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Abstract

In recent years, the four-parameter model (4PM) has received increasing atten-

tion in item response theory. The purpose of this article is to provide more efficient

and more reliable computational tools for fitting the 4PM. In particular, this article

focuses on the four-parameter Normal Ogive (4PNO) model and develops efficient

stochastic approximation Expectation Maximization (SAEM) algorithms to com-

pute the marginalized maximum a posteriori (MMAP) estimator. First, a data

augmentation scheme is used for the 4PNO model, which makes the complete data

model be an exponential family, and then a basic SAEM algorithm is developed

for the 4PNO model. Second, to overcome the drawback of the SAEM algorithm,

we develop an improved SAEM algorithm for the 4PNO model, which is called the

mixed SAEM (MSAEM). Results from simulation studies demonstrate that: (1)

the MSAEM provides more accurate or comparable estimates as compared with the

other estimation methods, while computationally more efficient; (2) the MSAEM

is more robust to the choices of initial values and the priors for item parameters,

which is a valuable property for practice use. Finally, a real data set is analyzed to

show the good performance of the proposed methods.
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1 Introduction

The four-parameter model (4PM) in item response theory (IRT) was first provided by

Barton and Lord (1981), in which an upper asymptote (slipping) parameter is introduced

to model the uncertainty of a high-ability examinee missing an easy item. However, the

4PM had not been widely discussed for a long time, since the difficulties in parameter es-

timation and a lack of evidence supporting the need for it (Feuerstahler and Waller, 2014;

Loken and Rulison, 2010). In recent years, researchers have shown renewed interest in the

4PM (Culpepper, 2016, 2017; Kern and Culpepper, 2020; Loken and Rulison, 2010; Meng

et al., 2020; Waller and Feuerstahler, 2017). Several studies have verified that the presence

of an upper asymptote is tenable in the situations of psychological assessment (Reise and

Waller, 2003), the computerized adaptive testing (Liao et al., 2012; Rulison and Loken,

2009), and the large-scale low-staks assessment (Culpepper, 2017). Furthermore, various

estimation methods have been developed for the 4PM. For instance, Loken and Rulison

(2010) proposed a Bayesian estimation with the Markov chain Monte Carlo (MCMC)

implemented using WinBUGS for the four-parameter Logistic (4PL) model; Feuerstahler

and Waller (2014) employed the marginal maximum likelihood (MML) method with an

Expectation Maximization (EM) algorithm as implemented in the R package “mirt” to

estimate the 4PL model; Culpepper (2016) developed a Gibbs sampling algorithm for

the Bayesian estimation of the four-parameter Normal Ogive (4PNO) model; Waller and

Feuerstahler (2017) employed the EM algorithm to compute the marginalized maximum a

posteriori (MMAP) estimation of the 4PL model by implementing the R package “mirt”;

Meng et al. (2020) proposed an EM algorithm for the MMAP estimation of the 4PL model

under the mixture modeling framework; Zhang et al. (2020a) proposed a Gibbs-slice sam-
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pling algorithm for estimating the 4PL model; Battauz (2020) proposed a regularization

approach for estimating the 4PL model based on the inclusion of a penalty term in the

log-likelihood function.

In these existing studies, the MCMC sampler and the EM algorithm are two main

computational tools in the estimation of the 4PM model. For a Markov chain sampling-

based method, the main drawback of the MCMC sampling is that performing exact infer-

ence generally requires all of the data to be processed at each iteration of the algorithm.

For large datasets, the computational cost of the MCMC sampler can be prohibitive. In

contrast, the EM algorithm is computationally more efficient, but it still has several major

drawbacks. For instance, in the literature (Meng et al., 2020; Waller and Feuerstahler,

2017), the EM algorithm is mainly developed for the 4PL model, while there is no data

augmentation method that can make the complete data model of the 4PL be a member

of the exponential family, thus the convergence of the EM may not be guaranteed (Baker

and Kim, 2004; Meng and Schilling, 1996). In addition, the E-step is often implemented

by a numerical integration via fixed-point quadrature or other approximation methods,

and the numerical approximation error can not be avoided (Meng and Schilling, 1996).

Moreover, the M-step often does not yield a closed form solution and still needs numerical

methods to solve the corresponding optimization problem, such as Newton-Raphson (NR)

iteration; however, an issue with using the NR-type iteration or other numerical methods

is that the starting values must be within a neighborhood of the true value, otherwise

divergence or convergence to a suboptimal solution. Furthermore, the convergence of the

whole EM algorithm also highly depends on the initial values and is often easy to fall into

saddle points or does not converge.

To address these computational challenges in the estimation of the 4PM, this article

focuses on the 4PNO model and develops computationally efficient stochastic approxima-

tion EM (SAEM) algorithms to compute the MMAP estimator. In the SAEM algorithm,
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the E-step of the EM algorithm is replaced by a simulation step and a stochastic approxi-

mation step, thus the numerical integration is avoided. In particular, Delyon et al. (1999)

proved that the SAEM is able to converge to the maximum or local maximum point when

the complete-data likelihood belongs to an exponential family, and the ill-convergence of

the EM algorithm that the sequence of parameter estimate converges to saddle points is

avoided by the stochastic approximation noise. The SAEM algorithm has been commonly

used for the estimation of the non-linear mixed effects model (NLMEM), and it has been

proved to be powerful for the Probit normal models (Allassonnière et al., 2010; Delyon

et al., 1999; Kuhn and Lavielle, 2004; Lavielle and Mbogning, 2014). Furthermore, the

SAEM has been used for computing the estimators of some item response models (Camilli

and Fox, 2015; Camilli and Geis, 2019). Inspired by these studies, the first contribution

of this article is to develop a SAEM algorithm to compute the MMAP estimator of the

4PNO model. Here an important step in our derivation is that the 4PNO model is re-

formulated to be a mixture model, and a data augmentation scheme is used for it. We

show that the corresponding complete-data likelihood belongs to an exponential family,

and then derive the sufficient statistics to compute the MMAP estimator, making the

implementation of the SAEM algorithm simplified.

However, the SAEM algorithm is likely to be unstable and may produce poor es-

timators for the mixture of NLMEM under some situations: small sample size, overlap

between mixture components, heteroscedastic models, etc. Aiming to address these is-

sues, focusing on NLMEM, Lavielle and Mbogning (2014) developed an improved SAEM

algorithm, in which the simulation of the latent categorical or group variable is avoided

and is replaced by a conditional expectation. And they verified that, for estimating the

mixture of NLMEM, this new algorithm can provide a more accurate estimation and

achieve strong robustness to the initial values.

As mentioned above, the 4PNO model can be viewed as a mixture model, therefore,
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motivated by the study of Lavielle and Mbogning (2014), taking the SAEM as the stepping

stone, we propose an efficient mixed SAEM (MSAEM) algorithm for the 4PNO model.

In the MSAEM algorithm, the simulation of the latent group variables, that is required in

the SAEM, is avoided and replaced by their conditional expectations given the subjects’

abilities. Thus only the latent abilities need to be randomly generated in the simulation

step, and the stochastic approximation is implemented on the conditional expectation

function. The obtained results from the simulation studies demonstrate that, for the

4PNO model, the MSAEM algorithm performs substantially better than or comparable

to the SAEM algorithm, the Monte Carlo EM (MCEM) algorithm and the MCMC sampler

of Culpepper (2016), while computationally more efficient. Moreover, the estimates from

the MSAEM show great robustness to the initial values and the choices of the priors,

which is a valuable property for practical use.

The rest of the article is organized as follows. Section 2 presents the 4PNO model

under a hierarchical modeling framework and gives the exponential form of the complete

data likelihood, which is very important for implementing the SAEM and the MSAEM

algorithms. Section 3 is the major part of this article, in which we firstly present the

SAEM procedure, and then develop the MSAEM algorithm for the MMAP estimation of

the 4PNO model. Section 4 reports simulation studies that were constructed to evaluate

the performance of the SAEM and MSAEM algorithms for estimating the 4PNO model.

Section 5 presents an application of the 4PNO to an empirical dataset. Finally, we

provide further discussions on some future research directions in Section 6, and additional

simulation results are reported in the Appendix.
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2 MMAP Estimation of the 4PNO Model with a

Data Augmentation Scheme

In this section, we first present the 4PNO model as a hierarchical model using a data

augmentation method, and then introduce the MMAP estimation of the 4PNO.

2.1 A Data Augmentation Scheme for the 4PNO Model

Let i = 1, ..., N and j = 1, ...,M index test takers and items, and Uij (with realization

uij) denote the dichotomous response variable of examinee i to item j, where Uij = 1

denotes the correct response and Uij = 0 otherwise.

Following the definition of 4PM, the item response function (IRF) of the 4PNO model

is given by,

Pi(θj) = P (Uij = 1|θi, ξξξj) = cj + (dj − cj)Φ(ajθi + bj), (1)

where Φ(·) is the standard normal cumulative distribution function, θi ∈ (−∞,+∞) is

the latent trait or ability of examinee i, and ξξξj = {aj, bj, cj, dj} is the item parameter

set of item j, with aj ∈ (0,+∞) , bj ∈ (−∞,+∞), cj ∈ [0, 1) , and dj ∈ (cj, 1] being

the slope, intercept, lower asymptote, and upper asymptote parameters, respectively.

Specifically, cj and dj represent the minimum and maximum probabilities for a correct

response, respectively.

In the following, a data augmentation scheme is applied to the 4PNO model, which

makes the complete-data distribution belong to an exponential family.
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2.1.1 A Hierarchical Modeling Framework of the 4PNO Model

First, from Equation 1, an equivalent form of the 4PNO IRF is,

P (Uij = 1|θi, ξξξj) = cj × [1− Φ(ajθi + bj)] + dj × Φ(ajθi + bj), (2)

which implies the 4PNO is a mixture of two Bernoulli distributions with the latent cat-

egorical probability Φ(ajθi + bj). Then, we introduce a latent binary indicator variable

Wij and define,

P (Uij = 1|Wij = wij, ξξξj, θi) = c
1−wij
j d

wij
j , (3)

P (Wij = 1|ξξξj, θi) = Φ(ajθi + bj), (4)

where wij ∈ {0, 1} denotes the observation of Wij. Taking the law of total probability, the

4PNO IRF in Equation 2 can be written in the sum of P (Uij = 1|Wij = wij, ξξξj, θi)P (Wij =

wij|ξξξj, θi) over wij ∈ {0, 1}. The addition of the auxiliary variable Wij was first proposed

by Béguin and Glas (2001) in Bayesian estimation of the 3PNO, and it has been extended

for handing the other three- and four-parameter IRT models (Culpepper, 2016; Guo and

Zheng, 2019; Meng et al., 2020; von Davier, 2009). Following Béguin and Glas (2001),

Wij is defined as,{
Wij = 1, if examinee i is able to correctly answer item j;
Wij = 0, otherwise.

(5)

Then, based on the conditional probability given in Equation 3, cj and dj can be inter-

preted as the guessing and slipping parameters.

Note that Equation 4 is a probit model for Wij on ajθi + bj, which is equivalent to

the following model on a normal augmented variable Zij,

Wij = I(Zij>0), (6)

Zij|ξξξj, θi ∼ N(ajθi + bj, 1), (7)
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where IA denotes the indicator function of a set A.

In addition, the examinees are assumed to be a sample from a population where the

latent trait or ability follows a normal distribution, and the examinees’ latent traits or

abilities can be viewed as missing data. In the estimation of the IRT model, it generally

assumes that

θi
i.i.d.∼ N(0, 1) for i = 1, . . . , N, (8)

which helps establish a scale for the latent trait.

Finally, taking the data augmentation approaches given in Equations 3-8, we have

the following hierarchical modeling formulation of the 4PNO,

Uij|Wij, ξξξj, θi
independent∼

{
Bernoulli(dj), Wij = 1
Bernoulli(cj), Wij = 0

Wij = I(Zij>0)

Zij|ξξξj, θi
independent∼ N(ajθi + bj, 1),

θi
i.i.d∼ N(0, 1),

for i = 1, . . . , N, j = 1, . . . ,M . The distribution of the complete-data (uij, wij, zij, θi) can

be written as,

f(uij, wij, zij, θi | ξξξj) ∝ d
wijuij
j (1− dj)wij(1−uij)c

(1−wij)uij
j (1− cj)(1−wij)(1−uij)

×φ(zij − ajθi − bj)
[
I(zij>0)I(wij=1) + I(zij≤0)I(wij=0)

]
×φ(θi), (9)

where φ(·) is the standard normal density function. Note that, this data augmentation

scheme has been used by Culpepper (2016) to develop a Gibbs sampler for the 4PNO. It

can be seen that f(uij, wij, zij, θi | ξξξj) is the product of Bernoulli distribution and normal

density distribution, thus it belongs to the exponential family, which is ideal for developing

the SAEM and MSAEM algorithms to estimate the 4PNO model in this work. In what
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follows, the exponential family form of the complete-data likelihood and the corresponding

sufficient statistics are given.

