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Abstract

Censored quantile regression (CQR) has received growing attention in survival anal-
ysis because of its flexibility in modeling heterogeneous effect of covariates. Advances
have been made in developing various inferential procedures under different assump-
tions and settings. Under the conditional independence assumption, many existing
CQR methods can be characterized either by stochastic integral-based estimating equa-
tions (see, for example, Peng and Huang, 2008, JASA 103, 637-49) or by locally
weighted approaches to adjust for the censored observations (see, for instance, Wang
and Wang, 2009, JASA 104, 1117-28). While there have been proposals of different
apparently dissimilar strategies in terms of formulations and the techniques applied for
CQR, the inter-relationships amongst these methods are rarely discussed in the litera-
ture. In addition, given the complicated structure of the asymptotic variance, there has
been limited investigation on improving the estimation efficiency for censored quantile
regression models. This article addresses these open questions by proposing a unified
framework under which many conventional approaches for CQR. are covered as special
cases. The new formulation also facilitates the construction of the most efficient esti-
mator for the parameters of interest amongst a general class of estimating functions.
Asymptotic properties including consistency and weak convergence of the proposed
estimator are established via the martingale-based argument. Numerical studies are
presented to illustrate the promising performance of the proposed estimator as com-

pared to existing contenders under various settings.
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1 Introduction

Quantile regression (QR) has become a powerful and popular technique to model the condi-
tional distribution given the covariates since its introduction in Koenker and Bassett (1978);
readers are referred to Koenker (2005) and, more recently, Koenker et al. (2017) for an
extensive elaboration and literature review on the corresponding development. Given its
versatility, quantile regression model has been a powerful tool for solving problems in vari-
ous disciplines, including longitudinal study (Wang and Fygenson, 2009; Ma and Wei, 2012),
growth chart (Wei and He, 2006; Wei, 2008), risk management (Engle and Maganelli, 2004)
amongst others.

To define the quantile regression model, we denote {(Z;, Y;)}i—1._» a random sample from
the target population, where Z; is a p x 1 vector of explanatory variables while Y; is a scalar

response. The linear quantile regression model stipulates that, for a fixed 7 € (0, 1),

QY |Z)=pB(r)'Z, (1.1)

where Q- (Y | Z) denotes the 7-th conditional quantile of Y given Z. Given the observations
{(Z;,Y;)}iz1...n, an estimate of B(7) in (1.1) can be obtained via the least absolute deviation

approach which minimizes

where p,(u) = u{T — I(u < 0)}.

In addition to its applications in health statistics and economics, the quantile regres-



sion model has also been a valuable and effective tool in survival analysis with censored
observations. The most prominent advantage of censored quantile regression is its ability to
accommodate heterogeneous effects of covariates, which can influence not only the location
but also the shape of the survival time distribution. It is known that the heterogeneity
in covariate effects cannot be easily incorporated in either the celebrated Cox proportional
hazards model (Cox, 1972, 1975) or the accelerated failure time (AFT) model (Tsiatis, 1990;
Wei et al., 1990; Jin et al., 2003). Furthermore, the conditional quantile of the survival time
is easier to interpret than the hazard function and is often of the ultimate interest of end
users. Under the independent censoring assumption, Ying et al. (1995) proposed a semi-
parametric procedure for median regression. To relax the independent censoring assumption
and impose a less restrictive conditional independent censoring assumption instead, Portnoy
(2003) proposed a recursively reweighted inference procedure based on the principle of the
Kaplan-Meier (KM) estimate’s self-consistency, which can be interpreted as shifting masses
of censored data points to the right as in the sense of Efron (1967). Since then, many
interesting proposals have been discussed to address various challenges for inference.

Typically, these proposals establish mean-zero estimation equations either via adopting
a counting process approach or by introducing a weight adjustment, which depends on an
estimate of the unknown underlying distributions, to incorporate the partial information due
to censoring. For instance, Peng and Huang (2008) insightfully exploited the martingale rep-
resentation of the Nelson-Aalen estimator for the cumulative hazard function and proposed
a recursive series of estimating equations for not only one point but instead a sequence of
quantiles under the global linear assumption, i.e. (1.1) holds for all 7 € (0,7,] C (0,1).
Huang (2010) provided a numerically stable and computationally efficient algorithm for the
aforementioned framework. Leng and Tong (2014) considered a kernel-based estimator for
the distribution function instead of the cumulative hazard function so as to avoid imposing
the global linear assumption.

Another promising approach is the introduction of local weight functions which can cor-



rect the bias due to censored data. Wang and Wang (2009) proposed a novel locally weighted
approach for censored quantile regression (CQR). This wise formulation leverages the effi-
cient check function proposed in Koenker and Bassett (1978) for uncensored data while for
the censored observations, the kernel-based local weight proposed adjusts for the redistri-
bution of mass due to censoring. More recently, De Becker et al. (2019) modified the check
function with a proper adjustment based on an integral of the survival distribution of the
censoring time.

Despite the fact that there has been tremendous effort on solving the related inference
problems for CQR, there has been little discussion in the literature on how these individual
estimation methods are related to each other, and the inter-relationships amongst them
remain unclear. Furthermore, given the convoluted structure of the asymptotic variance,
the study of estimation efficiency of CQR has so far been limited; the question of how to
construct an efficient estimator for CQR remains largely unexplored. This work addresses

these open problems and our main contribution is two-fold:

1. Firstly, we aim to provide a unified framework under which many existing method-
ologies for CQR that adopt either the martingale (Peng and Huang, 2008; Leng and
Tong, 2014) or the weight adjustment approach (Wang and Wang, 2009) are covered.
Indeed, the connection between these two classes of approaches is reasonable because
both classes of inference procedures are carried out via optimization with respect to
the unweighted check function, or its equivalent that originates from the corresponding
counting process evaluated at the target quantile value, for the observed failures. Mean-
while, partial information conveyed in the censored observations are usually handled by
suitable adjustments whose values depend on the underlying distributions of the failure
and the censoring time distributions, which can be translated into the compensator of

the aforementioned counting process after suitable transformation and simplification.

2. Secondly, we further devise the most efficient weight to improve statistical efficiency

amongst this proposed unified framework. The optimal weight is shown to be depend
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on the unknown conditional density functions of the survival and censoring times.
To ensure that our methodology is practically feasible, we propose a kernel-based
estimator for the optimal weight. We further show that the estimator adopting the
estimated optimal weight theoretically attains the minimum variance and numerically
outperforms existing methods under various settings in simulation studies as well as
our data analysis. To the best of our knowledge, it is the first attempt to study the

estimation efficiency issue for censored quantile regression in the literature.

The rest of the paper is organized as follows. In Section 2, we first construct a set of
martingale-based estimation equations to motivate our new quantile regression estimator.
We also discuss its connection with its predecessors. We then present the consistency and
asymptotic results in Section 3 for the case where the optimal weight is incorporated. Our
numerical simulations reported in Section 4 also agree with our theoretical development.
The results presented also demonstrate that our proposal works decently as compared with
other contenders. Section 5 illustrates the effectiveness of our method via an analysis of
gastric adenocarcinoma patient data. We conclude with final remarks in Section 6. All the

technical proofs are presented in the Supplementary Materials.

