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Abstract

Censored quantile regression (CQR) has received growing attention in survival anal-

ysis because of its flexibility in modeling heterogeneous effect of covariates. Advances

have been made in developing various inferential procedures under different assump-

tions and settings. Under the conditional independence assumption, many existing

CQR methods can be characterized either by stochastic integral-based estimating equa-

tions (see, for example, Peng and Huang, 2008, JASA 103, 637–49) or by locally

weighted approaches to adjust for the censored observations (see, for instance, Wang

and Wang, 2009, JASA 104, 1117–28). While there have been proposals of different

apparently dissimilar strategies in terms of formulations and the techniques applied for

CQR, the inter-relationships amongst these methods are rarely discussed in the litera-

ture. In addition, given the complicated structure of the asymptotic variance, there has

been limited investigation on improving the estimation efficiency for censored quantile

regression models. This article addresses these open questions by proposing a unified

framework under which many conventional approaches for CQR are covered as special

cases. The new formulation also facilitates the construction of the most efficient esti-

mator for the parameters of interest amongst a general class of estimating functions.

Asymptotic properties including consistency and weak convergence of the proposed

estimator are established via the martingale-based argument. Numerical studies are

presented to illustrate the promising performance of the proposed estimator as com-

pared to existing contenders under various settings.

Keywords: Survival analysis; Estimation efficiency; Check function; Martingale; Ker-

nel estimation.
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1 Introduction

Quantile regression (QR) has become a powerful and popular technique to model the condi-

tional distribution given the covariates since its introduction in Koenker and Bassett (1978);

readers are referred to Koenker (2005) and, more recently, Koenker et al. (2017) for an

extensive elaboration and literature review on the corresponding development. Given its

versatility, quantile regression model has been a powerful tool for solving problems in vari-

ous disciplines, including longitudinal study (Wang and Fygenson, 2009; Ma and Wei, 2012),

growth chart (Wei and He, 2006; Wei, 2008), risk management (Engle and Maganelli, 2004)

amongst others.

To define the quantile regression model, we denote {(Zi, Yi)}i=1,...,n a random sample from

the target population, where Zi is a p× 1 vector of explanatory variables while Yi is a scalar

response. The linear quantile regression model stipulates that, for a fixed τ ∈ (0, 1),

Qτ (Y | Z) = β(τ)>Z, (1.1)

where Qτ (Y | Z) denotes the τ -th conditional quantile of Y given Z. Given the observations

{(Zi, Yi)}i=1,...,n, an estimate of β(τ) in (1.1) can be obtained via the least absolute deviation

approach which minimizes

β̂(τ) = arg min
b∈Rp

n∑
i=1

ρτ (Yi − Z>i b),

where ρτ (u) = u{τ − I(u < 0)}.

In addition to its applications in health statistics and economics, the quantile regres-
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sion model has also been a valuable and effective tool in survival analysis with censored

observations. The most prominent advantage of censored quantile regression is its ability to

accommodate heterogeneous effects of covariates, which can influence not only the location

but also the shape of the survival time distribution. It is known that the heterogeneity

in covariate effects cannot be easily incorporated in either the celebrated Cox proportional

hazards model (Cox, 1972, 1975) or the accelerated failure time (AFT) model (Tsiatis, 1990;

Wei et al., 1990; Jin et al., 2003). Furthermore, the conditional quantile of the survival time

is easier to interpret than the hazard function and is often of the ultimate interest of end

users. Under the independent censoring assumption, Ying et al. (1995) proposed a semi-

parametric procedure for median regression. To relax the independent censoring assumption

and impose a less restrictive conditional independent censoring assumption instead, Portnoy

(2003) proposed a recursively reweighted inference procedure based on the principle of the

Kaplan-Meier (KM) estimate’s self-consistency, which can be interpreted as shifting masses

of censored data points to the right as in the sense of Efron (1967). Since then, many

interesting proposals have been discussed to address various challenges for inference.

Typically, these proposals establish mean-zero estimation equations either via adopting

a counting process approach or by introducing a weight adjustment, which depends on an

estimate of the unknown underlying distributions, to incorporate the partial information due

to censoring. For instance, Peng and Huang (2008) insightfully exploited the martingale rep-

resentation of the Nelson-Aalen estimator for the cumulative hazard function and proposed

a recursive series of estimating equations for not only one point but instead a sequence of

quantiles under the global linear assumption, i.e. (1.1) holds for all τ ∈ (0, τu] ⊂ (0, 1).

Huang (2010) provided a numerically stable and computationally efficient algorithm for the

aforementioned framework. Leng and Tong (2014) considered a kernel-based estimator for

the distribution function instead of the cumulative hazard function so as to avoid imposing

the global linear assumption.

Another promising approach is the introduction of local weight functions which can cor-
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rect the bias due to censored data. Wang and Wang (2009) proposed a novel locally weighted

approach for censored quantile regression (CQR). This wise formulation leverages the effi-

cient check function proposed in Koenker and Bassett (1978) for uncensored data while for

the censored observations, the kernel-based local weight proposed adjusts for the redistri-

bution of mass due to censoring. More recently, De Becker et al. (2019) modified the check

function with a proper adjustment based on an integral of the survival distribution of the

censoring time.

Despite the fact that there has been tremendous effort on solving the related inference

problems for CQR, there has been little discussion in the literature on how these individual

estimation methods are related to each other, and the inter-relationships amongst them

remain unclear. Furthermore, given the convoluted structure of the asymptotic variance,

the study of estimation efficiency of CQR has so far been limited; the question of how to

construct an efficient estimator for CQR remains largely unexplored. This work addresses

these open problems and our main contribution is two-fold:

1. Firstly, we aim to provide a unified framework under which many existing method-

ologies for CQR that adopt either the martingale (Peng and Huang, 2008; Leng and

Tong, 2014) or the weight adjustment approach (Wang and Wang, 2009) are covered.

Indeed, the connection between these two classes of approaches is reasonable because

both classes of inference procedures are carried out via optimization with respect to

the unweighted check function, or its equivalent that originates from the corresponding

counting process evaluated at the target quantile value, for the observed failures. Mean-

while, partial information conveyed in the censored observations are usually handled by

suitable adjustments whose values depend on the underlying distributions of the failure

and the censoring time distributions, which can be translated into the compensator of

the aforementioned counting process after suitable transformation and simplification.

2. Secondly, we further devise the most efficient weight to improve statistical efficiency

amongst this proposed unified framework. The optimal weight is shown to be depend
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on the unknown conditional density functions of the survival and censoring times.

To ensure that our methodology is practically feasible, we propose a kernel-based

estimator for the optimal weight. We further show that the estimator adopting the

estimated optimal weight theoretically attains the minimum variance and numerically

outperforms existing methods under various settings in simulation studies as well as

our data analysis. To the best of our knowledge, it is the first attempt to study the

estimation efficiency issue for censored quantile regression in the literature.

The rest of the paper is organized as follows. In Section 2, we first construct a set of

martingale-based estimation equations to motivate our new quantile regression estimator.

We also discuss its connection with its predecessors. We then present the consistency and

asymptotic results in Section 3 for the case where the optimal weight is incorporated. Our

numerical simulations reported in Section 4 also agree with our theoretical development.

The results presented also demonstrate that our proposal works decently as compared with

other contenders. Section 5 illustrates the effectiveness of our method via an analysis of

gastric adenocarcinoma patient data. We conclude with final remarks in Section 6. All the

technical proofs are presented in the Supplementary Materials.

2 Methodology and Model Setup

2.1 Estimation

Let T be the failure time of interest, C the censoring time, and Z the p-vector of covariates.

With right censoring, we only observe T̃ = min(T,C) and we denote the censoring indicator

as ∆ = I(T ≤ C). The observed data consist of n i.i.d. replicates of (T̃ ,∆,Z), namely

{(T̃i,∆i,Zi)}i=1,...,n. Instead of imposing the global linear assumption to the following cen-

sored linear quantile model for all quantile levels simultaneously, we only assume that it

holds at a specific quantile level of interest τ ∈ (0, 1):
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Qτ (log(T ) | Z) = β0(τ)>Z, (2.1)

where β0(τ) is a p × 1 vector of unknown regression parameter. In the sequel, we suppress

the τ in β0(τ) whenever there is no ambiguity. The above quantile regression model (2.1)

also implies that, for this fixed τ ,

log(T ) = β0(τ)>Z + ε,

where ε is a random error whose τth conditional quantile given Z is zero. This expression

indicates that the quantile regression can be regarded as a generalization of the AFT model

with a potentially heterogeneous error. Since the conditional distribution of the failure time

T given Z is a function of the error’s distribution, it is natural to model the residual directly

for (2.1). As a result, for i = 1, . . . , n, we denote εi(b) = log(Ti) − b>Zi and ei(b) =

log(T̃i) − b>Zi the true error and the observed residual given model parameter estimates

b ∈ Rp, respectively. Based on the observed residuals ei(b), we further define the counting

process and the at-risk process as Ni(b, t) = ∆iI(ei(b) ≤ t) = ∆iI
(

log(T̃i)− b>Zi ≤ t
)

and Yi(b, t) = I
(

log(T̃i)− b>Zi ≥ t
)

, respectively. To emphasize that these quantities are

evaluated at the true parameter values b = β0, we suppress the notation b and reserve εi,

ei, Ni(t) and Yi(t), respectively for simplicity.