2.1.2 Complete-Data Likelihood and Sufficient Statistics

We first introduce some notation. Let ui· = (ui1, ..., uiM) denote the observed response

vector of examinee i, u·j = (u1j, ..., uNj)
′ denote the observed response vector of item

j, and u = (u·1, ...,u·N) denotes the observed response data from a test. Let W.j =

(W1j, ...,WNj)
′ and Z.j = (Z1j, ..., ZNj)

′ denote the vector of the latent variables for item

j, w.j = (w1j, ..., wNj)
′ and z.j = (z1j, ..., zNj)

′ denote the observations of W.j and Z.j;

W = (W.1, ...,W.M) and Z = (Z.1, ...,Z.M) denote the matrix of latent response variables

for a test, w = (w.1, ...,w.M) and z = (z.1, ..., z.M) denote the observation of W and

Z. Let θ =θ =θ = (θ1, ..., θN)′ be the ability parameter vector of N examinees. Finally, let

xxx = (u,w, z,θ) denote the complete-data, and (w, z,θ) denote the missing data.

From Equation 9, the complete-data likelihood of ξξξj can be written as

L(xxx.j | ξξξj) =
N∏
i=1

d
wijuij
j (1− dj)wij(1−uij)c

(1−wij)uij
j (1− cj)(1−wij)(1−uij)φ(zij − ajθi − bj)

×[I(zij>0)I(wij=1) + I(zij≤0)I(wij=0)]φ(θi), (10)

where x.j = (u.j,w.j, z.j,θ) is the complete data of item j. Further, we have

L(x.j | ξξξj) = exp {lnL(x.j | ξξξj)}

∝ exp

{
−1

2
(z′.jz.j + θθθθθθ′) +N ln (1− cj) + ln

dj
1− dj

N∑
i=1

wijuij

+ ln
cj

1− cj

N∑
i=1

(1− wij)uij + ln
1− dj
1− cj

N∑
i=1

wij

+(aj, bj)Λ
′z.j −

1

2
(aj, bj)Λ

′Λ(aj, bj)
′
}

(11)

where Λ = (θ,1N), and 1N denotes the N×1 vector of 1s. Equation 11 is the exponential
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family form of L(x.j | ξξξj), and the sufficient statistics of ξξξj are

S(xxx.j) = (S1(x.j), S2(x.j), S3(x.j), S4(x.j), S5(x.j)) (12)

where

S1(x.j) =
N∑
i=1

wijuij, (13)

S2(x.j) =
N∑
i=1

wij, (14)

S3(x.j) =
N∑
i=1

(1− wij)uij, (15)

S4(x.j) = Λ′Λ, (16)

S5(x.j) = Λ′z.j. (17)

2.2 MMAP Estimation for the 4PNO Model

2.2.1 Priors

Following Culpepper (2016), for j = 1, ...,M , the prior for (aj, bj) is a truncated bivariate

normal distribution with the constraint of aj ≥ 0,

f(aj, bj|µ0,Σ0) ∝ N2(µ0,Σ0)I(aj≥0), (18)

where µ0 is a 2 × 1 mean vector and Σ0 is a 2 × 2 covariance matrix. And the prior for

(cj, dj) is a bivariate Beta distribution with the constraint of dj ≥ cj,

f(cj, dj|αc, βc, αd, βd) ∝ cαc−1
j (1− cj)βc−1dαd−1

j (1− dj)βd−1I(1≥dj≥cj≥0). (19)

The priors of (aj, bj) and (cj, dj) are assumed to be independent, then the joint prior of

ξξξj can be written as

f(ξξξj|Ω) = f(aj, bj|µ0,Σ0)f(cj, dj|αc, βc, αd, βd), (20)
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where Ω := {µ0,Σ0, αc, βc, αd, βd} is the set of hyper-parameters. The above two priors are

conjugate to the complete-data likelihood L(xxx.j | ξξξj), which is mathematically convenient

for posterior inference.

Finally, it should be emphasized that, the noninformative uniform prior density for

(aj, bj), f(aj, bj|µ0,Σ0) ∝ I(aj≥0), can be obtained in the limit as |Σ−1
0 | → 0 (|Σ−1

0 | is

called the prior precision) (Gelman et al., 2013). Moreover, in the limit of |Σ−1
0 | = 0

(infinite prior variance), the prior mean µ0 is irrelevant, that is, it can be specified as any

value. And the prior for (cj, dj), with the setting of (αc, βc, αd, βd) = (1, 1, 1, 1), is the

noninformative uniform prior.

2.2.2 MMAP Estimation

For j = 1, ...,M , the marginalized posterior distribution of ξξξj can be calculated by

f(ξξξj|u·j,Ω) =

∫ ∫
L(x.j | ξξξj)f (ξξξj |Ω)

L(u.j|Ω)
dz.jdθ

∝
∫ ∫

L(x.j | ξξξj)f (ξξξj |Ω) dz.jdθ, (21)

where L(x.j|ξξξj) and f (ξξξj |Ω) given in Equations 10 and 20. And the mode of f(ξξξj|u·j,Ω)

is defined as the MMAP estimation of ξξξj, which is

ξ̂ξξj = arg max
ξξξj∈Θξ

f(ξξξj|u.j,Ω) = arg max
ξξξj∈Θξ

∫ ∫
L(x.j | ξξξj)f (ξξξj |Ω) dz.jdθ. (22)

Based on the MMAP estimation of the 4PNO defined in Equation 22, the computation

of

arg max
ξξξj∈Θξ

L(x.j | ξξξj)f(ξξξj|Ω), (23)

for j = 1, ...,M , which is the posterior mode of ξξξj under complete-data likelihood, is

the Maximization Step (M-Step) of the EM-type algorithms (including the basic EM, the

MCEM, the SAEM and the MSAEM). As given below, benefiting from the conjugate
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prior and the complete-data likelihood being in the exponential family, the solutions to

Equation 23 are available in closed forms and more importantly, they can be formulated

as functions of the sufficient statistics S(x.j).

2.2.3 Posterior Mode of ξξξj under Complete-Data Model

Let f(ξξξj|x.j,Ω) denote the posterior distribution of ξξξj given x.j, and we have

f(ξξξj|x.j,Ω) ∝ L(x.j | ξξξj)f(ξξξj|Ω),

in the case of the complete data x.j is observed. Then,

arg max
ξξξj∈Θξξξ

L(x.j | ξξξj)f(ξξξj|Ω) = arg max
ξξξj∈Θξξξ

f(ξξξj|x.j,Ω).

As the priors given in Equations 18 and 19 are conjugate for L(xxx.j | ξξξj), the following

results can be obtained. First, the posterior distribution for (aj, bj) is a truncated bivariate

normal distribution with the constraint of aj ≥ 0,

f(aj, bj|xxx.j, µ0,Σ0) ∝ N2(aj, bj|µ(aj ,bj),Σ(aj ,bj))I(aj≥0),

where

µ(aj ,bj) = (S4(xxx.j) + Σ−1
0 )−1(S5(xxx.j)) + Σ−1

0 µ0),

Σ(aj ,bj) = (S4(xxx.j) + Σ−1
0 )−1,

which are the posterior mean vector and covariance matrix. Then, the maximum of the

posterior of aj and bj is

âj(sj) = µaj × I(µaj≥0), (24)

b̂j(sj) = µbj , (25)

where µaj and µbj are the first and the second element of µ(aj ,bj), and sj denotes the values

of S(x.j). It can be seen that, when Σ−1
0 = 0002×2, where 0002×2 denotes the 2×2 zero matrix,
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which is a noninformative prior, the obtained MAP estimation of aj and bj in Equations

24 and 25 are reduced to the ML estimation.

Second, the posterior distribution for (cj, dj) is

f(cj, dj|xxx.j, αc, βc, αd, βd) ∝ c
αcj−1

j (1− cj)βcj−1d
αdj−1

j (1− dj)βdj−1I(1≥dj≥cj≥0),

where

αcj = αc + S3(xxx.j), βcj = βc +N − S2(xxx.j)− S3(xxx.j),

αdj = αd + S1(xxx.j), βdj = βd + S2(xxxj)− S1(xxx.j).

Noting that the maximum of p(cj, dj|xxx.j, αc, βc, αd, βd) is a convex optimization problem

with constraints, and using the Lagrange multiplier method, it can be obtained that when

αcj − 1

αcj + βcj − 2
≥

αdj − 1

αdj + βdj − 2
,

the maximum of the posterior of cj and dj is

ĉj(sj) = d̂j(sj) =
αcj + αdj − 2

αcj + βcj + αdj + βdj − 4
; (26)

otherwise,

ĉj(sj) =
αcj − 1

αcj + βcj − 2
, (27)

d̂j(sj) =
αdj − 1

αdj + βdj − 2
. (28)

It should be noted that, when (αc, βc, αd, βd) = (1, 1, 1, 1), which is the noninformative

prior, the obtained MAP estimators of cj and dj become their ML estimators.

3 Estimation Methods

This section presents two versions of the SAEM algorithm for the MMAP estimation of

the 4PNO model. A full SAEM algorithm is proposed in subsection 3.1. In subsection

13



3.2, an improved and more efficient SAEM algorithm, the MSAEM, is developed for the

4PNO model.

3.1 SAEM Algorithm for the MMAP Estimation of the 4PNO
Model

First, we introduce the basic EM algorithm for the MMAP estimation of the 4PNO model.

The EM algorithm consists of an expectation step (E-Step) and a maximization step (M-

Step), and in the situation where the complete data likelihood belongs to the exponential

family, the E-Step and the M-Step can be implemented using the sufficient statistics. The

E-step of each iteration is taking the conditional expectation over the sufficient statistics

given the current estimates of parameters, and the M-step computes the MAP or ML

estimate of parameters using the updated expectation of the sufficient statistics in the

E-Step.

Let ξξξ0 = (ξξξ0
1, ..., ξξξ

0
M) be the initial values, and ξξξk−1 = (ξξξk−1

1 , ..., ξξξk−1
M ) denote the

parameter estimate at the end of the (k − 1)th iteration. The kth iteration of the EM

algorithm consists of the two steps:

• E-Step: Compute

skj = E(S(x.j)|u.j, ξξξk−1), (29)

where the expectation is with respect to f(w.j, z.j, θθθ|u.j, ξξξk−1), and j = 1, ..,M .

• M-Step: Update

ξξξkj = ξ̂ξξj(s
k
j ),

which is obtained by substituting skj for sj in Equations 24-28.

In the above EM iteration, the conditional expectation in the E-Step can not be done

in closed form, which leads to the problem of integral computation. For this problem,
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the MCEM algorithm proposed by Wei and Tanner (1990) is a powerful computing tool,

in which the conditional expectation is computed by means of Monte Carlo samples.

Meng and Schilling (1996) proposed a MCEM algorithm for the estimation of the full-

information item factor model, and they demonstrated that the MCEM algorithm have

substantial improvement over the EM algorithm with a numerical integral.

But the drawback of the MCEM algorithm is that it has a high computational cost in

many situations. To address this problem, Delyon et al. (1999) proposed the SAEM algo-

rithm, in which a stochastic approximation is used to estimate the conditional expectation

in the E-Step. In contrast, the SAEM algorithm is more efficient. Furthermore, Delyon

et al. (1999) proved that, the convergence of the SAEM algorithm can be ensured under

many practical situations, when the complete-data likelihood belongs to an exponential

family. In the following, we develop a SAEM algorithm for the MMAP estimation of the

4PNO model.

3.1.1 General Description of the SAEM Algorithm

Let ξξξ0 = (ξξξ0
1, ..., ξξξ

0
M) be the initial values, and ξξξk−1 = (ξξξk−1

1 , ..., ξξξk−1
M ) denote the parameter

estimate at the end of the (k − 1)th iteration. The kth iteration of the SAEM algorithm

for the MMAP estimatino of the 4PNO model consists of:

• Simulation-Step (S-Step): Sample mk sets of (w,zzz, θθθ) from p(w,zzz, θθθ|uuu, ξξξk−1) to form

mk sets of complete data set {xl = (u,wwwl,zzzl, θθθl); l = 1, ...,mk}.

• Stochastic Approximation-Step (SA-Step): Compute the sufficient statistics S(xxxl.j)

(l = 1, ...,mk) in Equations 13-17, and update skj according to

skj = sk−1
j + γk(

∑mk
l=1 S(xxxlj)

mk

− sk−1
j ),
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where {γk}k>0 is the Robbins-Monro (RM) gain coefficient such that

γk > 0,
+∞∑
k=1

γk = +∞,
+∞∑
k=1

γ2
k < +∞,

for itemj, where j = 1, ..,M .

• Maximization-Step (M-Step): Compute

ξξξkj = ξ̂ξξj(s
k
j ),

by substituting skj for sj in Equations 24-28, where j = 1, ...,M .

