is the true number of latent classes.
We also conducted a sensitivity analysis to investigate the impacts of different specifications
of the upper bound M on our algorithm. The results show that our method is robust to the
choice of different M. The detailed results of the sensitivity analysis are included in Section 4 of
Supplementary Material. For the penalty term, we selected A € {0.01,0.02,...,0.1} as in Wang
and Lu (2021).
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We inspect the results from different aspects. Firstly we examine the accuracy of selecting
the number of latent classes M, which is denoted as ACC(M ). Based on the learned item
parameters, we reconstruct the indicator matrix I' = (I{0; = max;cyy, 0,}) € {0,1}7xM
and the corresponding partial order matrix P. It’s worth noting that when we extract the
partial orders among the latent classes, a single misspecification of the elements in the indicator
matrix may lead to different ordering results, making the method of directly estimating the
partial orders not robust. Based on this observation, we shall allow for certain tolerance on the
estimation errors of the indicator matrix when reconstructing the partial orders. In particular,
we relax the construction condition of the partial order such that we regard I'., = I' ;, if
[;x > I';; except for a small proportion ¢t of j € [J]. In our simulation, we used t = 5% when
the noise was small, and ¢ = 10% when the noise was large. Another issue to note here is that
directly comparing two indicator matrices is not straightforward due to the label switching. To
address this issue, we apply the Hungarian algorithm (Kuhn, 1955) to find the best match of
the columns of the estimated indicator matrix and the true indicator matrix, based on which
the following comparisons can be made accordingly. We use Acc(]f’) to denote the accuracy of
reconstruction of the partial orders. If all the partial orders among the columns of the indicator
matrix are correctly recovered, then we will successfully reconstruct the binary latent pattern
representations and accordingly the hierarchical structures among the latent attributes. We use
Acc(fj ) to denote the recovery rate of the hierarchical structure. Here we count it a success only
if the entire hierarchical structure is recovered. If the number of latent classes is successfully
selected, we also compute the mean squared error of the item parameters MSE(@) Finally,
if the hierarchical structure is correctly recovered, we compute the accuracy of the estimated
Q-matrix, denoted by ACC(Q). In summary, we have five evaluation metrics : ACC(M ), ACC(P),
Acc(€), MSE(®) and Acc(Q).

The simulation results of the DINA, and DINA + DINO settings are presented in Table 1
and Table 2. The results of the GDINA model are shown in Table 3. The simulations show
that compared with the regularized LCM approach, our method provided much better results
in almost all the settings and from all the evaluation aspects. In many settings, the proposed
method could achieve nearly perfect selection of the number of latent classes, reconstruction of

the partial orders and hierarchies, and the estimation of the ()-matrix, especially when the noise

was small or there was sufficiently large data size. Among the four hierarchical structures, the
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~ A ~ A

Hierarchy | N | r Method Acc(M) | Ace(P) | Acc(€) | MSE(O) | Ace(Q)
Proposed 1 1 1 0.0004 0.99
0.1 1 regularized LOM | 0.72 0.71 0.60 | 0.0006 | 0.96
500 Proposed 0.68 0.68 0.66 | 0.0012 | 0.95
0.2 | regularized LOM |  0.42 0.42 042 | 0.0012 | 0.99
Linear Proposed 1 1 1 0.0002 1
0.1 1 regularized LOM | 0.80 0.80 0.80 | 0.0013 | 0.99
1000 Proposed 0.96 0.96 0.96 | 0.0004 | 0.99
0.2 | regularized LCM | 0.54 0.53 052 | 0.0025 | 0.99
Proposed 1 1 0.98 | 0.0005 | 0.99
0.1 1 regularized LOM | 0.62 0.61 048 | 0.0013 | 0.96
500 Proposed 0.56 0.56 050 | 0.0014 | 0.93
0.2 | regularized LCM | 0.20 0.18 0.08 | 00245 | 0.93
Convergent 01 Prgposed 1 1 1 0.0002 1
+ | regularized LCM 0.48 0.48 0.40 0.0003 0.98
1000 Proposed 0.84 0.84 0.84 | 0.0005 | 0.98
0.2 | regularized LCM |  0.38 0.37 0.34 | 0.0062 | 0.98
Proposed 1 1 0.97 0.0005 0.97
0.1 | regularized LCM | 0.44 0.43 0.28 | 0.0047 | 0.93
500 Proposed 0.48 047 | 0.34 | 0.0016 | 0.88
0.2 | regularized LOM |  0.22 0.20 0.08 | 0.0194 | 0.95
Divergent Proposed 0.98 0.98 0.98 | 0.0002 1
0.1 | regularized LOM |  0.48 0.48 044 | 0.0003 | 0.97
1000 Proposed 0.86 0.86 0.80 | 0.0006 | 0.96
0.2 | regularized LOM | 0.26 0.25 0.20 | 0.0108 | 0.97
Proposed 0.82 0.82 0.66 0.0006 0.93
0.1 1 regularized LOM | 0.22 0.21 0.10 | 0.0103 | 0.90
500 Proposed 0.06 0.06 0.02 | 0.0031 | 0.90
0.2 | regularized LCM | 0.14 0.13 0.04 | 00126 | 0.87
Unstructured o Proposed 0.92 0.92 0.92 | 0.0002 | 0.99
1| regularized LCM | 0.36 0.35 0.18 | 0.0074 | 0.98
1000 Proposed 0.48 0.48 0.48 0.0006 0.94
0.2 | regularized LCM |  0.28 0.26 0.14 | 00124 | 093