With Λ0(t | Zi) as the conditional cumulative hazard function of εi given Zi, we can con-

struct the following mean zero martingale process; see, for example, Fleming and Harrington

(2005) and Peng and Huang (2008):

Mi(t) = Ni(t)−
∫ t

−∞
Yi(u)dΛ0(u | Zi).

Based on the martingale property of M(·) as well as the quantile property that Λ0(0 | Zi) =

− log(1− τ), we propose a general family of weighted estimating equations with the weight
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function φ (Z,Λ0(t | Z)):

E

(
1

n

n∑
i=1

Zi

{∫ 0

−∞
φ (Zi,Λ0(t | Zi)) dNi(t)−

∫ 0

−∞
Yi(t)φ (Zi,Λ0(t | Zi)) dΛ0(t | Zi)

})
= 0,

(2.2)

which is equivalent to

E

(
1

n

n∑
i=1

Zi

{
φ(Zi,Λ0(ei | Zi))∆iI(ei ≤ 0)− Φ (Zi, Hτ (Λ0(ei | Zi))) + Φ(Zi, 0)

})
= 0,

(2.3)

where Φ(Z, t) =
∫ t
−∞ φ(Z, s)ds and Hτ (t) = t ∧ {− log(1− τ)}.

It is noteworthy that the proposed weight function φ (Z,Λ0(t | Z)) is generic in the sense

that both the covariate and the time effects are taken into account. To make the best use

of the quantile property, we consider Λ0(t | Z), a transformed version of the time t, in this

weight function instead of directly using the original domain t itself.

The above martingale-based estimation approach offers a unified framework that con-

nects many of the existing proposals for censored quantile regression modeling, including

the martingale-based approach (Peng and Huang, 2008; Leng and Tong, 2014) and the

local weight adjustment approach (Wang and Wang, 2009). For the benefit of better il-

lustrating our construction, we first assume both Λ0(t | Z) and φ(Z,Λ0(t | Z)), and hence,

Φ(Z,Λ0(t | Z)), are known. Estimation of these unknown quantities shall be discussed in

details in Section 2.3.
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Connection with martingale-based approach It is easy to see that, with the unity

weight, i.e. φ (Z,Λ0(t | Z)) ≡ 1, our estimating equation (2.2) is reduced to

E

(
1

n

n∑
i=1

Zi

{
Ni(0)−

∫ 0

−∞
Yi(t)dΛ0(t | Zi)

})

= E

(
1

n

n∑
i=1

Zi {Ni(0)−Hτ (Λ0(ei | Zi))}

)
= 0. (2.4)

This special formulation clearly resembles the insightful formulation proposed in Peng and

Huang (2008) except that we need to directly estimate the associated compensator instead

of adopting an iterative approach to re-express the quantity as a function of the previous

quantile values under the global linear assumption on the quantiles at different levels. In

spite of structural similarities, one difference between (2.4) and the corresponding estimating

equation proposed in Leng and Tong (2014) is that, instead of estimating Λ0(· | Z), Leng and

Tong (2014) proposed a kernel-based approach for evaluating − log (1− F0(· | Z)). The one-

to-one correspondence between the cumulative hazard function and the distribution function

of the error surprisingly does not lead to similar performance given by these two methods.

As we can see later in Section 4, our numerical experience suggests that estimating the

cumulative hazard function directly produces more stable and efficient finite-sample results,

in particular for high quantile levels.

Connection with local weight adjustment approach To make the connection evident,

it is helpful to re-examine the weighted estimating equation (2.2) with the weight Φ(Z, t) =

exp{Λ0(t | Z)}. Specifically, we can write

E

(
1

n

n∑
i=1

Zi

{∫ 0

−∞
exp{Λ0(t | Z)} dNi(t)−

∫ 0

−∞
Yi(t) exp{Λ0(t | Z)} dΛ0(t | Zi)

})
= 0,
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which is equivalent to

E

(
1

n

n∑
i=1

ui

)
=: E

(
1

n

n∑
i=1

Zi

[
exp{Λ0(ei | Zi)}∆iI(ei ≤ 0)− exp {Hτ (Λ0(ei | Zi))}+ 1

])
= 0.

(2.5)

Through straightforward algebra, one can observe that ui in (2.5) can be simplified as

ui =


Zi{I(ei ≤ 0)− τ}(1− τ)−1 , when ∆ = 1

Zi

[
1− exp {Hτ (Λ0(ei | Zi))}

]
, otherwise

in which case the estimating equation (2.5) becomes

Sn(b) =
1

n

n∑
i=1

Zi

(
∆i {I (ei(b) ≤ 0)− τ}

+ (1−∆i)(1− τ) [1− exp {Hτ (Λ0(ei | Zi))}]
)

= 0. (2.6)

As a result of its monotonicity with respect to β, solving (2.6) can further be translated into

a convex optimization problems. More specifically, we can obtain the root that solves (2.6),

say β̆
(1)

, by minimizing the following weighted quantile regression objective function

L(b,Λ0) =
1

n

n∑
i=1

{
∆iρτ (ei(b)) + (1−∆i)(1− τ)

× ρτ
(
T̃ ∗ −

[
exp {Hτ (Λ0(ei | Zi))} − 1

τ
b>Zi

])}
(2.7)

with respect to b, where T̃ ∗ is a large constant. It is interesting to note that for uncensored

data, i.e. for cases in which all the ∆i’s values are 1, our proposed estimating equation

is reduced to n−1
∑n

i=1 ρτ (ei(b)), which coincides with the well-known estimating equation

proposed in Koenker and Bassett (1978).

It is also interesting to find that when Λ0(· | Zi) is known, the estimator proposed by
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Wang and Wang (2009) is equivalent to the above estimator β̆
(1)

. Specifically, in addition to

the obvious equivalence up to the sign for cases with ∆i = 1, one can also show that when

∆i = 0, the gradient of the estimator proposed by Wang and Wang (2009) equals

Zi

{
τ − τ − F0(ei | Zi)

1− F0(ei | Zi)
I(ei < 0)

}
= Zi

{
(1− τ)F0(ei | Zi)

1− F0(ei | Zi)
I(ei < 0) + τI(ei ≥ 0)

}
. (2.8)

On the other hand, when ∆i = 0, our proposed estimating equation can be written as

Zi(1− τ)[1− exp{Λ0(ei | Zi) ∧ − log(1− τ)}]

= Zi(1− τ)

{
1− 1

1− F0(ei | Zi)
∧ 1

1− τ

}
= −Zi

{
(1− τ)F0(ei | Zi)

1− F0(ei | Zi)
∧ τ
}
. (2.9)

Hence (2.8) and (2.9) also differ by a negative sign as the event {F0(ei | Zi)(1−τ){1−F0(ei |

Zi)}−1 ≥ τ} is equivalent to the event {ei ≥ 0}. In other words, the estimating equation

proposed in Wang and Wang (2009) and ui are equivalent when Λ0(· | Zi) is known. For

cases where the cumulative hazard function has to be estimated, we can also compare our

vanilla estimator, say β̃
(1)

, which solves (2.14) with φ(Z) = 1, to those considered in Leng

and Tong (2014) and De Becker et al. (2019). One can show that the three estimators

share the same asymptotic variance in which case these formulations can also be considered

as asymptotically equivalent. A more elaborated discussion on this generalization will be

included in Remark 2 in Section 3.

2.2 Efficient Censored Quantile Regression

The previous section considers specific choices of the weight function that unify various cen-

sored quantile regression approaches into one framework. We also demonstrate that our

formulation can be regarded as a generalization of Koenker and Bassett (1978) for censored

observations. This subsection is devoted to the construction of the most efficient weight
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for the censored quantile regression (2.1) amongst a generic class of candidate weight func-

tions. Given an arbitrary weight function φ (Z,Λ0(t | Z)), we denote generically β̆
(φ(Z,Λ0))

as a solution that solves (2.3) while assuming the cumulative hazard function Λ0(e | Z) is

known, which is indeed not possible in real practice. This unknown quantity can, however,

be replaced by a consistent estimator. In this work, we focus on a general family of kernel

estimators, denoted by Λ̃(ei | Zi), which will be defined in (2.12) in Section 2.3. Correspond-

ingly, we denote β̃
(φ(Z,Λ̃))

as a solution to (2.3) where the estimator Λ̃(ei | Zi) is used in

lieu of Λ0(· | Zi). Under this setting, we first present the following proposition which states

that the asymptotic variance of β̃
(φ(Z,Λ̃))

only depends on the value of φ(Z,− log(1 − τ)),

a property that also holds in the ideal case when Λ0(e | Z) is known. In other words, the

component Λ̃(ei | Zi) in the weight function has no effect on the asymptotic variance of the

estimator.