In the SAEM iteration, the E-Step in Equation 29 is replaced by a stochastic approx-

imation iteration of Robbins and Monro (1951), thus the obstacle integral computation

is avoided. For the stochastic approximation procedure, the choice of γk and the specifi-

cation of mk are very important, and they both determine the performance of the SAEM

algorithm.

Remark 1: The choice of step sizes {γk}k>0 plays an important role in determining

the convergence of the SAEM algorithm. A sequence of large step sizes puts the parameter

estimates into the neighborhood of the solution rather quickly, but it also introduces a

large amount of simulation noise. On the other hand, a sequence of smaller step sizes

reduces the noise faster, but it results in a rather slowly moving algorithm (Jank, 2006).

Gu and Zhu (2001) proposed to employ stochastic approximation in two stages where the

first stage uses a rather large step size and then in the second stage, after the algorithm

has reached the proximity of the solution, the method switches to a smaller step size

selection. Some recent research (Camilli and Fox, 2015; Camilli and Geis, 2019; Galarza

et al., 2017; Kuhn and Lavielle, 2004; Lavielle and Mbogning, 2014) suggested setting

γk = 1 in the first K iterations (the first stage) and setting γk = 1
(k−K)α

when k > K

(the second stage), where 0.5 < α ≤ 1. In practice, typically specify α = 1.0 or 2/3. For
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presentation convenience, in this article, the step size sequence is written as{
γk = I(k≤K) + I(k>K) ×

1

(k −K)α

}
k>0

. (30)

Remark 2: If specifying γk = 1 for all the iterations, the SA-Step becomes equiva-

lent to that the conditional expectation of the sufficient statistics, E(S(x.j)|u.j, ξξξk−1), is

computed by a Monte Carlo integral, then the SAEM iteration is reduced to a MCEM

algorithm. This MCEM can be seen as an extension of the MCEM proposed by Meng

and Schilling (1996) to the 4PNO model. To guarantee the accuracy of the Monte Carlo

integral, a big number of the simulation mk is often required, which leads to high compu-

tational cost of the MCEM algorithm in many situations.

Remark 3: When the complete-data model belongs to the exponential family, the

convergence of the SAEM algorithm can be guaranteed with the setting of the number

of the simulation mk = 1. In comparison with the MCEM algorithm, the simulation is

cheaper, thus the SAEM algorithm is more efficient. Furthermore, we have investigated in

simulation studies that, as mk increases, the computational time of the SAEM algorithm

increases significantly, but the accuracy and the stability of the obtained SAEM estimates

show no significant changes.

It can be seen that, the complete-data model is a member of the exponential family,

the SA-Step and the M-Step can be directly computed using the sufficient statistics,

thus the intractable numerical computations are avoided. To simulate (www,zzz, θθθ) in S-Step,

which is not available in closed form, we propose a two-step sampling procedure, where a

discrete-grid method is employed to generate the realizations of the missing data (www,zzz, θθθ),

and the detailed sampling procedure is given below.
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3.1.2 Generating Missing Data in the S-Step

In the S-Step, drawing (wwwl,zzzl, θθθl) from f(w,zzz, θθθ|uuu, ξξξk−1) consists of the following two steps:

first sampling θli from its marginal posterior distribution f(θi|uuui., ξξξk−1), and then drawing

(wlij, z
l
ij) from f(wij, zij|θli, uij, ξξξ

(k−1)
j ), where i = 1, ..., N, j = 1, ...,M . As the closed form

of f(θi|uuui., ξξξk−1) is not available, it can not be used directly for simulation. To deal with

this problem, a discrete-grid method is used. The S-Step proceeds as follows:

1. For i = 1, ..., N , θli (l = 1, ...,mk) is directly simulated from f(θi|uuui., ξξξk−1) using a

discrete-grid approximation method.

(a) A grid including a set of evenly spaced values, θ∗1, ..., θ
∗
T , is selected on a broad

range of the parameter space for θ. The posterior density function of θi,

f(θi|uuui., ξξξk−1), is computed on the grid values,

p(θ∗t |uuui., ξξξk−1) =
p(uuui.|θ∗t , ξξξk−1)φ(θ∗t )∑T
t=1 p(uuui.|θ∗t , ξξξk−1)φ(θ∗t )

, t = 1, ..., T, (31)

which is a discrete-grid approximation of f(θi|uuui., ξξξk−1).

(b) Randomly draw mk values of θli, {θli; l = 1, ...,mk}, from the discrete-grid ap-

proximation of f(θi|uuui., ξξξk−1) given in Equation 31.

2. For i = 1, ..., N and j = 1, ...M , sample (wlij, z
l
ij) (l = 1, ...,mk) from p(wij, zij|uij, ξξξ(k−1)

j , θli)

according to the following procedure,

(a) Sample wlij from,

Wij|uij, ξξξk−1
j , θli ∼ Bernoulli(pW=1)

where

pW=1 =


dk−1
j Φ(ak−1

j θli+b
k−1
j )

dk−1
j Φ(ak−1

j θli+b
k−1
j )+clj(1−Φ(ak−1

j θli+b
k−1
j ))

, uij = 1 ;

(1−dk−1
j )Φ(ak−1

j θli+b
k−1
j )

(1−dk−1
j )Φ(ak−1

j θli+b
k−1
j )+(1−ck−1

j )(1−Φ(ak−1
j θli+b

k−1
j ))

, uij = 0.
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(b) Sample zlij from,

Zij|wlij, ξξξk−1
j , θli ∼ N(ak−1

j θli + bk−1
j , 1)[I(zij>0)w

l
ij + I(zij≤0)(1− wlij)].

which is a truncated normal distribution.

Remark 4: For the discrete-grid approximation approach, the selection of the grid

points plays a key role. Understandably, a grid defined on too small an area may miss

important features of the distribution that fall outside the grid, but on a large area with

wide intervals between points may miss important features that fall between the grid

points. In this study, we use an equal-spacing grid of θi in the interval of [−3.0,+3.0]. As

given in Equation 8, θi is assumed to follow N(0, 1), and [−3.0,+3.0] is the range of ±3

standard deviation, thus it can cover a broad range of θ-space. The equal-spacing grid is

a regular grid design and is commonly used in the grid-sampling method. Furthermore,

we have verified in simulation studies that 30 grid points is enough to ensure the accuracy

of the SAEM algorithm.

In Bayesian statistics, the discrete-grid approximation provides a powerful compu-

tational and sampling approach for the situations where the posterior distribution is

low-dimensional and has no closed-form expression (Gelman et al., 2013). Using the

discrete-grid approximation sampling method makes it possible to generate the missing

data of θi from its marginal posterior distribution, and then the MCMC sampler is avoided.

Another advantage with using the discrete-grid method is that it allows some important

indicators or statistics to be computed directly. For instance, the expected a posteriori

(EAP) estimate of θi can be calculated by

EAP(θi) =

∑T
t=1 θ

∗
t × p(uuui.|θ∗t , ξξξk)φ(θ∗t )∑T

t=1 p(uuui.|θ∗t , ξξξk)φ(θ∗t )
, i = 1, ..., N. (32)

Furthermore, the logarithm of marginal posterior odds for ξξξk to ξξξk−1,

∆Lk = | log f(ξξξk|uuu,Ω)− log f(ξξξk−1|uuu,Ω)|, (33)
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can be easily calculated, and it is used to check the the convergences of the SAEM

iteration. As discussed in Meng and Schilling (1996), ∆Lk is a powerful tool for monitoring

the convergence of the EM-type algorithms, and it is recommended for the problems when

it is easily computed (Gelman et al., 2013).

3.2 MSAEM Algorithm for the MMAP Estimation of the 4PNO
Model

Celeux et al. (2000) pointed out that, because of the well known label switching phe-

nomenon in the estimation of the mixture models, the simulation of latent categorical

variables is likely to impact the convergence of the MCMC and the SAEM algorithm for

the mixture of NLMEM. To cope with this problem, Lavielle and Mbogning (2014) de-

veloped an modified SAEM algorithm for computing the maximum likelihood estimation

of the mixture of NLMEM.

As given in Equation 2, the 4PNO model belongs to a two-classify mixture Bernoulli

model, where Wij is the latent categorical variable. Furthermore, according to the re-

lationship between Wij and Zij in Equation 6, Zij indirectly play the role of the latent

categorical variable. It is indicated that, the simulation of (w, z) is likely to impact the

performance of the SAEM algorithm for the 4PNO model. Inspired by the the studies

of Celeux et al. (2000) and Lavielle and Mbogning (2014), we develop an improved and

more efficient SAEM algorithm, which is called the MSAEM, for computing the MMAP

estimate of the 4PNO model.

3.2.1 General Description of the MSAEM Algorithm

By taking the law of total expectation, the E-Step in Equation 29 can be calculated by,

E(S(x.j)|u.j, ξξξ) = Eθθθ(E(W.j ,Z.j)(S(x.j)|θθθ,u.j, ξξξ)|u.j, ξξξ), (34)
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where E(W.j ,Z.j)(·|θθθ,u.j, ξξξ) is the expectation with respect to f(w.j, z.j|u.j, θθθ, ξξξ), and Eθθθ(·|u.j, ξξξ)

is the expectation with respect to f(θθθ|u.j, ξξξ). Then E(S(x.j)|u.j, ξξξ) can be estimated using

a stochastic approximation procedure onE(W.j ,Z.j)(S(x.j)|θθθ,u.j, ξξξ), when E(W.j ,Z.j)(S(x.j)|θθθ,u.j, ξξξ)

can be done in closed form. From this point, an improved SAEM algorithm is developed

for the 4PNO model, which is given in the following.

Let ξξξ0 = (ξξξ0
1, ..., ξξξ

0
M) denote the initial values, and ξξξk−1 = (ξξξk−1

1 , ..., ξξξk−1
M ) denote the

parameter estimate at the end of the (k−1)th iteration. The kth iteration of the MSAEM

algorithm consists of the following steps:

• S-Step: Sample θli (l = 1, ...,mk) from f(θi|uuui., ξξξk−1), where i = 1, ..., N , using the

discrete-grid method that is given in subsection 3.1.3. Here {θθθl = (θl1, ..., θ
l
N)′; l =

1, ...,mk} denotes mk vectors of the abilities.

• E-Step: Compute

S(uuu.j, θθθ
l, ξξξk−1

j ) = E(W.j ,Z.j)(S(xxx.j)|uuu.j, θθθl, ξξξk−1
j ),

according to the Equations 35-39, where j = 1, ..,M , l = 1, ...,mk.

• SA-Step: Update skj according to

skj = sk−1
j + γk(

∑mk
l=1 S(uuu.j, θθθ

l, ξξξk−1
j )

mk

− sk−1
j ),

where the specifications of γk and mk are the same as that in the SAEM algorithm;

please see Remarks 1 and 3.

• M-Step: Compute

ξξξkj = ξ̂ξξj(s
k
j ),

by substituting skj for sj in Equations 24-28, where j = 1, ...,M .
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In the above procedures, the missing data of (www,zzz, θθθ) is dealt with using a mixture of

the two methods: θθθ are simulated from their marginal posterior distributions, and (www,zzz)

are replaced by their conditional expectations. Therefore, the improved SAEM algorithm

is called the mixed SAEM (MSAEM) algorithm. It can be seen that, the use of the

discrete-grid sampling method is very important for the implementation of the MSAEM

iteration, since in which randomly drawing from f(θi|uuui., ξξξk−1) is the first step, and the

closed form of f(θi|uuui., ξξξk−1) can not be obtained.

In comparison with the SAEM algorithm, the simulation of missing data of the

MSAEM algorithm is computationally cheaper, then the MSAEM algorithm becomes

more efficient. More importantly, as verified by the simulation studies in Section 4, the

accuracy of the MSAEM are higher than those of the SAEM algorithm.

For implementing the MSAEM algorithm, the closed form of the conditional expec-

tation of the sufficient statistics, E(W.j ,Z.j)(S(xxx.j)|uuu.j, θθθl, ξξξk−1
j ), need to be obtained and

they are derived in the following.

3.2.2 Implementation Details of the E-Step

First, according to the definition of S(xxx.j) (j = 1, ...,M) in Equations 13-17, all the

elements of E(W.j ,Z.j)(S(xxx.j)|uuu.j, θθθl, ξξξk−1
j ) can be formulated as,

E(W.j ,Z.j)(S1(xxx.j)|uuu.j, θθθl, ξξξk−1
j ) =

N∑
i=1

E(Wij|uij, ξξξk−1
j , θli)uij, (35)

E(W.j ,Z.j)(S2(xxx.j)|uuu.j, θθθl, ξξξk−1
j ) =

N∑
i=1

E(Wij|uij, ξξξk−1
j , θli), (36)

E(W.j ,Z.j)(S3(xxx.j)|uuu.j, θθθl, ξξξk−1
j ) =

N∑
i=1

(1− E(Wij|uij, ξξξk−1
j , θli))uij, (37)

E(W.j ,Z.j)(S4(xxx.j)|uuu.j, θθθl, ξξξk−1
j ) = ΛΛΛ

′
ΛΛΛ, (38)

E(W.j ,Z.j)(S5(xxx.j)|uuu.j, θθθl, ξξξk−1
j ) = Λ

′
E(Z.j|uuu.j, θθθl, ξξξk−1

j ), (39)
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where Λ = (θθθl,1N) and E(Z.j|uuu.j, θθθl, ξξξk−1
j ) = (E(Z1j|u1j, θ

l
1, ξξξ

k−1
j ), ..., E(ZNj|uNj, θlN , ξξξk−1

j ))
′
.