Table 1: DINA Results; Acc(M), Ace(P) and Acc(€) are calculated for all the cases; MSE(®)

~

is calculated for the cases when the number of latent classes are correctly selected; Acc(Q) is
calculated for the cases when the hierarchical structure is successfully recovered.

unstructured hierarchy was the most difficult one, especially when the noise was large but the
sample size was relatively small. This is expected since under the unstructured hierarchy, there
are 9 latent classes, and the hierarchical structure is more complicated compared with the others.
However, with increasing sample sizes, the proposed method also provided satisfactory results,

while the regularized LCM approach did not. In terms of the underlying data generating model,

30



~ A ~ A

Hierarchy | N | r Method Acc(M) | Ace(P) | Acc(€) | MSE(O) | Ace(Q)

Proposed 1 1 1 0.0004 0.99
0.1 1 regularized LOM | 0.96 0.93 0.68 | 0.0006 | 0.96
500 Proposed 0.98 0.98 0.06 | 0.0010 | 0.94
0.2 | regularized LCM | 0.72 0.72 0.70 | 0.0013 | 0.97
Linear 01 Prgposed 1 1 1 0.0002 1
1| regularized LCM | 0.96 0.96 0.94 | 0.0002 | 0.98
1000 Proposed 1 1 1 0.0004 0.99
0.2 | regularized LCM | 0.78 0.78 0.78 | 0.0004 | 0.99
Proposed 1 1 0.86 0.0004 0.98
0.1 | regularized LCM |  0.88 0.84 052 | 0.0012 | 0.93
500 Proposed 0.96 0.94 0.76 | 0.0013 | 0.89
0.2 | regularized LOM | 0.60 0.60 054 | 0.0017 | 0.92
Convergent o Proposed 1 1 1 0.0002 1
+ | regularized LCM 0.88 0.87 0.76 0.0003 0.97
1000 Proposed 1 0.99 0.82 | 0.0004 | 0.99
0.2 | regularized LCM |  0.64 0.64 0.58 | 0.0006 | 0.98
Proposed 0.98 0.98 0.96 | 0.0005 | 0.97
0.1 1 regularized LOM | 0.80 0.77 040 | 0.0009 | 0.92
500 Proposed 0.86 0.84 0.46 | 0.0016 | 0.86
0.2 | regularized LCM | 0.40 0.39 0.26 | 0.0023 | 0.88
Divergent 01 Prqposed 1 1 1 0.0002 1
+ | regularized LCM 0.82 0.81 0.56 0.0003 0.96
1000 Proposed 1 0.99 0.78 | 0.0005 | 0.97
0.2 | regularized LOM |  0.48 0.48 040 | 0.0009 | 0.95
Proposed 0.92 0.91 0.70 0.0006 0.94
0.1 regularized LCM | 0.54 0.51 0.14 | 0.0039 | 0.88
500 Proposed 0.28 0.27 0 0.0010 | 0.75
0.2 | regularized LCM | 0.28 0.27 0.08 | 00112 | 0.88
Unstructured o Proposed 0.08 0.98 0.96 | 0.0002 1
+ | regularized LCM 0.58 0.57 0.34 0.0005 0.94
1000 Proposed 0.82 0.81 048 | 0.0007 | 0.92
0.2 | regularized LCM |  0.18 0.17 0.06 | 0.0066 | 0.88

~ A A

Table 2: DINA+DINO Results; Acc(M), Acc(P) and Acc(€) are calculated for all the cases;

~

MSE(®) is calculated for the cases when the number of latent classes are correctly selected;

"~

Acc(Q) is calculated for the cases when the hierarchical structure is successfully recovered.

the DINA setting was the most difficult one to learn. This is because the DINA models the con-
junctive “AND” relationship among the latent attributes, which makes it hard to distinguish the
latent classes under hierarchical structures. For example, consider latent classes a = (1,0, 0,0)
and o = (1,1,0,0). Under the DINA model, only the items with the g-vector g; = (0,1,0,0)

or (1,1,0,0) can distinguish these two latent classes. By contrast, under the DINO model, the
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~ A N ~ A

Hierarchy N r Method Acc(M) | Acc(P) | Ace(E) | MSE(®) | Ace(Q)
Proposed 0.98 0.98 0.98 0.0005 1
0.1 1 regularized LOM | 0.76 0.76 0.76 | 0.0005 | 0.99
1000 Proposed 0.96 0.96 0.96 | 0.0010 | 0.99
0.2 | regularized LOM |  0.52 0.51 048 | 0.0036 | 0.97
Linear Proposed 0.94 0.94 0.94 0.0003 1
0.1 1 regularized LOM | 0.92 0.92 0.92 | 0.0002 1
2000 Proposed 0.96 0.96 0.96 | 0.0005 1
0.2 | regularized LOM |  0.62 0.62 0.62 | 0.0009 1
Proposed 0.08 0.98 0.98 | 0.0006 1
0.1 1 regularized LOM |  0.68 0.68 0.66 | 0.0008 | 0.97
1000 Proposed 0.90 0.90 0.86 | 0.0013 | 0.98
0.2 1 regularized LOM | 0.36 0.35 0.30 | 0.0161 | 0.96
Convergent o Proposed 0.08 0.98 0.98 | 0.0003 1
+ | regularized LCM 0.82 0.82 0.80 0.0003 0.99
2000 Proposed 1 1 1 0.0005 1
0.2 | regularized LCM |  0.38 0.38 0.36 | 0.0029 | 0.99
Proposed 0.98 0.98 0.98 0.0006 1
0.1 | yegularized LM |  0.84 0.83 0.66 | 0.0061 | 0.94
1000 Proposed 0.86 0.86 0.82 | 0.0014 | 0.96
0.2 | regularized LCM |  0.38 0.36 0.26 | 0.0148 | 0.89
Divergent Proposed 1 1 1 0.0003 1
0.1 regularized LCM 0.76 0.76 0.74 0.0003 0.99
2000 Proposed 0.08 0.98 0.92 | 0.0006 | 0.99
0.2 | regularized LOM |  0.52 0.51 048 | 0.0018 | 0.97
Proposed 1 1 0.98 0.0007 0.99
0.1 1 regularized LOM | 0.62 0.61 044 | 0.0013 | 0.92
1000 Proposed 0.48 047 | 036 | 0.0021 | 0.89
0.2 | regularized LCM |  0.36 0.34 020 | 0.0220 | 0.88
Unstructured 01 Prgposed 1 1 1 0.0003 1
1| regularized LCM | 0.66 0.66 0.60 | 0.0005 | 0.96
2000 Proposed 0.86 0.85 0.78 0.0008 0.99
0.2 | regularized LCM |  0.38 0.37 0.24 | 0.0056 | 0.94