2 Methodology and Model Setup

2.1 Estimation

Let T be the failure time of interest, C' the censoring time, and Z the p-vector of covariates.
With right censoring, we only observe T = min(7, C') and we denote the censoring indicator
as A = I(T < C). The observed data consist of n ii.d. replicates of (T,A,Z), namely
{(TZ, A;,Z;)}iz,.. n- Instead of imposing the global linear assumption to the following cen-
sored linear quantile model for all quantile levels simultaneously, we only assume that it

holds at a specific quantile level of interest 7 € (0, 1):



Q- (log(T) | Z) = Bo(7) ' Z, (2.1)

where 3,(7) is a p x 1 vector of unknown regression parameter. In the sequel, we suppress
the 7 in B,(7) whenever there is no ambiguity. The above quantile regression model (2.1)

also implies that, for this fixed 7,
log(T) = By(7)"Z + ¢,

where € is a random error whose 7th conditional quantile given Z is zero. This expression
indicates that the quantile regression can be regarded as a generalization of the AFT model
with a potentially heterogeneous error. Since the conditional distribution of the failure time
T given Z is a function of the error’s distribution, it is natural to model the residual directly
for (2.1). As a result, for i = 1,...,n, we denote ¢(b) = log(T;) — b'Z; and e;(b) =
log(Ti) — b'Z, the true error and the observed residual given model parameter estimates
b € R?, respectively. Based on the observed residuals e;(b), we further define the counting
process and the at-risk process as N;(b,t) = A;I(e;(b) < t) = AT <log(7~}) —-b'Z, < t)
and Y;(b,t) =1 <log(7~}) ~b'Z; > t>, respectively. To emphasize that these quantities are
evaluated at the true parameter values b = 3, we suppress the notation b and reserve ¢;,
ei, N;(t) and Y;(t), respectively for simplicity.

With Ag(t | Z;) as the conditional cumulative hazard function of €; given Z;, we can con-
struct the following mean zero martingale process; see, for example, Fleming and Harrington

(2005) and Peng and Huang (2008):

M;(t) = N;(t) —/ Yi(u)dAo(u | Z;).

—00

Based on the martingale property of M (-) as well as the quantile property that Ag(0 | Z;) =

—log(1 — 7), we propose a general family of weighted estimating equations with the weight



function ¢ (Z, Ao(t | Z)):

P (% Soz{ [ otmnmtezpanin - [ ¥io ] 2y inet z»}) ~o
- (2.2)

which is equivalent to

( ZZ { (Zi, No(e; | Z:)AiI(e; <0)— D (Z;, H (No(e; | Zi))) + @(Zi,O)}> =0,
(2.3)
where ®(Z,t) = [*__¢(Z,s)ds and H,(t) =t A {—log(1 —7)}.

It is noteworthy that the proposed weight function ¢ (Z, Ag(t | Z)) is generic in the sense
that both the covariate and the time effects are taken into account. To make the best use
of the quantile property, we consider Ay(t | Z), a transformed version of the time ¢, in this
weight function instead of directly using the original domain ¢ itself.

The above martingale-based estimation approach offers a unified framework that con-
nects many of the existing proposals for censored quantile regression modeling, including
the martingale-based approach (Peng and Huang, 2008; Leng and Tong, 2014) and the
local weight adjustment approach (Wang and Wang, 2009). For the benefit of better il-
lustrating our construction, we first assume both Ag(t | Z) and ¢(Z, Ao(t | Z)), and hence,
O(Z,No(t | Z)), are known. Estimation of these unknown quantities shall be discussed in

details in Section 2.3.



Connection with martingale-based approach It is easy to see that, with the unity

weight, i.e. ¢ (Z,Ao(t | Z)) = 1, our estimating equation (2.2) is reduced to

E(%gzi{Ni(O)—/o Yi(t)dAg(t|Zi)}>

—00

_E (% 32 AN(0) — Hr (Aole | zg)}) —0. (2.4

This special formulation clearly resembles the insightful formulation proposed in Peng and
Huang (2008) except that we need to directly estimate the associated compensator instead
of adopting an iterative approach to re-express the quantity as a function of the previous
quantile values under the global linear assumption on the quantiles at different levels. In
spite of structural similarities, one difference between (2.4) and the corresponding estimating
equation proposed in Leng and Tong (2014) is that, instead of estimating Ay(- | Z), Leng and
Tong (2014) proposed a kernel-based approach for evaluating — log (1 — Fy(- | Z)). The one-
to-one correspondence between the cumulative hazard function and the distribution function
of the error surprisingly does not lead to similar performance given by these two methods.
As we can see later in Section 4, our numerical experience suggests that estimating the
cumulative hazard function directly produces more stable and efficient finite-sample results,

in particular for high quantile levels.

Connection with local weight adjustment approach To make the connection evident,
it is helpful to re-examine the weighted estimating equation (2.2) with the weight ®(Z,t) =

exp{Ao(t | Z)}. Specifically, we can write

0

E (%;z{/_m exp{Ao(t | Z)} dN;(t) —/ Yi(t) exp{Ao(t | Z)} dAo(t | zi)}) _o,

—00



which is equivalent to

E (% Zuz) = F (% Z Z, [exp{Ao(ei | Z;)}AI(e; <0) —exp{H, (Ao(e; | Z))} + 1]) =0.

=1

(2.5)

Through straightforward algebra, one can observe that u; in (2.5) can be simplified as

Z{I(e; <0)—7}1—7)"" , when A =1
U; =

Z;[1 — exp{H, (Ao(e; | Z;))}] , otherwise

in which case the estimating equation (2.5) becomes

Su(b) = %Z Z: (A {I (ex(b) < 0) — 7}

+(1=A)(1—7)[1—exp{H; (Ao(e; | Z;))}]) =0. (2.6)

As a result of its monotonicity with respect to 3, solving (2.6) can further be translated into
a convex optimization problems. More specifically, we can obtain the root that solves (2.6),

o (1
say ,3( ), by minimizing the following weighted quantile regression objective function

n

L(b.Ag) =+ > {Aim (ex(b) + (1= A)(1 = 7)
“ p, (T* B FXP {H: (Molei | Zi))} — 1bTZi:|) } (2.7)

T

with respect to b, where T* is a large constant. It is interesting to note that for uncensored
data, i.e. for cases in which all the A;’s values are 1, our proposed estimating equation
is reduced to n™' Y"1 | p, (e;(b)), which coincides with the well-known estimating equation
proposed in Koenker and Bassett (1978).

It is also interesting to find that when Ag(- | Z;) is known, the estimator proposed by



o (1
Wang and Wang (2009) is equivalent to the above estimator ﬁ( ). Specifically, in addition to
the obvious equivalence up to the sign for cases with A; = 1, one can also show that when

A; = 0, the gradient of the estimator proposed by Wang and Wang (2009) equals

“ {T B Ii?ﬁi || 53“‘% < 0)} = Z { (11__25257 |Zii)1 (e < 0) +71(e; > 0)} C(28)

On the other hand, when A; = 0, our proposed estimating equation can be written as

Z;(1—7)[1 —exp{Ao(e; | Z;) N —log(l —7)}]

o, A =T)Fy(e | Zs) .
BT 00 7} o

Hence (2.8) and (2.9) also differ by a negative sign as the event {Fy(e; | Z;)(1—7){1— Fo(e; |
Z;,)}™' > 7} is equivalent to the event {e; > 0}. In other words, the estimating equation
proposed in Wang and Wang (2009) and wu; are equivalent when Ag(- | Z;) is known. For
cases where the cumulative hazard function has to be estimated, we can also compare our
vanilla estimator, say B(l), which solves (2.14) with ¢(Z) = 1, to those considered in Leng
and Tong (2014) and De Becker et al. (2019). One can show that the three estimators
share the same asymptotic variance in which case these formulations can also be considered
as asymptotically equivalent. A more elaborated discussion on this generalization will be

included in Remark 2 in Section 3.

2.2 Efficient Censored Quantile Regression

The previous section considers specific choices of the weight function that unify various cen-
sored quantile regression approaches into one framework. We also demonstrate that our
formulation can be regarded as a generalization of Koenker and Bassett (1978) for censored

observations. This subsection is devoted to the construction of the most efficient weight

10



for the censored quantile regression (2.1) amongst a generic class of candidate weight func-
tions. Given an arbitrary weight function ¢ (Z, Ag(t | Z)), we denote generically ,é(d)(Z’AO))
as a solution that solves (2.3) while assuming the cumulative hazard function Ag(e | Z) is
known, which is indeed not possible in real practice. This unknown quantity can, however,
be replaced by a consistent estimator. In this work, we focus on a general family of kernel
estimators, denoted by A(e; | Z;), which will be defined in (2.12) in Section 2.3. Correspond-
A))

ingly, we denote B(¢(Z’ as a solution to (2.3) where the estimator A(e; | Z;) is used in

lieu of Ag(- | Z;). Under this setting, we first present the following proposition which states

ZA) only depends on the value of ¢(Z, —log(1l — 7)),

that the asymptotic variance of B(¢(
a property that also holds in the ideal case when Ag(e | Z) is known. In other words, the
component A(e; | Z;) in the weight function has no effect on the asymptotic variance of the
estimator.