Proposition 1. Assume the regularity conditions in Section 3 hold. For any weight function

of the form φ(Z, Λ̃), n1/2

(
β̃

(φ(Z,Λ̃)) − β0

)
has the same limiting normal distribution as that

obtained with the weight φ(Z,− log(1− τ)).

Readers are referred to Section F in the Supplementary Material for the related proof.

The result above first provides us with an insight that Λ̃ in the weight function has no

effect on the variance of the limiting distribution of n1/2

(
β̃

(φ(Z,Λ̃)) − β0

)
. A more extensive

argument for its asymptotic normality is established in Theorem 2 in Section 3. As a result of

Proposition 1, we are motivated to consider applying Z-measurable weight φ(Z) in (2.3) and

further evaluate an optimal weight via careful examination of the structure of the asymptotic

variance associated with φ(Z). In the sequel, we consider the estimator β̃
(φ(Z))

only, which

refers to the estimator derived based on the weight φ(Z) instead of φ(Z,Λ(t | Z)).

For uncensored data, weighted quantile regression can bring in efficiency improvement if

the conditional densities of the response are heterogeneous; see pp.160 of Koenker (2005).

With censored observations, the asymptotic variance form suggests that adding weight can

improve the efficiency when the conditional density of either ε or log(C)− β>0 Z is heteroge-
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neous. In the sequel, we define φopt(Z) as the optimal weight that minimizes the asymptotic

variance. Let f0(t | Zi) and λ0(t | Zi) be the conditional density and hazard function of ε

given Z respectively. Similarly, we adopt G0(t | Z) to denote the conditional distribution

functions of log(C)− β>0 Z given Z. Based upon the following estimating equation,

E

[
φ(Zi)Zi

{
∆i{I(ei ≤ 0)− τ}+ (1−∆i)(1− τ)

(
1− exp[Hτ{Λ̃(ei | Zi)}]

)}]
= 0

(2.10)

and by invoking a multivariate generalization of the Cauchy-Schwarz inequality due to

Tripathi (1999), one can deduce that the asymptotic variance of β̃
(φ(Z))

is minimized by

taking

φopt(Z) =
p(0,Z)

P (0,Z)
, (2.11)

where p(u,Z) = λ0(u | Z)[{1 − F0(u | Z)}{1−G0(u | Z)}]−1 and P (0,Z) =
∫ 0

−∞ p(u,Z)du;

see Theorem 3 in Section 3. It should be noted that for uncensored data, one can show that

p(0,Z) = f0(0 | Z)(1−τ)−2 and
∫ 0

−∞ p(u,Z)du = τ(1−τ)−1, in which case φopt(Z) defined in

(2.11) is equivalent to f0(0 | Z), which coincides with the most efficient Z-weight discussed in

Koenker (2005). This optimal weight also resembles the optimal weight function for the AFT

model (see, for example, Tsiatis, 1990 and Lin and Chen, 2013), but both the numerator

and the denominator of φopt(Z) involve the conditional distribution functions F0(· | Z) and

G0(· | Z) of ε and logC − β>0 Z, respectively, in addition to the conditional hazard rate

function λ0(· | Z). This is natural because for the quantile regression model, we no longer

enjoy the homogeneity of the residual distribution across all quantile levels. The form of the

optimal weight (2.11) concurs with our intuition that it should be quantile level τ specific.

2.3 Computation Issues

The proposed weighted estimating equation (2.10) with (2.11) as the optimal weight is feasi-

ble for implementation only when the unknown quantities including both the true cumulative

hazard of the error Λ0(· | Z) and the optimal weight function φopt(Z) can be evaluated. In

12



this subsection, we discuss how these estimates can be obtained.

Estimation of Λ0(· | Z) Inspired by the strategies adopted in Wang and Wang (2009), we

propose the use of kernel to estimate Λ0(ei | Zi) nonparametrically using a localized version

of the Nelson-Aalen estimator

Λ̃(ei | Zi) =
n∑
j=1

Bh,j(Zi)∆jI(log T̃j ≤ log T̃i)∑n
r=1 Bh,r(Zi)I(log T̃r ≥ log T̃j)

, (2.12)

where Bh,j(Z) is a sequence of weights adding up to 1. Noteworthy, when Bh,j(Z) = n−1 for

all j, Λ̃(ei | Zi) reduces to the classical Nelson-Aalen estimator. More specifically, we adopt

the kernel weights

Bh,j(Z) =
Kh,j(Z)∑n
k=1 Kh,k(Z)

,

where Kh,j(Z) := K1 (h−1(Z− Zj)) is a density kernel function with bandwidth h that may

depend on n. When there is only one continuous covariate, we may choose the biquadratic

kernel K1(x) = (15/16)(1−x2)2I(|x| ≤ 1). When there are multiple continuous covariates in

Z, one may adopt a product kernel with a higher order kernel for each covariate as discussed

in Leng and Tong (2014). For instance, when there are two continuous covariates, we use the

kernel K1(x) = (15/32)(3− 10x2 + 7x4)I(|x| ≤ 1). Since these higher order kernels can give

Λ̃(ei | Zi) < 0, we set Λ̃(ei | Zi) = 0 whenever necessary. The resulting estimating equation

with weight function φ(Z) then becomes

Sφn(b) =
1

n

n∑
i=1

φ(Zi)

(
∆i {I (ei(b) ≤ 0)− τ}

+ (1−∆i)(1− τ)
[
1− exp

{
Hτ

(
Λ̃(ei | Zi)

)}])
= 0. (2.13)
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Likewise, the above root-solving procedure can be translated into minimizing the convex loss

function

Lφ(b, Λ̃) =
1

n

n∑
i=1

φ(Zi)

{
∆iρτ (ei(b))

+ (1−∆i)(1− τ)ρτ

T̃ ∗ −
exp

{
Hτ

(
Λ̃(ei | Zi)

)}
− 1

τ
b>Zi

 (2.14)

with respect to b but with Λ0(ei | Zi) replaced by Λ̃(ei | Zi) and T̃ ∗ > maxi{τ−1(exp[Hτ{Λ̃(ei |

Zi)}] − 1)b>Zi}. We take T̃ ∗ = maxi∈{1,...,n}{log(T̃i)} + 100 for simulation studies and

data analysis. The computation of β̃
(φ(Z))

, the minimizer of (2.14), is simple to imple-

ment with currently available software. After we have estimated the conditional cumulative

hazard function Λ0(ei | Zi), we consider the augmented data set
{

log T̃i,Zi

}
i=1,...,n

and{
T̃ ∗, τ−1(exp[Hτ{Λ̃(ei | Zi)}]− 1)Zi

}n
i=1

. Then β̃
(φ(Z))

is computed using the function rq in

R package quantreg by regressing the augmented data set with weights
{
φ(Zi)∆i

}
i=1,...,n

for{
log T̃i,Zi

}
i=1,...,n

and
{
φ(Zi)(1−∆i)(1− τ)

}
i=1,...,n

for{
T̃ ∗, τ−1

[
exp

{
Hτ

(
Λ̃(ei | Zi)

)}
− 1
]

Zi

}
i=1,...,n

. The extra effort needed to implement our

approach is minimal.

Estimation of efficient weight φopt(Z) Similar to the previous concern about the un-

known true conditional cumulative hazard function Λ0(· | Z), the optimal weight function

φopt(Z) also involves unknown quantities which need to be estimated. We let 1−H(u | Z) =

{1 − F0(u | Z)}{1−G0(u | Z)} so that φopt(Z) = λ0(0 | Z)[{1 − H(0 | Z)}P (0,Z)]−1. We

propose to estimate λ0(0 | Z), {1 −H(0 | Z)} and P (0,Z) separately by kernel estimation.

Note that an initial estimator of β0 is needed for the estimation of these three terms. Hence

we first obtain β̃
(1)

by solving L(b, Λ̃) in (2.14) with φ (Zi) ≡ 1 upon which we estimate

the aforementioned three quantities. The estimate φ̂opt(Z, β̃
(1)

) for φopt(Z) is obtained by

carefully combining these esimates. Let ε∗ = exp(ε) and let λ∗(· | Z) be the hazard function

of ε∗ given Z. Denote F∗(· | Z) and G∗(· | Z) as the cumulative distribution functions of ε∗
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and exp{logC − β>0 Z} given Z respectively. Let

Bd,j(Z) =
Kd,j(Z)∑n
k=1 Kd,k(Z)

,

where Kd,j(Z) := K2 {d−1(Z− Zj)} is a density kernel function with bandwidth d that may

depend on n. Denote Kb(s) = b−1K3(s/b), where K3(s/b) is a kernel function with support

[−1, 1] and bandwidth b that may depend on n. Since λ0(t | Z) = exp(t)λ∗{exp(t) | Z}, we

estimate λ0(0 | Zi) = λ∗(1 | Zi) by λ̂∗(1, β̃
(1) | Zi), where

λ̂∗(1, β̃
(1) | Zi) =

n∑
j=1

Bd,j(Zi)∆jKb

(
exp{ej(β̃

(1)
)} − 1

)
∑n

r=1 Bd,r(Zi)I[exp{er(β̃
(1)

)} ≥ exp{ej(β̃
(1)

)}]
.