It can be seen that, if E(Wij|uij, ξξξk−1
j , θli) and E(Zij|uij, ξξξk−1

j , θli) can be done in closed

forms, the closed form of E(W.j ,Z.j)(S(xxx.j)|uuu.j, θθθl, ξξξk−1
j ) can be obtained consequently.

From Equations 2 and 9, the conditional densities of Zij given Uij = uij can be

written as

f(zij|uij, ξξξk−1
j , θli)

=


dk−1
j φ(zij−ak−1

j θli−b
k−1
j )I(zij>0)+c

k−1
j φ(zij−ak−1

j θli−b
k−1
j )I(zij≤0)

P (Uij=1|ξk−1
j ,θli)

, uij = 1 ;

(1−dk−1
j )φ(zij−ak−1

j θli−b
k−1
j )I(zij>0)+(1−ck−1

j )φ(zij−ak−1
j θli−b

k−1
j )I(zij≤0)

1−P (Uij=1|ξk−1
j ,θli)

, uij = 0.

where P (Uij = 1|ξξξk−1
j , θli) is given in Equation 2.

Further, we have

E(Zij|uij, ξξξk−1
j , θki ) =


dk−1
j E1+ck−1

j E2

P (Uij=1|ξk−1
j ,θki )

, uij = 1 ;

(1−dk−1
j )E1+(1−ck−1

j )E2

1−P (Uij=1|ξk−1
j ,θki )

, uij = 0,
(40)

where

E1 = φ(ak−1
j θli + bk−1

j ) + (ak−1
j θli + bk−1

j )Φ(ak−1
j θli + bk−1

j ),

E2 = −φ(ak−1
j θli + bk−1

j ) + (ak−1
j θli + bk−1

j )Φ(−ak−1
j θli − bk−1

j ),

and

E(Wij|uij, ξξξk−1
j , θki ) =


dk−1
j Φ(ak−1

j θki +bk−1
j )

P (Uij=1|ξk−1
j ,θki )

, uij = 1 ;

(1−dk−1
j )Φ(ak−1

j θki +bk−1
j )

1−P (Uij=1|ξk−1
j ,θki )

, uij = 0.
(41)

Finally, by plugging E(Wij|uij, ξξξk−1
j , θki ) and E(Zij|uij, ξξξk−1

j , θki ) given in Equations 40

and 41 into Equations 35-39, the closed form of E(W.j ,Z.j)(S(xxx.j)|uuu.j, θθθl, ξξξk−1
j ) is obtained.
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4 Monte Carlo Simulation

In this section, two Monte Carlo simulation studies are reported. The first simulation

study was constructed to investigate the impact of K (the number of steps with γk = 1; see

Remark 1) on the performance of the SAEM and the MSAEM, and assess the sensitivity

(or robustness) of the two algorithms on the initial values. The second simulation was

constructed to evaluate the properties (recovery accuracy, insensitivity on the priors,

computational efficiency) of the SAEM and MSAEM algorithms by comparing with the

MCEM algorithm and the Gibbs sampler algorithm of Culpepper (2016). A simulation

study was also constructed to compare the recovery accuracy of MSAEM for 4PNO with

two commonly used EM algorithms for the 4PL model.

4.1 Study 1

4.1.1 Design

In this simulation, the test length of the artificial test was M = 30, and the true values

of ξξξj (j = 1, ...,M) were randomly generated from the following distributions: aj ∼

U(0.5, 3.0), bj ∼ N(0.0, 1.0), cj ∼ U(0.0, 0.35) and dj ∼ U(0.65, 1.0), where U(·, ·) denotes

the uniform distribution. The sample size of test takers is an important factor affecting

the estimation of item parameters in IRT models, and three different levels of sample size

were considered in this simulation, they were N = 500, 1000 and 5000. Under each of the

three sample conditions, the true values of θθθ were randomly generated from the standard

normal distribution, θi ∼ N(0, 1) (i = 1, .., N).

In this simulation study, to reduce sampling error, 200 replications were generated

under each of the three sample sizes. For each replication, the MMAP estimation of the

4PNO model was computed by using the SAEM and the MSAEM algorithms. The priors
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for (aj, bj) in Equations 18 were specified to be: (µ0,Σ
−1
0 ) = (0002, (2I2)−1), where 0002 is a

two-dimensional vector of zeros and I2 is a two-dimensional identity matrix, which is the

same as that in Culpepper(2016); the priors for cj and dj in Equation 19 were specified

to be, (αc, βc, αd, βd) = (5, 17, 17, 5), which were suggested by Loken and Rulison (2010).

These priors are commonly used in the estimation of the IRT models. Other priors can

also be employed; for instance, the non-informative priors are given in the next simulation

study, and the obtained conclusions are almost identical.

To study the impact of K on the convergence of the SAEM and MSAEM algorithms,

the step size sequence {γk} given in Equation 30 was specified with 4 levels of K, they were

K = 100, 500, 1000 and 1500, when k > K, the gain speed control parameter was set to

be α = 2/3. Furthermore, in this study, to assess the sensitivity to the initial values, the

SAEM and MSAEM algorithms were ran starting from three different initial values: (I1)

randomly generated from the distributions, a0
j ∼ U(0.5, 3), b0

j ∼ U(−2, 2), c0
j ∼ U(0, 0.3)

and d0
j ∼ U(0.7, 1); (I2) a group of representative values, a0

j = 1, b0
j = 0, c0

j = 0.2, d0
j = 0.8;

(I3) the true values of ξξξj(j = 1, ...,M) were taken as the initial values. Therefore, for

each of the three sample sizes, the SAEM and the MSAEM were implemented under the

12 conditions (4 levels of K × 3 groups of initial values) separately, and 200 replications

were performed for each simulation condition.

In the S-Step, the grid sampling procedure used the range of θ ∈ [−3.0, 3.0], and the

number of the grid points was T = 30, as discussed in Remark 4. The convergences of

the SAEM and MSAEM iterations were checked using ∆Lk that is given in Equation 33,

and if ∆Lk ≤ 10−4, the iteration was terminated.
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4.1.2 Results

The root mean squire error (RMSE) of each parameter was calculated across the 200

replications to evaluate the recovery accuracy. Let δj denote one of the four characteristic

parameters (aj, bj, cj, dj) of item j, and δ̂jg denote the estimate obtained with the g-th

simulated data, then the RMSE of δj is computed as

RMSEδj =

√
200−1

∑200

g=1

(
δ̂jg − δj

)2

, (42)

where j = 1, ...,M . Further, let RMSEδ = {RMSEδ1 , . . . , RMSEδM}, which denotes the

RMSEs of δs for all the items in test. In this simulation, under each of the 3 sample sizes

(N = 500, 2000 and 5000), the Box-plots of RMSEδ obtained from the two algorithms

(SAEM and MSAEM) implemented with the 12 settings (4 levels of K and 3 groups of

initial values) are displayed in Figures 1-6.

Observing these figures, it can be found the following trends: First, across the three

sample sizes (N = 500, 1000 and 5000), the Box-plots of RMSEs obtained from the SAEM

and the MSAEM with setting K = 100 were significantly different from those obtained

with the settings of K = 500, 1000 and 1500. Moreover, in the case of K = 100, there

were substantial differences in the Box-plots of RMSEs corresponding to three different

initial values (I1, I2, and I3). These phenomena indicate that the convergence of the

SAEM and the MSAEM algorithms with K = 100 may not be guaranteed.

Second, under the conditions of N = 500 and 1000, the Box-plots of RMSE obtained

from the SAEM and the MSAEM with the same initial values were almost unchanged with

the increase of K (K = 500, 1000, 1500). These results demonstrate that the convergence

of the SAEM and the MSAEM can be guaranteed under the setting of K = 500. Fur-

thermore, the Box-plots of SAEM and MSAEM under different initial values were almost

identical; even when the initial values are selected randomly (denoted as I1), the obtained

results were very close to those obtained with the true values (denoted as I3). This trend
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indicates that both the SAEM and the MSAEM are highly robust on the choice of the

initial values. But it can be seen that the Boxplots of the MSAEM under different initial

values were more stable, indicating the better robustness of the MSAEM on initial values.

Third, the Boxplots obtained under the sample size of N = 5000 were significantly

lower than those under N = 500 and 1000, which is expected since the accuracy of

estimators should be improved with the increase of sample size. It can be seen that, in

the case of K = 500, the Box-plots of RMSEs of aaa = {a1, ..., aM} from the initial values

of I1 (randomly selected) and I2 were a little higher than those from the initial value

I3, but this phenomenon disappeared when K = 1000 and 1500. Then to ensure the

estimation accuracy, we suggest to set K = 1000. It should be emphasized that, even

under K = 1000, the computing times of the SAEM and the MSAEM were not much.

In the following section of Study 2, the computing times of the two algorithms were

investigated under different conditions, and the obtained results are reported in Table 5.

Finally, it can be seen that, in comparison with the SAEM algorithm, the Box-plots

of the MSAEM algorithm are located lower; moreover, they are stable under different

levels of K and different initial values. These phenomena are also obvious under the

relatively larger sample size N = 5000. It thus indicates that the MSAEM algorithm, as

an improvement of the SAEM algorithm, has more desired properties for estimating the

4PNO model.

4.2 Study 2

4.2.1 Design

In this simulation, two test lengths (M = 20 or 40) and two sample sizes (N = 1000 or

5000) were considered, thus there were in total 2 × 2 = 4 testing conditions. The same

as the design of Study 1, for each of the four testing conditions, the true values of ξξξj
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(j = 1, ...,M) were randomly generated from the following distributions, aj ∼ U(0.5, 3),

bj ∼ N(0, 1), cj ∼ U(0, 0.35) and dj ∼ U(0.65, 1), and the true values of θθθ were randomly

generated from the standard normal distribution, θi ∼ N(0, 1) (i = 1, .., N).

In practice, the choice of the prior is subjective, thus it is desirable that the Bayesian

inference is robust to the specification of the prior distribution in many situations (Berger,

1990; Gelman et al., 2013). From this point of view, it makes sense to perform a sen-

sitivity analysis of the estimation of the 4PNO on the prior of ξξξj (j = 1, ...,M). To

do it, in this simulation, two priors were specified for (aj, bj), an informative prior,

(µ0,Σ
−1
0 ) = (0002, (2I2)−1), which is the same as that used in Study 1, and a noninfor-

mative prior, (µ0,Σ
−1
0 ) = (0002,0002×2), where 0002×2 denotes the 2× 2 zero matrix. Note that,

this noninformative prior is an improper prior, which is given in subsection 2.1.1, and

for more detailed theoretical concerns, see Gelman et al. (2013). Furthermore, two priors

were specified for (cj, dj), an informative prior, (αc, βc, αd, βd) = (5, 17, 17, 5), which is the

same as that used in Study 1, and a noninformative prior, (αc, βc, αd, βd) = (1, 1, 1, 1).

The two priors of (aj, bj) and the two priors of (cj, dj) were crossed, leading to four pri-

ors for ξξξj (j = 1, ...,M), which are shown in Table 1. The 4PNO model was estimated

with the four priors separately to check the differences in the estimation accuracy under

different priors.

The four testing conditions and the four priors for ξξξj were crossed, leading to in total

4 × 4 = 16 simulation conditions. In each of the 16 conditions, three algorithms were

implemented to compute the MMAP estimates of the 4PNO model, including MSAEM,

SAEM, and MCEM. According to the results in Study 1, in this simulation, the SAEM

and the MSAEM were implemented with the settings: K = 1000, α = 2/3 and mk = 1.

Furthermore, as discussed in Remark 4, the MCEM algorithm is the SAEM iteration with

γk = 1 across all iterations. For MCEM, the accuracy of the Monte Carlo integral improves

with the increase of mk, but with a high computational cost. In this simulaiton, the
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MCEM algorithm was implemented with mk = 30, which was also verified to be enough

for guaranteeing the performance of the MCEM algorithm by a separate simulation study

(not reported here).

Furthermore, for comparison, the Gibbs sampler of Culpepper (2016) was imple-

mented with the R package “fourPNO” to compute Bayesian estimates of the 4PNO.

