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Abstract

In recent years, the four-parameter model (4PM) has received increasing atten-
tion in item response theory. The purpose of this article is to provide more efficient
and more reliable computational tools for fitting the 4PM. In particular, this article
focuses on the four-parameter Normal Ogive (4PNO) model and develops efficient
stochastic approximation Expectation Maximization (SAEM) algorithms to com-
pute the marginalized maximum a posteriori (MMAP) estimator. First, a data
augmentation scheme is used for the 4PNO model, which makes the complete data
model be an exponential family, and then a basic SAEM algorithm is developed
for the 4PNO model. Second, to overcome the drawback of the SAEM algorithm,
we develop an improved SAEM algorithm for the 4PNO model, which is called the
mixed SAEM (MSAEM). Results from simulation studies demonstrate that: (1)
the MSAEM provides more accurate or comparable estimates as compared with the
other estimation methods, while computationally more efficient; (2) the MSAEM
is more robust to the choices of initial values and the priors for item parameters,
which is a valuable property for practice use. Finally, a real data set is analyzed to

show the good performance of the proposed methods.
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1 Introduction

The four-parameter model (4PM) in item response theory (IRT) was first provided by
Barton and Lord (1981), in which an upper asymptote (slipping) parameter is introduced
to model the uncertainty of a high-ability examinee missing an easy item. However, the
4PM had not been widely discussed for a long time, since the difficulties in parameter es-
timation and a lack of evidence supporting the need for it (Feuerstahler and Waller, 2014;
Loken and Rulison, 2010). In recent years, researchers have shown renewed interest in the
4PM (Culpepper, 2016, 2017; Kern and Culpepper, 2020; Loken and Rulison, 2010; Meng
et al., 2020; Waller and Feuerstahler, 2017). Several studies have verified that the presence
of an upper asymptote is tenable in the situations of psychological assessment (Reise and
Waller, 2003), the computerized adaptive testing (Liao et al., 2012; Rulison and Loken,
2009), and the large-scale low-staks assessment (Culpepper, 2017). Furthermore, various
estimation methods have been developed for the 4PM. For instance, Loken and Rulison
(2010) proposed a Bayesian estimation with the Markov chain Monte Carlo (MCMC)
implemented using WinBUGS for the four-parameter Logistic (4PL) model; Feuerstahler
and Waller (2014) employed the marginal maximum likelihood (MML) method with an
Expectation Maximization (EM) algorithm as implemented in the R package “mirt” to
estimate the 4PL model; Culpepper (2016) developed a Gibbs sampling algorithm for
the Bayesian estimation of the four-parameter Normal Ogive (4PNO) model; Waller and
Feuerstahler (2017) employed the EM algorithm to compute the marginalized maximum a
posteriori (MMAP) estimation of the 4PL model by implementing the R package “mirt”;
Meng et al. (2020) proposed an EM algorithm for the MMAP estimation of the 4PL model

under the mixture modeling framework; Zhang et al. (2020a) proposed a Gibbs-slice sam-



pling algorithm for estimating the 4PL model; Battauz (2020) proposed a regularization
approach for estimating the 4PL model based on the inclusion of a penalty term in the

log-likelihood function.

In these existing studies, the MCMC sampler and the EM algorithm are two main
computational tools in the estimation of the 4PM model. For a Markov chain sampling-
based method, the main drawback of the MCMC sampling is that performing exact infer-
ence generally requires all of the data to be processed at each iteration of the algorithm.
For large datasets, the computational cost of the MCMC sampler can be prohibitive. In
contrast, the EM algorithm is computationally more efficient, but it still has several major
drawbacks. For instance, in the literature (Meng et al., 2020; Waller and Feuerstahler,
2017), the EM algorithm is mainly developed for the 4PL model, while there is no data
augmentation method that can make the complete data model of the 4PL be a member
of the exponential family, thus the convergence of the EM may not be guaranteed (Baker
and Kim, 2004; Meng and Schilling, 1996). In addition, the E-step is often implemented
by a numerical integration via fixed-point quadrature or other approximation methods,
and the numerical approximation error can not be avoided (Meng and Schilling, 1996).
Moreover, the M-step often does not yield a closed form solution and still needs numerical
methods to solve the corresponding optimization problem, such as Newton-Raphson (NR)
iteration; however, an issue with using the NR-type iteration or other numerical methods
is that the starting values must be within a neighborhood of the true value, otherwise
divergence or convergence to a suboptimal solution. Furthermore, the convergence of the
whole EM algorithm also highly depends on the initial values and is often easy to fall into

saddle points or does not converge.

To address these computational challenges in the estimation of the 4PM, this article
focuses on the 4PNO model and develops computationally efficient stochastic approxima-

tion EM (SAEM) algorithms to compute the MMAP estimator. In the SAEM algorithm,



the E-step of the EM algorithm is replaced by a simulation step and a stochastic approxi-
mation step, thus the numerical integration is avoided. In particular, Delyon et al. (1999)
proved that the SAEM is able to converge to the maximum or local maximum point when
the complete-data likelihood belongs to an exponential family, and the ill-convergence of
the EM algorithm that the sequence of parameter estimate converges to saddle points is
avoided by the stochastic approximation noise. The SAEM algorithm has been commonly
used for the estimation of the non-linear mixed effects model (NLMEM), and it has been
proved to be powerful for the Probit normal models (Allassonniere et al., 2010; Delyon
et al., 1999; Kuhn and Lavielle, 2004; Lavielle and Mbogning, 2014). Furthermore, the
SAEM has been used for computing the estimators of some item response models (Camilli
and Fox, 2015; Camilli and Geis, 2019). Inspired by these studies, the first contribution
of this article is to develop a SAEM algorithm to compute the MMAP estimator of the
4PNO model. Here an important step in our derivation is that the 4PNO model is re-
formulated to be a mixture model, and a data augmentation scheme is used for it. We
show that the corresponding complete-data likelihood belongs to an exponential family,
and then derive the sufficient statistics to compute the MMAP estimator, making the

implementation of the SAEM algorithm simplified.

However, the SAEM algorithm is likely to be unstable and may produce poor es-
timators for the mixture of NLMEM under some situations: small sample size, overlap
between mixture components, heteroscedastic models, etc. Aiming to address these is-
sues, focusing on NLMEM, Lavielle and Mbogning (2014) developed an improved SAEM
algorithm, in which the simulation of the latent categorical or group variable is avoided
and is replaced by a conditional expectation. And they verified that, for estimating the
mixture of NLMEM, this new algorithm can provide a more accurate estimation and

achieve strong robustness to the initial values.

As mentioned above, the 4PNO model can be viewed as a mixture model, therefore,



motivated by the study of Lavielle and Mbogning (2014), taking the SAEM as the stepping
stone, we propose an efficient mixed SAEM (MSAEM) algorithm for the 4PNO model.
In the MSAEM algorithm, the simulation of the latent group variables, that is required in
the SAEM, is avoided and replaced by their conditional expectations given the subjects’
abilities. Thus only the latent abilities need to be randomly generated in the simulation
step, and the stochastic approximation is implemented on the conditional expectation
function. The obtained results from the simulation studies demonstrate that, for the
4PNO model, the MSAEM algorithm performs substantially better than or comparable
to the SAEM algorithm, the Monte Carlo EM (MCEM) algorithm and the MCMC sampler
of Culpepper (2016), while computationally more efficient. Moreover, the estimates from
the MSAEM show great robustness to the initial values and the choices of the priors,

which is a valuable property for practical use.

The rest of the article is organized as follows. Section 2 presents the 4PNO model
under a hierarchical modeling framework and gives the exponential form of the complete
data likelihood, which is very important for implementing the SAEM and the MSAEM
algorithms. Section 3 is the major part of this article, in which we firstly present the
SAEM procedure, and then develop the MSAEM algorithm for the MMAP estimation of
the 4PNO model. Section 4 reports simulation studies that were constructed to evaluate
the performance of the SAEM and MSAEM algorithms for estimating the 4PNO model.
Section 5 presents an application of the 4PNO to an empirical dataset. Finally, we
provide further discussions on some future research directions in Section 6, and additional

simulation results are reported in the Appendix.



2 MMAP Estimation of the 4PNO Model with a
Data Augmentation Scheme

In this section, we first present the 4PNO model as a hierarchical model using a data

augmentation method, and then introduce the MMAP estimation of the 4PNO.

2.1 A Data Augmentation Scheme for the 4PNO Model

Let ¢ =1,..,N and j = 1,..., M index test takers and items, and U;; (with realization
u;j) denote the dichotomous response variable of examinee ¢ to item j, where U;; = 1

denotes the correct response and U;; = 0 otherwise.

Following the definition of 4PM, the item response function (IRF) of the 4PNO model

is given by,
Fi(0;) = P(Ui; = 110;,€;) = ¢; + (dj — ¢;)®(a;0; + by), (1)

where ®(-) is the standard normal cumulative distribution function, 6; € (—oo,+00) is
the latent trait or ability of examinee i, and §; = {a;,b;,c;,d;} is the item parameter
set of item j, with a; € (0,400), b; € (—o00,+00), ¢; € [0,1), and d; € (cj,1] being
the slope, intercept, lower asymptote, and upper asymptote parameters, respectively.
Specifically, ¢; and d; represent the minimum and maximum probabilities for a correct

response, respectively.

In the following, a data augmentation scheme is applied to the 4PNO model, which

makes the complete-data distribution belong to an exponential family.



2.1.1 A Hierarchical Modeling Framework of the 4PNO Model

First, from Equation 1, an equivalent form of the 4PNO IRF is,
P(Ui; = 110;,§;) = c; x [L — ®(a;0; + b)] + d;j x (a;6; + bj), (2)

which implies the 4PNO is a mixture of two Bernoulli distributions with the latent cat-
egorical probability ®(a;0; + b;). Then, we introduce a latent binary indicator variable

Wi; and define,

P(Uy = 1Wy; = w;;,6;.0) = ¢ "d}", (3)

J

P(Wi; =1[§;,0;) = ®(a;0; + b)), (4)

where w;; € {0,1} denotes the observation of W;;. Taking the law of total probability, the
4PNO IRF in Equation 2 can be written in the sum of P(U;; = 1|W;; = w;;,§;,0;) P(W;; =
w;;€5,0;) over w;; € {0,1}. The addition of the auxiliary variable W;; was first proposed
by Béguin and Glas (2001) in Bayesian estimation of the 3PNO, and it has been extended
for handing the other three- and four-parameter IRT models (Culpepper, 2016; Guo and
Zheng, 2019; Meng et al., 2020; von Davier, 2009). Following Béguin and Glas (2001),
Wi; is defined as,

(5)

W;; =1, if examinee ¢ is able to correctly answer item j;
Wi; =0, otherwise.

Then, based on the conditional probability given in Equation 3, ¢; and d; can be inter-

preted as the guessing and slipping parameters.

Note that Equation 4 is a probit model for W;; on a;0; 4+ b;, which is equivalent to

the following model on a normal augmented variable Z;;,

VI/Z] = I(Zij>0)7 (6)
Zij&;,0; ~ N(a;0;+0bj,1), (7)



where [4 denotes the indicator function of a set A.

In addition, the examinees are assumed to be a sample from a population where the
latent trait or ability follows a normal distribution, and the examinees’ latent traits or
abilities can be viewed as missing data. In the estimation of the IRT model, it generally
assumes that

0, = N(0,1) for i =1,...,N, (8)
which helps establish a scale for the latent trait.