Proposition 1. Assume the regularity conditions in Section 3 hold. For any weight function
H(0(ZA

of the form ¢(Z, ), n'/? (ﬁ
obtained with the weight ¢(Z,—log(l — 7)).

) ﬁo) has the same limiting normal distribution as that

Readers are referred to Section F in the Supplementary Material for the related proof.
The result above first provides us with an insight that A in the weight function has no
effect on the variance of the limiting distribution of n'/2 (BWZJ\D — ,30> . A more extensive
argument for its asymptotic normality is established in Theorem 2 in Section 3. As a result of
Proposition 1, we are motivated to consider applying Z-measurable weight ¢(Z) in (2.3) and
further evaluate an optimal weight via careful examination of the structure of the asymptotic
variance associated with ¢(Z). In the sequel, we consider the estimator BWZD only, which
refers to the estimator derived based on the weight ¢(Z) instead of ¢(Z, A(t | Z)).

For uncensored data, weighted quantile regression can bring in efficiency improvement if
the conditional densities of the response are heterogeneous; see pp.160 of Koenker (2005).

With censored observations, the asymptotic variance form suggests that adding weight can

improve the efficiency when the conditional density of either € or log(C') — ,Bg Z is heteroge-
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neous. In the sequel, we define ¢°’*(Z) as the optimal weight that minimizes the asymptotic
variance. Let fo(t | Z;) and A\o(t | Z;) be the conditional density and hazard function of e
given Z respectively. Similarly, we adopt Go(t | Z) to denote the conditional distribution

functions of log(C') — B, Z given Z. Based upon the following estimating equation,

B |otzoz {a(1(e <0) - 1)+ (1= 2y - )1 - el ite | 2)]) || =0
(2.10)

and by invoking a multivariate generalization of the Cauchy-Schwarz inequality due to

2))

Tripathi (1999), one can deduce that the asymptotic variance of BW is minimized by

taking

o7 (Z) = (2.11)

where p(u,Z) = Xo(u | Z)[{1 — Fo(u | Z)}{1 — Go(u | Z)}]7" and P(0,Z) = fi)oop(u, Z)du;
see Theorem 3 in Section 3. It should be noted that for uncensored data, one can show that
p(0,Z) = fo(0 | Z)(1—7) 2 and [°_p(u, Z)du = 7(1—7)~", in which case ¢°*"(Z) defined in
(2.11) is equivalent to fo(0 | Z), which coincides with the most efficient Z-weight discussed in
Koenker (2005). This optimal weight also resembles the optimal weight function for the AFT
model (see, for example, Tsiatis, 1990 and Lin and Chen, 2013), but both the numerator
and the denominator of ¢°P*(Z) involve the conditional distribution functions Fy(- | Z) and
Go(- | Z) of € and logC' — B, Z, respectively, in addition to the conditional hazard rate
function Ag(- | Z). This is natural because for the quantile regression model, we no longer
enjoy the homogeneity of the residual distribution across all quantile levels. The form of the

optimal weight (2.11) concurs with our intuition that it should be quantile level 7 specific.

2.3 Computation Issues

The proposed weighted estimating equation (2.10) with (2.11) as the optimal weight is feasi-
ble for implementation only when the unknown quantities including both the true cumulative

hazard of the error Ag(- | Z) and the optimal weight function ¢°’*(Z) can be evaluated. In
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this subsection, we discuss how these estimates can be obtained.

Estimation of Ag(- | Z) Inspired by the strategies adopted in Wang and Wang (2009), we
propose the use of kernel to estimate Ag(e; | Z;) nonparametrically using a localized version

of the Nelson-Aalen estimator

n ~

By (2)A,1(10g T, < log )
]Z:; Sy Bu(Zi)I(log T, > log Tj)’

ANes | Z) = (2.12)
where By, ;(Z) is a sequence of weights adding up to 1. Noteworthy, when By, ;(Z) = n~! for
all 7, /NX(eZ- | Z;) reduces to the classical Nelson-Aalen estimator. More specifically, we adopt

the kernel weights
K,;(Z)
> ket Knn(Z)

where K, ;(Z) := Ky (b1 (Z — Z;)) is a density kernel function with bandwidth h that may

By ;(Z) =

depend on n. When there is only one continuous covariate, we may choose the biquadratic
kernel K (z) = (15/16)(1 —z?)%I(]z| < 1). When there are multiple continuous covariates in
Z, one may adopt a product kernel with a higher order kernel for each covariate as discussed
in Leng and Tong (2014). For instance, when there are two continuous covariates, we use the
kernel K;(x) = (15/32)(3 — 1022 + 72*)I(|z| < 1). Since these higher order kernels can give
Ae; | Z;) < 0, we set A(e; | Z;) = 0 whenever necessary. The resulting estimating equation

with weight function ¢(Z) then becomes

qu (A {I(ex(b) < 0) — 7}

(1= AN —7) [1 —exp {HT </~\(62~ | zi)) H ) —0. (2.13)

13



Likewise, the above root-solving procedure can be translated into minimizing the convex loss

function

b'Z, (2.14)

with respect to b but with Ag(e; | Z;) replaced by A(e; | Z;) and T* > max; {7 (exp[H.{A(e; |

Z)} — )b'Z;}. We take T* = maxicqr. ny{log(T;)} + 100 for simulation studies and

.....

z))

data analysis. The computation of B((b( ) , the minimizer of (2.14), is simple to imple-

ment with currently available software. After we have estimated the conditional cumulative

{logTi, Zi}i:l . and {6(Z;)(1 — A)(1— T)}Z._l , for

[ARSE] =1,...

{T*, 71 [exp {HT ([\(ei | ZJ)} — 1] ZZ-} . The extra effort needed to implement our

i=1,...,n

approach is minimal.

Estimation of efficient weight ¢°/(Z) Similar to the previous concern about the un-
known true conditional cumulative hazard function A¢(- | Z), the optimal weight function
¢°P*(Z) also involves unknown quantities which need to be estimated. We let 1 — H(u | Z) =
{1 = Fo(u | Z)}{1 = Go(u | Z)} so that ¢”(Z) = A(0 | Z)[{1 — H(0 | Z)}P(0,Z)]7". We
propose to estimate A\o(0 | Z),{1 — H(0 | Z)} and P(0,Z) separately by kernel estimation.
Note that an initial estimator of 3, is needed for the estimation of these three terms. Hence
we first obtain B(l) by solving L(b,A) in (2.14) with ¢ (Z;) = 1 upon which we estimate
the aforementioned three quantities. The estimate ¢°'(Z, B(l)) for ¢°P'(Z) is obtained by
carefully combining these esimates. Let €, = exp(e) and let A.(- | Z) be the hazard function

of e, given Z. Denote F,(- | Z) and G.(- | Z) as the cumulative distribution functions of e,

14



and exp{log C' — B, Z} given Z respectively. Let

Ka;(Z)

Rl vy ne)

where Ky ,(Z) := Ky {d"'(Z — Z;)} is a density kernel function with bandwidth d that may
depend on n. Denote Kj(s) = b~ K3(s/b), where K3(s/b) is a kernel function with support
[—1,1] and bandwidth b that may depend on n. Since A\o(t | Z) = exp(t)\.{exp(t) | Z}, we
estimate A\g(0 | Z;) = A\(1 | Z;) by ;\*(1,,@(1) | Z;), where

Wz - Baj(Z:)Aj Ky (eXp{ej(B(l))} B 1>

D=2

M(LB " | 20 PN
=1 2opt Bar(Zi)Iexp{e (B7)} = exp{e; (B )}]

Mimicking the choice of kernel for the estimation of A in Lin and Chen (2013) when A is
independent of Z, we choose Kj3(-) to be a Gaussian kernel function in simulation studies
and data analysis.