Here 30000 Gibbs iterations were generated, and the first 10000 iterations were discarded

as burn-in. Note that, different from the three stochastic versions of EM algorithm pro-

posed by this study, the Gibbs sampler is used to compute the expectation a posterior

(EAP) estimation of the 4PNO model. Finally, the initial values of the four algorithms

(SAEM, MSAEM, MCEM and Gibbs sampler) were identical, a0
j = 1, b0

j = 0, c0
j = 0.2,

and d0
j = 0.8.

The above procedures (data generation and parameter estimation) were repeated

200 times. Evaluation criteria of parameter recovery include: the average RMSE of each

parameter over all items (which is denoted as ARMSE), the average of the correlation

between the estimates and the true parameter across 200 replications (which is denoted

as ACor), and the average of the item response function (IRF) recovery across all the

items and the 200 replications (which is denoted as AIRF). They are calculated by

ARMSEδ̂ =
1

M

M∑
j=1

√√√√200−1

200∑
g=1

(
δ̂jg − δj

)2

,

and

ACorδ̂ =
1

200

200∑
g=1

∑M
j=1 δ̂jgδj −

1
M

∑M
j δ̂jg

∑M
j δj√

(
∑M

j=1 δ̂
2
jg − 1

M
(
∑M

j=1 δ̂jg)
2)(
∑M

j=1 δ
2
j − 1

M
(
∑M

j=1 δj)
2)
,

where δj and δ̂jg are defined in Equation 42. Different from the ARMSE and the ACor,

the AIRF is used for assessing the recovery accuracy at item-level. First, the IRF recovery
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is calculated by

IRFjg =
1

100

100∑
t=1

|P (Uj = 1|θ∗t , ξ̂ξξjg)− P (Uj = 1|θ∗t , ξξξj)|, (43)

where P (Uj = 1|θ∗t , ξξξj) denotes the real item response probability of item j at θ∗t , and

P (Uj = 1|θ∗t , ξ̂ξξjg) denotes the estimated item response probability with the g-th simulated

data. Here, θ∗t belongs to the 100 evenly spaced θ points, (θ∗1, ..., θ
∗
100), ranging from −3.0

to 3.0, which is suggested by Wollack et al. (2002). And then, the AIRF across the 200

replications and the M items is calculated by,

AIRF =

∑200
g=1

∑M
j=1 IRFjg

200×M
. (44)

4.2.2 Results

The obtained values of ARMSE, ACor and AIRF under the conditions of N = 1000 and

5000 are given in Tables 2-3. Observing these results, the following trends can be found.

Recovery Accuracy and Sensitivity Analysis on Priors. First, under most conditions,

the ARMSEs and the AIRFs of the MSAEM algorithm were the smallest, and the ACor of

the MSAEM were the biggest. These results provide evidence that the MMAP estimates

computed by the MSAEM algorithm have the highest accuracy. Additionally, it can be

seen that, there were very small differences in each of the three recovery evaluation indices

of the MSAEM algorithm across the four priors. It is indicated that, the MMAP estimates

computed by the MSAEM algorithm are highly robust to the prior of ξξξj.

Second, under most conditions, the three recovery accuracy evaluation indices of the

MCEM algorithm were very close to those of the MSAEM algorithm, and were obviously

smaller than those of the SAEM algorithm. The MCEM algorithm yielded good per-

formance for computing the MMAP estimation of the 4PNO. But the drawback of the

MCEM algorithm is that it was quiet time-consuming in many situations. Please see
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Table 5, compared with the MSAEM and the SAEM, the MCEM required much more

computing time. Finally, similar to the MSAEM, the MMAP estimates computed by the

MCEM were robust with respect to the prior of ξξξj.

Third, compared with the MSAEM and the MCEM, the performance of the SAEM

was poorer. Under most conditions, the estimation accuracy was lower, and the robustness

with regard to the prior was weaker. As discussed by Lavielle and Mbogning (2014), when

the sample size is small, the SAEM algorithm tends to be unstable and produce poor

accuracy estimation for the mixture models, which is due to the simulation of the latent

categorical variable in S-Step. It can be seen that, as the increase of the sample size, the

estimation accuracy of the SAEM algorithm was greatly improved, and the inferiority of

the SAEM algorithm was weaken. These observations are consistent with the views of

Lavielle and Mbogning (2014). Therefore, it can be concluded that, for the 4PNO model,

the simulation of w and z in S-Step leads to the relative poorer behavior of the SAEM

algorithm.

Fourth, the ARMSEs and the AIRFs from the Gibbs sampler under the informative-

prior of (a, b) (Prior1 and Prior 2) were very close to or even smaller than these of the

MSAEM algorithm. In particular, under Prior 2, in which the informative prior for (aj, bj)

and the noninformative prior for (cj, dj), the Gibbs sampler algorithm performed the

highest recovery accuracy, which is consistent with the conclusion in Culpepper (2016).

However, under the noninformative prior for (a, b) (Prior 3 and Prior 4), the recovery

accuracy of the Gibbs sampler was the lowest, and this trend was more significant in the

case of N = 1000 and M = 20. As mentioned above, the Bayesian estimation computed

by the Gibbs sampler was the EAP estimate of the 4PNO model. Therefore, it can be

concluded that, the EAP estimation of the 4PNO model is sensitive to the prior of (aj, bj);

in contrast, the MMAP estimation of the 4PNO is more robust to the prior of ξξξj.

Finally, it can be found that, the recovery accuracy of the estimates computed by
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the four algorithms were improved as the increase of N and M . When N = 5000 and

M = 40, the differences in the recovery metrics between the four algorithms were very

small. It is indicated that, the sample size is very important for parameter estimation;

when the sample size is large, the estimation accuracy can be guaranteed, and the lack of

the computational accuracy can be greatly diminished. But, for a large sample size, the

estimation of parameter tends to require a high computational effort, and the computing

efficiency becomes an important consideration for an estimation method.

Computing Efficiency Assessment. The average computing time (in Second) of the

four algorithms (SAEM, MSAEM, MCEM and Gibbs sampler) across the 200 replications

were calculated to assess their computing efficiency; please see Table 5. Note that the

simulation study was run on a PC with an Intel Core i9-10900K (3.7 GHz) processor with

64GB of RAM. It can be seen that the MSAEM algorithm was the most efficient, followed

by the SAEM algorithm, and both were much more efficient than the MCEM and the

Gibbs sampler algorithm. This superiority of the computing efficiency of the MSAEM

algorithm was much larger in the case of N = 5000 and M = 40.

The complete-data model of the 4PNO belongs to an exponential family, thus the

computations of SAEM and the MSAEM are simplified, such as the numerical calculations

are avoided in each iteration, which results in the computation cost of each iteration is

small. In addition, compared to the SAEM, the simulation of missing data in MSAEM

was much cheaper, which makes the computational cost of the MSAEM algorithm further

lower than that of the SAEM algorithm.

These obtained results provide evidence that the MSAEM algorithm has overall ad-

vantages over the other three algorithms. The estimator obtained by the MSAEM algo-

rithm not only have the highest recovery accuracy, but also is highly robust to the prior

for the item parameters; more importantly, the MSAEM algorithm is computationally

more efficient than the other algorithms. Finally, it should be noted that, the MSAEM
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can be directly used for the 2PNO and 3PNO models, and thus the MSAEM provides a

powerful computing tool for the estimation of the NO models.

4.2.3 Recovery accuracy of the 4PNO under small sample size

According to the suggestion of one reviewer, the estimation accuracy of the 4PNO model

is assessed under the sample size of N = 500, and the obtained results are reported

in Table 4. One message from these results is under the sample size of N = 500, the

estimation of the 4PNO model is of rather poor accuracy. By comparison, the three

evaluation criteria of the MSAEM and the MCEM were a little smaller than those of the

other two algorithms; moreover, in the cases of the noninformative prior for (aj, bj) and

the test length is M = 20, the estimates computed by the Gibbs sampler displayed great

large errors.

The poor recovery accuracy is mainly due to the small sample size for the estimation of

the complex 4PNO model. In the IRT literature, some studies (Patsula, 1995; Tang et al.,

1993; Yen, 1987; Yoes, 1995) supported that 1000 was taken as the minimum sample size

required for accurate item-parameter estimation in IRT. Thissen (1982) suggested that

500 was the minimum feasible sample size for the dichotomous unidimensional model. Yen

(1987) supported that at least a sample of 1000 with 20 items for the three parameter

model estimation. According to these studies and the obtained results in this simulation,

it can be concluded that the sample size of N = 500 may not be adequate for the 4PNO

model estimation. This is consistent with the previous studies (Culpepper, 2016; Waller

and Feuerstahler, 2017) that a relatively larger sample size is required to accurately recover

4PNO parameter values.
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4.2.4 Estimation comparison with EM algorithms for the 4PL model

Following one reviewer’s suggestion, to further investigate the performance of the proposed

MSAEM algorithm, a simulation study is constructed to compare the recovery accuracy

of MSAEM for 4PNO with two commonly used EM algorithms for the 4PL model. The

first is the EM algorithm implemented in R package “mirt”, and the second is the EM

algorithm proposed by Meng et al. (2020). To save space, this simulation design and the

obtained results are reported in Appendix. Note that due to the difference of the 4PNO

and 4PL models, a scale constant of D = 1.702 is used to ensure the approximately

equivalence of the item response functions under the two models. Comparing the results

in Tables A2 and A3 to these in Tables 2-4, the three evaluation criteria consistently

support that the estimates from the MSAEM for 4PNO are more accurate than those

from the two EM algorithms for 4PL. Furthermore, the estimation results of the two EM

algorithms more depend on the priors for (aj, bj, cj, dj), especially when the sample size is

small. In particular, the estimation accuracy of the 4PL model under the noninformative

priors is difficult to guarantee. Overall, compared with the EM algorithms for the 4PL

model, the MSAEM algorithm provides a better performance.

5 Empirical study

In this section, we demonstrate the application of the 4PNO model via an empirical ex-

ample that is from a state math assessment test (Tao et al., 2012). This data set includes

65 dichotomous items and 2000 test takers. For this example, the 4PNO model was

estimated using the two methods: the MSAEM algorithm proposed by this article and the

Gibbs sampler of Culpepper (2016) that is implemented in the R package of “fourPNO”

separately. When the estimates of one model obtained from different methods display

some large differences, the accuracy of at least one method should be doubted; otherwise,
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the obtained estimates are likely to be credible. Therefore, in this empirical study, the

accuracy of the MSAEM algorithm was evaluated by comparing with the results from the

Gibbs sampler. The two algorithms were carried out under the same priors that are shown

in the row of “Prior 2” of Table 1, because with the priors in “Prior 2”, the Gibbs sampler

performed the highest recovery accuracy. The other settings (such as the specifications

of K, the initial values of iteration, the number of the Gibbs iterations and the period of

burn in) were the same as that in simulation study 2.

The estimates of the 4PNO model from the two algorithms were displayed using

the scatter plots in Figure 7. From the four plots, it can be seen that for each item

parameter (a, b, c or d), almost all the points fall on the diagonal, and the corresponding

four correlation coefficients ≥ 0.98. It indicates that the estimates obtained from the

MSAEM and the Gibbs sampler are consistent with each other. On the other hand, the

MSAEM has substantially computational advantage over the Gibbs sampler; for fitting

this data, the computing time of the MSAEM algorithm is less than 8 seconds, while

the Gibbs sampler requires at least 1600 seconds (the PC information is given in the

simulation study 2). In the following, the fit of the 4PNO model to this data was assessed

at the item and the test levels respectively.

To evaluate the performance of the 4PNO model, the 3PNO and the 2PNO were

selected as comparison models. Noting that the MSAEM algorithm can be directly im-

plemented for computing the MMAP estimates of the two more restricted models. Ac-

cording to the recommendation of one reviewer, the S-X2 statistic of Orlando and Thissen

(2000) was used to assess the model fit at the item level. For item j, the S-X2
j statistic

is calculated by

S −X2
j =

M−1∑
m=1

Nm
(Ojm − Ejm)2

Ejm (1− Ejm)
,

where Ojm and Ejm denote the observed and expected proportion correct of examinees

with total score m who get item j correct, Nm is the observed number of persons with
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test score m, and M is the maximal possible test score. The S-X2
j statistic approximately

follows the chi-square distribution with the degrees of freedom M − 1 − npj, where npj

denotes the number of the item parameters of item j. Thus an item fit chi-square signif-

icance test can be constructed based on the S-X2 statistics. As verified by Orlando and

Thissen (2000, 2003), the S-X2 performed better than the traditional item fit statistics

such as the Q1 statistic (Yen, 1981) and the G2 statistic (McKinley and Mills, 1985) for

dichotomous IRT models.

The obtained values of S-X2 of the three models (4PNO, 3PNO and 2PNO) are

shown in Table 6, where a value labeled “ ∗ ” indicates the model shows misfit at the

significance level of 0.05. It can be seen that, the values of S-X2 of the 4PNO model for

most items are the smallest, the values of S-X2 of the 3PNO model are a little bigger,

and the values of S-X2 of the 2PNO are great larger than that of the other two models.