Finally, taking the data augmentation approaches given in Equations 3-8, we have

the following hierarchical modeling formulation of the 4PNO,

1
0

- 5 0 independent Bernoulli(dj), Wij
Uij|Wij, &5, 0 { Bernoulli(¢;), Wi;

Wl] = [(Zij>0)
Zij’&j? 91 mdepgldent N(ajei + bja 1)7

9i ii'd N(07 1)7

fori=1,...,N,j=1,..., M. The distribution of the complete-data (u;;,w;;, z;,6;) can

be written as,

fluij, wij, 25,051 &) o di 7™ (1 — dj)w“(l_“”)cglfw”)u“(1 — ¢;) (1w (1-uiy)
X¢(zij — a0 — bj) [[(Zij>0)[(wij=1) + I(ZijSO)I(wiFO)}

where ¢(-) is the standard normal density function. Note that, this data augmentation
scheme has been used by Culpepper (2016) to develop a Gibbs sampler for the 4PNO. It
can be seen that f(u;;, wij, zij,0; | €;) is the product of Bernoulli distribution and normal

density distribution, thus it belongs to the exponential family, which is ideal for developing

the SAEM and MSAEM algorithms to estimate the 4PNO model in this work. In what



follows, the exponential family form of the complete-data likelihood and the corresponding

sufficient statistics are given.
2.1.2 Complete-Data Likelihood and Sufficient Statistics

We first introduce some notation. Let u; = (u;, ..., u;ps) denote the observed response
vector of examinee i, u; = (uy;, ...,uNj)/ denote the observed response vector of item
J, and u = (wq,...,u.y) denotes the observed response data from a test. Let W ; =
(Whj, ... Wn;) and Z ; = (Zy;, ..., Znj)" denote the vector of the latent variables for item
J, wj = (wyj,...,wn;) and z; = (215, ..., 2n;) denote the observations of W ; and Z j;
W=(W,,..Wy)and Z = (Z1, ..., Z ) denote the matrix of latent response variables
for a test, w = (wq,....,w) and z = (z1,...,2 ) denote the observation of W and
Z. Let = (01,...,0y)" be the ability parameter vector of N examinees. Finally, let

x = (u,w, z,0) denote the complete-data, and (w, z, @) denote the missing data.

From Equation 9, the complete-data likelihood of §; can be written as

X, | gj Hdwuuw B )wz](l uzj)c§1*wij)“id(1 _ Cj)(l_wij)(l_uij)¢(zij _ aj,gi _ bj)

X [I(zij>0)[(w7;j:1) + [(27J§0)I(1U7,J:0)]¢(0’L)7 (1O>

where x ; = (u;,w,, 2z, 0) is the complete data of item j. Further, we have

L(x;|&) = exp{lnL(x;|§;)}

1
x expl —=(z.z;+6060)+ NIn(1— +1n wZ Ui
2( 3% 5 Wi
. d;
j j
+1In s ;:1 (1 — wjj)u;j +In —, ;:1 Wi
1
+(aj, b)) Az — Q(aj,bj)A’A(aj,bj)’} (11)

where A = (0, 1y), and 1y denotes the N x 1 vector of 1s. Equation 11 is the exponential

9



family form of L(x ;| &;), and the sufficient statistics of £; are

S(x;) = (S1(x;), Sa(x), Ss(x5), Sa(x;), 95(x ;) (12)

where
N
51(X.j) = Zwijuija (13>
i=1

SQ(X.j) = szj, (14>

Ss(x;) = 2(1—wzj)uzj, (15)
Su(x;) = A_A (16)
Ss(x;) = Az (17)

2.2 MMAP Estimation for the 4PNO Model
2.2.1 Priors

Following Culpepper (2016), for j = 1, ..., M, the prior for (a;, b;) is a truncated bivariate

normal distribution with the constraint of a; > 0,

f(aj, bslpo, Xo) oc Na(tio, Xo)I(a;>0), (18)

where 119 is a 2 X 1 mean vector and > is a 2 x 2 covariance matrix. And the prior for

(¢;,d;) is a bivariate Beta distribution with the constraint of d; > ¢;,
F(ejdjlac, Be, aa, Ba) o< €71 = ¢;) %7 I L = dy)* (150, 5¢,20)- (19)

The priors of (a;,b;) and (cj,d;) are assumed to be independent, then the joint prior of

&, can be written as

F(&5192) = flaj,bjlpo, Xo) f(cj, dj|ove, Be, aa, Ba), (20)

10



where Q := { g, X0, e, Be, g, Ba} is the set of hyper-parameters. The above two priors are
conjugate to the complete-data likelihood L(x ;| §;), which is mathematically convenient

for posterior inference.

Finally, it should be emphasized that, the noninformative uniform prior density for
(aj,b;), f(aj,bjlp0,%0) o I(4;50), can be obtained in the limit as [S5'| — 0 (]S is
called the prior precision) (Gelman et al., 2013). Moreover, in the limit of [¥5'| = 0
(infinite prior variance), the prior mean gy is irrelevant, that is, it can be specified as any
value. And the prior for (c;,d;), with the setting of (a, B, aq, Ba) = (1,1,1,1), is the

noninformative uniform prior.
2.2.2 MMAP Estimation

For j =1, ..., M, the marginalized posterior distribution of §; can be calculated by

e - ] [

/ / Lix, | €)f (€ 12) dz.,d6, (21)

where L(x;[€;) and f (§;]2) given in Equations 10 and 20. And the mode of f(&;|u.;,?)
is defined as the MMAP estimation of §;, which is

f = argmaxf(§;|u,;, ) —argmax// x;|&)f (&) dz;d6. (22)

EJE I3 536 £

Based on the MMAP estimation of the 4PNO defined in Equation 22, the computation
of

argmaxL(x ;| &) f(§;162), (23)

§;€O¢
for j = 1,..., M, which is the posterior mode of §; under complete-data likelihood, is
the Maximization Step (M-Step) of the EM-type algorithms (including the basic EM, the

MCEM, the SAEM and the MSAEM). As given below, benefiting from the conjugate

11



prior and the complete-data likelihood being in the exponential family, the solutions to
Equation 23 are available in closed forms and more importantly, they can be formulated

as functions of the sufficient statistics S(x ;).
2.2.3 Posterior Mode of §; under Complete-Data Model

Let f(§;]x;,€2) denote the posterior distribution of §; given x ;, and we have

f(&5lx5,82) o< L(x ;| §5) f(€5]€2),

in the case of the complete data x ; is observed. Then,

argmaxL(x ;| &) f(&;|Q) = arg max f(§;]x ;, ).

£;€0, £€0,
As the priors given in Equations 18 and 19 are conjugate for L(x ;| &;), the following
results can be obtained. First, the posterior distribution for (a;, b;) is a truncated bivariate

normal distribution with the constraint of a; > 0,

f(ajy bj |X~j7 fo, Xo) X N2(aj= bj|:u(ajabj)’ E(ajvbj)>j(aj20)’
where
Hlagsy = (Sa(x;) +3g") 7 (Ss(x ) + g o),
Slagby) = (Salx;)+351)7,
which are the posterior mean vector and covariance matrix. Then, the maximum of the
posterior of a; and b; is
aj(s5) = Hay X Lo, >0); (24)
bi(s;) = i, (25)
where fi,; and p,; are the first and the second element of (a;b;), and s; denotes the values

of S(x ;). It can be seen that, when Egl = 0542, where 0545 denotes the 2 x 2 zero matrix,

12



which is a noninformative prior, the obtained MAP estimation of a; and b; in Equations

24 and 25 are reduced to the ML estimation.

Second, the posterior distribution for (¢;, d;) is

ace.—1 1 oagq.—1 _
f(Cj, dj ’X‘j, e, Be, g, ﬂd) X G ! (1 - Cj)ﬁcj ldj K (1 - dj)’ij lf(lzdjzcjzo),

where

A,

:Oéc+S3(X‘j), ﬂcj :BC_FN_S?(XJ) _83(X-j)7

ag; = ag+S1(x;),  Ba; = Ba+ Sa(x5) — Si(x).

Noting that the maximum of p(c;, d;[x j, a., Be, aa, Ba) is a convex optimization problem

with constraints, and using the Lagrange multiplier method, it can be obtained that when

O{cj—l O{d.—l
> J ,
a0j+60j_2 - adj +5dj_2

the maximum of the posterior of ¢; and d; is

Qe; + gy — 2

¢(s5) = dj(s;) = — A s 1 1 (26)
otherwise,
~ ac]- -1
&(s;) = ——m— — (27)
~ Ag. — 1
dj(s;) = m- (28)

It should be noted that, when («., S, a4, S4) = (1,1,1,1), which is the noninformative

prior, the obtained MAP estimators of ¢; and d; become their ML estimators.

3 Estimation Methods

This section presents two versions of the SAEM algorithm for the MMAP estimation of
the 4PNO model. A full SAEM algorithm is proposed in subsection 3.1. In subsection

13



3.2, an improved and more efficient SAEM algorithm, the MSAEM, is developed for the
4PNO model.

3.1 SAEM Algorithm for the MMAP Estimation of the 4PNO
Model

First, we introduce the basic EM algorithm for the MMAP estimation of the 4PNO model.
The EM algorithm consists of an expectation step (E-Step) and a maximization step (M-
Step), and in the situation where the complete data likelihood belongs to the exponential
family, the E-Step and the M-Step can be implemented using the sufficient statistics. The
E-step of each iteration is taking the conditional expectation over the sufficient statistics
given the current estimates of parameters, and the M-step computes the MAP or ML

estimate of parameters using the updated expectation of the sufficient statistics in the

E-Step.

Let €0 = (€9,...,€9,) be the initial values, and £*~! = (€81 . €~71) denote the
parameter estimate at the end of the (k — 1)th iteration. The kth iteration of the EM

algorithm consists of the two steps:

e E-Step: Compute
sj = B(S(x;)|u;, €7, (29)

J
where the expectation is with respect to f(w;,z;,0/u;,&"1), and j =1,.., M.

e M-Step: Update

which is obtained by substituting sf for s; in Equations 24-28.

In the above EM iteration, the conditional expectation in the E-Step can not be done

in closed form, which leads to the problem of integral computation. For this problem,

14



the MCEM algorithm proposed by Wei and Tanner (1990) is a powerful computing tool,
in which the conditional expectation is computed by means of Monte Carlo samples.
Meng and Schilling (1996) proposed a MCEM algorithm for the estimation of the full-
information item factor model, and they demonstrated that the MCEM algorithm have

substantial improvement over the EM algorithm with a numerical integral.

But the drawback of the MCEM algorithm is that it has a high computational cost in
many situations. To address this problem, Delyon et al. (1999) proposed the SAEM algo-
rithm, in which a stochastic approximation is used to estimate the conditional expectation
in the E-Step. In contrast, the SAEM algorithm is more efficient. Furthermore, Delyon
et al. (1999) proved that, the convergence of the SAEM algorithm can be ensured under
many practical situations, when the complete-data likelihood belongs to an exponential
family. In the following, we develop a SAEM algorithm for the MMAP estimation of the
4PNO model.

3.1.1 General Description of the SAEM Algorithm

Let £° = (€9, ...,€9,) be the initial values, and £~ = (€1, ..., &%) denote the parameter
estimate at the end of the (k — 1)th iteration. The kth iteration of the SAEM algorithm
for the MMAP estimatino of the 4PNO model consists of:

e Simulation-Step (S-Step): Sample my, sets of (w,z,0) from p(w,z,0|u, £¥1) to form

my sets of complete data set {x' = (u,w',2!,6');1 =1,...,my}.

e Stochastic Approximation-Step (SA-Step): Compute the sufficient statistics S(x';)

(I =1,...,mg) in Equations 13-17, and update s? according to

M S(Xl-)
k _ k-1 =1 3/ Gk
s =85+l o s,

15



where {7 }x>o is the Robbins-Monro (RM) gain coefficient such that

+oo +oo
Y >0, sz%—oo, Zv,%<+oo,
k=1 k=1

for itemy, where 7 =1,.., M.

e Maximization-Step (M-Step): Compute

by substituting sg‘? for s; in Equations 24-28, where j =1,..., M.

In the SAEM iteration, the E-Step in Equation 29 is replaced by a stochastic approx-
imation iteration of Robbins and Monro (1951), thus the obstacle integral computation
is avoided. For the stochastic approximation procedure, the choice of v, and the specifi-
cation of my are very important, and they both determine the performance of the SAEM

algorithm.