Mimicking the choice of kernel for the estimation of λ in Lin and Chen (2013) when λ is

independent of Z, we choose K3(·) to be a Gaussian kernel function in simulation studies

and data analysis.

Next, we estimate 1−H∗(1 | Zi) := {1− F∗(1 | Zi)}{1−G∗(1 | Zi)} by 1− Ĥ∗(1, β̃
(1) |

Zi) =
∑n

j=1 I
(

exp{ej(β̃
(1)

)} ≥ 1
)
Bdj(Zi). On the other hand,

P (0,Zi) =

∫ 0

−∞

dΛ0(u | Zi)

1−H(u | Zi)
=

∫ 1

0

dΛ∗(t | Zi)

1−H∗(t | Zi)
=: P∗(1 | Zi).

Denote

Λ̂∗(t, β̃
(1) | Zi) =

n∑
j=1

Bd,j(Zi)∆kI
(

exp{ej(β̃
(1)

)} ≤ t
)

∑n
r=1 Bd,r(Zi)I

(
exp{er(β̃

(1)
)} ≥ exp{ej(β̃

(1)
)}
) ,

then one may estimate P∗(1 | Zi) by

P̂∗(1, β̃
(1) | Zi) =

∫ 1

0

dΛ̂∗(t, β̃
(1) | Zi)

1− Ĥ∗(t, β̃
(1) | Zi)

=
n∑
j=1

Bd,j(Zi)∆kI
(

exp{ej(β̃
(1)

)} ≤ 1
)

{∑n
r=1 Bd,r(Zi)I

(
exp(er(β̃

(1)
)) ≥ exp{ej(β̃

(1)
)}
)}2 .
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Combining the estimators above, we can write the estimate φopt(Z) as

φ̃opt(Z, β̃
(1)

) =
λ̂∗(1, β̃

(1) | Z)

{1− Ĥ∗(1, β̃
(1) | Zi)}{P̂∗(1, β̃

(1) | Zi)}
. (2.15)

A more careful observation of our numerical procedure reveals that there are modifications

which can further enhance the stability of the estimation without affecting the asymptotic

properties of the estimator. Since it is possible to observe 1−Ĥ∗(1, β̃
(1) | Zi) = 0 occasionally,

we recommend a modified estimator of 1−H∗(1 | Zi) to avoid such situations so as to improve

the numerical stability. The correction term is given by

1− Ĥ1
∗ (1, β̃

(1) | Zi) = 1− Ĥ∗(1, β̃
(1) | Zi) +Bdi(Zi)I

(
1− Ĥ∗(1, β̃

(1) | Zi) < Bdi(Zi)
)
.

As shown in the proof of (S1) on Page 13 of the supplementary materials, one can see

that the supremum of |Bhi(Zi)| is O((ndpn)−1), which decays faster than op(n
−1/4), thus the

modification in Ĥ1
∗ (t, β̃ | Z) does not affect the asymptotic variance of the estimator. The

other modifications are based on the quantile assumption and thus having no impact to the

asymptotic variance naturally, as can be seen from the proof of Theorem 4. Readers may also

refer to Remark 1 for further justification of this correction term. Another modification is

proposed as a result of an observation that P∗(1,Zi) ≥ Λ∗(1 | Zi) = Λ(0 | Zi) = − log(1−τ).

Hence, we may consider P̂ 1
∗ (1, β̃

(1) | Zi) = P̂∗(1, β̃
(1) | Zi)∨− log(1−τ) instead of P̂∗(1, β̃

(1) |

Zi). Finally, due to the fact that

{1−H∗(1 | Z)}
∫ 1

0

dΛ∗(t | Zi)

1−H∗(t | Zi)
≤ − log(1− τ),

we may estimate φopt(Z) via

φ̂opt(Z, β̃
(1)

) =
λ̂∗(1, β̃

(1) | Z)

Hτ

(
{1− Ĥ1

∗ (1, β̃
(1) | Zi)}{P̂ 1

∗ (1, β̃
(1) | Zi)}

) . (2.16)
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Plugging (2.16) into the original convex objective function (2.14), we can obtain β̂
(φ̂opt)

by minimizing

Ln,φ̂opt(b, Λ̂β̃(1)) =
1

n

n∑
i=1

φ̂opt(Zi, β̃
(1)

)

{
∆iρτ (ei(b)) + (1−∆i)(1− τ)

× ρτ

T̃ ∗ −
exp

{
Hτ

(
Λ̂
β̃
(1)(ei | Zi)

)}
− 1

τ
b>Z

}, (2.17)

where

Λ̂
β̃
(1){ei | Zi} =

n∑
j=1

Bh,j(Zi)∆jI{ej(β̃
(1)

) ≤ ei(β̃
(1)

)}∑n
r=1 Bh,r(Zi)I{er(β̃

(1)
) ≥ ej(β̃

(1)
)}
.

Similar to the computation of β̃
(1)

discussed in Section 2.1, the estimate β̂
(φ̂opt)

is computed

by regressing an augmented data set with weights
{
φ̂opt(Zi, β̃

(1)
)∆i

}
i=1,...,n

for
{

log T̃i,Zi

}n
i=1

and
{
φ̂opt(Zi, β̃

(1)
)(1−∆i)(1−τ)

}
i=1,...,n

for
{
T̃ ∗, τ−1

[
exp

{
Hτ

(
Λ̂
β̃
(1)(ei | Zi)

)}
− 1
]

Zi

}
i=1,...,n

.

As to be shown in Theorem 4 in Section 3, the proposed estimator β̂
(φ̂opt)

and the ideal es-

timator β̃
(φopt)

, which is obtained when φopt(Z) is known, are asymptotically equivalent.

Remark 1. For the modified estimator 1−Ĥ1
∗ (1, β̃

(1) | Zi), when the value of 1−Ĥ∗(1, β̃
(1) |

Zi) is smaller than Bhi(Zi), the small value of Bhi(Zi) indicates that there are relatively

more data point with similar values of covariates, but yet none, or very few, of them satisfies

ei(β̃
(1)

) > 0 in which case the quantity 1 −H∗(1 | Z1) should also be small, and vice versa.

Therefore the modified estimator can provide additional information on 1−H∗(1 | Zi) while

preventing the denominator of the estimate of φ̂opt(Z, β̃
(1)

) and 1−H∗(1 | Z) to be zero.

3 Large Sample Properties

To establish the asymptotic properties of our proposed estimator, we impose the following

regularity assumptions:

(C1) T and C are conditionally independent given the covariate Z.
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(C2) The true value β0 is in the interior of a bounded convex region B. The support Z of

Z is bounded and compact.

(C3) inf
Z∈Z

P (T̃ ≥ T | Z) ≥ 1− η0 > 0, where T = sup
Z∈Z

sup
b∈B

exp(b>Z).

(C4) Denote q = max(q1, q2). The first q partial derivatives with respect to Z of the density

function fZ(Z) are uniformly bounded for Z ∈ Z, and f0(t | Z) and g0(t | Z) are

uniformly bounded away from infinity and have bounded(uniformly in t) first q order

partial derivatives with respect to Z. Moreover, inf
Z∈Z

fZ(Z) ≥ δ0 for some δ0 > 0.

(C5) The bandwidths hn, bn and dn satisfy hn = O(n−vh), bn = O(n−vb) and dn = O(n−vd)

with 1/2q1 < vh < 1/3p, vb > 1/8, vd > (4q2)−1 and pvd + vb < 1/2.

(C6) (i) The kernel functions K1(·), K2(·) are Lipschitz-continuous density functions with

compact support on Rp.

(ii) The intergral
∫
Rp
zi11 · · · z

ip
p Kj(z)dz = 0 for non-negative integers i1, . . . ip with

i1 + · · ·+ ip ≤ qj − 1, j = 1, 2.

(C7) For b in the neighbourhood of β0, the matrix

E
(
φ(Z)ZZ>f0

(
(b− β0)>Z | Z

) {
1−G0

(
(b− β0)>Z | Z

)})
is positive definite.

(C8) The weight function φ(Z) is non-negative and bounded above uniformly in Z.

Conditions (C1)-(C4) are standard assumptions imposed in analyzing failure time data.