Table 3: GDINA Results; Acc(M), Acc(P) and Acc(€) are calculated for all the cases; MSE(®)

~

is calculated for the cases when the number of latent classes are correctly selected; Acc(Q) is
calculated for the cases when the hierarchical structure is successfully recovered.

« 2

items with g; = (0,1, *, x) where “*” can be either 0 or 1, will distinguish them. And under the
GDINA model, the two latent classes can be differentiated by the items with q; = (x, 1, %, %).
Therefore, if the underlying data generating model is the DINA model, it requires larger sample

size to achieve good performance. It is also noted that for the Q-matrix estimation, Acc(Q)

for both methods are similar from the tables. However, since we calculate the accuracy of the
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(Q-matrix only if the hierarchical structure is correctly recovered, given the worse performance
on hierarchical structure recovery of the regularized LCM method, the proposed method in fact

provided much better overall ()-matrix estimation.

6 Real Data Analysis

6.1 Analysis of ECPE Data

We applied the proposed approach to the Examination for the Certificate of Proficiency in
English (ECPE) data to learn the latent hierarchical structure. The ECPE data was collected
by the English Language Institute of the University of Michigan, and we used the data from
R package CDM. The dataset includes 2,922 examinees and 28 ECPE items with three target
attributes including lexical rules, cohesive rules and morphosyntactic rules. In the literature
of the analysis of the ECPE data, Templin and Bradshaw (2014) fitted an HCDM with the
corresponding ()-matrix pre-specified by exam designers and tested the presence of the linear
hierarchy through bootstrap, which supports the linear hierarchy among the three attributes
under the CDM framework. In Wang and Lu (2021), the authors also studied this ECPE data
using the latent variable selection approach and regularized LCM approach respectively. In the
latent variable selection approach, they used three “anchor” items which formed a known identity
sub-matrix in the (Q-matrix. The latent variable selection approach selected 5 significant latent
classes, and the learned model implied a convergent structure, that is, two latent attributes were
prerequisites of the third one. Though estimations of the ECPE data have been widely studied
under the CDM setting, von Davier and Haberman (2014) pointed out that ECPE data appear
to have mainly a unidimensional structure, which may not be suitable for CDM modeling.

Our proposed method uses a penalized exploratory latent class analysis approach, which
does not depend on the CDM settings such as the Q-matrix structure and multi-dimensionality
of the attributes. The proposed method does not require any prior information except for an
upper bound of number of latent classes M. Here we took M = 8, and used spectral clustering
to initialize the model parameters. Specifically, given the data matrix R € {0,1}¥*/ we
calculated the symmetric normalized Laplacian matrix L*™ := [ — D=Y/?RD~'/2 where D =

diag{> ", Rij,>_; Raj, ..., D>_; Bn;}. Then we took the first M eigenvectors of L and performed
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k-means clustering on the eigenvectors. Based on the clustering results, we had an initialization
of the partition of the subjects to M classes and then used class proportions and mean responses
to the items as the model initializations. The clustered data from spectral initialization is shown
in Figure 10(b) and the final estimation results with spectral initialization is in Figure 10(d). In
the plots, each row represents the response vector from a subject and each column represents an
item, with dark cells standing for “1”’s and white cells standing for “0”’s. The resulting clusters
are separated by red lines. For ease of visualization, we have rearranged the rows of data to
form clusters.

For a comparison purpose, we also used the pre-specified Q-matrix to fit a GDINA model
with 2% latent classes, and then used the learned GDINA estimation results as initialization,
which is shown in Figure 10(c). We found that the GDINA model initialization using the pre-
specified ()-matrix resulted in the same learned model as the spectral initialization, which does
not require the pre-specified Q-matrix. It is also noted that by directly fitting a GDINA model
with the pre-designed Q-matrix and 2% latent classes, it learned four latent groups with large
proportions and all the other proportion parameters were very small, but not exactly zeros.
Comparing Figure 10(c) and Figure 10(d), we can also see that the clustered data based on our
method showed a much clearer ordered structure among the latent classes. Specifically, using the
proposed method, we obtained four significant latent classes, as shown in Figure 10(d). From the
clustered results, there seemed to be an ordered structure: the subjects in the first cluster were
more likely to give positive responses than those in the second clusters, and the second cluster
tended to have more positive responses than the third cluster, and the same for the results in the
third and the fourth clusters. To better identify the hierarchical structure, we further calculated
the indicator matrix. The estimated item parameter matrix © and the reconstructed indicator
matrix T' are shown in Figure 11. It is easy to see I'; < Iy < I3 < I". 4, which indicated a
unidimensional located latent class model structure, or in other words, a model structure with
strictly ordered latent classes (von Davier and Haberman, 2014). This finding is consistent with
the observation in von Davier and Haberman (2014).