Remark 1: The choice of step sizes {7k }r>0 plays an important role in determining
the convergence of the SAEM algorithm. A sequence of large step sizes puts the parameter
estimates into the neighborhood of the solution rather quickly, but it also introduces a
large amount of simulation noise. On the other hand, a sequence of smaller step sizes
reduces the noise faster, but it results in a rather slowly moving algorithm (Jank, 2006).
Gu and Zhu (2001) proposed to employ stochastic approximation in two stages where the
first stage uses a rather large step size and then in the second stage, after the algorithm
has reached the proximity of the solution, the method switches to a smaller step size
selection. Some recent research (Camilli and Fox, 2015; Camilli and Geis, 2019; Galarza
et al., 2017; Kuhn and Lavielle, 2004; Lavielle and Mbogning, 2014) suggested setting

v = 1 in the first K iterations (the first stage) and setting v, = when k£ > K

1
(k—K)>

(the second stage), where 0.5 < a < 1. In practice, typically specify o = 1.0 or 2/3. For

16



presentation convenience, in this article, the step size sequence is written as
{ Terer + Ipore) % —— } (30)
Y = L(k<K) (k>K) X 77 e .
(k - K ) k>0

Remark 2: If specifying v, = 1 for all the iterations, the SA-Step becomes equiva-
lent to that the conditional expectation of the sufficient statistics, F(S(x ;)u,&*71), is
computed by a Monte Carlo integral, then the SAEM iteration is reduced to a MCEM
algorithm. This MCEM can be seen as an extension of the MCEM proposed by Meng
and Schilling (1996) to the 4PNO model. To guarantee the accuracy of the Monte Carlo
integral, a big number of the simulation my, is often required, which leads to high compu-

tational cost of the MCEM algorithm in many situations.

Remark 3: When the complete-data model belongs to the exponential family, the
convergence of the SAEM algorithm can be guaranteed with the setting of the number
of the simulation m; = 1. In comparison with the MCEM algorithm, the simulation is
cheaper, thus the SAEM algorithm is more efficient. Furthermore, we have investigated in
simulation studies that, as m,, increases, the computational time of the SAEM algorithm
increases significantly, but the accuracy and the stability of the obtained SAEM estimates

show no significant changes.

It can be seen that, the complete-data model is a member of the exponential family,
the SA-Step and the M-Step can be directly computed using the sufficient statistics,
thus the intractable numerical computations are avoided. To simulate (w,z,) in S-Step,
which is not available in closed form, we propose a two-step sampling procedure, where a
discrete-grid method is employed to generate the realizations of the missing data (w,z,8),

and the detailed sampling procedure is given below.

17



3.1.2 Generating Missing Data in the S-Step

In the S-Step, drawing (w!,z!,0) from f(w,z,0]u, &) consists of the following two steps:
first sampling 6 from its marginal posterior distribution f(6;[u;,€*7!), and then drawing
(wéj,zzl»j) from f(wij,zij|9§,uij,§§-k_1)), wherei=1,...,N,j =1,..., M. As the closed form
of f(6;|u;,€%1) is not available, it can not be used directly for simulation. To deal with

this problem, a discrete-grid method is used. The S-Step proceeds as follows:

1. Fori=1,..,N, 0. (I =1,...,my) is directly simulated from f(6;[u;,&€*!) using a

discrete-grid approximation method.

(a) A grid including a set of evenly spaced values, 67, ..., 04, is selected on a broad
range of the parameter space for 6. The posterior density function of 6;,

f(0;|u;,, €51), is computed on the grid values,

¥y, gh—1y _ p(i |07, € 1) ¢(67) _
P8 = e g neen T OY

which is a discrete-grid approximation of f(6;u,,€*1).

(b) Randomly draw my, values of 6!, {0l:] = 1,...,my}, from the discrete-grid ap-

proximation of f(6;|u;,€*1) given in Equation 31.

2. Fori=1,...,Nandj=1,..M,sample (w!., z..) (I =1,...,my) fromp(wij,zij]uij,fg-k*l),Hﬁ)

1J0 ~1j

according to the following procedure,
(a) Sample w}; from,

Wij\uij,ﬁf_l, 0! ~ Bernoulli(py—)

where
Ay el ol 4ol 1
Ui =
_ ) i ieay oAb ) el (12 (ay 005 ))” K ’
pw=1 (1—d*~D)o(ah~ ol 455 )
uz’j = O

E—1 =1l k-1 E—1 E—Tgl_ k—1yy)
(1=di™ ) @(a; 040" )+ (1—ci™ ) (1=D(a " 0;+b;" "))
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(b) Sample zl; from,
Zij|w§j7£§_17 95 ~ N(CL?_I‘% + b?_lﬁ ]‘)[‘[(Zij>0)w’£j + ](ZijSO)(l - wﬁj)]

which is a truncated normal distribution.

Remark 4: For the discrete-grid approximation approach, the selection of the grid
points plays a key role. Understandably, a grid defined on too small an area may miss
important features of the distribution that fall outside the grid, but on a large area with
wide intervals between points may miss important features that fall between the grid
points. In this study, we use an equal-spacing grid of 6; in the interval of [—3.0, +3.0]. As
given in Equation 8, 6; is assumed to follow N(0,1), and [—3.0,+3.0] is the range of £3
standard deviation, thus it can cover a broad range of #-space. The equal-spacing grid is
a regular grid design and is commonly used in the grid-sampling method. Furthermore,

we have verified in simulation studies that 30 grid points is enough to ensure the accuracy

of the SAEM algorithm.

In Bayesian statistics, the discrete-grid approximation provides a powerful compu-
tational and sampling approach for the situations where the posterior distribution is
low-dimensional and has no closed-form expression (Gelman et al., 2013). Using the
discrete-grid approximation sampling method makes it possible to generate the missing
data of #; from its marginal posterior distribution, and then the MCMC sampler is avoided.
Another advantage with using the discrete-grid method is that it allows some important
indicators or statistics to be computed directly. For instance, the expected a posteriori
(EAP) estimate of ; can be calculated by
_ S ool o) (32)

i1 P(wi |07, 85)o(67)

Furthermore, the logarithm of marginal posterior odds for £* to &€¥~1,

EAP(6;)

ALF = |log f(€"u, Q) — log f(£* Hu, Q)] (33)
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can be easily calculated, and it is used to check the the convergences of the SAEM
iteration. As discussed in Meng and Schilling (1996), AL is a powerful tool for monitoring
the convergence of the EM-type algorithms, and it is recommended for the problems when

it is easily computed (Gelman et al., 2013).

3.2 MSAEM Algorithm for the MMAP Estimation of the 4PNO
Model

Celeux et al. (2000) pointed out that, because of the well known label switching phe-
nomenon in the estimation of the mixture models, the simulation of latent categorical
variables is likely to impact the convergence of the MCMC and the SAEM algorithm for
the mixture of NLMEM. To cope with this problem, Lavielle and Mbogning (2014) de-
veloped an modified SAEM algorithm for computing the maximum likelihood estimation

of the mixture of NLMEM.

As given in Equation 2, the 4PNO model belongs to a two-classify mixture Bernoulli
model, where W;; is the latent categorical variable. Furthermore, according to the re-
lationship between W;; and Z;; in Equation 6, Z;; indirectly play the role of the latent
categorical variable. It is indicated that, the simulation of (w,z) is likely to impact the
performance of the SAEM algorithm for the 4PNO model. Inspired by the the studies
of Celeux et al. (2000) and Lavielle and Mbogning (2014), we develop an improved and
more efficient SAEM algorithm, which is called the MSAEM, for computing the MMAP
estimate of the 4PNO model.

3.2.1 General Description of the MSAEM Algorithm

By taking the law of total expectation, the E-Step in Equation 29 can be calculated by,

E(S(x)u;,8) = Eo(Ew ;2,)(5(x;)|0,u;,€)u;,€), (34)
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where Ew 7 )(-10,u;,£) is the expectation with respect to f(w ;,z ;/u;,0,£), and Eg(-|u;, &)

is the expectation with respect to f(8|u;,€). Then E(S(x;)u;,§) can be estimated using

a stochastic approximation procedure on Ew  z ;)(S(x;)|0,u;,§), when Ew , z ) (S(x )]0, 1 ;,§)
can be done in closed form. From this point, an improved SAEM algorithm is developed

for the 4PNO model, which is given in the following.

Let £° = (&Y, ...,€3,) denote the initial values, and £¥~1 = (€571, ... €%71) denote the
parameter estimate at the end of the (k—1)th iteration. The kth iteration of the MSAEM

algorithm consists of the following steps:

e S-Step: Sample 6! (I = 1,...,my,) from f(6;[u;,€* 1), where i = 1,..., N, using the
discrete-grid method that is given in subsection 3.1.3. Here {0' = (0}, ...,0%);1 =

1,...,my} denotes my vectors of the abilities.
e E-Step: Compute
S(u;, 06" = Ew,z,)(S(x;)u;, 061,
according to the Equations 35-39, where j =1,... M, [l =1,...,my.

e SA-Step: Update s¥ according to

nik S u.'70l>£]?_1
st = s =l (mjk ;) — sk,

where the specifications of v, and m;, are the same as that in the SAEM algorithm;

please see Remarks 1 and 3.

e M-Step: Compute

by substituting sg‘? for s; in Equations 24-28, where j =1,..., M.

21



In the above procedures, the missing data of (w,z,0) is dealt with using a mixture of
the two methods: @ are simulated from their marginal posterior distributions, and (w,z)
are replaced by their conditional expectations. Therefore, the improved SAEM algorithm
is called the mixed SAEM (MSAEM) algorithm. It can be seen that, the use of the
discrete-grid sampling method is very important for the implementation of the MSAEM
iteration, since in which randomly drawing from f(6;|u,,£"7!) is the first step, and the

closed form of f(6;[u;, &%) can not be obtained.

In comparison with the SAEM algorithm, the simulation of missing data of the
MSAEM algorithm is computationally cheaper, then the MSAEM algorithm becomes
more efficient. More importantly, as verified by the simulation studies in Section 4, the

accuracy of the MSAEM are higher than those of the SAEM algorithm.

For implementing the MSAEM algorithm, the closed form of the conditional expec-
tation of the sufficient statistics, E(W‘jgz'j)(S(x,jﬂu,j,0l,§§?—1), need to be obtained and

they are derived in the following.
3.2.2 Implementation Details of the E-Step

First, according to the definition of S(x;) (j = 1,..., M) in Equations 13-17, all the

elements of E(w_j,z‘j)(S(x,j)\u,j,01,§§_1) can be formulated as,

N
Ew,z,)(Si(x )00 = > BE(Wilui;, €7, 0w, (35)
=1
N
Ew,z,)(Sa(x )00 = > B(Wilu;, 57,6, (36)
=1
N
Ew,z,)(Ss(x)[u;,0€57") = > (1= BE(Wluy;, €57, 00))uy;, (37)
=1
Ew,z.,)(Si(x;)u;,00.67) = AA (38)
Ew,z,)(S5x;)u;,0.67") = ANE(Z;u; 0.6, (39)

22



where A = (0", 1y) and E(Z j|u;,0',&57") = (E(Zyjlu;, 00,€57"), ... E(Znjlun;, 0, €571)) .
It can be seen that, if E(I/Vij|uz~j,§?_1,0§) and E(Zij|uij,£§?_1,9§) can be done in closed

forms, the closed form of Eww 7 )(S(x;)u,0' ,5?‘1) can be obtained consequently.