In (C3), we assume that 1− supZ∈Z H(0 | Z) ≥ 1− η0 for some η0 > 0. So the denominator

should never be zero if H is known. This assumption was adopted in Leng and Tong (2014)

and Wang and Wang (2009) to ensure identifiability; see also Liang et al. (2012). Conditions

(C5) and (C6) specify the conditions on the bandwidth and kernel function. Condition

(C7) ensures that the quantile regression estimator is unique and is used to establish the
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asymptotic normality of the estimator. Condition (C8) ensures that the the estimate is still

consistent and asymptotic normal after adding weights. A broad class of weights satisfy this

condition, in particular the optimal weight φopt(Z) proposed in Section 2.

The following two theorems state the consistency and asymptotic normality of our esti-

mator adopting a given Z-measurable weight function β̃
(φ(Z))

which minimizes (2.14):

Theorem 1. (Consistency) Under conditions (C1)-(C6) and (C8), for any φ(Z),

β̃
φ(Z) → β0

in probability as n→∞.

Theorem 2. (Asymptotic normality) Under conditions (C1)-(C8), for any φ(Z) , we have

n1/2(β̃
(φ(Z)) − β0)

d→ N(0,Γ
(φ)
1

−1
V

(φ)
1 Γ

(φ)
1

−1
),

where

Γ
(φ)
1 =E

(
φ(Z)ZZ>f0(0 | Z){1−G0(0 | Z)}

)
,

V
(φ)

1 =E

(
φ(Z)2ZZ>(1− τ)2{1−G0(0 | Z)}2

∫ 0

−∞

λ0(u | Z)du

{1− F0(u | Z)}{1−G0(u | Z)}

)
.

Remark 2. Define β̂LT and β̂BGK as the estimators proposed in Leng and Tong (2014) and

De Becker et al. (2019), respectively. With correspondingly suitable regularity conditions

hold, one can indeed show that

n1/2(β̂LT−β0)
d→ N

(
0,Γ

(1)
1

−1
V

(1)
1 Γ

(1)
1

−1
)

and n1/2(β̂BGK−β0)
d→ N

(
0,Γ

(1)
1

−1
V

(1)
1 Γ

(1)
1

−1
)
,

where Γ
(1)
1 and V

(1)
1 are defined in Theorem 2 above. The above variance form coincides

with that of n1/2(β̃
(1) − β0) as a special case justified by Theorem 2. For more details of the
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derivations of the asymptotic variances of various estimators, readers are referred to Section

E in the Supplementary Materials.

After we have established the consistency and asymptotic normality of our proposed es-

timator, we then present the following the following theorem which justifies that the optimal

weight defined in (2.11) can guarantee the minimum variance attained by our estimator.

Theorem 3. (Most efficient Z-weight) Under conditions (C1)-(C8), we have

Γ
(φopt)
1

−1
V

(φopt)
1 Γ

(φopt)
1

−1
≤ Γ

(φ)
1

−1
V

(φ)
1 Γ

(φ)
1

−1
,

for any φ(Z), where A ≤ B means B−A is non-negative definite for A and B two arbitrary

square matrices of same dimension.

While Theorem 3 ensures the optimality of the weight (2.11) when its true value is known,

one can also show that our proposed kernel-based estimated optimal weight given by (2.16)

is practically feasible in the sense that the resulting estimator can also achieve the same

asymptotic minimum variance.

Theorem 4. (Feasibility to attain minimum variance) Under conditions (C1)-(C8), we have

β̂
(φ̂opt) p→ β0, and

n1/2(β̂
(φ̂opt)

− β0)
d→ N(0,Γ

(φopt)
1

−1
V

(φopt)
1 Γ

(φopt)
1

−1
).

The matrices Γ
(φ)
1 and V

(φ)
1 involve unknown conditional density functions f0(· | Z) and

g(· | Z) that are difficult to estimate in finite samples. Therefore, we adopt a bootstrap

resampling approach by resampling the triples (T̃ ,∆,Z) with replacement. The performance

of the bootstrap approach is shown to be satisfactory in the Monte Carlo studies conducted

in Section 4. The same approach is adopted for inference of β̂
(φ̂opt)

.

In real practice, we can choose the bandwidths hn, dn and bn using the K-fold cross

validation. The set of hn, dn and bn that yields the smallest averaged prediction error is
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selected. Moreover, from condition (C5), if we choose vb = n1/6, then we have (4q2)−1 <

vd < (3p)−1, which suggests that when there are two or more continuous covariates, we may

take hn = dn to simplify the procedure. Regarding the choice of loss function for the cross

validation, Wang and Wang (2009) proposed to use the check function for uncensored data.

Alternatively we could use the loss function

l(b) =

∣∣∣∣ 1

nCV

nCV∑
i=1

(
∆i {I (ei(b) ≤ 0)− τ}+ (1−∆i)(1− τ)

[
1− exp

{
Hτ

(
Λ̂ (ei(b))

)}]) ∣∣∣∣,
(3.1)

where nCV is the sample size in the jth partition of the data by a little abuse of notation

and Λ̂ (ei(b)) is the Nelson-Aalen estimate for the cumulative hazard function of εi(b). These

two loss functions give similar results when censoring rate is not exceedingly high. Since the

loss function l(b) takes censored data into account, it can produce better result when the

censoring rate increases. It should be noted that no matter which loss function is adopted,

while checking for more bandwidths could help improve the numerical performance, there

could be multiple bandwidths that achieve the smallest prediction error occasionally. For

such situations, we suggest choosing a larger bandwidth as it usually results in a more stable

set of estimates based on our practical experiences.

Remark 3. Concerning Bdi(Z), the choice of kernel K2(·) is different from the kernel K1(·)

for Bhi(Z) when dimension increases. As shown in Theorem 4, let dn = cdn
−vd , bn = cbn

−vb,

it suffices to have (4q2)−1 < vd < (3p)−1 if we choose vb = 1/6, which is adopted in simu-

lation studies and data analysis. Compared to the constraints for the order of K1(·), which

requires (2q1)−1 < v < (3p)−1, we can increase the order of the kernel K2(·) at a slower

rate. In particular, when there are two continuous covariates, we still choose K2(·) to be

the biquadratic kernel by taking vd = 1/7. However, for K1(·), we are forced to use higher

order kernels as 1/(2q1) = 1/4 when q1 = 2, which is greater than (3p)−1. Similar to the

estimation of Λ(· | Z), we need to adjust the value for λ̂∗(1, β̃
(1) | Z) when we turn to higher

order kernels as it is possible to obtain negative values. We simply set λ̂∗(1, β̃
(1) | Z) = 0 as
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needed.

4 Simulations

In this section, we assess the finite sample performance of the proposed methods via Monte

Carlo simulations. We compare our estimator β̃
(1)

presented in Section 2, which adopts a

weight that involves cumulative hazard function only (Vanilla), with Leng and Tong (2014)’s

(LT) procedure so as to examine the finite sample performances of these two methods. We

further compare these results with the estimator β̂
(φ̂opt)

proposed in Section 2.3 to demon-

strate the improvement by introducing the optimal Z-measurable weight (Proposed opt) as

well as Wang and Wang (2009)’s (WW) procedure. For each demonstration, we report the bi-

ases and root mean square errors (RMSE) of individual procedures based on 500 simulations.

Standard errors of the biases and RMSE are also computed by repeating the simulations for

300 times. We also report the average coverage probabilities and average interval lengths

of related resampling-based 95% confidence intervals. 300 bootstrap samples are simulated

to obtain the confidence intervals in each simulation run. Throughout all examples, the

computation time of Proposed opt is on average three times of that required for the vanilla

estimator. In each example, we consider different parameters that give 20%, 40% and 60%

censoring at median, respectively. The censoring rates at different quantile levels are quite

close to the rate at τ = 0.5 with difference not greater that 5%. All of our settings can

satisfy the conditions in Section 3, in particular the identifiability condition (C3). As ε fol-

lows normal distribution in our settings, which is unbounded, we only need to compare the

distribution of the censoring time C and the maximum value of exp(Z>β0) with respect to

Z in order to check the condition.

Example 1 We generate data from the model

log(T ) = β0 + β1Z +
ε

Z2
,
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where β = (β0, β1) = (3, 5), Z ∼ Uniform(1, 2) and ε = η−Qτ (η) with η follows the standard

normal distribution. We report the parameter estimates at τ = 0.25, 0.50 and 0.75. The

censoring time log(C) follows the uniform distribution Uniform(0, θ). We take θ = 52, 26

and 17 to produce 20%, 40% and 60% censoring rates at τ = 0.50, respectively.