To present the latent class structure under the HCDM framework, we can apply the pro-
posed Algorithm 2. Since there are four latent classes and f‘.,l < f.’g < IA“.73 < f‘.74, the
smallest K will be 3 and the corresponding binary representations of the latent classes will

be (0,0,0),(1,0,0),(1,1,0),(1,1,1), which is consistent with the analysis in Templin and Brad-
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Figure 10: (a): the original data; (b): clustered data from spectral initialization; (c): clustered
data from GDINA initialization with known @-matrix; (d): clustered data from the proposed
method. Note that the rows of the data matrices in (b), (¢), and (d) are permuted differently
to better show the clustering structures. The black points stand for response value 1, and the
white ones stand for response value 0.
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shaw (2014) under the CDM framework. Moreover, we also fitted the GDINA models with three
latent attributes and linear hierarchy based on the inferred ()-matrix from our model and the
original designed (-matrix, respectively. The corresponding indicator matrices obtained from
our method and the original -matrix are shown in Figure 11(b) and 11(c). From the fitted
GDINA models, we found that the BIC for the original @)-matrix was 86,117, while the BIC for
our learned Q-matrix was 86,000, indicating that our learned @) fits the data better in terms of

BIC.
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Figure 11: (a): estimated © matrix; (b): reconstructed indicator matrix I'; (c): the indicator
matrix based on the pre-specified ()-matrix. Black blocks indicate value 1, and white blocks
indicate value 0.

6.2 Analysis of PISA Data

To test on a more complex and realistic setting, we also applied the proposed approach to a
dataset from Programme for International Student Assessment (PISA), an international reading
assessment for 15-year-old students. In particular, we used a PISA 2000 dataset from R package
CDM, which was previously studied in Chen and de la Torre (2014). This dataset contains J = 26
items from six independent articles assessing 1096 examinee’s reading abilities. Most of 26 items
are dichotomous items except for some trichotomous items. We converted the trichotomous items
to dichotomous by combining all non-zero response values as one category, where we regarded any
partial or full credit case as a success and no credit as a failure. In Chen and de la Torre (2014),

the authors specified six latent attributes for the PISA 2000 data: (1) locating information; (2)
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forming a broad general understanding; (3) developing a logical interpretation; (4) evaluating a
number-rich text with number sense; (5) evaluating the quality or appropriateness of a text; (6)
test speededness.

To apply the proposed method, we set the initial number of latent classes M = 26 = 64
and initialized the models parameters using the pre-specified ()-matrix in Chen and de la Torre
(2014). Specifically, we first fitted a GDINA model using the pre-specified -matrix, and then
used the estimated item and mixture proportion parameters as the initial values for the item
parameter matrix and the proportion parameter vector 7r.

After applying the proposed method to the PISA 2000 data, we learned 10 significant latent
classes. On average, for each set of hyperparameters, the computation time was 14.87 seconds.
The estimated item parameter matrix © and the reconstructed indicator matrix I are shown
in Figure 12(a) and Figure 12(b), respectively. Based on the indicator matrix, we recovered
the partial orders of these 10 latent classes in Figure 12(c), which suggests a multi-dimensional
latent structure. With partial orders recovered, we applied Algorithm 2 and recovered six latent
attributes with a hierarchical structure as shown in Figure 12(d).

The six latent attributes and their hierarchical structures learned from the data may match
the prior study in Chen and de la Torre (2014) as follows. The recovered attributes a; to ag
may correspond to “locating information”, “forming a broad general understanding”, “evaluating
a number-rich text with number sense”, “evaluating the quality or appropriateness of a text”,
“test speededness”, and “developing a logical interpretation”, respectively. From the hierarchical
structure in Figure 12(d), oy can be viewed as a basic prerequisite for other attributes, which
makes sense because examinees need to first understand the item and correctly identify the key
information in the article before forming understanding or evaluating the text, while developing
a logical interpretation (ag) can be interpreted as a more advanced skill.

Besides the interpretable hierarchical structure, we also assessed the model fit using the BIC.
Specifically, the BIC of our estimation was 7045, while the BIC of the full GDINA model with
the pre-specified @-matrix was 31495, indicating that the proposed method improved the model
fitting in terms of BIC.
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Figure 12: (a): Estimated © matrix; (b): Reconstructed indicator matrix I'. (c): Partial orders;
(d): Constructed hierarchical structure of latent attributes.

7 Discussion

In this paper we propose a penalized likelihood approach to simultaneously learn the number
of latent attributes, the hierarchical structure, the item-attribute @-matrix and item-level di-
agnostic models in hierarchical CDMs. We achieve these goals by imposing two regularization
terms on an exploratory latent class model: one is a log-type penalty on proportion parameters
and the other is truncated Lasso penalty on the differences among item parameters. The nice

form of the penalty terms facilitates the computation and an efficient EM-type algorithm is
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developed. A latent structure recovery algorithm is also provided based on the learned model
parameters. The simulation study and real data analysis demonstrate good performance of the
proposed method.