From Equations 2 and 9, the conditional densities of Z;; given U;; = w;; can be

written as

(z,]|uw,§k 170)

dk 1 Zz] ak 10l b;?_l)I(zij>0)+C§_ ¢(’Z’LJ ak 1'9l b?_l)l(zi]-go)

P(Uy=1|¢F 1,61 ’ uiy = 1;
e e T T
1-P(U=1l¢; "6} o Wi =
where P(U;; = 1|§k ' 0!) is given in Equation 2.
Further, we have
dk_1E1+ck_1E2
k—1 Hk (Uwfl\g’“ 1 Hk) uz] = 1 s
E(Zijluij’é.j 07) = (1—-d~ 1)E1+(1 At By =0 (40)
Cru=ean o i =0
where
By = ¢(ab0+ b5 + (i1l + b D (a4 bh ),
—1pgl | pk—1 k—1pgl | pk—1 k—lpgl _ pk—1
Ey, = _¢( 0; +0577) + (a7 0; + b7 ) P(—aj 19i_bj ),
and
di ™ ®(ay OF 10 Ui =1
k— k P(Us; _1|£k 1 91“) ) 1] T )
E(mj|uij7£j 170') = (1-d* J1) (k Tk pE1) (41)
U= a0 =0

Finally, by plugging E(Wij|u;, €571, 0F) and E(Z;|u;;,€5~", 0F) given in Equations 40
and 41 into Equations 35-39, the closed form of E(sz'j)(S(x,j)|u,j,0l,§?_1) is obtained.
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4 Monte Carlo Simulation

In this section, two Monte Carlo simulation studies are reported. The first simulation
study was constructed to investigate the impact of K (the number of steps with v, = 1; see
Remark 1) on the performance of the SAEM and the MSAEM, and assess the sensitivity
(or robustness) of the two algorithms on the initial values. The second simulation was
constructed to evaluate the properties (recovery accuracy, insensitivity on the priors,
computational efficiency) of the SAEM and MSAEM algorithms by comparing with the
MCEM algorithm and the Gibbs sampler algorithm of Culpepper (2016). A simulation
study was also constructed to compare the recovery accuracy of MSAEM for 4PNO with

two commonly used EM algorithms for the 4PL model.

4.1 Study 1

4.1.1 Design

In this simulation, the test length of the artificial test was M = 30, and the true values
of € (j = 1,..., M) were randomly generated from the following distributions: a; ~
U(0.5,3.0), b; ~ N(0.0,1.0), ¢; ~ U(0.0,0.35) and d; ~ U(0.65,1.0), where U(-, -) denotes
the uniform distribution. The sample size of test takers is an important factor affecting
the estimation of item parameters in IRT models, and three different levels of sample size
were considered in this simulation, they were N = 500, 1000 and 5000. Under each of the
three sample conditions, the true values of § were randomly generated from the standard

normal distribution, 6; ~ N(0,1) (i =1,..,N).

In this simulation study, to reduce sampling error, 200 replications were generated
under each of the three sample sizes. For each replication, the MMAP estimation of the

4PNO model was computed by using the SAEM and the MSAEM algorithms. The priors
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for (aj,b;) in Equations 18 were specified to be: (pg, 35") = (02, (2I2)7!), where 0 is a
two-dimensional vector of zeros and I is a two-dimensional identity matrix, which is the
same as that in Culpepper(2016); the priors for ¢; and d; in Equation 19 were specified
to be, (ae, Be, g, Ba) = (5,17,17,5), which were suggested by Loken and Rulison (2010).
These priors are commonly used in the estimation of the IRT models. Other priors can
also be employed; for instance, the non-informative priors are given in the next simulation

study, and the obtained conclusions are almost identical.

To study the impact of K on the convergence of the SAEM and MSAEM algorithms,
the step size sequence {~;} given in Equation 30 was specified with 4 levels of K, they were
K =100, 500, 1000 and 1500, when k£ > K, the gain speed control parameter was set to
be a = 2/3. Furthermore, in this study, to assess the sensitivity to the initial values, the
SAEM and MSAEM algorithms were ran starting from three different initial values: (I1)
randomly generated from the distributions, af ~ U(0.5,3),0) ~ U(=2,2),¢] ~ U(0,0.3)
and d) ~ U(0.7,1); (12) a group of representative values, a = 1,b) = 0,c) = 0.2,d) = 0.8;
(I3) the true values of §;(j = 1,..., M) were taken as the initial values. Therefore, for
each of the three sample sizes, the SAEM and the MSAEM were implemented under the
12 conditions (4 levels of K x 3 groups of initial values) separately, and 200 replications

were performed for each simulation condition.

In the S-Step, the grid sampling procedure used the range of 6 € [—3.0,3.0], and the
number of the grid points was T" = 30, as discussed in Remark 4. The convergences of
the SAEM and MSAEM iterations were checked using AL* that is given in Equation 33,

and if ALF < 1074, the iteration was terminated.
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4.1.2 Results

The root mean squire error (RMSE) of each parameter was calculated across the 200
replications to evaluate the recovery accuracy. Let ; denote one of the four characteristic
parameters (a;,b;,c;j,d;) of item j, and Sjg denote the estimate obtained with the g-th

simulated data, then the RMSE of 4, is computed as

RMSE;, = \/ 200—1222 (3 - 5j)2, (42)

where j = 1,..., M. Further, let RMSEs = {RMSEj,,..., RMSEs,, }, which denotes the

RMSESs of ds for all the items in test. In this simulation, under each of the 3 sample sizes
(N = 500, 2000 and 5000), the Box-plots of RMSEj obtained from the two algorithms
(SAEM and MSAEM) implemented with the 12 settings (4 levels of K and 3 groups of

initial values) are displayed in Figures 1-6.

Observing these figures, it can be found the following trends: First, across the three
sample sizes (N = 500, 1000 and 5000), the Box-plots of RMSEs obtained from the SAEM
and the MSAEM with setting K = 100 were significantly different from those obtained
with the settings of K = 500,1000 and 1500. Moreover, in the case of K = 100, there
were substantial differences in the Box-plots of RMSEs corresponding to three different
initial values (I1, 12, and I3). These phenomena indicate that the convergence of the

SAEM and the MSAEM algorithms with K = 100 may not be guaranteed.

Second, under the conditions of N = 500 and 1000, the Box-plots of RMSE obtained
from the SAEM and the MSAEM with the same initial values were almost unchanged with
the increase of K (K = 500, 1000, 1500). These results demonstrate that the convergence
of the SAEM and the MSAEM can be guaranteed under the setting of K = 500. Fur-
thermore, the Box-plots of SAEM and MSAEM under different initial values were almost
identical; even when the initial values are selected randomly (denoted as I1), the obtained

results were very close to those obtained with the true values (denoted as I3). This trend
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indicates that both the SAEM and the MSAEM are highly robust on the choice of the
initial values. But it can be seen that the Boxplots of the MSAEM under different initial

values were more stable, indicating the better robustness of the MSAEM on initial values.

Third, the Boxplots obtained under the sample size of N = 5000 were significantly
lower than those under N = 500 and 1000, which is expected since the accuracy of
estimators should be improved with the increase of sample size. It can be seen that, in
the case of K = 500, the Box-plots of RMSEs of @ = {ay,...,ay} from the initial values
of I1 (randomly selected) and 12 were a little higher than those from the initial value
I3, but this phenomenon disappeared when K = 1000 and 1500. Then to ensure the
estimation accuracy, we suggest to set K = 1000. It should be emphasized that, even
under K = 1000, the computing times of the SAEM and the MSAEM were not much.
In the following section of Study 2, the computing times of the two algorithms were

investigated under different conditions, and the obtained results are reported in Table 5.

Finally, it can be seen that, in comparison with the SAEM algorithm, the Box-plots
of the MSAEM algorithm are located lower; moreover, they are stable under different
levels of K and different initial values. These phenomena are also obvious under the
relatively larger sample size N = 5000. It thus indicates that the MSAEM algorithm, as
an improvement of the SAEM algorithm, has more desired properties for estimating the

4PNO model.

4.2 Study 2

4.2.1 Design

In this simulation, two test lengths (M = 20 or 40) and two sample sizes (N = 1000 or
5000) were considered, thus there were in total 2 x 2 = 4 testing conditions. The same

as the design of Study 1, for each of the four testing conditions, the true values of §;
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(j =1,..., M) were randomly generated from the following distributions, a; ~ U(0.5, 3),
b; ~ N(0,1), ¢; ~ U(0,0.35) and d; ~ U(0.65, 1), and the true values of 8 were randomly

generated from the standard normal distribution, 6; ~ N(0,1) (i = 1,.., N).

In practice, the choice of the prior is subjective, thus it is desirable that the Bayesian
inference is robust to the specification of the prior distribution in many situations (Berger,
1990; Gelman et al., 2013). From this point of view, it makes sense to perform a sen-
sitivity analysis of the estimation of the 4PNO on the prior of §; (j = 1,...,M). To
do it, in this simulation, two priors were specified for (a;,b;), an informative prior,
(110, 25") = (04, (2I,)7"), which is the same as that used in Study 1, and a noninfor-
mative prior, (uo, Zal) = (02,02%2), where 0945 denotes the 2 x 2 zero matrix. Note that,
this noninformative prior is an improper prior, which is given in subsection 2.1.1, and
for more detailed theoretical concerns, see Gelman et al. (2013). Furthermore, two priors
were specified for (¢;, d;), an informative prior, (v, Be, aq, Ba) = (5,17,17,5), which is the
same as that used in Study 1, and a noninformative prior, (o, S, g, 8a) = (1,1,1,1).
The two priors of (a;,b;) and the two priors of (¢;,d;) were crossed, leading to four pri-
ors for §; (j = 1,..., M), which are shown in Table 1. The 4PNO model was estimated
with the four priors separately to check the differences in the estimation accuracy under

different priors.

The four testing conditions and the four priors for £; were crossed, leading to in total
4 x 4 = 16 simulation conditions. In each of the 16 conditions, three algorithms were
implemented to compute the MMAP estimates of the 4PNO model, including MSAEM,
SAEM, and MCEM. According to the results in Study 1, in this simulation, the SAEM
and the MSAEM were implemented with the settings: K = 1000, a = 2/3 and m;, = 1.
Furthermore, as discussed in Remark 4, the MCEM algorithm is the SAEM iteration with
v = 1 across all iterations. For MCEM, the accuracy of the Monte Carlo integral improves

with the increase of my, but with a high computational cost. In this simulaiton, the
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MCEM algorithm was implemented with my = 30, which was also verified to be enough
for guaranteeing the performance of the MCEM algorithm by a separate simulation study

(not reported here).

Furthermore, for comparison, the Gibbs sampler of Culpepper (2016) was imple-
mented with the R package “fourPNO” to compute Bayesian estimates of the 4PNO.
Here 30000 Gibbs iterations were generated, and the first 10000 iterations were discarded
as burn-in. Note that, different from the three stochastic versions of EM algorithm pro-
posed by this study, the Gibbs sampler is used to compute the expectation a posterior
(EAP) estimation of the 4PNO model. Finally, the initial values of the four algorithms
(SAEM, MSAEM, MCEM and Gibbs sampler) were identical, ag-) = 1,b§-) = O,C? = 0.2,
and dj = 0.8.

The above procedures (data generation and parameter estimation) were repeated
200 times. Evaluation criteria of parameter recovery include: the average RMSE of each
parameter over all items (which is denoted as ARMSE), the average of the correlation
between the estimates and the true parameter across 200 replications (which is denoted
as ACor), and the average of the item response function (IRF) recovery across all the

items and the 200 replications (which is denoted as AIRF). They are calculated by

1 M 200
ARMSE; = le 200~ Z (3 - ) :
-

and

1% ngj_ﬁ ;WJQZ(S
20 (I 8, = () ) (2 2 = () 6)?)

where ¢; and 5jg are defined in Equation 42. Different from the ARMSE and the ACor,

ACOI‘S =

the AIRF is used for assessing the recovery accuracy at item-level. First, the IRF recovery
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is calculated by

100
1 * - *
IRFjs = 155 > |P(U; = 116;.€,,) — P(U; = 1]67,€;)]. (43)
t=1

where P(U; = 1|6f,€;) denotes the real item response probability of item j at 6}, and
P(U; = 116;,€ ;o) denotes the estimated item response probability with the g-th simulated
data. Here, 6] belongs to the 100 evenly spaced 6 points, (67, ..., 07y,), ranging from —3.0
to 3.0, which is suggested by Wollack et al. (2002). And then, the AIRF across the 200

replications and the M items is calculated by,

200 M
AIRF — g=1 Zj:l IRFJ’Q
200 x M

(44)

4.2.2 Results

The obtained values of ARMSE, ACor and AIRF under the conditions of N = 1000 and

5000 are given in Tables 2-3. Observing these results, the following trends can be found.