Next, we estimate 1 — H,(1 | Z:) == {1 — F.(1 | Z)}{1 — G.(1 | Z)} by 1 — (1,8 |
Z) =", T <exp{€j( "> 1) Byi(Z;). On the other hand,

0 dMo(u|Zy) Y A Z)
P(O’Zi)_/_mm_/o Tz = P2

Denote

Baj(Z) AL (exp{ej By < t)
0 Bar(Z)1 (explen(8Y)} > exples (M)}

A ~ (1
At Y | z:) =

then one may estimate P,(1 | Z;) by

n Buj(Z) AT (expfe;(B™)} <1
p*“’B(U!Zi):/Ol dA (tﬁ d,]( VA (e p{ej(ﬁ )} < )

1= H(t, ﬁ i {00 Bun(Z)1 (explen(B") > exple;(B)}) }

15
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Combining the estimators above, we can write the estimate ¢°?*(Z) as

1,
MNLB T Z)
FR

q;opt(Z7B(1)) _ - (1) .
{1-H.(1,8" | Z)H{P.(1,8 " | Z;)}

(2.15)

A more careful observation of our numerical procedure reveals that there are modifications
which can further enhance the stability of the estimation without affecting the asymptotic
properties of the estimator. Since it is possible to observe 1—]:1*(1, B(l | Z;) = 0 occasionally,
we recommend a modified estimator of 1 — H,(1 | Z;) to avoid such situations so as to improve

the numerical stability. The correction term is given by

1741, 38Y 12 =1 8.01,8Y | 2,) + Ba(Z)I (1 —1,1,8Y 1 z) < Bdi(Zi)> .

As shown in the proof of (S1) on Page 13 of the supplementary materials, one can see
that the supremum of |By,(Z;)| is O((nd?)~'), which decays faster than o,(n~/%), thus the
modification in H!(t,3 | Z) does not affect the asymptotic variance of the estimator. The
other modifications are based on the quantile assumption and thus having no impact to the
asymptotic variance naturally, as can be seen from the proof of Theorem 4. Readers may also
refer to Remark 1 for further justification of this correction term. Another modification is
proposed as a result of an observation that P.(1,Z;) > A.(1|Z;) = A0 | Z;) = —log(1—7).
Hence, we may consider P!(1, B(l) | Z;) = P.(1, B(l) | Z;)V —log(1—7) instead of ]5*(1,,@(1) |

Z;). Finally, due to the fact that

i-H 1\2}/ T < ~log(1 = 7),

we may estimate ¢ (Z) via

(2. ) = A (( lz) _ (2.16)
H, ({1 - a2, 8% Zoy P, B 20}

16



opt
Plugging (2.16) into the original convex objective function (2.14), we can obtain ﬁ((b )

by minimizing

Ly o (b, A) lz Zl,ﬁ(l){ e (b)) + (1 — A (1L —7)

n

eXp {HT (AB<1)(€i | Zz))} —1

T

X pr | TF =

b'Z } (2.17)

where

" By (Z) A {e;(B) < ei(BM))
1){6Z | Z } 1 ~ (1 .
g Z S Bun(Z) e (B") > ¢;(8M)}

~ (1 ~ Jopt
Similar to the computation of ,8( ) discussed in Section 2.1, the estimate 3 ) is computed

by regressing an augmented data set with weights {QZSOPt(ZZ», B(l))Ai}izl , for { log T;, Zi}?zl

-----

and {éopt(ziyB(l)>(1—Ai)<1_7)}i:1 , for {T*’T_l [exp {HT <AB(1)(ei | Zl>>} B 1} Zi}z‘ 1

geoey —
.....

~ (Hopt
As to be shown in Theorem 4 in Section 3, the proposed estimator ,3(¢ ) and the ideal es-

~ opt )

timator ,B( , which is obtained when ¢°P*(Z) is known, are asymptotically equivalent.

Remark 1. For the modified estimator 1 —]:]i(l,,@(l) | Z;), when the value of 1— H, (1, B(l) |
Z;) is smaller than Bp;(Z;), the small value of Bpi(Z;) indicates that there are relatively
more data point with similar values of covariates, but yet none, or very few, of them satisfies
ei(,é(l)) > 0 in which case the quantity 1 — H.(1 | Zy) should also be small, and vice versa.
Therefore the modified estimator can provide additional information on 1 — H,(1 | Z;) while

preventing the denominator of the estimate of ngSOpt(Z,B(l)) and 1 — H,(1|Z) to be zero.

3 Large Sample Properties

To establish the asymptotic properties of our proposed estimator, we impose the following

regularity assumptions:

(C1) T and C are conditionally independent given the covariate Z.
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(C2) The true value B, is in the interior of a bounded convex region B. The support Z of

Z is bounded and compact.

(C3) inf P(T>T |Z)>1—1mn >0, where T = sup sup exp(b' Z).
Zez ZeZbeB

(C4) Denote ¢ = max(q1, g2). The first ¢ partial derivatives with respect to Z of the density
function fz(Z) are uniformly bounded for Z € Z, and fo(t | Z) and go(t | Z) are
uniformly bounded away from infinity and have bounded(uniformly in t) first q order

partial derivatives with respect to Z. Moreover, Zlng fz(Z) > &y for some &y > 0.
(S

(C5) The bandwidths h,,, b, and d,, satisfy h, = O(n=""), b, = O(n™") and d,, = O(n™")

with 1/2q; < v, < 1/3p, vy > 1/8, vg > (4¢2) " and pvg + v, < 1/2.
(C6) (i) The kernel functions K;(+), Ks(+) are Lipschitz-continuous density functions with
compact support on RP.
(ii) The intergral [, 2{' -- -z;"Kj(z)dz = 0 for non-negative integers ¢, ...7, with

Aty <g—1,j=1,2

(C7) For b in the neighbourhood of 3,, the matrix
E(6(2)2Z" fo ((b—By)'Z | Z) {1 -Gy ((b—B,)'Z|Z)})

is positive definite.
(C8) The weight function ¢(Z) is non-negative and bounded above uniformly in Z.

Conditions (C1)-(C4) are standard assumptions imposed in analyzing failure time data.
In (C3), we assume that 1 —supy.z H(0 | Z) > 1 — 1, for some 79 > 0. So the denominator
should never be zero if H is known. This assumption was adopted in Leng and Tong (2014)
and Wang and Wang (2009) to ensure identifiability; see also Liang et al. (2012). Conditions
(C5) and (C6) specify the conditions on the bandwidth and kernel function. Condition

(C7) ensures that the quantile regression estimator is unique and is used to establish the
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asymptotic normality of the estimator. Condition (C8) ensures that the the estimate is still
consistent and asymptotic normal after adding weights. A broad class of weights satisfy this
condition, in particular the optimal weight ¢°?*(Z) proposed in Section 2.

The following two theorems state the consistency and asymptotic normality of our esti-

Z))

mator adopting a given Z-measurable weight function BW which minimizes (2.14):

Theorem 1. (Consistency) Under conditions (C1)-(C6) and (C8), for any ¢(Z),

20(2)
B

— By

in probability as n — oo.
Theorem 2. (Asymptotic normality) Under conditions (C1)-(C8), for any ¢(Z) , we have

~(6(2)) d -1 -1
n (877 = By) 5 N(O,TY T,

where

I =E (4(Z)ZZ" fo(0 | Z){1 — Go(0 | 2)})

R O I e e

Remark 2. Define BLT and BBGK as the estimators proposed in Leng and Tong (2014) and
De Becker et al. (2019), respectively. With correspondingly suitable regularity conditions

hold, one can indeed show that
. -1 -1 . —1 -1
(BB S N (0.0 VO T and n2(Bpax—B) 4 N (0.1 VN,

where Fgl) and Vl(l) are defined in Theorem 2 above. The above variance form coincides

with that of nl/Q(B(l) — By) as a special case justified by Theorem 2. For more details of the
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derivations of the asymptotic variances of various estimators, readers are referred to Section

E in the Supplementary Materials.

After we have established the consistency and asymptotic normality of our proposed es-
timator, we then present the following the following theorem which justifies that the optimal

weight defined in (2.11) can guarantee the minimum variance attained by our estimator.