In most existing works of learning CDMs, the hierarchical structures of latent attributes are
either not considered or pre-specified by domain experts. Moreover, related works using ex-
ploratory approaches to learn latent hierarchies also require additional pre-specifications such as
the number of latent attributes. By contrast, in this work, we develop an exploratory regularized
likelihood approach with minimal model specifications. In particular, we estimate the number of
latent attributes, recover the hierarchical structure, the )-matrix, and the item-level diagnostic
models simultaneously. The price we have to pay for the minimal model assumptions is that a
set of hyperparameters need to be tuned, while our simulation results show that we can achieve
it computationally efficiently.

In addition to computational efficiency, our proposed method also has theoretical guarantees.
Specifically, we show that the number of latent classes, the model parameters and the constraint
structure of the item parameter matrix can be consistently estimated. Moreover, based on the
assumption that more capable subjects have higher item parameters, we develop estimation
procedures to recover the number of latent attributes, hierarchical structures and (-matrix
from the introduced indicator matrix. Due to the consistency of the item parameter matrix
and its constraint structure, under the identifiability conditions, the indicator matrix is also
consistently estimated, which leads to the consistency of these latent specifications as well.
Although the method is purely data-driven, our analysis also provides sound theoretical support.
With the theoretical foundation established, our method is consistent and robust in learning the
hierarchical structure and other CDM characteristics.

A natural follow-up question would be how we conduct hypothesis testing for the learned
hierarchies. Since the existence of hierarchical structures would result in the sparsity structure
of the proportion parameter vector, it is equivalent to testing the zero elements in the proportion
vector. However, due to the irregularity of the problem since the true parameter now is lying on
the boundary of the parameter space, the limiting distribution of the likelihood ratio statistic
would be complicated. As noted in the literature (Ma and Xu, 2021), such nonstandard tests
need to be further investigated theoretically.

Currently the proposed model is applied to a static setting where we only have a data set
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for a fixed time point. It would be also interesting to extend it to the dynamic setting, where
multiple measurement data sets for a sequence of time points are available. We can also learn
such hierarchical structures by inferring learning trajectories of the subjects. Moreover, taking
the hierarchical structures into consideration, we can generate recommendations for learning
materials or test items by formulating a sequential decision problem. We leave these interesting

directions for future work.
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In the supplementary material, we provide the proof of the main theorem, the derivations
for the penalized EM algorithm and a sensitivity analysis of our algorithm with varying upper

bounds for the number of latent classes.

1 Proof for Theorem 3

In this section, we provide the proof of Theorem 3.

Proof. We first introduce some notations. For two sequences {ay} and {by}, we denote ay < by
if ay = O(by), and ay < by if ay < by and by < ay. We use (w°, ©°) to denote the true model
parameter and use (7°, @0) to denote the oracle MLE obtained by assuming the number of
latent attributes, the hierarchical structure, the ()-matrix and the item-level diagnostic models
are known. Let (#*,©*) be the MLE obtained by directly optimizing log-likelihood (??) and
(#c,©) be the estimator obtained by optimizing the regularized log-likelihood (??). We define
Tpy = {Tm : Tm > pn, m € [M]} and O, := {B;,n : 7tm > pn, j € [J], m € [M]}, the
model parameters corresponding to the selected latent classes. Let M be the upper bound
for the number of latent classes, My be the true number of latent classes, and M = ’{m :
m > pN, M € [M ]}‘ be the estimated number of latent classes. Without loss of generality, let
7wy = (7% 04r_ps,). For the true item parameter matrix @°, we defined the set of identical item
0 =0%.,1 < ki < ky < My}. Similarly, for (7,0) we
define S = {(j, ki, ko) : éjv;ﬂ = QAj,kz, 1<ky <ky <M, 7y, > pn, Tgy > pN}. We say S ~ SO if

parameter pairs S = {(j, ki, k) : 6°

there exists a column permutation o of © such that S, = S°.



The probability P(M # Mp) can be decomposed into two parts:
P(M # My) =P(M < M) + (M > M,). (1)
Similarly, the probability P(S # S°) can be decomposed into three parts:
P(S % S°) =P(M < My) + (M > My) +P(S = S°, M = M,). (2)

In the following ,we will bound each part in (1) and (2) respectively. Therefore, we will consider
three cases below:

1. overfitted case: M > My,

2. underfitted case: M < My,

3. M = M, but § = S°.

The objective function is

\®
G (m.©) = l (W@R N

M )\53) J
1Og[ﬂN N Z Trpn (ej)a (3)
=1

where log, | m = log 7y, - ]I(?Tk > ,oN) + log py - ]I(?Tk < pN). Let log[pN](ﬂ') = 224:1 log(, ) k-

First consider the overfitted case where M > M,. The event {G N (fr, @) > Gy (fro, @0)}
implies that

%i [ Z;@dlﬁknfﬁg?(l—@ k) }

i=1 Zk 17 j=1<9?,k) i(1 _90 )T
A 0 AW .
> 2 {logy, (%) — logj,, (Rfu)} + {ZJW ZJW @) @
= Jl + JQ.

For the RHS of (4), we have .J; > N~2AV|logpy| and Jy > —N-]AQ7JM2. Since APr =

~

O(AS\})\ log pn|), we have RHS 2 N‘l)\N | log pi|.



For the LHS of (4), we have

M J M J
1 B O | B
LHS of (4) =+ log [ w [T 05 (=60 "] - o8 [ a6 (1 -8, "]
. <

M J 1 M J A A
< log [D_ w1050 (1= (05,0)' 7] = Flog [>_ab [ ] (05,0" (1 = 67,)"="]
k=1  j=1 k=1 j=1

where the last inequality follows from Assumption ??. When N'=%/|log(py)| = 0()\5\1,)), we
have N=° = o(N _1A§$)| log pn|), which implies that the event described in (4) will happen with
probability tending to zero. Therefore we have IP(M > MO) — 0 as N — oo. That is to say,
with the appropriate choice of tuning parameters, the extent that the log-penalty part favors a
smaller model would dominate the extent that the likelihood part favors a larger model in the
overfitted case.