Recovery Accuracy and Sensitivity Analysis on Priors. First, under most conditions,
the ARMSEs and the AIRFs of the MSAEM algorithm were the smallest, and the ACor of
the MSAEM were the biggest. These results provide evidence that the MMAP estimates
computed by the MSAEM algorithm have the highest accuracy. Additionally, it can be
seen that, there were very small differences in each of the three recovery evaluation indices
of the MSAEM algorithm across the four priors. It is indicated that, the MMAP estimates
computed by the MSAEM algorithm are highly robust to the prior of &;.

Second, under most conditions, the three recovery accuracy evaluation indices of the
MCEM algorithm were very close to those of the MSAEM algorithm, and were obviously
smaller than those of the SAEM algorithm. The MCEM algorithm yielded good per-
formance for computing the MMAP estimation of the 4PNO. But the drawback of the

MCEM algorithm is that it was quiet time-consuming in many situations. Please see
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Table 5, compared with the MSAEM and the SAEM, the MCEM required much more
computing time. Finally, similar to the MSAEM, the MMAP estimates computed by the

MCEM were robust with respect to the prior of §;.

Third, compared with the MSAEM and the MCEM, the performance of the SAEM
was poorer. Under most conditions, the estimation accuracy was lower, and the robustness
with regard to the prior was weaker. As discussed by Lavielle and Mbogning (2014), when
the sample size is small, the SAEM algorithm tends to be unstable and produce poor
accuracy estimation for the mixture models, which is due to the simulation of the latent
categorical variable in S-Step. It can be seen that, as the increase of the sample size, the
estimation accuracy of the SAEM algorithm was greatly improved, and the inferiority of
the SAEM algorithm was weaken. These observations are consistent with the views of
Lavielle and Mbogning (2014). Therefore, it can be concluded that, for the 4APNO model,
the simulation of w and z in S-Step leads to the relative poorer behavior of the SAEM

algorithm.

Fourth, the ARMSEs and the AIRF's from the Gibbs sampler under the informative-
prior of (a,b) (Priorl and Prior 2) were very close to or even smaller than these of the
MSAEM algorithm. In particular, under Prior 2, in which the informative prior for (a;, b;)
and the noninformative prior for (c;,d;), the Gibbs sampler algorithm performed the
highest recovery accuracy, which is consistent with the conclusion in Culpepper (2016).
However, under the noninformative prior for (a,b) (Prior 3 and Prior 4), the recovery
accuracy of the Gibbs sampler was the lowest, and this trend was more significant in the
case of N = 1000 and M = 20. As mentioned above, the Bayesian estimation computed
by the Gibbs sampler was the EAP estimate of the 4PNO model. Therefore, it can be
concluded that, the EAP estimation of the 4PNO model is sensitive to the prior of (a;, b;);

in contrast, the MMAP estimation of the 4PNO is more robust to the prior of §;.
Finally, it can be found that, the recovery accuracy of the estimates computed by
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the four algorithms were improved as the increase of N and M. When N = 5000 and
M = 40, the differences in the recovery metrics between the four algorithms were very
small. It is indicated that, the sample size is very important for parameter estimation;
when the sample size is large, the estimation accuracy can be guaranteed, and the lack of
the computational accuracy can be greatly diminished. But, for a large sample size, the
estimation of parameter tends to require a high computational effort, and the computing

efficiency becomes an important consideration for an estimation method.

Computing Efficiency Assessment. The average computing time (in Second) of the
four algorithms (SAEM, MSAEM, MCEM and Gibbs sampler) across the 200 replications
were calculated to assess their computing efficiency; please see Table 5. Note that the
simulation study was run on a PC with an Intel Core i9-10900K (3.7 GHz) processor with
64GB of RAM. It can be seen that the MSAEM algorithm was the most efficient, followed
by the SAEM algorithm, and both were much more efficient than the MCEM and the
Gibbs sampler algorithm. This superiority of the computing efficiency of the MSAEM
algorithm was much larger in the case of N = 5000 and M = 40.

The complete-data model of the 4PNO belongs to an exponential family, thus the
computations of SAEM and the MSAEM are simplified, such as the numerical calculations
are avoided in each iteration, which results in the computation cost of each iteration is
small. In addition, compared to the SAEM, the simulation of missing data in MSAEM
was much cheaper, which makes the computational cost of the MSAEM algorithm further
lower than that of the SAEM algorithm.

These obtained results provide evidence that the MSAEM algorithm has overall ad-
vantages over the other three algorithms. The estimator obtained by the MSAEM algo-
rithm not only have the highest recovery accuracy, but also is highly robust to the prior
for the item parameters; more importantly, the MSAEM algorithm is computationally

more efficient than the other algorithms. Finally, it should be noted that, the MSAEM
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can be directly used for the 2PNO and 3PNO models, and thus the MSAEM provides a

powerful computing tool for the estimation of the NO models.

4.2.3 Recovery accuracy of the 4PNO under small sample size

According to the suggestion of one reviewer, the estimation accuracy of the 4PNO model
is assessed under the sample size of N = 500, and the obtained results are reported
in Table 4. One message from these results is under the sample size of N = 500, the
estimation of the 4PNO model is of rather poor accuracy. By comparison, the three
evaluation criteria of the MSAEM and the MCEM were a little smaller than those of the
other two algorithms; moreover, in the cases of the noninformative prior for (a;, b;) and
the test length is M = 20, the estimates computed by the Gibbs sampler displayed great

large errors.

The poor recovery accuracy is mainly due to the small sample size for the estimation of
the complex 4PNO model. In the IRT literature, some studies (Patsula, 1995; Tang et al.,
1993; Yen, 1987; Yoes, 1995) supported that 1000 was taken as the minimum sample size
required for accurate item-parameter estimation in IRT. Thissen (1982) suggested that
500 was the minimum feasible sample size for the dichotomous unidimensional model. Yen
(1987) supported that at least a sample of 1000 with 20 items for the three parameter
model estimation. According to these studies and the obtained results in this simulation,
it can be concluded that the sample size of N = 500 may not be adequate for the 4PNO
model estimation. This is consistent with the previous studies (Culpepper, 2016; Waller
and Feuerstahler, 2017) that a relatively larger sample size is required to accurately recover

4PNO parameter values.
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4.2.4 Estimation comparison with EM algorithms for the 4PL model

Following one reviewer’s suggestion, to further investigate the performance of the proposed
MSAEM algorithm, a simulation study is constructed to compare the recovery accuracy
of MSAEM for 4PNO with two commonly used EM algorithms for the 4PL model. The
first is the EM algorithm implemented in R package “mirt”, and the second is the EM
algorithm proposed by Meng et al. (2020). To save space, this simulation design and the
obtained results are reported in Appendix. Note that due to the difference of the 4PNO
and 4PL models, a scale constant of D = 1.702 is used to ensure the approximately
equivalence of the item response functions under the two models. Comparing the results
in Tables A2 and A3 to these in Tables 2-4, the three evaluation criteria consistently
support that the estimates from the MSAEM for 4PNO are more accurate than those
from the two EM algorithms for 4PL. Furthermore, the estimation results of the two EM
algorithms more depend on the priors for (a;, b;, ¢;, d;), especially when the sample size is
small. In particular, the estimation accuracy of the 4PL model under the noninformative
priors is difficult to guarantee. Overall, compared with the EM algorithms for the 4PL

model, the MSAEM algorithm provides a better performance.

5 Empirical study

In this section, we demonstrate the application of the 4PNO model via an empirical ex-
ample that is from a state math assessment test (Tao et al., 2012). This data set includes
65 dichotomous items and 2000 test takers. For this example, the 4PNO model was
estimated using the two methods: the MSAEM algorithm proposed by this article and the
Gibbs sampler of Culpepper (2016) that is implemented in the R package of “fourPNO”
separately. When the estimates of one model obtained from different methods display

some large differences, the accuracy of at least one method should be doubted; otherwise,
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the obtained estimates are likely to be credible. Therefore, in this empirical study, the
accuracy of the MSAEM algorithm was evaluated by comparing with the results from the
Gibbs sampler. The two algorithms were carried out under the same priors that are shown
in the row of “Prior 2” of Table 1, because with the priors in “Prior 2”7, the Gibbs sampler
performed the highest recovery accuracy. The other settings (such as the specifications
of K, the initial values of iteration, the number of the Gibbs iterations and the period of

burn in) were the same as that in simulation study 2.

The estimates of the 4PNO model from the two algorithms were displayed using
the scatter plots in Figure 7. From the four plots, it can be seen that for each item
parameter (a,b, c or d), almost all the points fall on the diagonal, and the corresponding
four correlation coefficients > 0.98. It indicates that the estimates obtained from the
MSAEM and the Gibbs sampler are consistent with each other. On the other hand, the
MSAEM has substantially computational advantage over the Gibbs sampler; for fitting
this data, the computing time of the MSAEM algorithm is less than 8 seconds, while
the Gibbs sampler requires at least 1600 seconds (the PC information is given in the
simulation study 2). In the following, the fit of the 4APNO model to this data was assessed

at the item and the test levels respectively.

To evaluate the performance of the 4PNO model, the 3PNO and the 2PNO were
selected as comparison models. Noting that the MSAEM algorithm can be directly im-
plemented for computing the MMAP estimates of the two more restricted models. Ac-
cording to the recommendation of one reviewer, the S-X? statistic of Orlando and Thissen
(2000) was used to assess the model fit at the item level. For item j, the S-X ]2 statistic

is calculated by
M-1 2
2 (Ojm — Ejm)
S = ;NmEJ‘m(l—E‘ )’

J

where O;,, and L}, denote the observed and expected proportion correct of examinees

with total score m who get item j correct, NN, is the observed number of persons with
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test score m, and M is the maximal possible test score. The S-X ]2 statistic approximately
follows the chi-square distribution with the degrees of freedom M — 1 — n,;, where n,;
denotes the number of the item parameters of item 7. Thus an item fit chi-square signif-
icance test can be constructed based on the S-X? statistics. As verified by Orlando and
Thissen (2000, 2003), the S-X? performed better than the traditional item fit statistics
such as the @ statistic (Yen, 1981) and the G statistic (McKinley and Mills, 1985) for
dichotomous IRT models.

The obtained values of S-X? of the three models (4PNO, 3PNO and 2PNO) are

2

shown in Table 6, where a value labeled “ % ” indicates the model shows misfit at the
significance level of 0.05. It can be seen that, the values of S-X? of the 4PNO model for
most items are the smallest, the values of S-X? of the 3PNO model are a little bigger,
and the values of S-X? of the 2PNO are great larger than that of the other two models.
Moreover, it can be seen that 1 item is significantly misfitted by the 4PNO, 3 items are
significantly misfitted by the 3SPNO, and 21 items are significantly misfitted by the 2PNO.
These findings provide evidence that the fit of the 4PNO to the item response data is a
little better than that of the 3PNO, and the fits of them are substantially better than

that of the 2PNO model.