Theorem 3. (Most efficient Z-weight) Under conditions (C1)-(C8), we have

opty—1 opt opty—1 —1 —1
R I T N e RPN RO
for any ¢(Z), where A < B means B — A is non-negative definite for A and B two arbitrary

square matrices of same dimension.

While Theorem 3 ensures the optimality of the weight (2.11) when its true value is known,
one can also show that our proposed kernel-based estimated optimal weight given by (2.16)
is practically feasible in the sense that the resulting estimator can also achieve the same
asymptotic minimum variance.

Theorem 4. (Feasibility to attain minimum variance) Under conditions (C1)-(C8), we have

~ (Hopt
B(¢ ) LN By, and

A hopt opty—1 opt opty—1
28— By) 4 N, T VIR,

The matrices F&‘” and Vl(d)) involve unknown conditional density functions fo(- | Z) and
g(- | Z) that are difficult to estimate in finite samples. Therefore, we adopt a bootstrap
resampling approach by resampling the triples (T, A, Z) with replacement. The performance
of the bootstrap approach is shown to be satisfactory in the Monte Carlo studies conducted
in Section 4. The same approach is adopted for inference of B(é)om).

In real practice, we can choose the bandwidths h,,d, and b, using the K-fold cross

validation. The set of h,,d, and b, that yields the smallest averaged prediction error is
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selected. Moreover, from condition (C5), if we choose v, = n'/% then we have (4¢;)~! <
vg < (3p)~!, which suggests that when there are two or more continuous covariates, we may
take h, = d, to simplify the procedure. Regarding the choice of loss function for the cross
validation, Wang and Wang (2009) proposed to use the check function for uncensored data.

Alternatively we could use the loss function

ncv
1

> (AI(®) <0 =+ (1= 2)(1 =) [t —exp {H, (A (e:0)) }])
- (3.1)

I(b) =

Y

nev

where noy is the sample size in the jth partition of the data by a little abuse of notation
and A (e;(b)) is the Nelson-Aalen estimate for the cumulative hazard function of ¢;(b). These
two loss functions give similar results when censoring rate is not exceedingly high. Since the
loss function I(b) takes censored data into account, it can produce better result when the
censoring rate increases. It should be noted that no matter which loss function is adopted,
while checking for more bandwidths could help improve the numerical performance, there
could be multiple bandwidths that achieve the smallest prediction error occasionally. For
such situations, we suggest choosing a larger bandwidth as it usually results in a more stable

set of estimates based on our practical experiences.

Remark 3. Concerning By;(Z), the choice of kernel Ks(+) is different from the kernel K, (-)
for Bp;i(Z) when dimension increases. As shown in Theorem /, let d,, = cqn™"%, b, = cpn~",
it suffices to have (4qa)™' < vq < (3p)~' if we choose v, = 1/6, which is adopted in simu-
lation studies and data analysis. Compared to the constraints for the order of Ki(-), which
requires (2q1)"' < v < (3p)~!, we can increase the order of the kernel Ky(-) at a slower
rate. In particular, when there are two continuous covariates, we still choose Ks(-) to be
the biquadratic kernel by taking vg = 1/7. However, for Ky(-), we are forced to use higher
order kernels as 1/(2q1) = 1/4 when q, = 2, which is greater than (3p)~'. Similar to the
estimation of A(- | Z), we need to adjust the value for 5\*(1,3(1) | Z) when we turn to higher

order kernels as it 1s possible to obtain negative values. We simply set 5\*(1,[3(1) | Z) =0 as
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needed.

4 Simulations

In this section, we assess the finite sample performance of the proposed methods via Monte
Carlo simulations. We compare our estimator B(l) presented in Section 2, which adopts a
weight that involves cumulative hazard function only (Vanilla), with Leng and Tong (2014)’s
(LT) procedure so as to examine the finite sample performances of these two methods. We
further compare these results with the estimator B(éom proposed in Section 2.3 to demon-
strate the improvement by introducing the optimal Z-measurable weight (Proposed opt) as
well as Wang and Wang (2009)’s (WW) procedure. For each demonstration, we report the bi-
ases and root mean square errors (RMSE) of individual procedures based on 500 simulations.
Standard errors of the biases and RMSE are also computed by repeating the simulations for
300 times. We also report the average coverage probabilities and average interval lengths
of related resampling-based 95% confidence intervals. 300 bootstrap samples are simulated
to obtain the confidence intervals in each simulation run. Throughout all examples, the
computation time of Proposed opt is on average three times of that required for the vanilla
estimator. In each example, we consider different parameters that give 20%, 40% and 60%
censoring at median, respectively. The censoring rates at different quantile levels are quite
close to the rate at 7 = 0.5 with difference not greater that 5%. All of our settings can
satisfy the conditions in Section 3, in particular the identifiability condition (C3). As € fol-
lows normal distribution in our settings, which is unbounded, we only need to compare the
distribution of the censoring time C' and the maximum value of exp(Z'3,) with respect to

Z in order to check the condition.

Example 1 We generate data from the model

€

log(T) = Bo+ /12 + 73
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where 3 = (0o, 51) = (3,5), Z ~ Uniform(1,2) and € = n—Q,(n) with n follows the standard
normal distribution. We report the parameter estimates at 7 = 0.25,0.50 and 0.75. The
censoring time log(C') follows the uniform distribution Uniform(0,6). We take 6 = 52,26
and 17 to produce 20%, 40% and 60% censoring rates at 7 = 0.50, respectively.

Table 1 summarize the simulation results for three different 7 values, namely 0.25, 0.50
and 0.75 with two different sample sizes including n = 300 and 500 at 60% censoring rate at
median. The corresponding results for cases with censoring rates 20% and 40% are relegated
to Tables 1 — 2 in Section G of the Supplementary Materials. For simplicity, we take the
bandwidths as h, = n=1/3t001 p = n=1/6 and d,, = n=/%. The bandwidth h, = n~1/3+0.01
was adopted in Leng and Tong (2014) as the optimal rate based of the asymptotic result. Our
choice of b,, and d,, are motivated from the fact that the optimal choice for the estimation of
M- | Z)is b, = d, = O(n/%); see Remark 3.1 in Van Keilegom and Veraverbeke (2001). In
this example, our vanilla procedure gives smaller RMSE in nearly all settings as compared to
Leng and Tong (2014), especially when 7 = 0.75, showing that the proposed methods bring
in improvement in the finite sample performance as compared with Leng and Tong (2014),
which estimated the distribution function in the martingale-based formulation instead. As
mentioned, since Wang and Wang (2009)’s procedure can be regarded as a special case
in our procedure with the weight exp{Ao(t | Z)}, the two methods, namely Vanilla and
WW, give very similar numerical results. It is also noteworthy that the procedure with the
optimal weight estimated gives the smallest RMSE and empirical mean lengths (EML) of
the bootstrap confidence intervals in all settings, showing that it is more efficient compared
to other existing methods. The empirical coverage probabilities (ECP) of the bootstrap

confidence intervals for all methods are close to the nominal level of 95%.
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Table 1: Simulation results for Example 1 when there is 60% censoring at median. The
ECP and EML are the empirical coverage probabilities and empirical mean lengths for
different confidence interval procedures with a nominal level of 0.95. Standard errors are in
parenthesis.