Now consider the under-fitted case where M < My. We need to bound

IP’( sup [Gy (7, ©) — Gy(7°,0%)] > o). (5)

M<M0

We follow a similar argument to Shen et al. (2012). More specifically, since

Moy—1
P(A;u]\;;[ [Gy(7,0) — Gy(7°,8")] > 0) <y P(Azu [Gy(#,0) — Gy(7°,8%)] > o),
<Mp m=1 =m

(6)

we will bound each term in the RHS of (6). By the large deviation inequality in Theorem 1 of
Wong and Shen (1995), we have

p( sup [ (#,0) — in(x",09)] > &)
12 ((#,0),(0,00)) 22, ™
< IP’( sup [%ZN(fr,@) — %ZN(WO,@O)} > —e?\f) < exp(—Ney),

12 ((7,0),(x0,00)) 2,

where hZ((fr,@),(Tro,@O)) = D _Re{0.1)7 [P(R | #,0)/2 — P(R | 7%, ©%1/2] is the Hellinger
distance. From the remark in Wong and Shen (1995), the inequality (7) holds for any ¢ > ey.



To use this large deviation inequality, we need to introduce the notion of bracketing Hellinger
metric entropy H (t,,,), which characterizes the size of the local parameter space. Consider
the local parameter space B, = {(, é)) c M =m < M, hz((fr,é)), (7°,8%) < 2€%}, then
H(t,B,,) is defined as the logarithm of the cardinality of the t-bracketing of B,, of the smallest
size. Specifically, following the definition in Shen et al. (2012), consider a bracket covering
S(t,m) = {fi, fit;--, fl,, fiu} such that maxi<j<m || f* — f}||]2 < t and for any f € B,,, there is
some j such that f; < f < f} almost surely. Then H (¢, B,,) is defined as log (min{m - S(t, m)})

Following Lemma 3 in Gu and Xu (2019), for any 27%€ < ¢ < ¢, there is

H(t,B,,) < Mylog M log(2¢/t). (8)

Next we need to verify the conditions in Wong and Shen (1995). Let’s take ey = /My log M /N
and verify the entropy integral condition in Theorem 1 of Wong and Shen (1995) for such ey.
The integral of bracketing Hellinger metric entropy on the interval [278¢%,, v/2ey] satisfies the

following inequality

Vaen Vaen
/ HY2(t, B,,)dt < v/ My log M log(2ey /t)dt
2

—8.2 ~8.2
€xr 27%€xs

o
= v/ Mylog M deyule ™ du
Vlogv2
log %
=/ Mylog M - 2ey Vue “du

log V2
S VN
Note that ey = o(1) as N — oc.

Following the proof in Gu and Xu (2019), there exists a constant ¢y, for some small constant

t > en, we have

{hQ((ﬁ-, 0),(n°,8%)

Cmin 0, @O = inf ~
(m ) " max (MO - M, 1)

s }ZCozt2>€?V.
(7,©): M <My

Moreover, for M = m < My, there is h%((#, ®), (z°, @°)) > (Mo — m) Crpin (7%, ©°). In order



to have the probability of the event (4) go to zero in the under-fitted case, the log-penalty term
should not be too large such that the likelihood part is dominated by the log-penalty term that

favors a smaller model. Here we take )\5\1,) = o(Nlog px|™*). Then for (6) we have

RIS of (6)
Mg 1
<y ( sup [Gy(7,0) — Gy(7°,0%)] > o)
,(770,80)) > (Mo —m) Crnin (70,00), M=m
Mo 1 1)
. . AW M1
< Z IP’( sup Iy (77, ©) — Iy (77, 60)] > 2 Mol ngN')
m=1 ,(9,89))> (Mofm)Cmin(ﬂ'O,QO),M:m N
Ao e 0 Q0 A%)MollogpN\
S Z]P)< sup [ZN(W7@)_ZN(7T7®)}>_ )
m=1 770 60 ) (MO_m)Cmin(ﬂ'OveO)vM:m N
My—1 .
<y IP’( sup [x (7, 0) — Iy(°, @] > —(M, — m)C’min(ﬂ'O,@O)>

,(70,80)) > (Mo —m)Crnin (70,00), M=m

o

< exp ( — o N (Mo — m) Crpin (7°, @0))

< cgexp ( — ¢y N Ciyin (7, @0)).

3

Therefore we have P (M < My) — 0 as N — oo. So far we have proved (??) in Theorem ??,
P(M # My) =P(M < M) +P(M > My) — 0.

Finally we consider the third case where M = M, but S = S° The argument is similar
to the proof of Proposition 2 in Xu and Shang (2018). We first show (7, , ©,,) converge to
(%, @°) with rate N~%/2. For (m, ®) with (m,,,®,,) in a small neighborhood of (7", @°),