At the test level, the assessment of model fit was carried out using the Akaike infor-

mation criterion (AIC) (Akaike, 1998),
AIC = —2InL(u| &) + 2n,, (45)
where
M
L(u| &) =[] L))
=1

is the marginal likelihood that can be approximately calculated using the discrete grid
method, and n, is the number of the item parameters of all items. Note that in AIC,

—2InL(u| &) is used for evaluating the model fit, and n, is the penalty for model com-
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plexity. As shown in Table 6, for different items, the best fitting item-level models could
be different. Therefore, to fully evaluate the models, the data set was also fitted by
a item-level hybrid model, where each item was modeled by the best among the three

models in terms of the smallest S-X? statistic.

The obtained results are displayed in Table 7. It shows that the AIC of the hybrid
model was the smallest, while close to that of the 4PNO. This finding indicates that
the hybrid model slightly improved the fit of the 4PNO model for the whole test. In
addition, the AIC of the 3PNO was bigger than that of the 4PNO, suggesting the 4PNO
has some superiority over the 3PNO. The values of AIC and —21In L(u| §) of the 2PNO
were substantially larger than those of the 4PNO and 3PNO, suggesting that the 2PNO
model provided the worst fit to this data set. Overall, both the S-X? statistics and AIC
support that the 4PNO was the best, followed by the 3PNO, and the 2PNO model was

the worst.

6 Discussion

In IRT, the 4PM has received increasing attention in recent years. Noting the computa-
tional challenges in the 4PM estimation, this work aims to offer powerful computational
tools by using recent advances in statistical computation. We focus on the 4PNO model
and develop two versions of the SAEM algorithm to compute the MMAP estimators of
the item parameters. Specifically, the 4PNO model is reformulated to be a hierarchical
model by using a data augmentation method, and an important property is that the cor-
responding complete-data model belongs to an exponential family, which is convenient for
developing the EM-type algorithms. We first develop a SAEM algorithm to compute the
MMAP estimator of the 4PNO model, which includes the MCEM algorithm as a special

case, but this algorithm is likely to be unstable due to the mixture modeling nature of the
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4PNO model. To overcome the drawback of the SAEM algorithm, we further develop an
improved SAEM algorithm for the 4PNO model, which is called the MSAEM algorithm.

The results from the simulation studies demonstrate that the obtained estimators
from the MSAEM algorithm are more accurate than those from the Gibbs sampler of
Culpepper (2016) and the SAEM algorithm; moreover, the MSAEM algorithm is more
robust to the choices of starting values and priors. The recovery accuracy of the MCEM
algorithm is close to that of the MSAEM algorithm, while the MCEM algorithm is more
time-consuming. Overall the MSAEM algorithm is computationally more efficient than
the other methods. Furthermore, as suggested by a reviewer, to fully investigate the
performance of the proposed methods, the recovery accuracy of MSAEM for the 4PNO
model was also compared with that of two existing EM algorithms for the 4PL model.
The results demonstrate that the MSAEM algorithm is more accurate and robust than
the EM algorithms for the 4PL model.

There are several future research directions. First, the step size sequence {7} plays
an important role in the performance of the SAEM and the MASEM algorithms. In this
study, we investigated the influence of the number of steps with ~, = 1 (which is denoted
as K) on the estimation accuracy, and the choice of K was suggested based on the simu-
lation results. A more systematic strategy for setting {~x} under different settings needs
to be further explored. Second, as discussed in Kern and Culpepper (2020) and Meng
et al. (2020), the 4PM can be viewed as a J-attribute higher-order DINA model, and it
is valuable to extend the MSAEM algorithm to such higher-order models. Furthermore,
Kern and Culpepper (2020) discussed the identifiability of the 4PM, and proposed a re-
stricted version of 4PNO model, the dyad 4PNO model, based on the identifiability results
for cognitive diagnosis models. The dyad 4PNO model was estimated using the MCMC
algorithm in Kern and Culpepper (2020), and it is interesting to extend the SAEM and
MSAEM algorithms to the dyad 4PNO model. Third, in this study, the MMAP estima-
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tion is defined under the assumption that the latent trait follows the normal distribution,
however, some recent studies showed that the normal assumption is likely to fail in prac-
tice and the estimates based on the false assumption may lead to large estimation error
(DeMars, 2012; Svetina et al., 2017; Wang et al., 2018; Zhang et al., 2020c). Therefore,
it is valuable to develop an estimation method under a general distributional assumption
on the latent trait. Finally, other stochastic versions of the EM algorithm have also been
used for the estimation of some important IRT models (Fox, 2003; Zhang et al., 2020b)
with good performance, and it is interesting to develop other stochastic EM algorithms

for the 4PNO model using the data augmentation scheme given in this work.
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Table 1: Four prior distributions for the item parameters, §; = (a;, b;, ¢, d;), in the 4PNO.

(aj,bj) ~ Na(po, X0)l(a;>0) (¢, d;j) ~ Betaz(ae, Be, dd, Ba)l(1>d;>¢;>0)

Prior 1

(Informative+Informative) (1o, g 1)= (02,(2I5) ") (@c, Be; aa, Ba) = (5,17,17,5)
(InformativeP—S\?f)r?informatiVe) (10, 251): (02,(2I,) 1) (ac, Be, aa, Ba) = (1,1,1,1)
(Noninform;i/(;rjglnformative) (10, 261)= (02,02x2) (ae, e, @, Ba) = (5,17,17,5)

Prior 4 (1o, S5 1) = (02,022) (ae, Beyagy Ba) = (1,1,1,1)

(Noninformative+Noninformative)

Note: 05: two-dimensional vector of zeros; Ozx2: 2 X 2 matrix of zeros; Is: two-dimensional identity matrix.
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Figure 1: Box-plots of RMSEs of the MMAP estimates of a;, b;, c; and d; over all items in
the test, and the MMAP estimates are computed by the SAEM algorithms under 4 levels
of the number (K) of v, =1 (K = 100, 500, 1000, 1500) and 3 groups of initial values (I1:
randomly selection, where a® ~ U(0,3),° ~ U(-2,2),® ~ U(0,0.3), d® ~ U(0.7,1); 12:
a group of common values, where af = 1,0} = 0,¢) = 0.2,d} = 0.8; 13: the true values of

j
(aj,bj,c;,d;) are used as (af, b, ¢}, d))). Sample size is N = 500.
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Figure 2: Box-plots of RMSEs of the MMAP estimates of a;, b;, c; and d; over all items in
the test, and the MMAP estimates are computed by the SAEM algorithms under 4 levels
of the number (K) of 7, = 1 (K = 100,500, 1000 and 1500) and 3 groups of initial values
(I1: randomly selection, where a® ~ U(0,3),8° ~ U(—2,2),° ~ U(0,0.3), d° ~ U(0.7,1);
12: a group of common values, where af = 1,09 = 0,¢) = 0.2,d] = 0.8; I3: the true values
d})). Sample size is N = 1000.
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Figure 3: Box-plots of RMSEs of the MMAP estimates of a;, b;, c; and d; over all items in
the test, and the MMAP estimates are computed by the SAEM algorithms under 4 levels
of the number (K) of 7, = 1 (K = 100,500, 1000 and 1500) and 3 groups of initial values
(I1: randomly selection, where a® ~ U(0,3),8° ~ U(—2,2),° ~ U(0,0.3), d° ~ U(0.7,1);
12: a group of common values, where af = 1,09 = 0,¢) = 0.2,d] = 0.8; I3: the true values

j
of (aj,b;,c;,d;) are used as (af, b}, c},dy)). Sample size is N = 5000.
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Figure 4: Box-plots of RMSEs of the MMAP estimates of a;, b;, c; and d; over all items
in the test, and the MMAP estimates are computed by the MSAEM algorithms under
4 levels of the number (K) of v, = 1 (K = 100,500, 1000 and 1500) and 3 groups of
initial values (I1: randomly selection, where a® ~ U(0,3),8° ~ U(-2,2),c" ~ U(0,0.3),
d* ~ U(0.7,1); 12: a group of common values, where a) = 1,9 = 0,c) = 0.2,d} = 0.8; I3:

j
the true values of (a;, bj, c;,d;) are used as (af, b}, ¢}, dj)). Sample size is N = 500.

44



K=100 » K=500 » K=1000 K=1500

2 2
15 15 15 15
in° T
%) I +
g 1 - 1 n o N . o, n .
& | ¥ + + + + + +
05 05 - 05| T 1 05| T :
— = =5 = & & = =
T =
0 0 0 0
1 12 13 " 2 13 X 2 13 N 12 13
2 2 2 2
15 15 15 15
S ’
§ I 1 1 1
< ¥ T
+ +
05 é _ 050 _ + _ os| * T 05| T ES +
20+ |28 85 |25 5] ==
1 2 13 N 2 13 N 2 13 " 12 13
05 05 05 05
0.4 0.4 0.4 0.4
w03 + 03 03 03
5 02 0.2 0.2 0.2
o1f T - + 01 + * + 01 - + + 01t * + +
=& =] (& & o] = =] = =
" 12 13 " 2 13 " 2 13 " 12 3
05 05 05 05
0.4 0.4 0.4 0.4
s +
§ 03 . 03 03 03
& 02 ¢ . ozf N o2f . . 02p . .
01t 1 B - 01l T 1 o1t T T T o1t T T T
D e o Mad s addadd
" 12 13 " 2 3 I 2 13 1" 12 13
Initial Values Initial Values Initial Values Initial Values

Figure 5: Box-plots of RMSEs of the MMAP estimates of a;, b;, c; and d; over all items
in the test, and the MMAP estimates are computed by the MSAEM algorithms under
4 levels of the number (K) of v, = 1 (K = 100,500, 1000 and 1500) and 3 groups of
initial values (I1: randomly selection, where a® ~ U(0,3),8° ~ U(-2,2),c" ~ U(0,0.3),
d* ~ U(0.7,1); 12: a group of common values, where a) = 1,9 = 0,c) = 0.2,d} = 0.8; I3:

j
the true values of (a;, bj, c;,d;) are used as (af, b9, ¢}, dj)). Sample size is N = 1000,
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Figure 6: Box-plots of RMSEs of the MMAP estimates of a;, b;, c; and d; over all items
in the test, and the MMAP estimates are computed by the MSAEM algorithms under
4 levels of the number (K) of v, = 1 (K = 100,500, 1000 and 1500) and 3 groups of
initial values (I1: randomly selection, where a® ~ U(0,3),8° ~ U(-2,2),c" ~ U(0,0.3),
d* ~ U(0.7,1); 12: a group of common values, where a) = 1,9 = 0,c) = 0.2,d} = 0.8; I3:

j
the true values of (a;, bj, c;,d;) are used as (af, b9, ¢}, dj)). Sample size is N = 5000,
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Table 2: ARMSE, ACor and AIRF of the estimates of a;, b;, c; and d; across the test for
SAEM, MSAEM, MCEM and Gibbs Sampler, under the four priors of §; = (a;, b;, ¢;, d;)
and two sample sizes (N = 1000 and 5000). The test length is M = 20.