Bias RMSE ECP EML
T n Method 30 /5’1 Bo 31 Bo /5’1 /3’0 /5’1

0.25 300 LT 0.009 0.012 0.382 0.233 0.936 0.938 1.521 0.929
(0.017) (0.010) (0.011) (0.007)

WWwW 0.022 -0.018 0.396 0.241 0.932 0.936 1.557 0.950
(0.017) (0.010) (0.012) (0.007)

Proposed 0.010 -0.002 0.388 0.235 0.944 0.946 1.560 0.952
(0.017) (0.010) (0.011) (0.007)

Proposed opt 0.028 -0.014 0.381 0.230 0.938 0.942 1.541 0.937
(0.017) (0.010) (0.011) (0.007)

500 LT 0.003 0.014 0.283 0.172 0.948 0.950 1.154 0.703
(0.014) (0.008) (0.009) (0.006)

WWwW 0.011 -0.009 0.292 0.178 0.938 0.942 1.190 0.726
(0.014) (0.008) (0.009) (0.006)

Proposed 0.006 0.000 0.289 0.176 0.950 0.952 1.182 0.721
(0.014) (0.008) (0.009) (0.006)

Proposed opt 0.023 -0.012 0.278 0.168 0.952 0.952 1.152 0.700
(0.013) (0.008) (0.009) (0.005)

0.5 300 LT -0.065 0.073 0.342 0.219 0.942 0.934 1.427 0.873
(0.016) (0.010) (0.012) (0.008)

WWwW -0.001 0.003 0.330 0.202 0.950 0.956 1.413 0.862
(0.016) (0.010) (0.012) (0.007)

Proposed -0.007 0.008 0.329 0.202 0.954 0.958 1.422 0.868
(0.016) (0.010) (0.012) (0.007)

Proposed opt 0.009 -0.004 0.322 0.197 0.950 0.948 1.386 0.843
(0.015) (0.009) (0.012) (0.007)

500 LT -0.074 0.070 0.294 0.187 0.916 0.904 1.096 0.670
(0.013) (0.008) (0.009) (0.006)

WwW -0.010 0.007 0.277 0.168 0.934 0.942 1.082 0.659
(0.012) (0.007) (0.008) (0.005)

Proposed -0.017 0.013 0.280 0.170 0.926 0.932 1.088 0.663
(0.012) (0.007) (0.009) (0.005)

Proposed opt -0.004 0.003 0.264 0.159 0.946 0.948 1.056 0.640

(0.012)  (0.007)  (0.008)  (0.005)

0.75 300 LT -0.362 0.284 0.576 0.404 0.928 0.918 2.054 1.339
(0.021) (0.013) (0.020) (0.014)

WwW -0.012 0.010 0.355 0.218 0.958 0.958 1.559 0.951
(0.017) (0.010) (0.013) (0.008)

Proposed -0.021 0.015 0.361 0.222 0.956 0.956 1.565 0.955
(0.017) (0.010) (0.013) (0.008)

Proposed opt -0.002 0.000 0.345 0.210 0.954 0.952 1.524 0.926
(0.016) (0.010) (0.012) (0.007)

500 LT -0.267 0.204 0.437 0.297 0.870 0.860 1.372 0.864
(0.014) (0.009) (0.013) (0.008)

WwW -0.012 0.009 0.297 0.180 0.924 0.934 1.177 0.719
(0.013) (0.008) (0.010) (0.006)

Proposed -0.019 0.013 0.298 0.181 0.928 0.934 1.181 0.721
(0.013) (0.008) (0.010) (0.006)

Proposed opt 0.000 0.000 0.281 0.170 0.940 0.942 1.144 0.695

(0.012)  (0.007)  (0.009)  (0.006)




Example 2 In this example, the data are generated from similar setting in the previous
example, but the number of covariates is increased. We generate data from the model

€

log(T") = Bo + B1Z1 + BaZy + 7k
1

where B8 = (0o, /1,62) = (3,5,1), Z; ~ Uniform(1,2) for j = 1,2 and € = n — Q,(n)
with n follows the standard normal distribution. The censoring time was generated as
log(C) ~ (5 — Z1)Uniform(0,6). We take § = 18,9 and 6 to produce 20%, 40% and 60%
censoring rates at 7 = 0.5, respectively. Similar to Example 1, the results for the high
censoring case 60% are summarized in Table 2; corresponding statistics for settings with 20%
and 40% censoring rates can be found in Tables 3 — 4 in Section G of the Supplementary
Materials.

In view of condition (C5), to adjust for the increased number of covariates, we take the
bandwidths as h, = n="/7, b, = n~ %% and d, = n~'/7. Similar to the previous examples,
in this numerical demonstration, our procedure with the optimal weight gives the smallest
RMSE as well as the smallest EML of the bootstrap confidence intervals in nearly all settings.
It verifies that Proposed opt is more efficient compared to other methods when there are
more than one covariates. The ECP of the bootstrap confidence intervals for all methods are
close to the nominal level 95% whereas the corresponding values obtained from LT method
demonstrate rather unsatisfactory ECP due to substantial biases incurred for high censoring
cases.

Our numerical experience also finds that specific choices of the bandwidth parameters do
not lead to substantially different parameter estimates. To this end, we alter one bandwidth
from 0.3 to 0.7 while the remaining two other are held fixed. Figure 1 shows the corresponding
RMSE given by our optimal procedure Proposed opt when 7 = 0.5, n = 300 and 40%
censoring. The left, middle and the right panels correspond to the settings where b, d and

h changes while other bandwidths are fixed at the values used in simulation. The black,
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Figure 1: RMSE versus different bandwidths. The black, red and green dots represent the
MSE for £y, 81 and fs, respectively.

red and green dots represent the RMSE for 5y, #; and (s, respectively. It shows that the

performance of Proposed opt is stable with respect to changes in bandwidths.

Example 3 In this example, we generate data from the model
log(T;) = o+ 1 Z; + B2 2] + 0.5Z; %e;,

where 3 = (Bo, f1,02) = (3,2, —1), Z; ~ Uniform(1,2), Z} = log(Z;) — Zjiol log(Z;)/500
and € = n—Q.(n) with n follows the standard normal distribution. We report the parameter
estimates at 7 = 0.25,0.50 and 0.75. The censoring time was generated as log(C') ~ 0log((5—
Z;)Uniform(0,10)). We take # = 3, § = 2.3 and § = 2 to produce 20%, 40% and 60%
censoring rates at 7 = 0.50, respectively. The choice of bandwidths is the same as that
of Example 2. This setting is more complicated than Example 2 in the sense that the
covariates Z and Z* are dependent. One can see from Table 3 and Tables 5 — 6 in Section
G of the Supplementary Materials that Proposed opt is more efficient than other methods
in general, and the difference is more significant when there is 60% censoring for 7 = 0.75.
Similar improvements can also be found for estimates for high quantile levels under more
complicated settings with high censoring rates. Figure 2 shows the corresponding RMSE

using the same setup of Figure 1 in this example when 7 = 0.5, n = 300 and 60% censoring.
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Table 2: Simulation results for Example 2 when there is 60% censoring at median. The
ECP and EML are the empirical coverage probabilities and empirical mean lengths for
different confidence interval procedures with a nominal level of 0.95. Standard errors are in
parenthesis.

Bias RMSE ECP EML
T n Method Bo B B2 Bo B B2 Bo B B2 Bo B B2
0.25 300 LT 0.011 0.012 0.013 0.482 0.224 0.203 0.940 0.946 0.946 1.965 0.930 0.852
(0.021)  (0.010)  (0.008) (0.016) (0.007)  (0.007)
WW 0.065 -0.046 -0.004 0.489 0.236 0.208 0.948 0.952  0.950 2.054 0.976 0.897
(0.023)  (0.011)  (0.009) (0.016) (0.008)  (0.007)
Proposed -0.007 0.005 0.009 0.490 0.229 0.208 0.944 0.946 0.950 2.036 0.964 0.882

(0.022)  (0.010)  (0.009) (0.016) (0.008)  (0.007)
Proposed opt ~ 0.024  -0.012  0.006 0487 0221 0208 0958 0.958 0.966 2.105  0.993  0.902
(0.022)  (0.010)  (0.009) (0.016) (0.008)  (0.007)

500 LT -0.014 0030 0004 0371 0176  0.160 0952 0954 0946 1484  0.698 0.640
(0.016)  (0.008) (0.007) (0.011)  (0.005)  (0.005)

WW 0.035  -0.024 -0.007  0.373 0172 0162 0958 0.956 0.964 1539  0.724  0.669
(0.016)  (0.008)  (0.007) (0.011)  (0.005)  (0.005)

Proposed -0.018 0017 0001 0365 0171  0.158 0956 0952 0964 1530 0719  0.662

(0.016)  (0.008)  (0.007) (0.011)  (0.005)  (0.005)
Proposed opt ~ 0.013  -0.001  -0.001  0.361  0.170  0.149  0.962 00952 0.972 1.554  0.726  0.669
(0.015)  (0.008)  (0.007) (0.011) (0.005)  (0.005)