Table 1 summarize the simulation results for three different τ values, namely 0.25, 0.50

and 0.75 with two different sample sizes including n = 300 and 500 at 60% censoring rate at

median. The corresponding results for cases with censoring rates 20% and 40% are relegated

to Tables 1 – 2 in Section G of the Supplementary Materials. For simplicity, we take the

bandwidths as hn = n−1/3+0.01, bn = n−1/6 and dn = n−1/6. The bandwidth hn = n−1/3+0.01

was adopted in Leng and Tong (2014) as the optimal rate based of the asymptotic result. Our

choice of bn and dn are motivated from the fact that the optimal choice for the estimation of

λ(· | Z) is bn = dn = O(n−1/6); see Remark 3.1 in Van Keilegom and Veraverbeke (2001). In

this example, our vanilla procedure gives smaller RMSE in nearly all settings as compared to

Leng and Tong (2014), especially when τ = 0.75, showing that the proposed methods bring

in improvement in the finite sample performance as compared with Leng and Tong (2014),

which estimated the distribution function in the martingale-based formulation instead. As

mentioned, since Wang and Wang (2009)’s procedure can be regarded as a special case

in our procedure with the weight exp{Λ0(t | Z)}, the two methods, namely Vanilla and

WW, give very similar numerical results. It is also noteworthy that the procedure with the

optimal weight estimated gives the smallest RMSE and empirical mean lengths (EML) of

the bootstrap confidence intervals in all settings, showing that it is more efficient compared

to other existing methods. The empirical coverage probabilities (ECP) of the bootstrap

confidence intervals for all methods are close to the nominal level of 95%.
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Table 1: Simulation results for Example 1 when there is 60% censoring at median. The
ECP and EML are the empirical coverage probabilities and empirical mean lengths for
different confidence interval procedures with a nominal level of 0.95. Standard errors are in
parenthesis.

Bias RMSE ECP EML

τ n Method β̂0 β̂1 β̂0 β̂1 β̂0 β̂1 β̂0 β̂1

0.25 300 LT 0.009 0.012 0.382 0.233 0.936 0.938 1.521 0.929

(0.017) (0.010) (0.011) (0.007)

WW 0.022 -0.018 0.396 0.241 0.932 0.936 1.557 0.950

(0.017) (0.010) (0.012) (0.007)

Proposed 0.010 -0.002 0.388 0.235 0.944 0.946 1.560 0.952

(0.017) (0.010) (0.011) (0.007)

Proposed opt 0.028 -0.014 0.381 0.230 0.938 0.942 1.541 0.937

(0.017) (0.010) (0.011) (0.007)

500 LT 0.003 0.014 0.283 0.172 0.948 0.950 1.154 0.703

(0.014) (0.008) (0.009) (0.006)

WW 0.011 -0.009 0.292 0.178 0.938 0.942 1.190 0.726

(0.014) (0.008) (0.009) (0.006)

Proposed 0.006 0.000 0.289 0.176 0.950 0.952 1.182 0.721

(0.014) (0.008) (0.009) (0.006)

Proposed opt 0.023 -0.012 0.278 0.168 0.952 0.952 1.152 0.700

(0.013) (0.008) (0.009) (0.005)

0.5 300 LT -0.065 0.073 0.342 0.219 0.942 0.934 1.427 0.873

(0.016) (0.010) (0.012) (0.008)

WW -0.001 0.003 0.330 0.202 0.950 0.956 1.413 0.862

(0.016) (0.010) (0.012) (0.007)

Proposed -0.007 0.008 0.329 0.202 0.954 0.958 1.422 0.868

(0.016) (0.010) (0.012) (0.007)

Proposed opt 0.009 -0.004 0.322 0.197 0.950 0.948 1.386 0.843

(0.015) (0.009) (0.012) (0.007)

500 LT -0.074 0.070 0.294 0.187 0.916 0.904 1.096 0.670

(0.013) (0.008) (0.009) (0.006)

WW -0.010 0.007 0.277 0.168 0.934 0.942 1.082 0.659

(0.012) (0.007) (0.008) (0.005)

Proposed -0.017 0.013 0.280 0.170 0.926 0.932 1.088 0.663

(0.012) (0.007) (0.009) (0.005)

Proposed opt -0.004 0.003 0.264 0.159 0.946 0.948 1.056 0.640

(0.012) (0.007) (0.008) (0.005)

0.75 300 LT -0.362 0.284 0.576 0.404 0.928 0.918 2.054 1.339

(0.021) (0.013) (0.020) (0.014)

WW -0.012 0.010 0.355 0.218 0.958 0.958 1.559 0.951

(0.017) (0.010) (0.013) (0.008)

Proposed -0.021 0.015 0.361 0.222 0.956 0.956 1.565 0.955

(0.017) (0.010) (0.013) (0.008)

Proposed opt -0.002 0.000 0.345 0.210 0.954 0.952 1.524 0.926

(0.016) (0.010) (0.012) (0.007)

500 LT -0.267 0.204 0.437 0.297 0.870 0.860 1.372 0.864

(0.014) (0.009) (0.013) (0.008)

WW -0.012 0.009 0.297 0.180 0.924 0.934 1.177 0.719

(0.013) (0.008) (0.010) (0.006)

Proposed -0.019 0.013 0.298 0.181 0.928 0.934 1.181 0.721

(0.013) (0.008) (0.010) (0.006)

Proposed opt 0.000 0.000 0.281 0.170 0.940 0.942 1.144 0.695

(0.012) (0.007) (0.009) (0.006)



Example 2 In this example, the data are generated from similar setting in the previous

example, but the number of covariates is increased. We generate data from the model

log(T ) = β0 + β1Z1 + β2Z2 +
ε

Z2
1

,

where β = (β0, β1, β2) = (3, 5, 1), Zj ∼ Uniform(1, 2) for j = 1, 2 and ε = η − Qτ (η)

with η follows the standard normal distribution. The censoring time was generated as

log(C) ∼ (5 − Z1)Uniform(0, θ). We take θ = 18, 9 and 6 to produce 20%, 40% and 60%

censoring rates at τ = 0.5, respectively. Similar to Example 1, the results for the high

censoring case 60% are summarized in Table 2; corresponding statistics for settings with 20%

and 40% censoring rates can be found in Tables 3 – 4 in Section G of the Supplementary

Materials.

In view of condition (C5), to adjust for the increased number of covariates, we take the

bandwidths as hn = n−1/7, bn = n−1/6 and dn = n−1/7. Similar to the previous examples,

in this numerical demonstration, our procedure with the optimal weight gives the smallest

RMSE as well as the smallest EML of the bootstrap confidence intervals in nearly all settings.

It verifies that Proposed opt is more efficient compared to other methods when there are

more than one covariates. The ECP of the bootstrap confidence intervals for all methods are

close to the nominal level 95% whereas the corresponding values obtained from LT method

demonstrate rather unsatisfactory ECP due to substantial biases incurred for high censoring

cases.

Our numerical experience also finds that specific choices of the bandwidth parameters do

not lead to substantially different parameter estimates. To this end, we alter one bandwidth

from 0.3 to 0.7 while the remaining two other are held fixed. Figure 1 shows the corresponding

RMSE given by our optimal procedure Proposed opt when τ = 0.5, n = 300 and 40%

censoring. The left, middle and the right panels correspond to the settings where b, d and

h changes while other bandwidths are fixed at the values used in simulation. The black,
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Figure 1: RMSE versus different bandwidths. The black, red and green dots represent the
MSE for β0, β1 and β2, respectively.

red and green dots represent the RMSE for β0, β1 and β2, respectively. It shows that the

performance of Proposed opt is stable with respect to changes in bandwidths.

Example 3 In this example, we generate data from the model

log(Ti) = β0 + β1Zi + β2Z
∗
i + 0.5Z−2

i εi,

where β = (β0, β1, β2) = (3, 2,−1), Zi ∼ Uniform(1, 2), Z∗i = log(Zi) −
∑500

j=1 log(Zj)/500

and ε = η−Qτ (η) with η follows the standard normal distribution. We report the parameter

estimates at τ = 0.25, 0.50 and 0.75. The censoring time was generated as log(C) ∼ θ log((5−

Zi)Uniform(0, 10)). We take θ = 3, θ = 2.3 and θ = 2 to produce 20%, 40% and 60%

censoring rates at τ = 0.50, respectively. The choice of bandwidths is the same as that

of Example 2. This setting is more complicated than Example 2 in the sense that the

covariates Z and Z∗ are dependent. One can see from Table 3 and Tables 5 – 6 in Section

G of the Supplementary Materials that Proposed opt is more efficient than other methods

in general, and the difference is more significant when there is 60% censoring for τ = 0.75.

Similar improvements can also be found for estimates for high quantile levels under more

complicated settings with high censoring rates. Figure 2 shows the corresponding RMSE

using the same setup of Figure 1 in this example when τ = 0.5, n = 300 and 60% censoring.
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Table 2: Simulation results for Example 2 when there is 60% censoring at median. The
ECP and EML are the empirical coverage probabilities and empirical mean lengths for
different confidence interval procedures with a nominal level of 0.95. Standard errors are in
parenthesis.