ARMSE ACor
Sample Size  Prior Algorithm a b c d a b c d AIRF

MSAEM 040 0.29 0.05 0.05 0.74 092 0.86 0.76 0.0306

Prior 1 SAEM 0.48 0.34 0.06 0.06 0.66 090 0.82 0.70 0.0330
MCEM 041 0.30 0.05 0.05 0.74 092 086 0.75 0.0308

Gibbs Sampler 0.47 0.31 0.05 0.05 0.72 092 0.87 0.75 0.0319

MSAEM 0.44 0.33 0.05 0.09 0.67 090 0.86 0.56 0.0329
SAEM 0.55 0.39 0.06 0.10 0.56 085 0.81 046 0.0373

Prior 2 MCEM 044 0.33 0.05 0.09 0.67 0.90 0.86 0.56 0.0328
Gibbs Sampler 0.46 0.32 0.05 0.06 073 0.90 0.89 0.67 0.0332

N = 1000 MSAEM 045 031 005 005 075 093 085 075 0.0308
Prior 3 SAEM 0.57 0.35 0.06 0.06 0.67 0.90 081 0.70 0.0332
MCEM 046 0.31 0.05 0.05 0.75 092 085 0.76 0.0309

Gibbs Sampler 3.30 1.28 0.06 0.07 041 0.85 085 0.75 0.0470

MSAEM 051 0.35 0.05 0.09 0.64 090 086 053 0.0347

Prios 4 SAEM 064 042 0.06 0.10 053 0.86 0.83 047 0.0382
MCEM 050 0.36 0.06 0.09 0.64 090 086 0.54 0.0346

Gibbs Sampler  3.55 1.20 0.06 0.08 022 0.80 085 059 0.0477

MSAEM 029 0.17 0.03 0.04 0.86 097 093 083 0.0176

Prior 1 SAEM 0.33 0.18 0.03 0.04 0.83 097 092 0.79 0.0190
MCEM 029 0.17 0.03 0.04 0.86 097 098 082 0.0174

Gibbs Sampler  0.33  0.17  0.03 0.04 0.88 094 095 084 0.0181

MSAEM 0.32 0.18 0.03 0.06 0.83 097 093 0.71 0.0185

Prior SAEM 0.39 020 0.04 0.07 076 0.96 0.90 0.63 0.0213
MCEM 0.33 0.19 0.03 0.06 0.83 097 093 0.68 0.0188

Gibbs Sampler  0.35 0.16 0.03 0.05 0.82 097 095 0.75 0.0183

N = 5000 MSAEM 028 0.15 0.03 0.04 0.87 098 093 084 0.0173
Prior 3 SAEM 034 0.18 0.04 0.05 0.82 097 091 081 0.0198
MCEM 029 0.16 0.03 0.04 0.86 098 094 082 0.0175

Gibbs Sampler  0.69 0.26 0.04 0.03 0.79 097 092 096 0.0247

MSAEM 0.31 0.17 0.03 0.06 0.85 097 094 0.71 0.0180

Prior 4 SAEM 0.39 020 0.04 0.07 077 0.96 092 0.63 0.0212

MCEM 0.33 0.18 0.03 0.06 0.83 097 093 0.70 0.0185
Gibbs Sampler 0.72 0.27 0.03 0.05 0.72 096 0.94 0.75 0.0212

Note: Prior 1: (uo, Xy 1)= (02,(2I2)~1) and (o, Be, @, Ba) = (5,17,17,5)
Prior 2: (po, Zal) = (02, (2I2)~ 1) and (av, Be, g, Ba) = (1,1,1,1)
Prior 3: (1o, ¥ ')= (02,02x2) and (o, Be, g, Ba) = (5,17,17,5)
Prior 4: (po, 251): (02,02x2) and (a, Be, g, Ba) = (1,1,1,1)
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Figure 7: The scatter plots between the estimators of a; (or b;, ¢, d;) obtained using the

MSAEM and the Gibbs sampler, across the test.
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Table 3: ARMSE, ACor and AIRF of the estimates of a;, b;, c; and d; across the test for
SAEM, MSAEM, MCEM and Gibbs Sampler, under the four priors of §; = (a;, b;, ¢;, d;)
and two sample sizes (N = 1000 and 5000). The test length is M = 40.

ARMSE ACor
Sample Size  Prior Algorithm a b c d a b c d AIRF

MSAEM 0.37 0.25 0.04 0.04 0.83 097 0.82 0.80 0.0272
SAEM 0.44 0.28 0.05 0.05 0.78 096 0.78 0.77 0.0292

Prior 1 MCEM 0.39 0.25 0.05 0.04 0.82 097 081 082 0.0277
Gibbs Sampler  0.43 0.26 0.04 0.05  0.83 097 084 080 0.0273
MSAEM 0.39 033 0.06 008 082 090 079 0.32 0.0286
Prior 2 SAEM 046 0.32 007 008 076 0.90 0.60 0.63 0.0313
MCEM 041 032 0.07 007 080 090 0.76 0.33 0.0290
Gibbs Sampler  0.43 0.30 0.05 0.06  0.78 0.93 081 043 0.0270

N = 1000
MSAEM 0.38 025 0.05 004 083 097 081 0.82 0.0272
Prior 3 SAEM 052 029 005 005 076 0.95 077 081 0.0298
MCEM 042 028 0.05 005 083 0.97 081 081 0.0280
Gibbs Sampler 2.38 1.14 0.06 0.06  0.51 0.87 080 0.79 0.0377
MSAEM 042 035 0.07 007 079 090 0.76 0.31 0.0305
Prios 4 SAEM 055 0.35 007 007 075 092 073 071 0.0327
MCEM 047 0.34 007 008 076 0.89 072 032 0.0302
Gibbs Sampler 2.61 1.05 0.07 0.07  0.31 0.80 075 049 0.0389
MSAEM 0.23 0.4 0.03 003 094 099 092 084 0.0140
Prior 1 SAEM 026 0.15 0.03 003 092 096 090 084 0.0150
MCEM 024 0.5 005 003 094 099 092 0.82 0.0142
Gibbs Sampler  0.25 0.14 0.03 0.03 093 0.99 092 086 0.0142
MSAEM 0.25 0.8 0.03 005 094 094 090 034 0.0143
Prior SAEM 029 020 004 006 090 093 088 037 0.0157
MCEM 025 0.18 0.03 005 093 094 090 038 0.0144
Gibbs Sampler  0.27 0.17 0.03 0.05  0.92 0.96 091 050 0.0142

N = 5000
MSAEM 0.22 0.3 0.03 003 094 099 092 0.88 0.0139
Prior 3 SAEM 026 0.16 0.04 003 092 0.99 089 087 0.0153
MCEM 023 0.14 003 003 094 099 092 085 0.0141
Gibbs Sampler 044 0.23 0.03 0.03  0.87 0.97 092 088 0.0156
MSAEM 0.25 0.8 0.03 005 094 094 090 0.37 0.0147
Prior 4 SAEM 028 020 004 006 091 093 088 037 0.0161

MCEM 0.25 0.18 0.03 0.05 094 094 090 040 0.0147
Gibbs Sampler 0.46 0.23 0.04 0.04 0.83 096 091 0.56 0.0156

Note: Prior 1: (uo, Xy 1)= (02,(2I2)~1) and (o, Be, @, Ba) = (5,17,17,5)
Prior 2: (po, Zal) = (02, (2I2)~ 1) and (av, Be, g, Ba) = (1,1,1,1)
Prior 3: (1o, ¥ ')= (02,02x2) and (o, Be, g, Ba) = (5,17,17,5)
Prior 4: (po, 251): (02,02x2) and (a, Be, g, Ba) = (1,1,1,1)

49



Table 4: ARMSE, ACor and AIRF of the estimates of a;, b;, c; and d; across the test for
SAEM, MSAEM, MCEM and Gibbs Sampler, under the four priors of §; = (a;, b;, ¢;, d;)
and two test lengths (M = 20 and 40). The sample size is N = 500.

ARMSE ACor

Test Length  Prior Algorithm a b c d a b c d AIRF
MSAEM 0.46 0.36 0.06 0.05 0.67 087 0.80 0.71 0.0388
Prior 1 SAEM 0.56 0.43 0.07 0.06 0.59 084 0.76 0.65 0.0411
MCEM 0.46 0.36 0.06 0.06 0.67 087 0.80 0.71 0.0388
Gibbs Sampler 1.07 2.39 0.08 0.57 0.00 0.12 0.53 -0.39 0.0766
MSAEM 0.49 042 0.06 0.11 0.58 0.83 0.81 048 0.0430
Prior 2 SAEM 0.63 0.50 0.07 0.12 045 076 0.78 0.42 0.0466
MCEM 0.50 0.42 0.06 0.11 0.58 0.83 0.81 049 0.0430
Gibbs Sampler 0.80 1.20 0.10 0.21 0.00 0.02 0.34 0.47 0.0966

M =20
MSAEM 0.52 0.38 0.06 0.06 0.67 088 0.79 0.70 0.0397
Prior 3 SAEM 0.65 0.46 0.07 0.07 0.57 084 0.74 0.62 0.0428
MCEM 0.50 0.38 0.06 0.06 0.67 088 0.79 0.70 0.0396
Gibbs Sampler 2.20 9.53 0.08 0.57 0.01 0.03 0.54 -0.17 0.0778
MSAEM 0.57 045 0.08 0.11 0.53 0.83 0.77 0.48 0.0453
Prior 4 SAEM 0.71 048 0.10 0.11 046 081 0.64 043 0.0495
MCEM 0.61 048 0.07 0.11 0.55 0.83 0.81 045 0.0453
Gibbs Sampler 4.80 6.66 0.09 0.24 —-0.06 0.12 044 0.15 0.0825
MSAEM 042 0.32 0.05 0.05 0.79 095 0.77 0.79 0.0339
Prior 1 SAEM 0.50 0.37 0.06 0.06 0.72 093 0.69 0.71 0.0357
MCEM 0.44 0.31 0.06 0.06 0.76 095 0.74 0.74 0.0353
Gibbs Sampler 0.46 0.31 0.05 0.05 0.76 095 0.76 0.74 0.0353
MSAEM 049 043 0.07 0.09 0.68 0.88 0.70 0.30 0.0380
Prior 2 SAEM 0.58 0.43 0.07 0.09 0.66 090 0.69 0.61 0.0428
MCEM 0.1 043 0.08 0.09 0.68 087 0.71 0.34 0.0393
Gibbs Sampler 0.49 0.37 0.07 0.07 0.71 091 0.72 0.39 0.0357

M =40
MSAEM 0.49 0.32 0.06 0.05 0.79 095 0.75 0.75 0.0352
Prior 3 SAEM 0.55 0.40 0.06 0.06 0.72 092 0.69 0.73 0.0375
MCEM 0.50 0.43 0.06 0.08 0.74 095 0.76 0.76 0.0358
Gibbs Sampler 4.80 2.19 0.08 0.07 0.33 083 0.68 0.76 0.0530
MSAEM 0.50 0.42 0.08 0.09 0.70 0.88 0.72 0.32 0.0405
Prior 4 SAEM 0.61 045 0.09 0.09 0.60 091 0.69 0.62 0.0450
MCEM 0.55 0.45 0.08 0.09 0.68 0.88 0.69 0.40 0.0412
Gibbs Sampler 5.35 2.29 0.10 0.09 0.12 0.72 0.67 048 0.0556

Note: Prior 1: (uo, Xy 1)= (02,(2I2)~1) and (o, Be, @, Ba) = (5,17,17,5)
Prior 2: (po, Zal) = (02, (2I2)~ 1) and (av, Be, g, Ba) = (1,1,1,1)
Prior 3: (1o, ¥ ')= (02,02x2) and (o, Be, g, Ba) = (5,17,17,5)
Prior 4: (po, 251): (02,02x2) and (a, Be, g, Ba) = (1,1,1,1)
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Table 5: The average computing times of SAEM, MSAEM, MCEM, and Gibbs Sampler,
under two sample sizes (N = 1000 and 5000) and two test lengths (M = 20 and 40) across
the 200 replications.

Testing Conditions Average Computing Time (in Second)
Sample Size Test Length SAEM MSAEM MCEM Gibbs Sampler
N = 1000 M =20 6 4 135 166
N = 5000 M =20 20 15 550 771
N = 1000 M =40 11 5 240 332
N = 5000 M =40 65 46 1650 1692
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Table 6: The S-X? statistics for 4PNO, 3PNO and 2PNO models at the item level.