0.5 300 LT -0.190 0159 0024 0506 0289  0.199 0930 0.896 0.954 1913 0924 0.826
(0.021)  (0.011) (0.009) (0.017) (0.009)  (0.006)
WW -0.002  0.004  -0.001 0432 0210  0.190 0.960 0948 0.954 1.829  0.859  0.790
(0.019)  (0.009) (0.008) (0.014) (0.007)  (0.006)
Proposed -0.038  0.025 0004 0431 0211  0.189 0954 00952 0.942 1.846  0.867 0.798
(0.019)  (0.009) (0.008) (0.015) (0.007)  (0.006)
Proposed opt ~ 0.000  0.005  -0.003  0.423 0206  0.180 0964 00956 0.954 1.865  0.874  0.800
(0.019)  (0.009) (0.008) (0.014) (0.006)  (0.005)

500 LT 0205 0159 0024 0424 0231 0154 0902 0.862 0950 1454  0.686 0.621
(0.015)  (0.008) (0.007) (0.012)  (0.006)  (0.004)
WW -0.008 0001 0005 0345 0158  0.141 0950 0952 0954 1405 0.652 0.598

(0.015)  (0.007)  (0.007) (0.011) (0.005)  (0.004)

Proposed -0.040 0019 0012 0350  0.161  0.143 0.950 0958 0.952 1.417  0.658 0.605
(0.015)  (0.007)  (0.007) (0.011) (0.005)  (0.004)

Proposed opt  -0.003 ~ -0.003  0.007  0.332  0.156  0.132 0.954 0.968 0.964 1.420  0.660 0.597
(0.014)  (0.007)  (0.006) (0.010)  (0.005)  (0.004)

0.75 300 LT 41959  1.398 0146  2.753 2145 0445 0974 0978 0990 37.140 31.840 4.642
(0.113)  (0.093) (0.020) (1.164) (1.051)  (0.074)

WW 0053 0026 0011 048 0240 0210 0952 0936 0944 2013 0960 0.862
(0.021)  (0.010) (0.009) (0.016)  (0.008)  (0.007)

Proposed 0062 0030 0011 0496 0244 0212 0954 0934 0944 2027 0967 0.870

(0.022)  (0.010) (0.009) (0.016) (0.008)  (0.007)

Proposed opt  -0.043  0.015  0.008 0484 0233 0200 0958 0.960 0960 2.025 0971  0.870
(0.020)  (0.010) (0.009) (0.016)  (0.008)  (0.006)

500 LT -1.195 0796 0100  1.378  0.886  0.265 0.708 0.656 0952 3.085 1.858 1.103

(0.028) (0.017) (0.011) (0.029) (0.019)  (0.009)

WW 20063 0032 0012 0377 0177  0.145 0942 0952 0964 1532 0721  0.651
(0.017)  (0.008) (0.007) (0.012)  (0.006)  (0.005)
Proposed 0075 0037 0013 0378 0178  0.146 0948 0958 0970 1541  0.727  0.655

(0.017)  (0.008)  (0.007) (0.012)  (0.006)  (0.005)
Proposed opt  -0.050  0.020  0.010  0.363 0166 0141 0956 0.972 0974 1531  0.719  0.649
(0.016)  (0.007)  (0.007) (0.011)  (0.005)  (0.005)
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Figure 2: RMSE versus different bandwidths in Example 3. The black, red and green dots
represent the MSE for 3y, 51 and (,, respectively.

And it is consistent with our experience the choices of the bandwidth parameters do not

lead to substantially different parameter estimates.

Remark 4. In all Examples 1 to 3, the numerical results suggest that our method performs
best for higher quantile level estimates especially when the censoring rate is high. This
empirical observation can possibly be relevant to the properties of the estimation methods.
The method Proposed opt involves kernel estimation in each datum, so some efficiency gain
brought by the optimal weight may be offset by the instability of kernel estimation, making
our efficiency gain less significant in low quantile and low censoring case compared to other
methods, as the involvement of kernel estimation in these methods are relatively small in such
a setting. That is because both methods would not use the kernel estimate for data whose
estimated conditional cumulative distribution function is less than 7, and kernel estimation

is mot even involved for uncensored data in Wang and Wang (2009).

5 Real Data Analysis

We illustrate the proposed method by analyzing the data on the survival time of gastric ade-
nocarcinoma patients who underwent surgery at the Helsinki University Hospital, Finland.

The dataset is available at https://datadryad.org/stash/dataset /doi:10.5061 /dryad.hb62394.
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Table 3: Simulation results for Example 3 when there is 60% censoring at median. The
ECP and EML are the empirical coverage probabilities and empirical mean lengths for
different confidence interval procedures with a nominal level of 0.95. Standard errors are in

parenthesis.
Bias RMSE ECP EML
T n Method Bo B B2 Bo B B2 Bo e B2 Bo B B2
0.25 300 LT -0.508 0.353 -0.407 2.742 1.839 2.647 0.956 0.958 0.958 10.906 7.315 10.553
(0.107)  (0.072)  (0.105)  (0.090)  (0.061)  (0.084)
WW 0.486 -0.327 0.438 2.032 1.359 2.028 0.954 0.954 0.954 8.331 5.576 8.292
(0.081)  (0.054)  (0.082)  (0.062)  (0.042)  (0.063)
Proposed -0.433 0.296 -0.375 2.506 1.678 2.437 0.960 0.962 0.964 10.181 6.824 9.911
(0.101)  (0.068)  (0.098)  (0.083)  (0.055)  (0.079)
Proposed opt 0.027 -0.016 0.014 2.029 1.357 2.006 0.954 0.952 0.948 12.732 8.544 12.132
(0.084)  (0.056)  (0.084)  (0.060)  (0.040)  (0.060)
500 LT -0.445 0.307 -0.360 1.847 1.239 1.791 0.958 0.962  0.960 7.743 5.190 7.584
(0.084)  (0.056)  (0.082)  (0.068)  (0.046)  (0.064)
WwW 0.375 -0.255 0.328 1.435 0.961 1.426 0.964 0.964 0.964 6.205 4.153 6.207
(0.066)  (0.044)  (0.066)  (0.046)  (0.031)  (0.046)
Proposed -0.474 0.322 -0.420 1.748 1.172 1.702 0.972 0.972 0.966 7.351 4.925 7.223
(0.077)  (0.052)  (0.076)  (0.063)  (0.042)  (0.060)
Proposed opt -0.046 0.032 -0.048 1.398 0.937 1.394 0.970 0.968 0.964 6.354 4.254 6.322
(0.066)  (0.044)  (0.066)  (0.049)  (0.033)  (0.049)
0.5 300 LT -1.791 1.224 -1.446 4.510 3.043 4.078 0.984 0.984 0.980 28.153 19.142 25.058
(0.167)  (0.112)  (0.156)  (0.299)  (0.203)  (0.249)
WwW 0.114 -0.074 0.126 1.828 1.222 1.805 0.972 0.972 0.970 8.503 5.697 8.350
(0.089)  (0.060)  (0.089)  (0.067)  (0.045)  (0.065)
Proposed -0.574 0.390 -0.489 2.363 1.585 2.267 0.962 0.964 0.962 9.679 6.492 9.387
(0.103)  (0.069)  (0.100)  (0.086)  (0.058)  (0.081)
Proposed opt 0.111 -0.073 0.107 1.694 1.133 1.685 0.968 0.966 0.962 11.435 7.699 10.898
(0.082)  (0.055)  (0.082)  (0.076)  (0.051)  (0.070)
500 LT -0.958 0.658 -0.718 2.426 1.633 2.262 0.966 0.964 0.964 10.000 6.724 9.495
(0.099)  (0.067)  (0.095)  (0.117)  (0.079)  (0.104)
WwW 0.094 -0.062 0.105 1.473 0.986 1.471 0.944 0944 0.944 6.097 4.082 6.043
(0.060)  (0.040)  (0.060)  (0.048)  (0.032)  (0.047)
Proposed -0.418 0.284 -0.353 1.672 1.120 1.637 0.952 0.952 0.954 6.885 4.614 6.739
(0.069)  (0.046)  (0.067)  (0.060)  (0.041)  (0.058)
Proposed opt 0.032 -0.021 0.037 1.359 0.909 1.362 0.956  0.958 0.954 5.921 3.965 5.868
(0.059)  (0.039)  (0.059)  (0.042)  (0.028)  (0.042)
0.75 300 LT -217.940 150.184 -182.336  340.413  234.547  285.232 0.906 0.904 0.918 1095.008 754.463 923.124
(12.289)  (8.458)  (10.300) (12.821)  (8.801)  (10.809)
WW -0.374 0.256 -0.311 2.651 1.777 2.555 0.960 0.962 0.962 10.521 7.060 10.196
(0.103)  (0.069)  (0.101)  (0.099)  (0.067)  (0.089)
Proposed -0.703 0.476 -0.605 2.803 1.878 2.689 0.972 0.974 0.970 10.860 7.286 10.520
(0.113)  (0.076)  (0.109)  (0.107)  (0.072)  (0.098)
Proposed opt 0.198 -0.132 0.188 1.860 1.243 1.858 0.968 0.968 0.966 13.109 8.853 12.418
(0.081)  (0.054)  (0.081)  (0.062)  (0.041)  (0.061)
500 LT -53.418 36.718 -44.755 136.020 93.609 114.077  0.978 0.978 0.978 589.442 406.004  496.216
(6.104)  (4.206)  (5.128)  (11.445) (7.878)  (9.644)
WwW -0.106 0.074 -0.065 1.665 1.116 1.656 0.968 0.968 0.962 7.229 4.846 7.080
(0.069)  (0.046)  (0.069)  (0.061)  (0.041)  (0.058)
Proposed -0.409 0.277 -0.338 1.817 1.218 1.781 0.962 0.962 0.962 7.593 5.091 7.409
(0.079)  (0.053)  (0.077)  (0.073)  (0.049)  (0.068)
Proposed opt 0.173 -0.115 0.173 1.442 0.965 1.451 0.964 0.964 0.958 7.802 5.248 7.564
(0.061)  (0.041)  (0.061)  (0.050)  (0.033)  (0.049)