IN (T 0, iR) AV
GIN(WPN7®PN> = (pNN - Z Ingk__erpN
kimg>pN
In ©,. R
6l O R) o2 N 10g o)) ~ 0P 7N,

converges uniformly to the same limit of Ix (7, ,©,,;R)/N by the uniform law of large number,

since )\%)N_1| log py| — 0 and A%)TN_I — 0. We use Gy(7,,,0,, ) to denote the limit process,

which is the expectation of the negative log-likelihood of a single observation. By Taylor’s



expansion, we have Go(m,,,0,,) — Go(7?, ©°%) = O(H(ﬂ'pN, 0,,)) — (e H2
For the log-likelihood function Iy(7,©;R) = S~ , log (22421 Tk H;] L 93 ,j( éjl-’;R“)), we

have
1 oA R A
NVN(“’ O;R) — In(Tpy, O,y R)|
1 N M J
SNZ ‘ log ( frkHHR”(l — 91 R”)) — log ( Z 7TkH(9R” 1-6 R”))‘
i=1 k=1  j=1 k:wp>pN
<ii |(Zl]c\{1 ﬁ-k’ H;] 10] l?( é]l;RZJ)) B (Zk:frk>pN Tk H;] 10j ;cj 1 R” )‘ (9)
N =1 \/(Zk 1 Tk HJ 1 fi?( ‘91 Rl])) (Zkﬂk>p1\] Tk H}] 1931:{1? 0. R” )
1 . (M = M)py
—NZ R ii(1_ pl—Rij
i=1 Zk TE>PN Tk H] lejk (1 eg,k )

=O0(px) =O(N™"), d > 1, (10)

where inequality (9) follows from an upper bound for log function. Specifically, for z > 1, we
know logz < (x — 1)/y/z, and thus for 0 < z < y, we have logy —logz < (y — x)/\/Zy.
From (10), Gy (7, 0) = Gy(7,y,0,y) + O(N™%) > G (7°,0°) and thus Gy (7r,,,0,,) >
Gy (70,00 —O(N~) > Gy (°, ©°) —O(N1). Since N-12AY) — 0 and N-1/2A@+ — 0, then

for sufficiently small ¢, by Taylor’s expansion,

E sup Gy, @i R) =G (T, ©,,) ~ G (7, 0% R)+Gio(°, ©°) ) = O(CN 7).

pN
||(7TPN79PN)_(770790)”§C

~

By Theorem 3.2.5 in Van Der Vaart and Wellner (1996), we have (7,,,0,,) — (7°,0°%) =
O,(N~1/2).

We next show selection consistency of S°. If true item parameters «9 7é i ky» then from
the above convergence result, we know 6, — 69, and 05, — 09, and thus 05, # O,
in probability. If true item parameters 69, = 67, but 64 # 6;4,, by the Karush-Kuhn-
Tucker (KKT) conditions, we have N~'/29ly(, O;R) /00 k| (x0)=(2.0) = N*1/2)\S\2,) — 00 in
probability. However N~'20ly(m,©;R)/00;k | r e)—x.6) = Op(1). Therefore, if 67, =67, |
we have éﬁkl = éj,kQ in probability, which proved the selection consistency that IP’(S’ % S%) — 0

as N —-00. =



2 Derivations of PEM Algorithm

In this section, we give detailed derivations of the penalized EM algorithm in Section ??7. First
let’s introduce a new variable d = (djp, 7 =1,...,J,1 <k <1 < M) to be the differences of the
item parameters for each item. Then our problem becomes

min  G(w,0,d)

7,0,
st djg =0, — 0 (11)
j=1,...,J, 1<k<l<M.
By using the difference convex property of the truncated Lasso penalty, we can decompose

the objective function into two parts:
G(m,0,d) = Gi(7,0,d) — Gy(d), (12)
where

1
Gl(ﬂ,G,d):—NQ(w,Gh(c), e©) +)\1210gﬂ'k+)\22 Z |l (13)

=1 1<k<I<M

J
= /\ Z |djkl — T|)+. (14)
71=1 1<k<I<M

Then we construct a sequence of upper approximation of G (7, ®, d) iteratively by replacing

G (d) at iteration ¢ + 1 with its piecewise affine minorization:

J
GY(d) = Go(d) + XY > (ldjul = |dS5)]) - 1(Jdg] > 7). (15)

Jj=1 1<k<I<M

at the current estimate ci(c), which lead to an upper convex approximation:

M
1 -
—Q(w, 0|79, 0)) + \, Z log 7y,

G (7, 0,d) = — N

mz S Jdgal - I(ldS5)] < 7)

=1 1<k<I<M



J
S S )

j=1 1<k<I<M
Now we can apply ADMM. At iteration ¢ + 1, the augmented Lagrangian is

J
Lw(w,G),d,y):G(CH)(ﬂ-,@,d)—i—Z Z Ykt (din—(05—050) ) + VZ Z |dji—(0;1—050) |,

j=1 1<k<I<M j=1 1<k<I<M

(16)
where y;1;’s are the dual variables and v is a nonnegative penalty parameter. Then ADMM

(Boyd et al., 2011) consists of the following iterations:

7D = argmin L, (7,0, d, y(9),

O = argmin LW(W(CH), 0,d", y(c)),
®

d“tY = argmin L, (7" @t d ¢y
d

c+1 c c+1 c+1 c+1 .
y](,j) yj(k)ﬂr”y(dg,:[) (0§k+)—9j(.l+ ))), j=1,..,J,1<k<l<M.

Using the scaled Lagrangian multiplier p;, = y;1/7 and defining the residual ;i = dji —

(0, — 0j1), we have:

Yirt - (djpr — (05 — 050)) + %’djkl — (O — le)‘2

Vo2
=Yjkl - Tjkl + 5"k

gl 2 1
IE(T'JM + (U’Y)%kl) — 5#?1@1
g 2 1,
=3 (rim + 1) = %/“ijl'

Then using the scaled dual variable, we can express ADMM as:

) = argmin G(C+1)(7'r, e, d(c)),

J
O+ = argmin G (x(), @, d) + L > (d') = (6% — 0%y + o)),
o 9 £ J J J J
j=1 1<k<I<M
J
d(c+1) _ argmin G(c—i—l) (ﬂ,(c—‘rl)7 @(c—i—l)’ d) + z Z (djkl . (9(?—1) _ e(lc-‘rl)) + “(2)l>’
' 9 £ J J J



Mﬁzﬂ) lu]kl + d]?lrl (93(?1 —0 C+1)) J= L., J? L<k<I<M.