Moreover, it can be seen that 1 item is significantly misfitted by the 4PNO, 3 items are

significantly misfitted by the 3PNO, and 21 items are significantly misfitted by the 2PNO.

These findings provide evidence that the fit of the 4PNO to the item response data is a

little better than that of the 3PNO, and the fits of them are substantially better than

that of the 2PNO model.

At the test level, the assessment of model fit was carried out using the Akaike infor-

mation criterion (AIC) (Akaike, 1998),

AIC = −2 lnL(uuu | ξ) + 2np, (45)

where

L(uuu | ξ) =
M∏
j=1

L(uuuj|ξξξj)

is the marginal likelihood that can be approximately calculated using the discrete grid

method, and np is the number of the item parameters of all items. Note that in AIC,

−2 lnL(uuu | ξ) is used for evaluating the model fit, and np is the penalty for model com-
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plexity. As shown in Table 6, for different items, the best fitting item-level models could

be different. Therefore, to fully evaluate the models, the data set was also fitted by

a item-level hybrid model, where each item was modeled by the best among the three

models in terms of the smallest S-X2 statistic.

The obtained results are displayed in Table 7. It shows that the AIC of the hybrid

model was the smallest, while close to that of the 4PNO. This finding indicates that

the hybrid model slightly improved the fit of the 4PNO model for the whole test. In

addition, the AIC of the 3PNO was bigger than that of the 4PNO, suggesting the 4PNO

has some superiority over the 3PNO. The values of AIC and −2 lnL(uuu | ξ) of the 2PNO

were substantially larger than those of the 4PNO and 3PNO, suggesting that the 2PNO

model provided the worst fit to this data set. Overall, both the S-X2 statistics and AIC

support that the 4PNO was the best, followed by the 3PNO, and the 2PNO model was

the worst.

6 Discussion

In IRT, the 4PM has received increasing attention in recent years. Noting the computa-

tional challenges in the 4PM estimation, this work aims to offer powerful computational

tools by using recent advances in statistical computation. We focus on the 4PNO model

and develop two versions of the SAEM algorithm to compute the MMAP estimators of

the item parameters. Specifically, the 4PNO model is reformulated to be a hierarchical

model by using a data augmentation method, and an important property is that the cor-

responding complete-data model belongs to an exponential family, which is convenient for

developing the EM-type algorithms. We first develop a SAEM algorithm to compute the

MMAP estimator of the 4PNO model, which includes the MCEM algorithm as a special

case, but this algorithm is likely to be unstable due to the mixture modeling nature of the
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4PNO model. To overcome the drawback of the SAEM algorithm, we further develop an

improved SAEM algorithm for the 4PNO model, which is called the MSAEM algorithm.

The results from the simulation studies demonstrate that the obtained estimators

from the MSAEM algorithm are more accurate than those from the Gibbs sampler of

Culpepper (2016) and the SAEM algorithm; moreover, the MSAEM algorithm is more

robust to the choices of starting values and priors. The recovery accuracy of the MCEM

algorithm is close to that of the MSAEM algorithm, while the MCEM algorithm is more

time-consuming. Overall the MSAEM algorithm is computationally more efficient than

the other methods. Furthermore, as suggested by a reviewer, to fully investigate the

performance of the proposed methods, the recovery accuracy of MSAEM for the 4PNO

model was also compared with that of two existing EM algorithms for the 4PL model.

The results demonstrate that the MSAEM algorithm is more accurate and robust than

the EM algorithms for the 4PL model.

There are several future research directions. First, the step size sequence {γk} plays

an important role in the performance of the SAEM and the MASEM algorithms. In this

study, we investigated the influence of the number of steps with γk = 1 (which is denoted

as K) on the estimation accuracy, and the choice of K was suggested based on the simu-

lation results. A more systematic strategy for setting {γk} under different settings needs

to be further explored. Second, as discussed in Kern and Culpepper (2020) and Meng

et al. (2020), the 4PM can be viewed as a J-attribute higher-order DINA model, and it

is valuable to extend the MSAEM algorithm to such higher-order models. Furthermore,

Kern and Culpepper (2020) discussed the identifiability of the 4PM, and proposed a re-

stricted version of 4PNO model, the dyad 4PNO model, based on the identifiability results

for cognitive diagnosis models. The dyad 4PNO model was estimated using the MCMC

algorithm in Kern and Culpepper (2020), and it is interesting to extend the SAEM and

MSAEM algorithms to the dyad 4PNO model. Third, in this study, the MMAP estima-
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tion is defined under the assumption that the latent trait follows the normal distribution,

however, some recent studies showed that the normal assumption is likely to fail in prac-

tice and the estimates based on the false assumption may lead to large estimation error

(DeMars, 2012; Svetina et al., 2017; Wang et al., 2018; Zhang et al., 2020c). Therefore,

it is valuable to develop an estimation method under a general distributional assumption

on the latent trait. Finally, other stochastic versions of the EM algorithm have also been

used for the estimation of some important IRT models (Fox, 2003; Zhang et al., 2020b)

with good performance, and it is interesting to develop other stochastic EM algorithms

for the 4PNO model using the data augmentation scheme given in this work.
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Table 1: Four prior distributions for the item parameters, ξξξj = (aj, bj, cj, dj), in the 4PNO.

(aj , bj) ∼ N2(µ0,Σ0)I(aj≥0) (cj , dj) ∼ Beta2(αc, βc, αd, βd)I(1≥dj≥cj≥0)

Prior 1
(Informative+Informative)

(µ0, Σ−1
0 )= (0002,(2I2)−1) (αc, βc, αd, βd) = (5, 17, 17, 5)

Prior 2
(Informative+Noninformative)

(µ0, Σ−1
0 )= (0002,(2I2)−1) (αc, βc, αd, βd) = (1, 1, 1, 1)

Prior 3
(Noninformative+Informative)

(µ0, Σ−1
0 )= (0002,0002×2) (αc, βc, αd, βd) = (5, 17, 17, 5)

Prior 4
(Noninformative+Noninformative)

(µ0, Σ−1
0 )= (0002,0002×2) (αc, βc, αd, βd) = (1, 1, 1, 1)

Note: 0002: two-dimensional vector of zeros; 0002×2: 2× 2 matrix of zeros; I2: two-dimensional identity matrix.
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Figure 1: Box-plots of RMSEs of the MMAP estimates of aj, bj, cj and dj over all items in
the test, and the MMAP estimates are computed by the SAEM algorithms under 4 levels
of the number (K) of γk = 1 (K = 100, 500, 1000, 1500) and 3 groups of initial values (I1:
randomly selection, where a0 ∼ U(0, 3), b0 ∼ U(−2, 2), c0 ∼ U(0, 0.3), d0 ∼ U(0.7, 1); I2:
a group of common values, where a0

j = 1, b0
j = 0, c0

j = 0.2, d0
j = 0.8; I3: the true values of

(aj, bj, cj, dj) are used as (a0
j , b

0
j , c

0
j , d

0
j)). Sample size is N = 500.
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Figure 2: Box-plots of RMSEs of the MMAP estimates of aj, bj, cj and dj over all items in
the test, and the MMAP estimates are computed by the SAEM algorithms under 4 levels
of the number (K) of γk = 1 (K = 100, 500, 1000 and 1500) and 3 groups of initial values
(I1: randomly selection, where a0 ∼ U(0, 3), b0 ∼ U(−2, 2), c0 ∼ U(0, 0.3), d0 ∼ U(0.7, 1);
I2: a group of common values, where a0

j = 1, b0
j = 0, c0

j = 0.2, d0
j = 0.8; I3: the true values

of (aj, bj, cj, dj) are used as (a0
j , b

0
j , c

0
j , d

0
j)). Sample size is N = 1000.
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Figure 3: Box-plots of RMSEs of the MMAP estimates of aj, bj, cj and dj over all items in
the test, and the MMAP estimates are computed by the SAEM algorithms under 4 levels
of the number (K) of γk = 1 (K = 100, 500, 1000 and 1500) and 3 groups of initial values
(I1: randomly selection, where a0 ∼ U(0, 3), b0 ∼ U(−2, 2), c0 ∼ U(0, 0.3), d0 ∼ U(0.7, 1);
I2: a group of common values, where a0

j = 1, b0
j = 0, c0

j = 0.2, d0
j = 0.8; I3: the true values

of (aj, bj, cj, dj) are used as (a0
j , b

0
j , c

0
j , d

0
j)). Sample size is N = 5000.
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Figure 4: Box-plots of RMSEs of the MMAP estimates of aj, bj, cj and dj over all items
in the test, and the MMAP estimates are computed by the MSAEM algorithms under
4 levels of the number (K) of γk = 1 (K = 100, 500, 1000 and 1500) and 3 groups of
initial values (I1: randomly selection, where a0 ∼ U(0, 3), b0 ∼ U(−2, 2), c0 ∼ U(0, 0.3),
d0 ∼ U(0.7, 1); I2: a group of common values, where a0

j = 1, b0
j = 0, c0

j = 0.2, d0
j = 0.8; I3:

the true values of (aj, bj, cj, dj) are used as (a0
j , b

0
j , c

0
j , d

0
j)). Sample size is N = 500.
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Figure 5: Box-plots of RMSEs of the MMAP estimates of aj, bj, cj and dj over all items
in the test, and the MMAP estimates are computed by the MSAEM algorithms under
4 levels of the number (K) of γk = 1 (K = 100, 500, 1000 and 1500) and 3 groups of
initial values (I1: randomly selection, where a0 ∼ U(0, 3), b0 ∼ U(−2, 2), c0 ∼ U(0, 0.3),
d0 ∼ U(0.7, 1); I2: a group of common values, where a0

j = 1, b0
j = 0, c0

j = 0.2, d0
j = 0.8; I3:

the true values of (aj, bj, cj, dj) are used as (a0
j , b

0
j , c

0
j , d

0
j)). Sample size is N = 1000.
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Figure 6: Box-plots of RMSEs of the MMAP estimates of aj, bj, cj and dj over all items
in the test, and the MMAP estimates are computed by the MSAEM algorithms under
4 levels of the number (K) of γk = 1 (K = 100, 500, 1000 and 1500) and 3 groups of
initial values (I1: randomly selection, where a0 ∼ U(0, 3), b0 ∼ U(−2, 2), c0 ∼ U(0, 0.3),
d0 ∼ U(0.7, 1); I2: a group of common values, where a0

j = 1, b0
j = 0, c0

j = 0.2, d0
j = 0.8; I3:

the true values of (aj, bj, cj, dj) are used as (a0
j , b

0
j , c

0
j , d

0
j)). Sample size is N = 5000.
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Table 2: ARMSE, ACor and AIRF of the estimates of aj, bj, cj and dj across the test for
SAEM, MSAEM, MCEM and Gibbs Sampler, under the four priors of ξξξj = (aj, bj, cj, dj)
and two sample sizes (N = 1000 and 5000). The test length is M = 20.

ARMSE ACor
AIRF

Sample Size Prior Algorithm a b c d a b c d

N = 1000

Prior 1

MSAEM 0.40 0.29 0.05 0.05 0.74 0.92 0.86 0.76 0.0306
SAEM 0.48 0.34 0.06 0.06 0.66 0.90 0.82 0.70 0.0330

MCEM 0.41 0.30 0.05 0.05 0.74 0.92 0.86 0.75 0.0308
Gibbs Sampler 0.47 0.31 0.05 0.05 0.72 0.92 0.87 0.75 0.0319

Prior 2

MSAEM 0.44 0.33 0.05 0.09 0.67 0.90 0.86 0.56 0.0329
SAEM 0.55 0.39 0.06 0.10 0.56 0.85 0.81 0.46 0.0373

MCEM 0.44 0.33 0.05 0.09 0.67 0.90 0.86 0.56 0.0328
Gibbs Sampler 0.46 0.32 0.05 0.06 0.73 0.90 0.89 0.67 0.0332

Prior 3

MSAEM 0.45 0.31 0.05 0.05 0.75 0.93 0.85 0.75 0.0308
SAEM 0.57 0.35 0.06 0.06 0.67 0.90 0.81 0.70 0.0332

MCEM 0.46 0.31 0.05 0.05 0.75 0.92 0.85 0.76 0.0309
Gibbs Sampler 3.30 1.28 0.06 0.07 0.41 0.85 0.85 0.75 0.0470

Prior 4

MSAEM 0.51 0.35 0.05 0.09 0.64 0.90 0.86 0.53 0.0347
SAEM 0.64 0.42 0.06 0.10 0.53 0.86 0.83 0.47 0.0382

MCEM 0.50 0.36 0.06 0.09 0.64 0.90 0.86 0.54 0.0346
Gibbs Sampler 3.55 1.20 0.06 0.08 0.22 0.80 0.85 0.59 0.0477