The dataset contains 301 subjects. We are interested in estimating the conditional median
of the log survival time (in years), denoted as y, given the age of patient on date of surgery
(in years), denoted as Z; as well as gender of the patient (Male=1, Female=0), denoted as
Zs. Approximately 60% of the observations are censored. Regarding the identifiability issue,
following the idea proposed in Wang and Wang (2009), we examine if Condition (C3) can

pt
):jzl,...,n) | Z;) for ¢ in 1 to n, where

~

be satisfied by computing 1 — G(maX(ZjTB(q;O
G(- | Z) is the local Kaplan-Meier estimator of Go(- | Z). There are 15 zero entries. We
have also computed the number of zero entries for Examples 2 and 3 when n=300 and 7
=0.5. The numbers are 35 and 10, respectively. Given these numbers, we believe that it is
reasonable to assume that the data set satisfies condition (C3).

In the previous simulation examples, all the bandwidths adopted are selected for co-
variates with range 0 to 1. Hence, in this data analysis, we standardise the covariates by
defining 7; = Z; /{max(Z7) — min(Z7)}. Moreover, when choosing bandwidths, 5-fold cross
validation is implemented for all four methods with the check function as the loss function

for comparison. Using the Vanilla weight, our estimator gives the estimate

y = 3.56 — 1.257; — 0.09%,, (5.1)
and adopting the Proposed opt weight, our estimate is

y =343 —-1.122; — 0.11%,. (5.2)

For the bootstrap confidence intervals, the bootstrap 95% confidence intervals for Z; in our
Vanilla and Proposed opt approaches are (—1.76, —0.74) and (—1.59, —0.65), respectively,
demonstrating that Z; is deemed significant by the model using both methods. In addition,
Proposed opt offers a shorter confidence interval. On the contrary, for Z5, the 95% con-
fidence intervals for Z, in our Vanilla and Proposed opt approaches are (—0.27,0.09) and

(—0.28,0.06), respectively, which concludes that Z, is not significant; the lengths of confi-
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Figure 3: Estimated conditional median survival times from the vanilla and propose opt
weight functions for (left) a female given her age and (right) a male given his age. The green
and red lines denote the estimations from Vanilla and Proposed opt, respectively.

dence intervals for both estimators are close. In Section 3, we have proposed an alternate
loss function 3.1. The estimates as well as the lengths of confidence intervals of Proposed opt
using both loss functions are similar, so we only report the result using the check function
as loss function here.

Figure 3 shows the estimated median log survival time (in years) versus age of patient on
date of surgery (in years) for both genders. The green and red lines are the estimation from
Vanilla and Proposed opt, respectively. The dashed lines represent the upper limit and lower
limit of the 95% pointwise bootstrap confidence interval from Proposed opt respectively. As
we can see in Table 4, which summarizes the lengths of the confidence intervals given by
the four procedures considered, Proposed opt produces the smallest length in the confidence
intervals of Z; as well as the intercept. The lengths of confidence intervals for Z, are close

among different methods, so Proposed opt is the most efficient method in this case.
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Table 4: Parameter estimates (Est), bootstrap standard errors (BSE) and lengths of confi-
dence intervals (LCI) for various methods

Est BSE LCI
Method Bo B B B B P B B B
LT 3.56 -1.24 -0.06 0.25 0.26 0.08 0.98 1.02 0.30
WW 3.67 -1.37 -0.13 0.26 0.27 0.09 1.03 1.06 0.33

Vanilla 3.56 -1.25 -0.09 0.25 0.26 0.09 098 1.02 0.35
Proposed opt 3.43 -1.12 -0.11 0.24 024 0.09 0.93 094 0.34

6 Conclusion

With its growing popularity, censored quantile regression has been an active research area
with a wide range of applications. In the existing literature, inference of the model parame-
ters of interest is usually conducted via establishing martingale-based estimating equations
or optimizing convex objective function that generalizes the Koenker and Bassett (1978)
celebrated check function with suitable weights adjusted for partial information of censored
subjects. Although quite a few methods have been suggested, there has been little dis-
cussion on the relationships amongst these approaches, including, for instance, Peng and
Huang (2008), Wang and Wang (2009), Leng and Tong (2014) and De Becker et al. (2019);
the interrelationships amongst them still remain unclear. Another related open question
that has seldom been discussed is the estimation efficiency. Given the intricate forms of
the asymptotic variance of estimators for CQR models, the challenges involved in deriving
a statistically most efficient estimator are particularly prominent, especially when there is
further complication due to censored observations.

In this article, we begin with constructing a mean-zero estimating equation from which
our purposed vanilla estimator is asymptotically equivalent with many of the existing ones
in terms of estimation efficiency. Furthermore, by studying the asymptotic variance of our

estimator given an arbitrary weight function, we derive the most efficient estimator among a
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general class of Z-measurable weight functions. This optimal estimator coincide with the cor-
responding counterpart for non-censored data as discussed in Koenker (2005). Consistency
and asymptotic normality of the proposed estimator are established, justified also numeri-
cally via simulations and our analysis of gastric adenocarcinoma patients data at Helsinki
University Hospital. With the most efficient weight incorporated, our optimal estimator
outperforms the existing contenders.

As a final note, we have focused our discussion on ordinary right-censored time-to-event
data in this work. In various applications, however, lifetime data may be biased sampled in
nature due to study design or data collecting mechanism. Special treatments are required
to properly handle data with various bias sampling schemes. In particular, Xu et al. (2017)
developed a martingale based estimating procedure under general bias sampling schemes.
However, the corresponding efficiency issues have not yet been thoroughly investigated. The
corresponding problem of seeking most efficient weight for inference merits further detailed

investigations.

Supplementary Materials

The supplementary materials contain further technical details of the remark and the propo-
sition presented in Section 2. Proofs for the main theorems summarized in Section 3 are also

included.
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