Specifically, we get the following updates:

@ (© (©
(cr1) _ Ty wk(Rz; 0,")

,  where s;,

N c+1)
ﬂ.(c+1) — Zz 1 zk+ /N )\1 _
1-— M)\l (C/) k’ 90]9/ (Ru 0 )

k

9(C+1) —_ : { _ Zi:l Sk Llij log 0., — i=1Sik ) 1 1—0.
ik ar%jknln =N 0g Uk N og( i)
Y 5(c) H(c) ~ ()
+ 9 Z (djkl — (O — 0; )+ gk:l)
>k
'7 A (e+1) c
Z ]lk G — Oj1) +:u§ll)c) }
1<k
(3)
jletl) _ plet1) (o) -1 3(0)
et _ ng ‘9]1 — Kk if |djkl| >T

ST(OH = 05 — 50 Xa/v), i S| < 7 where ST(x;9) = (J] — ) s2/|2]

(4)

~(c+1) (c+1) (c+1) (c+1)
Mj?gz N;kz + dﬁcz (9]2 - 9 ! )
Note that the objective in step (2) is convex in 6}, therefore we use gradient descent to perform

the minimization.

3 PEM Algorithm with Missing Values

In this section, we present the penalized EM algorithm with missing values. Here we use a mask
matrix M € {0,1}¥*/ to indicate the locations of the missing values, where M; ; = 0 means the
ith subject’s response to the jth item is missing. The details of the algorithm is summarized in

Algorithm 1.



Algorithm 1: Penalized EM with missing data

Data: Binary response matrix R = (R; j)nxs and the mask matrix M = (M;;)nxJ

indicating missing values.

Set hyperparameters 5\1, 5\2, 7, v and p.

Set an upper bound of the number of latent classes L.

Initialize parameters 7, ®, and the conditional expectations s.

while not converged do
In the (¢ + 1)th iteration,
for (i,k) € [N] x [L] do
(c+1) _ (c)sok(Rzﬂ;(:))
S S ¢ sa,j)(R,-;o;?)V

Rij
o(r:;0),) = H;-le (75 (1 = Gyt Fur) ™
for k € [L] andﬂk > p do
(c+1) _ X, sGHY/N-X
| Tk 1-LA;

for (j, k) € [J] x [L] and 7tV > p do

N - Op N O s
‘9](24-1) — argmin{ - Zz:l JSVZ]C ij i IOg ejk . Zz:l 87,]]%( 2J>m2] 10g<1 - ejk)
Ok > im1 i D e M
Y 3(c H(c ~(c)\2
+ 9 Z (dg'k)l — (01 — ej('z)) + uﬁ»&)
I>k
’}/ A (e+1) ~(c
Z ]lk (051 — Oj) + /LEUD }
1<k
for j € [J), k1€ [L], k<l and 7tV > p, 7\™ > p do
Hletl)  pletl) (o) 01,90
et _ {ejk: =05 — s if |djyl =7
Jkl A(c+1 Alc+1 ~(c . 3(c )
ST(Q(. o 6’](. ) /,Lgkl,)\g/’}/) if |d§k)l| <T
~(ct+1 (c+1) H(c+1 c+1
“ﬁ‘kl '= Mjkl + djkl (ej(k "6 ))-

gl

6utput: {fr, @, §}

4 Sensitivity Analysis

In this section, we conduct the sensitivity analysis of our algorithm by investigating the effects of
different inputs of M, the upper bound of the number of latent classes, on the simulation results.
In particular, we focus on two simulation settings: (1) DINA model with linear hierarchical
structure, N = 500 and r = 0.1; (2) GDINA model with linear hierarchical structure, N = 1000
and » = 0.1. Both two settings have K = 4 latent attributes and J = 30 test items, and run

10



for 50 repetitions. We keep the parameter generation process and the hyperparameter tuning
strategy consistent with the simulation studies in the main article. In this sensitivity analysis, we
fit our proposed method with various M = {8, 12, 16, 20, 24, 32} in the two simulations settings.
The evaluation results in DINA and GDINA settings are based on metrics Acc(M), Acc(P),
Acc(€), MSE(©) and Acc(Q). Consistent with the simulation studies in the main article, the
Acc(M), Ace(P) and Acc(€) are calculated for all the cases; MSE(®) is calculated for the cases
when the number of latent classes is correctly selected; ACC(Q) is calculated for the cases when
the hierarchical structure is successfully recovered. The results are plotted in Figure 1.

From the simulation results in Figure 1, we see our proposed method is robust to the different
specifications of M, in terms of all metrics. Among cases with different M, our method achieves
a high accuracy in estimating the number of latent classes, and in recovering the partial orders,
the hierarchical structures, the item parameter matrix, and the ()-matrix. In terms of compu-

tation time, the average running time is 0.36 seconds and 1.12 seconds for DINA and GDINA,

respectively, per repetition per set of tuning hyperparameters.
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Figure 1: Sensitivity analysis results. (a) DINA results; (b) GDINA results. The red curve
captures the Acc(M), Acc(P), Acc(€), the blue curve captures MSE(®) and the purple curve

~

captures the Acc(Q) for various M.
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