N = 5000

Prior 1

MSAEM 0.29 0.17 0.03 0.04 0.86 0.97 0.93 0.83 0.0176
SAEM 0.33 0.18 0.03 0.04 0.83 0.97 0.92 0.79 0.0190

MCEM 0.29 0.17 0.03 0.04 0.86 0.97 0.98 0.82 0.0174
Gibbs Sampler 0.33 0.17 0.03 0.04 0.88 0.94 0.95 0.84 0.0181

Prior 2

MSAEM 0.32 0.18 0.03 0.06 0.83 0.97 0.93 0.71 0.0185
SAEM 0.39 0.20 0.04 0.07 0.76 0.96 0.90 0.63 0.0213

MCEM 0.33 0.19 0.03 0.06 0.83 0.97 0.93 0.68 0.0188
Gibbs Sampler 0.35 0.16 0.03 0.05 0.82 0.97 0.95 0.75 0.0183

Prior 3

MSAEM 0.28 0.15 0.03 0.04 0.87 0.98 0.93 0.84 0.0173
SAEM 0.34 0.18 0.04 0.05 0.82 0.97 0.91 0.81 0.0198

MCEM 0.29 0.16 0.03 0.04 0.86 0.98 0.94 0.82 0.0175
Gibbs Sampler 0.69 0.26 0.04 0.03 0.79 0.97 0.92 0.96 0.0247

Prior 4

MSAEM 0.31 0.17 0.03 0.06 0.85 0.97 0.94 0.71 0.0180
SAEM 0.39 0.20 0.04 0.07 0.77 0.96 0.92 0.63 0.0212

MCEM 0.33 0.18 0.03 0.06 0.83 0.97 0.93 0.70 0.0185
Gibbs Sampler 0.72 0.27 0.03 0.05 0.72 0.96 0.94 0.75 0.0212

Note: Prior 1: (µ0, Σ−1
0 )= (0002,(2I2)−1) and (αc, βc, αd, βd) = (5, 17, 17, 5)

Prior 2: (µ0, Σ−1
0 ) = (0002, (2I2)−1) and (αc, βc, αd, βd) = (1, 1, 1, 1)

Prior 3: (µ0, Σ−1
0 )= (0002,0002×2) and (αc, βc, αd, βd) = (5, 17, 17, 5)

Prior 4: (µ0,Σ
−1
0 )= (0002,0002×2) and (αc, βc, αd, βd) = (1, 1, 1, 1)

47



0.5 1 1.5 2 2.5

a
MSAEM

0.5

1

1.5

2

2.5

a
G

ib
bs

Correlation Coefficient=0.99

-2 -1 0 1 2

b
MSAEM

-2

-1

0

1

2

b
G

ib
bs

Correlation Coefficient=0.99

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

c
MSAEM

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

c G
ib

bs

Correlation Coefficient=0.98

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

c
MSAEM

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

d
G

ib
bs

Correlation Coefficient=0.99

Figure 7: The scatter plots between the estimators of aj (or bj, cj, dj) obtained using the
MSAEM and the Gibbs sampler, across the test.
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Table 3: ARMSE, ACor and AIRF of the estimates of aj, bj, cj and dj across the test for
SAEM, MSAEM, MCEM and Gibbs Sampler, under the four priors of ξξξj = (aj, bj, cj, dj)
and two sample sizes (N = 1000 and 5000). The test length is M = 40.

ARMSE ACor
AIRF

Sample Size Prior Algorithm a b c d a b c d

N = 1000

Prior 1

MSAEM 0.37 0.25 0.04 0.04 0.83 0.97 0.82 0.80 0.0272
SAEM 0.44 0.28 0.05 0.05 0.78 0.96 0.78 0.77 0.0292

MCEM 0.39 0.25 0.05 0.04 0.82 0.97 0.81 0.82 0.0277
Gibbs Sampler 0.43 0.26 0.04 0.05 0.83 0.97 0.84 0.80 0.0273

Prior 2

MSAEM 0.39 0.33 0.06 0.08 0.82 0.90 0.79 0.32 0.0286
SAEM 0.46 0.32 0.07 0.08 0.76 0.90 0.60 0.63 0.0313

MCEM 0.41 0.32 0.07 0.07 0.80 0.90 0.76 0.33 0.0290
Gibbs Sampler 0.43 0.30 0.05 0.06 0.78 0.93 0.81 0.43 0.0270

Prior 3

MSAEM 0.38 0.25 0.05 0.04 0.83 0.97 0.81 0.82 0.0272
SAEM 0.52 0.29 0.05 0.05 0.76 0.95 0.77 0.81 0.0298

MCEM 0.42 0.28 0.05 0.05 0.83 0.97 0.81 0.81 0.0280
Gibbs Sampler 2.38 1.14 0.06 0.06 0.51 0.87 0.80 0.79 0.0377

Prior 4

MSAEM 0.42 0.35 0.07 0.07 0.79 0.90 0.76 0.31 0.0305
SAEM 0.55 0.35 0.07 0.07 0.75 0.92 0.73 0.71 0.0327

MCEM 0.47 0.34 0.07 0.08 0.76 0.89 0.72 0.32 0.0302
Gibbs Sampler 2.61 1.05 0.07 0.07 0.31 0.80 0.75 0.49 0.0389

N = 5000

Prior 1

MSAEM 0.23 0.14 0.03 0.03 0.94 0.99 0.92 0.84 0.0140
SAEM 0.26 0.15 0.03 0.03 0.92 0.96 0.90 0.84 0.0150

MCEM 0.24 0.15 0.05 0.03 0.94 0.99 0.92 0.82 0.0142
Gibbs Sampler 0.25 0.14 0.03 0.03 0.93 0.99 0.92 0.86 0.0142

Prior 2

MSAEM 0.25 0.18 0.03 0.05 0.94 0.94 0.90 0.34 0.0143
SAEM 0.29 0.20 0.04 0.06 0.90 0.93 0.88 0.37 0.0157

MCEM 0.25 0.18 0.03 0.05 0.93 0.94 0.90 0.38 0.0144
Gibbs Sampler 0.27 0.17 0.03 0.05 0.92 0.96 0.91 0.50 0.0142

Prior 3

MSAEM 0.22 0.13 0.03 0.03 0.94 0.99 0.92 0.88 0.0139
SAEM 0.26 0.16 0.04 0.03 0.92 0.99 0.89 0.87 0.0153

MCEM 0.23 0.14 0.03 0.03 0.94 0.99 0.92 0.85 0.0141
Gibbs Sampler 0.44 0.23 0.03 0.03 0.87 0.97 0.92 0.88 0.0156

Prior 4

MSAEM 0.25 0.18 0.03 0.05 0.94 0.94 0.90 0.37 0.0147
SAEM 0.28 0.20 0.04 0.06 0.91 0.93 0.88 0.37 0.0161

MCEM 0.25 0.18 0.03 0.05 0.94 0.94 0.90 0.40 0.0147
Gibbs Sampler 0.46 0.23 0.04 0.04 0.83 0.96 0.91 0.56 0.0156

Note: Prior 1: (µ0, Σ−1
0 )= (0002,(2I2)−1) and (αc, βc, αd, βd) = (5, 17, 17, 5)

Prior 2: (µ0, Σ−1
0 ) = (0002, (2I2)−1) and (αc, βc, αd, βd) = (1, 1, 1, 1)

Prior 3: (µ0, Σ−1
0 )= (0002,0002×2) and (αc, βc, αd, βd) = (5, 17, 17, 5)

Prior 4: (µ0,Σ
−1
0 )= (0002,0002×2) and (αc, βc, αd, βd) = (1, 1, 1, 1)
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Table 4: ARMSE, ACor and AIRF of the estimates of aj, bj, cj and dj across the test for
SAEM, MSAEM, MCEM and Gibbs Sampler, under the four priors of ξξξj = (aj, bj, cj, dj)
and two test lengths (M = 20 and 40). The sample size is N = 500.

ARMSE ACor
AIRF

Test Length Prior Algorithm a b c d a b c d

M = 20

Prior 1

MSAEM 0.46 0.36 0.06 0.05 0.67 0.87 0.80 0.71 0.0388
SAEM 0.56 0.43 0.07 0.06 0.59 0.84 0.76 0.65 0.0411

MCEM 0.46 0.36 0.06 0.06 0.67 0.87 0.80 0.71 0.0388
Gibbs Sampler 1.07 2.39 0.08 0.57 0.00 0.12 0.53 -0.39 0.0766

Prior 2

MSAEM 0.49 0.42 0.06 0.11 0.58 0.83 0.81 0.48 0.0430
SAEM 0.63 0.50 0.07 0.12 0.45 0.76 0.78 0.42 0.0466

MCEM 0.50 0.42 0.06 0.11 0.58 0.83 0.81 0.49 0.0430
Gibbs Sampler 0.80 1.20 0.10 0.21 0.00 0.02 0.34 0.47 0.0966

Prior 3

MSAEM 0.52 0.38 0.06 0.06 0.67 0.88 0.79 0.70 0.0397
SAEM 0.65 0.46 0.07 0.07 0.57 0.84 0.74 0.62 0.0428

MCEM 0.50 0.38 0.06 0.06 0.67 0.88 0.79 0.70 0.0396
Gibbs Sampler 2.20 9.53 0.08 0.57 0.01 0.03 0.54 -0.17 0.0778

Prior 4

MSAEM 0.57 0.45 0.08 0.11 0.53 0.83 0.77 0.48 0.0453
SAEM 0.71 0.48 0.10 0.11 0.46 0.81 0.64 0.43 0.0495

MCEM 0.61 0.48 0.07 0.11 0.55 0.83 0.81 0.45 0.0453
Gibbs Sampler 4.80 6.66 0.09 0.24 −0.06 0.12 0.44 0.15 0.0825

M = 40

Prior 1

MSAEM 0.42 0.32 0.05 0.05 0.79 0.95 0.77 0.79 0.0339
SAEM 0.50 0.37 0.06 0.06 0.72 0.93 0.69 0.71 0.0357

MCEM 0.44 0.31 0.06 0.06 0.76 0.95 0.74 0.74 0.0353
Gibbs Sampler 0.46 0.31 0.05 0.05 0.76 0.95 0.76 0.74 0.0353

Prior 2

MSAEM 0.49 0.43 0.07 0.09 0.68 0.88 0.70 0.30 0.0380
SAEM 0.58 0.43 0.07 0.09 0.66 0.90 0.69 0.61 0.0428

MCEM 0.51 0.43 0.08 0.09 0.68 0.87 0.71 0.34 0.0393
Gibbs Sampler 0.49 0.37 0.07 0.07 0.71 0.91 0.72 0.39 0.0357

Prior 3

MSAEM 0.49 0.32 0.06 0.05 0.79 0.95 0.75 0.75 0.0352
SAEM 0.55 0.40 0.06 0.06 0.72 0.92 0.69 0.73 0.0375

MCEM 0.50 0.43 0.06 0.08 0.74 0.95 0.76 0.76 0.0358
Gibbs Sampler 4.80 2.19 0.08 0.07 0.33 0.83 0.68 0.76 0.0530

Prior 4

MSAEM 0.50 0.42 0.08 0.09 0.70 0.88 0.72 0.32 0.0405
SAEM 0.61 0.45 0.09 0.09 0.60 0.91 0.69 0.62 0.0450

MCEM 0.55 0.45 0.08 0.09 0.68 0.88 0.69 0.40 0.0412
Gibbs Sampler 5.35 2.29 0.10 0.09 0.12 0.72 0.67 0.48 0.0556

Note: Prior 1: (µ0, Σ−1
0 )= (0002,(2I2)−1) and (αc, βc, αd, βd) = (5, 17, 17, 5)

Prior 2: (µ0, Σ−1
0 ) = (0002, (2I2)−1) and (αc, βc, αd, βd) = (1, 1, 1, 1)

Prior 3: (µ0, Σ−1
0 )= (0002,0002×2) and (αc, βc, αd, βd) = (5, 17, 17, 5)

Prior 4: (µ0,Σ
−1
0 )= (0002,0002×2) and (αc, βc, αd, βd) = (1, 1, 1, 1)
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Table 5: The average computing times of SAEM, MSAEM, MCEM, and Gibbs Sampler,
under two sample sizes (N = 1000 and 5000) and two test lengths (M = 20 and 40) across
the 200 replications.

Testing Conditions Average Computing Time (in Second)
Sample Size Test Length SAEM MSAEM MCEM Gibbs Sampler
N = 1000 M = 20 6 4 135 166
N = 5000 M = 20 20 15 550 771
N = 1000 M = 40 11 5 240 332
N = 5000 M = 40 65 46 1650 1692
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Table 6: The S-X2 statistics for 4PNO, 3PNO and 2PNO models at the item level.