Bias RMSE ECP EML

τ n Method β̂0 β̂1 β̂2 β̂0 β̂1 β̂2 β̂0 β̂1 β̂2 β̂0 β̂1 β̂2

0.25 300 LT 0.011 0.012 0.013 0.482 0.224 0.203 0.940 0.946 0.946 1.965 0.930 0.852

(0.021) (0.010) (0.008) (0.016) (0.007) (0.007)

WW 0.065 -0.046 -0.004 0.489 0.236 0.208 0.948 0.952 0.950 2.054 0.976 0.897

(0.023) (0.011) (0.009) (0.016) (0.008) (0.007)

Proposed -0.007 0.005 0.009 0.490 0.229 0.208 0.944 0.946 0.950 2.036 0.964 0.882

(0.022) (0.010) (0.009) (0.016) (0.008) (0.007)

Proposed opt 0.024 -0.012 0.006 0.487 0.221 0.208 0.958 0.958 0.966 2.105 0.993 0.902

(0.022) (0.010) (0.009) (0.016) (0.008) (0.007)

500 LT -0.014 0.030 0.004 0.371 0.176 0.160 0.952 0.954 0.946 1.484 0.698 0.640

(0.016) (0.008) (0.007) (0.011) (0.005) (0.005)

WW 0.035 -0.024 -0.007 0.373 0.172 0.162 0.958 0.956 0.964 1.539 0.724 0.669

(0.016) (0.008) (0.007) (0.011) (0.005) (0.005)

Proposed -0.018 0.017 0.001 0.365 0.171 0.158 0.956 0.952 0.964 1.530 0.719 0.662

(0.016) (0.008) (0.007) (0.011) (0.005) (0.005)

Proposed opt 0.013 -0.001 -0.001 0.361 0.170 0.149 0.962 0.952 0.972 1.554 0.726 0.669

(0.015) (0.008) (0.007) (0.011) (0.005) (0.005)

0.5 300 LT -0.190 0.159 0.024 0.506 0.289 0.199 0.930 0.896 0.954 1.913 0.924 0.826

(0.021) (0.011) (0.009) (0.017) (0.009) (0.006)

WW -0.002 0.004 -0.001 0.432 0.210 0.190 0.960 0.948 0.954 1.829 0.859 0.790

(0.019) (0.009) (0.008) (0.014) (0.007) (0.006)

Proposed -0.038 0.025 0.004 0.431 0.211 0.189 0.954 0.952 0.942 1.846 0.867 0.798

(0.019) (0.009) (0.008) (0.015) (0.007) (0.006)

Proposed opt 0.000 0.005 -0.003 0.423 0.206 0.180 0.964 0.956 0.954 1.865 0.874 0.800

(0.019) (0.009) (0.008) (0.014) (0.006) (0.005)

500 LT -0.205 0.159 0.024 0.424 0.231 0.154 0.902 0.862 0.950 1.454 0.686 0.621

(0.015) (0.008) (0.007) (0.012) (0.006) (0.004)

WW -0.008 0.001 0.005 0.345 0.158 0.141 0.950 0.952 0.954 1.405 0.652 0.598

(0.015) (0.007) (0.007) (0.011) (0.005) (0.004)

Proposed -0.040 0.019 0.012 0.350 0.161 0.143 0.950 0.958 0.952 1.417 0.658 0.605

(0.015) (0.007) (0.007) (0.011) (0.005) (0.004)

Proposed opt -0.003 -0.003 0.007 0.332 0.156 0.132 0.954 0.968 0.964 1.420 0.660 0.597

(0.014) (0.007) (0.006) (0.010) (0.005) (0.004)

0.75 300 LT -1.959 1.398 0.146 2.753 2.145 0.445 0.974 0.978 0.990 37.140 31.840 4.642

(0.113) (0.093) (0.020) (1.164) (1.051) (0.074)

WW -0.053 0.026 0.011 0.488 0.240 0.210 0.952 0.936 0.944 2.013 0.960 0.862

(0.021) (0.010) (0.009) (0.016) (0.008) (0.007)

Proposed -0.062 0.030 0.011 0.496 0.244 0.212 0.954 0.934 0.944 2.027 0.967 0.870

(0.022) (0.010) (0.009) (0.016) (0.008) (0.007)

Proposed opt -0.043 0.015 0.008 0.484 0.233 0.200 0.958 0.960 0.960 2.025 0.971 0.870

(0.020) (0.010) (0.009) (0.016) (0.008) (0.006)

500 LT -1.195 0.796 0.100 1.378 0.886 0.265 0.708 0.656 0.952 3.085 1.858 1.103

(0.028) (0.017) (0.011) (0.029) (0.019) (0.009)

WW -0.063 0.032 0.012 0.377 0.177 0.145 0.942 0.952 0.964 1.532 0.721 0.651

(0.017) (0.008) (0.007) (0.012) (0.006) (0.005)

Proposed -0.075 0.037 0.013 0.378 0.178 0.146 0.948 0.958 0.970 1.541 0.727 0.655

(0.017) (0.008) (0.007) (0.012) (0.006) (0.005)

Proposed opt -0.050 0.020 0.010 0.363 0.166 0.141 0.956 0.972 0.974 1.531 0.719 0.649

(0.016) (0.007) (0.007) (0.011) (0.005) (0.005)



Figure 2: RMSE versus different bandwidths in Example 3. The black, red and green dots
represent the MSE for β0, β1 and β2, respectively.

And it is consistent with our experience the choices of the bandwidth parameters do not

lead to substantially different parameter estimates.

Remark 4. In all Examples 1 to 3, the numerical results suggest that our method performs

best for higher quantile level estimates especially when the censoring rate is high. This

empirical observation can possibly be relevant to the properties of the estimation methods.

The method Proposed opt involves kernel estimation in each datum, so some efficiency gain

brought by the optimal weight may be offset by the instability of kernel estimation, making

our efficiency gain less significant in low quantile and low censoring case compared to other

methods, as the involvement of kernel estimation in these methods are relatively small in such

a setting. That is because both methods would not use the kernel estimate for data whose

estimated conditional cumulative distribution function is less than τ , and kernel estimation

is not even involved for uncensored data in Wang and Wang (2009).

5 Real Data Analysis

We illustrate the proposed method by analyzing the data on the survival time of gastric ade-

nocarcinoma patients who underwent surgery at the Helsinki University Hospital, Finland.

The dataset is available at https://datadryad.org/stash/dataset/doi:10.5061/dryad.hb62394.
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Table 3: Simulation results for Example 3 when there is 60% censoring at median. The
ECP and EML are the empirical coverage probabilities and empirical mean lengths for
different confidence interval procedures with a nominal level of 0.95. Standard errors are in
parenthesis.

Bias RMSE ECP EML

τ n Method β̂0 β̂1 β̂2 β̂0 β̂1 β̂2 β̂0 β̂1 β̂2 β̂0 β̂1 β̂2

0.25 300 LT -0.508 0.353 -0.407 2.742 1.839 2.647 0.956 0.958 0.958 10.906 7.315 10.553

(0.107) (0.072) (0.105) (0.090) (0.061) (0.084)

WW 0.486 -0.327 0.438 2.032 1.359 2.028 0.954 0.954 0.954 8.331 5.576 8.292

(0.081) (0.054) (0.082) (0.062) (0.042) (0.063)

Proposed -0.433 0.296 -0.375 2.506 1.678 2.437 0.960 0.962 0.964 10.181 6.824 9.911

(0.101) (0.068) (0.098) (0.083) (0.055) (0.079)

Proposed opt 0.027 -0.016 0.014 2.029 1.357 2.006 0.954 0.952 0.948 12.732 8.544 12.132

(0.084) (0.056) (0.084) (0.060) (0.040) (0.060)

500 LT -0.445 0.307 -0.360 1.847 1.239 1.791 0.958 0.962 0.960 7.743 5.190 7.584

(0.084) (0.056) (0.082) (0.068) (0.046) (0.064)

WW 0.375 -0.255 0.328 1.435 0.961 1.426 0.964 0.964 0.964 6.205 4.153 6.207

(0.066) (0.044) (0.066) (0.046) (0.031) (0.046)

Proposed -0.474 0.322 -0.420 1.748 1.172 1.702 0.972 0.972 0.966 7.351 4.925 7.223

(0.077) (0.052) (0.076) (0.063) (0.042) (0.060)

Proposed opt -0.046 0.032 -0.048 1.398 0.937 1.394 0.970 0.968 0.964 6.354 4.254 6.322

(0.066) (0.044) (0.066) (0.049) (0.033) (0.049)

0.5 300 LT -1.791 1.224 -1.446 4.510 3.043 4.078 0.984 0.984 0.980 28.153 19.142 25.058

(0.167) (0.112) (0.156) (0.299) (0.203) (0.249)

WW 0.114 -0.074 0.126 1.828 1.222 1.805 0.972 0.972 0.970 8.503 5.697 8.350

(0.089) (0.060) (0.089) (0.067) (0.045) (0.065)