4PNO 3PNO  2PNO 4PNO 3PNO 2PNO
Item 1 4427  64.69 75.31 Item 34 57.37 56.54  63.23
Item 2 53.62  69.60  92.13* Item 35 35.83 49.99  78.53
Item 3 45.14  51.32 65.59 Item 36 48.32 49.13  47.61
Item 4 83.92* 86.67* 100.24* Item 37 3495 36.03 45.24
Item 5 4793  47.79 49.39 Item 38 44.49 79.93  98.39"
Item 6 39.93  41.12 40.15 Item 39 47.37 53.06  52.03
Item 7 59.71  75.38 163.33* Item 40 53.97 54.50  50.47
Item 8 50.64 101.96* 226.04* Item 41 42.46 4224  65.10
Item 9 50.73  65.51 104.41* Item 42 54.10 4792  54.24
Item 10 39.97  39.08  84.94* Item 43 47.20 59.59  78.31
Item 11 45.19  68.23  92.74* Item 44 73.84 68.50  79.61
Item 12 51.70  55.39 134.12* Item 45 58.04 64.57 82.04*
Item 13 42.77  45.50 49.36 Item 46 53.62 54.65  69.72
Item 14 63.90 65.98 77.46 Item 47 38.63 40.24  44.94
Item 15 42.43  43.04 46.06 Item 48 54.22 66.99  89.88"
Item 16 44.02  54.97 72.49 Item 49 43.43 43.82  43.15
Item 17 62.68  74.10  86.16" Item 50 43.82 45.58  50.36
Item 18 50.12  51.44 53.66 Item 51 53.80 58.56  69.49
Item 19 49.41  50.13 01.77 Item 52 52.49 50.24 109.89*
Item 20 54.52  66.09 109.74* Item 53 54.92 51.86  65.30
Item 21 48.12  50.94 50.93 Item 54 50.17  48.57  53.23
Item 22 49.83  62.81  83.15" Item 55 58.71 67.83  90.89*
Item 23 49.84  54.00 80.76 Item 56 50.81 54.71  49.72
Item 24 48.74  49.66 04.54 Item 57 71.09 7121  73.46
Item 25 66.44  71.43  90.42* Item 58 64.67 75.02  87.27*
Item 26 37.62  36.86 38.66 Item 59 44.03 45.04  71.55
Item 27 58.77  71.29  81.83" Item 60 40.27 40.72  47.71
Item 28 38.89  41.40 95.65 Item 61 38.77 39.39  41.12
Item 29 51.64  52.96 09.32 Item 62 48.99 54.52  61.87
Item 30 59.00  58.58 65.30 Item 63 72.25 87.89* 94.91*
Item 31 64.73  62.83 61.52 Item 64 61.31 74.14 174.88*
Item 32 60.49  55.39 61.24 Item 65 50.82 52.31  50.86
Item 33 56.61  55.90 56.26

Note:* denotes S-X?2 is greater than the critical values at the significance level of %5.
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Table 7: The values of AIC for 4PNO, 3PNO, 2PNO and a hybrid model of the three
models (2PNO, 3PNO and 4PNO) at the test level.

—2InL(ul &) 2n,, AIC
4PNO 132891 520 133411
3PNO 133081 390 133471
2PNO 133590 260 133850
Hybrid model 132916 472 133388

Hybrid model: is the combination of 2PNO, 3PNO and 4PNO

Appendix: The Simulation Result on the Recovery
Accuracy of the 4PL Model

In this simulation, the 4PL is the data-generating model,

exp[D(a;0; + b;)]
1 + exp[D(a;0; + b;)]’

Pi(0;) = P(Ui; = 110;,&;) = ¢; + (dj — ¢;)

where D = 1.702 is the scale constant. To keep comparability with the results shown in
Table 2-4, the testing conditions as well as the true values of a;, b;, ¢; and d; are the same
as that of “Study 2”. The MMAP estimate of the 4PL model is computed by the EM
algorithm implemented in the R package of “mirt” and the EM algorithm proposed by
Meng et al. (2020) separately.

The prior for (a;,b;) is (Inaj, b;)" ~ No(po, Xo), which is different from that for the
4PNO model, since the above two EM algorithms are implemented under a lognormal
prior for a;. The prior for (¢;,d;) is the same as that of the 4PNO, which is a bivariate

Beta distribution given in Equation 19.

Following the design of “Study 2”7, the MMAP estimate of the 4PL model is computed
under the four different priors, please see Table Al. Note that the variance of Ina; is 1,
which is to make the prior information close to the truncated normal distribution in

Equation 18 with the variance is 2. The same as that of “Study 2”7, the simulation study
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generated 200 replications, and the parameter recovery is assessed by computing the three
criteria (ARMSE, ACor and AIRF) across the 200 replications. The obtained results are
given in Tables A2 and A3.

Table Al: Four prior distributions for the item parameters (i.e., a;,b;,c; and d;) in the
4PL.

(Inaj;, b;) ~ Na(po, Xo0) (cj,dj) ~ Betag(ae, Be, aa, Ba)l(1>d;>c;>0)
(Informatifx)fzi—ﬁnlformative) (ko; Eg 1) 02, ( (1) (2) > (e, Be; aa, Ba) = (5, 17,17, 5)
(InformativePJ:;(rleinformative) (10, 3o 1) 02, ( (1) (2) ) (e, Be, aa, Ba) = (1,1,1,1)
(Noninform;i/(;::informative) (10, Xo ) (02,02x2) (e, Be, aa, fa) = (5,17,17,5)
Prior 4

(Noninformative+Noninformative) (o, Zo™)= (02.02x2) (e, e, @as fa) = (1,1,1, 1)

Note: 0z: two-dimensional vector of zeros; Oox2: 2 X 2 matrix of zeros.
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Table A2: ARMSE, ACor and AIRF of the estimates of 4PL model obtained by the EM
algorithm implemented by the R package of “mirt” under the 24 simulation conditions
(two test lengths (M = 20 and 40)x three sample sizes(N = 500, 1000 and 5000) x four
priors of (aj, bj, ¢;,d;)).

ARMSE ACor AIRF
Test Length  Sample Size  Prior a b c d a b c d

Priorl 0.65 0.36 0.07 0.06 047 085 0.75 0.62 0.0462
Prior2 0.80 041 0.15 0.14 049 0.84 0.40 0.27 0.0505
Prior3 0.65 042 0.07 0.06 0.39 082 0.69 0.54 0.0454
Prior4 5.16 1.86 0.12 0.13 0.13 0.66 0.50 0.35 0.0584

N =500

Priorl 0.56 0.32 0.06 0.06 049 088 0.75 0.67 0.0380

N = 1000 Pr%orZ 0.68 034 0.12 0.12 0.57 0.89 0.52 0.36 0.0399

M =20 Prior3 0.58 0.34 0.06 0.06 048 088 0.72 0.65 0.0371
Prior4 220 0.79 0.10 0.11 031 081 0.59 045 0.0431

Priorl 045 0.20 0.05 0.05 0.59 096 0.83 0.79 0.0249
Prior2 043 0.19 0.06 0.07 0.77 097 0.79 0.66 0.0210

N = 5000 Prior3 047 0.21 0.05 0.05 0.60 096 0.82 0.77 0.0252
Prior4 0.55 0.22 0.05 0.06 0.73 097 071 0.73 0.0202

Priorl 0.59 0.44 0.06 0.07 0.68 0.87 0.73 0.71 0.0553

N = 500 Prior2 0.70 0.47 0.13 0.12 0.70 0.83 0.18 0.54 0.0517
N Prior3 0.52 047 0.06 0.07 0.71 088 0.75 0.71 0.0496
Prior4 3.47 155 0.09 0.10 0.28 0.70 0.54 0.58 0.0458

Priorl 045 0.39 0.05 0.06 0.75 091 0.79 0.79 0.0424

N = 1000 Prior2 049 0.35 0.08 0.07 0.76 0.88 0.83 0.72 0.0290

M =40 Prior3 041 0.44 0.05 0.06 0.77 090 0.79 0.79 0.0396
Prior4 1.06 0.61 0.07 0.07 0.56 0.89 0.63 0.69 0.0317

Priorl 0.32 0.21 0.04 0.04 0.88 097 0.87 0.89 0.0222
Prior2 0.28 0.18 0.06 0.04 092 095 0.34 084 0.0148
Prior3 0.36 0.33 0.04 0.04 0.79 088 0.88 0.90 0.0221
Prior4 0.32 0.17 0.04 0.04 091 098 0.73 0.85 0.0152

N = 5000

-1
Note: Prior 1: (uo, 20_1): (027 < (1) g > and (o, fe, aq, Ba) = (5,17,17,5)

-1
Prior 2: (,an Eal): (027 ( (1) g ) ) and (amﬂmadvﬁd) = (17 17171)

Prior 3: (/U‘Oa 20_1): (02702><2) and (O[CMBC)Oédvﬂd) = (57 177 1775)
PI‘iOI‘ 4: (,LLO, 281): (02a02><2) and (a&ﬁwadaﬁd) = (17 17 1a 1)
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Table A3: ARMSE, ACor and AIRF of the estimates of 4PL model obtained by the EM
algorithm proposed by Meng et al. (2020) under the 24 simulation conditions (two test
lengths (M = 20 and 40) x three sample sizes(N = 500, 1000 and 5000) x four priors of

(aj,b;,¢j,d;)).

ARMSE ACor AIRF
Test Length  Sample Size  Prior a b c d a b c d
Priorl  0.59 0.33 0.06 0.06 0.50 0.89 0.73 0.65 0.0380
N = 500 Pr%orZ 0.69 0.44 0.11 0.12 0.41 0.80 0.64 0.55 0.0475
Prior3 814 3.81 0.07 0.07 0.29 0.64 0.62 049 0.0445
Prior4 13.12 5.02 0.11 0.12 0.09 054 0.58 0.46 0.0578
Priorl  0.53 0.27 0.06 0.06 0.57 093 0.79 0.73 0.0305
N = 1000 Pr%orZ 0.63 0.34 0.08 0.09 0.47 0.89 0.72 0.61 0.0367
M =20 Prior3 4.46 2.07 0.06 0.06 0.39 0.75 0.70 0.61 0.0356
Prior4 6.76 2.61 0.09 0.09 0.21 0.67 0.67 0.55 0.0436
Priorl 0.35 0.16 0.03 0.04 0.81 098 091 0.85 0.0168
N = 5000 Pr%or2 041 0.18 0.04 0.06 0.75 097 0.89 0.78 0.0198
Prior3 0.62 0.31 0.04 0.04 0.76 096 0.89 0.83 0.0181
Prior4 0.75 0.31 0.04 0.06 0.66 0.95 0.88 0.77 0.0206
Priorl 0.51 0.35 0.05 0.05 0.72 093 0.76 0.78 0.0347
N — 500 Pr%or2 0.60 0.45 0.10 0.09 0.63 0.82 0.29 0.64 0.0396
Prior3 6.20 4.94 0.06 0.06 0.33 0.68 0.76 0.76 0.0383
Prior4 9.10 5.83 0.17 0.11 0.08 0.54 0.30 0.59 0.0447
Priorl 0.43 0.28 0.04 0.05 0.81 096 0.81 0.85 0.0269
N = 1000 Prior2 0.49 0.35 0.08 0.07 0.76 0.88 0.83 0.72 0.0290
M =40 Prior3 2.15 1.51 0.05 0.06 0.51 0.80 0.81 0.84 0.0285
Prior4 3.48 1.96 0.08 0.08 0.25 0.68 0.33 0.68 0.0321
Priorl 0.24 0.14 0.03 0.03 0.94 099 0.87 0.93 0.0131
N — 5000 Prior2 0.30 0.19 0.05 0.04 0.92 094 0.37 0.87 0.0155
Prior3 0.34 0.33 0.04 0.04 0.80 0.89 0.88 0.90 0.0221
Prior4 0.38 0.20 0.05 0.05 0.83 095 0.37 0.86 0.0151

-1
Note: Prior 1: (uo, 20_1): (027 < (1) g > and (o, fe, aq, Ba) = (5,17,17,5)

Prior 2: (uo, ¥ )= (027( 0 9

1 0

Prior 3: (10, 3 ')= (02,02x2) and (o, Be, ag, Ba) = (5,17,17,5)

Prior 4: (110, %y )= (02,02x2) and (e, Be, @, Ba) = (
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