4PNO 3PNO 2PNO 4PNO 3PNO 2PNO
Item 1 44.27 64.69 75.31 Item 34 57.37 56.54 63.23
Item 2 53.62 69.60 92.13∗ Item 35 35.83 49.99 78.53
Item 3 45.14 51.32 65.59 Item 36 48.32 49.13 47.61
Item 4 83.92∗ 86.67∗ 100.24∗ Item 37 34.95 36.03 45.24
Item 5 47.93 47.79 49.39 Item 38 44.49 79.93 98.39∗

Item 6 39.93 41.12 40.15 Item 39 47.37 53.06 52.03
Item 7 59.71 75.38 163.33∗ Item 40 53.97 54.50 50.47
Item 8 50.64 101.96∗ 226.04∗ Item 41 42.46 42.24 65.10
Item 9 50.73 65.51 104.41∗ Item 42 54.10 47.92 54.24

Item 10 39.97 39.08 84.94∗ Item 43 47.20 59.59 78.31
Item 11 45.19 68.23 92.74∗ Item 44 73.84 68.50 79.61
Item 12 51.70 55.39 134.12∗ Item 45 58.04 64.57 82.04∗

Item 13 42.77 45.50 49.36 Item 46 53.62 54.65 69.72
Item 14 63.90 65.98 77.46 Item 47 38.63 40.24 44.94
Item 15 42.43 43.04 46.06 Item 48 54.22 66.99 89.88∗

Item 16 44.02 54.97 72.49 Item 49 43.43 43.82 43.15
Item 17 62.68 74.10 86.16∗ Item 50 43.82 45.58 50.36
Item 18 50.12 51.44 53.66 Item 51 53.80 58.56 69.49
Item 19 49.41 50.13 51.77 Item 52 52.49 50.24 109.89∗

Item 20 54.52 66.09 109.74∗ Item 53 54.92 51.86 65.30
Item 21 48.12 50.94 50.93 Item 54 50.17 48.57 53.23
Item 22 49.83 62.81 83.15∗ Item 55 58.71 67.83 90.89∗

Item 23 49.84 54.00 80.76 Item 56 50.81 54.71 49.72
Item 24 48.74 49.66 54.54 Item 57 71.09 71.21 73.46
Item 25 66.44 71.43 90.42∗ Item 58 64.67 75.02 87.27∗

Item 26 37.62 36.86 38.66 Item 59 44.03 45.04 71.55
Item 27 58.77 71.29 81.83∗ Item 60 40.27 40.72 47.71
Item 28 38.89 41.40 55.65 Item 61 38.77 39.39 41.12
Item 29 51.64 52.96 59.32 Item 62 48.99 54.52 61.87
Item 30 59.00 58.58 65.30 Item 63 72.25 87.89∗ 94.91∗

Item 31 64.73 62.83 61.52 Item 64 61.31 74.14 174.88∗

Item 32 60.49 55.39 61.24 Item 65 50.82 52.31 50.86
Item 33 56.61 55.90 56.26
Note:* denotes S-X2 is greater than the critical values at the significance level of %5.
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Table 7: The values of AIC for 4PNO, 3PNO, 2PNO and a hybrid model of the three
models (2PNO, 3PNO and 4PNO) at the test level.

−2 lnL(uuu | ξ) 2np AIC
4PNO 132891 520 133411
3PNO 133081 390 133471
2PNO 133590 260 133850

Hybrid model 132916 472 133388
Hybrid model: is the combination of 2PNO, 3PNO and 4PNO

Appendix: The Simulation Result on the Recovery

Accuracy of the 4PL Model

In this simulation, the 4PL is the data-generating model,

Pi(θj) = P (Uij = 1|θi, ξξξj) = cj + (dj − cj)
exp[D(ajθi + bj)]

1 + exp[D(ajθi + bj)]
,

where D = 1.702 is the scale constant. To keep comparability with the results shown in

Table 2-4, the testing conditions as well as the true values of aj, bj, cj and dj are the same

as that of “Study 2”. The MMAP estimate of the 4PL model is computed by the EM

algorithm implemented in the R package of “mirt” and the EM algorithm proposed by

Meng et al. (2020) separately.

The prior for (aj, bj) is (ln aj, bj)
′ ∼ N2(µ0,Σ0), which is different from that for the

4PNO model, since the above two EM algorithms are implemented under a lognormal

prior for aj. The prior for (cj, dj) is the same as that of the 4PNO, which is a bivariate

Beta distribution given in Equation 19.

Following the design of “Study 2”, the MMAP estimate of the 4PL model is computed

under the four different priors, please see Table A1. Note that the variance of ln aj is 1,

which is to make the prior information close to the truncated normal distribution in

Equation 18 with the variance is 2. The same as that of “Study 2”, the simulation study
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generated 200 replications, and the parameter recovery is assessed by computing the three

criteria (ARMSE, ACor and AIRF) across the 200 replications. The obtained results are

given in Tables A2 and A3.

Table A1: Four prior distributions for the item parameters (i.e., aj, bj, cj and dj) in the
4PL.

(ln aj , bj) ∼ N2(µ0,Σ0) (cj , dj) ∼ Beta2(αc, βc, αd, βd)I(1≥dj≥cj≥0)

Prior 1
(Informative+Informative)

(µ0, Σ−1
0 )=

(
0002,

(
1 0
0 2

)−1
)

(αc, βc, αd, βd) = (5, 17, 17, 5)

Prior 2
(Informative+Noninformative)

(µ0, Σ−1
0 )=

(
0002,

(
1 0
0 2

)−1
)

(αc, βc, αd, βd) = (1, 1, 1, 1)

Prior 3
(Noninformative+Informative)

(µ0, Σ−1
0 )= (0002,0002×2) (αc, βc, αd, βd) = (5, 17, 17, 5)

Prior 4
(Noninformative+Noninformative)

(µ0, Σ−1
0 )= (0002,0002×2) (αc, βc, αd, βd) = (1, 1, 1, 1)

Note: 0002: two-dimensional vector of zeros; 0002×2: 2× 2 matrix of zeros.
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Table A2: ARMSE, ACor and AIRF of the estimates of 4PL model obtained by the EM
algorithm implemented by the R package of “mirt” under the 24 simulation conditions
(two test lengths (M = 20 and 40)× three sample sizes(N = 500, 1000 and 5000) × four
priors of (aj, bj, cj, dj)).

ARMSE ACor
AIRF

Test Length Sample Size Prior a b c d a b c d

M = 20

N = 500

Prior1 0.65 0.36 0.07 0.06 0.47 0.85 0.75 0.62 0.0462
Prior2 0.80 0.41 0.15 0.14 0.49 0.84 0.40 0.27 0.0505
Prior3 0.65 0.42 0.07 0.06 0.39 0.82 0.69 0.54 0.0454
Prior4 5.16 1.86 0.12 0.13 0.13 0.66 0.50 0.35 0.0584

N = 1000

Prior1 0.56 0.32 0.06 0.06 0.49 0.88 0.75 0.67 0.0380
Prior2 0.68 0.34 0.12 0.12 0.57 0.89 0.52 0.36 0.0399
Prior3 0.58 0.34 0.06 0.06 0.48 0.88 0.72 0.65 0.0371
Prior4 2.20 0.79 0.10 0.11 0.31 0.81 0.59 0.45 0.0431

N = 5000

Prior1 0.45 0.20 0.05 0.05 0.59 0.96 0.83 0.79 0.0249
Prior2 0.43 0.19 0.06 0.07 0.77 0.97 0.79 0.66 0.0210
Prior3 0.47 0.21 0.05 0.05 0.60 0.96 0.82 0.77 0.0252
Prior4 0.55 0.22 0.05 0.06 0.73 0.97 0.71 0.73 0.0202

M = 40

N = 500

Prior1 0.59 0.44 0.06 0.07 0.68 0.87 0.73 0.71 0.0553
Prior2 0.70 0.47 0.13 0.12 0.70 0.83 0.18 0.54 0.0517
Prior3 0.52 0.47 0.06 0.07 0.71 0.88 0.75 0.71 0.0496
Prior4 3.47 1.55 0.09 0.10 0.28 0.70 0.54 0.58 0.0458

N = 1000

Prior1 0.45 0.39 0.05 0.06 0.75 0.91 0.79 0.79 0.0424
Prior2 0.49 0.35 0.08 0.07 0.76 0.88 0.83 0.72 0.0290
Prior3 0.41 0.44 0.05 0.06 0.77 0.90 0.79 0.79 0.0396
Prior4 1.06 0.61 0.07 0.07 0.56 0.89 0.63 0.69 0.0317

N = 5000

Prior1 0.32 0.21 0.04 0.04 0.88 0.97 0.87 0.89 0.0222
Prior2 0.28 0.18 0.06 0.04 0.92 0.95 0.34 0.84 0.0148
Prior3 0.36 0.33 0.04 0.04 0.79 0.88 0.88 0.90 0.0221
Prior4 0.32 0.17 0.04 0.04 0.91 0.98 0.73 0.85 0.0152

Note: Prior 1: (µ0, Σ−1
0 )=

(
0002,

(
1 0
0 2

)−1
)

and (αc, βc, αd, βd) = (5, 17, 17, 5)

Prior 2: (µ0, Σ−1
0 )=

(
0002,

(
1 0
0 2

)−1
)

and (αc, βc, αd, βd) = (1, 1, 1, 1)

Prior 3: (µ0, Σ−1
0 )= (0002,0002×2) and (αc, βc, αd, βd) = (5, 17, 17, 5)

Prior 4: (µ0,Σ
−1
0 )= (0002,0002×2) and (αc, βc, αd, βd) = (1, 1, 1, 1)
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Table A3: ARMSE, ACor and AIRF of the estimates of 4PL model obtained by the EM
algorithm proposed by Meng et al. (2020) under the 24 simulation conditions (two test
lengths (M = 20 and 40) × three sample sizes(N = 500, 1000 and 5000) × four priors of
(aj, bj, cj, dj)).

ARMSE ACor
AIRF

Test Length Sample Size Prior a b c d a b c d

M = 20

N = 500

Prior1 0.59 0.33 0.06 0.06 0.50 0.89 0.73 0.65 0.0380
Prior2 0.69 0.44 0.11 0.12 0.41 0.80 0.64 0.55 0.0475
Prior3 8.14 3.81 0.07 0.07 0.29 0.64 0.62 0.49 0.0445
Prior4 13.12 5.02 0.11 0.12 0.09 0.54 0.58 0.46 0.0578

N = 1000

Prior1 0.53 0.27 0.06 0.06 0.57 0.93 0.79 0.73 0.0305
Prior2 0.63 0.34 0.08 0.09 0.47 0.89 0.72 0.61 0.0367
Prior3 4.46 2.07 0.06 0.06 0.39 0.75 0.70 0.61 0.0356
Prior4 6.76 2.61 0.09 0.09 0.21 0.67 0.67 0.55 0.0436

N = 5000

Prior1 0.35 0.16 0.03 0.04 0.81 0.98 0.91 0.85 0.0168
Prior2 0.41 0.18 0.04 0.06 0.75 0.97 0.89 0.78 0.0198
Prior3 0.62 0.31 0.04 0.04 0.76 0.96 0.89 0.83 0.0181
Prior4 0.75 0.31 0.04 0.06 0.66 0.95 0.88 0.77 0.0206

M = 40

N = 500

Prior1 0.51 0.35 0.05 0.05 0.72 0.93 0.76 0.78 0.0347
Prior2 0.60 0.45 0.10 0.09 0.63 0.82 0.29 0.64 0.0396
Prior3 6.20 4.94 0.06 0.06 0.33 0.68 0.76 0.76 0.0383
Prior4 9.10 5.83 0.17 0.11 0.08 0.54 0.30 0.59 0.0447

N = 1000

Prior1 0.43 0.28 0.04 0.05 0.81 0.96 0.81 0.85 0.0269
Prior2 0.49 0.35 0.08 0.07 0.76 0.88 0.83 0.72 0.0290
Prior3 2.15 1.51 0.05 0.06 0.51 0.80 0.81 0.84 0.0285
Prior4 3.48 1.96 0.08 0.08 0.25 0.68 0.33 0.68 0.0321

N = 5000

Prior1 0.24 0.14 0.03 0.03 0.94 0.99 0.87 0.93 0.0131
Prior2 0.30 0.19 0.05 0.04 0.92 0.94 0.37 0.87 0.0155
Prior3 0.34 0.33 0.04 0.04 0.80 0.89 0.88 0.90 0.0221
Prior4 0.38 0.20 0.05 0.05 0.83 0.95 0.37 0.86 0.0151

Note: Prior 1: (µ0, Σ−1
0 )=

(
0002,

(
1 0
0 2

)−1
)

and (αc, βc, αd, βd) = (5, 17, 17, 5)

Prior 2: (µ0, Σ−1
0 )=

(
0002,

(
1 0
0 2

)−1
)

and (αc, βc, αd, βd) = (1, 1, 1, 1)

Prior 3: (µ0, Σ−1
0 )= (0002,0002×2) and (αc, βc, αd, βd) = (5, 17, 17, 5)

Prior 4: (µ0,Σ
−1
0 )= (0002,0002×2) and (αc, βc, αd, βd) = (1, 1, 1, 1)
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