Proposed -0.574 0.390 -0.489 2.363 1.585 2.267 0.962 0.964 0.962 9.679 6.492 9.387

(0.103) (0.069) (0.100) (0.086) (0.058) (0.081)

Proposed opt 0.111 -0.073 0.107 1.694 1.133 1.685 0.968 0.966 0.962 11.435 7.699 10.898

(0.082) (0.055) (0.082) (0.076) (0.051) (0.070)

500 LT -0.958 0.658 -0.718 2.426 1.633 2.262 0.966 0.964 0.964 10.000 6.724 9.495

(0.099) (0.067) (0.095) (0.117) (0.079) (0.104)

WW 0.094 -0.062 0.105 1.473 0.986 1.471 0.944 0.944 0.944 6.097 4.082 6.043

(0.060) (0.040) (0.060) (0.048) (0.032) (0.047)

Proposed -0.418 0.284 -0.353 1.672 1.120 1.637 0.952 0.952 0.954 6.885 4.614 6.739

(0.069) (0.046) (0.067) (0.060) (0.041) (0.058)

Proposed opt 0.032 -0.021 0.037 1.359 0.909 1.362 0.956 0.958 0.954 5.921 3.965 5.868

(0.059) (0.039) (0.059) (0.042) (0.028) (0.042)

0.75 300 LT -217.940 150.184 -182.336 340.413 234.547 285.232 0.906 0.904 0.918 1095.008 754.463 923.124

(12.289) (8.458) (10.300) (12.821) (8.801) (10.809)

WW -0.374 0.256 -0.311 2.651 1.777 2.555 0.960 0.962 0.962 10.521 7.060 10.196

(0.103) (0.069) (0.101) (0.099) (0.067) (0.089)

Proposed -0.703 0.476 -0.605 2.803 1.878 2.689 0.972 0.974 0.970 10.860 7.286 10.520

(0.113) (0.076) (0.109) (0.107) (0.072) (0.098)

Proposed opt 0.198 -0.132 0.188 1.860 1.243 1.858 0.968 0.968 0.966 13.109 8.853 12.418

(0.081) (0.054) (0.081) (0.062) (0.041) (0.061)

500 LT -53.418 36.718 -44.755 136.020 93.609 114.077 0.978 0.978 0.978 589.442 406.004 496.216

(6.104) (4.206) (5.128) (11.445) (7.878) (9.644)

WW -0.106 0.074 -0.065 1.665 1.116 1.656 0.968 0.968 0.962 7.229 4.846 7.080

(0.069) (0.046) (0.069) (0.061) (0.041) (0.058)

Proposed -0.409 0.277 -0.338 1.817 1.218 1.781 0.962 0.962 0.962 7.593 5.091 7.409

(0.079) (0.053) (0.077) (0.073) (0.049) (0.068)

Proposed opt 0.173 -0.115 0.173 1.442 0.965 1.451 0.964 0.964 0.958 7.802 5.248 7.564

(0.061) (0.041) (0.061) (0.050) (0.033) (0.049)



The dataset contains 301 subjects. We are interested in estimating the conditional median

of the log survival time (in years), denoted as y, given the age of patient on date of surgery

(in years), denoted as Z∗1 as well as gender of the patient (Male=1, Female=0), denoted as

Z2. Approximately 60% of the observations are censored. Regarding the identifiability issue,

following the idea proposed in Wang and Wang (2009), we examine if Condition (C3) can

be satisfied by computing 1 − Ĝ(max(Z>j β̂
(φ̂opt)

: j = 1, . . . , n) | Zi) for i in 1 to n, where

Ĝ(· | Z) is the local Kaplan-Meier estimator of G0(· | Z). There are 15 zero entries. We

have also computed the number of zero entries for Examples 2 and 3 when n=300 and τ

=0.5. The numbers are 35 and 10, respectively. Given these numbers, we believe that it is

reasonable to assume that the data set satisfies condition (C3).

In the previous simulation examples, all the bandwidths adopted are selected for co-

variates with range 0 to 1. Hence, in this data analysis, we standardise the covariates by

defining Z1 = Z∗1/{max(Z∗1)−min(Z∗1)}. Moreover, when choosing bandwidths, 5-fold cross

validation is implemented for all four methods with the check function as the loss function

for comparison. Using the Vanilla weight, our estimator gives the estimate

y = 3.56− 1.25Z1 − 0.09Z2, (5.1)

and adopting the Proposed opt weight, our estimate is

y = 3.43− 1.12Z1 − 0.11Z2. (5.2)

For the bootstrap confidence intervals, the bootstrap 95% confidence intervals for Z1 in our

Vanilla and Proposed opt approaches are (−1.76,−0.74) and (−1.59,−0.65), respectively,

demonstrating that Z1 is deemed significant by the model using both methods. In addition,

Proposed opt offers a shorter confidence interval. On the contrary, for Z2, the 95% con-

fidence intervals for Z2 in our Vanilla and Proposed opt approaches are (−0.27, 0.09) and

(−0.28, 0.06), respectively, which concludes that Z2 is not significant; the lengths of confi-
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Figure 3: Estimated conditional median survival times from the vanilla and propose opt
weight functions for (left) a female given her age and (right) a male given his age. The green
and red lines denote the estimations from Vanilla and Proposed opt, respectively.

dence intervals for both estimators are close. In Section 3, we have proposed an alternate

loss function 3.1. The estimates as well as the lengths of confidence intervals of Proposed opt

using both loss functions are similar, so we only report the result using the check function

as loss function here.

Figure 3 shows the estimated median log survival time (in years) versus age of patient on

date of surgery (in years) for both genders. The green and red lines are the estimation from

Vanilla and Proposed opt, respectively. The dashed lines represent the upper limit and lower

limit of the 95% pointwise bootstrap confidence interval from Proposed opt respectively. As

we can see in Table 4, which summarizes the lengths of the confidence intervals given by

the four procedures considered, Proposed opt produces the smallest length in the confidence

intervals of Z1 as well as the intercept. The lengths of confidence intervals for Z2 are close

among different methods, so Proposed opt is the most efficient method in this case.
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Table 4: Parameter estimates (Est), bootstrap standard errors (BSE) and lengths of confi-
dence intervals (LCI) for various methods

Est BSE LCI

Method β̂0 β̂1 β̂2 β̂0 β̂1 β̂2 β̂0 β̂1 β̂2

LT 3.56 -1.24 -0.06 0.25 0.26 0.08 0.98 1.02 0.30

WW 3.67 -1.37 -0.13 0.26 0.27 0.09 1.03 1.06 0.33

Vanilla 3.56 -1.25 -0.09 0.25 0.26 0.09 0.98 1.02 0.35

Proposed opt 3.43 -1.12 -0.11 0.24 0.24 0.09 0.93 0.94 0.34

6 Conclusion

With its growing popularity, censored quantile regression has been an active research area

with a wide range of applications. In the existing literature, inference of the model parame-

ters of interest is usually conducted via establishing martingale-based estimating equations

or optimizing convex objective function that generalizes the Koenker and Bassett (1978)

celebrated check function with suitable weights adjusted for partial information of censored

subjects. Although quite a few methods have been suggested, there has been little dis-

cussion on the relationships amongst these approaches, including, for instance, Peng and

Huang (2008), Wang and Wang (2009), Leng and Tong (2014) and De Becker et al. (2019);

the interrelationships amongst them still remain unclear. Another related open question

that has seldom been discussed is the estimation efficiency. Given the intricate forms of

the asymptotic variance of estimators for CQR models, the challenges involved in deriving

a statistically most efficient estimator are particularly prominent, especially when there is

further complication due to censored observations.

In this article, we begin with constructing a mean-zero estimating equation from which

our purposed vanilla estimator is asymptotically equivalent with many of the existing ones

in terms of estimation efficiency. Furthermore, by studying the asymptotic variance of our

estimator given an arbitrary weight function, we derive the most efficient estimator among a
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general class of Z-measurable weight functions. This optimal estimator coincide with the cor-

responding counterpart for non-censored data as discussed in Koenker (2005). Consistency

and asymptotic normality of the proposed estimator are established, justified also numeri-

cally via simulations and our analysis of gastric adenocarcinoma patients data at Helsinki

University Hospital. With the most efficient weight incorporated, our optimal estimator

outperforms the existing contenders.

As a final note, we have focused our discussion on ordinary right-censored time-to-event

data in this work. In various applications, however, lifetime data may be biased sampled in

nature due to study design or data collecting mechanism. Special treatments are required

to properly handle data with various bias sampling schemes. In particular, Xu et al. (2017)

developed a martingale based estimating procedure under general bias sampling schemes.

However, the corresponding efficiency issues have not yet been thoroughly investigated. The

corresponding problem of seeking most efficient weight for inference merits further detailed

investigations.

Supplementary Materials

The supplementary materials contain further technical details of the remark and the propo-

sition presented in Section 2. Proofs for the main theorems summarized in Section 3 are also

included.
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