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Abstract
The electronic structure of magnetic lanthanide atoms is fascinating from a fundamental
perspective. They have electrons in a submerged open 4f shell lying beneath a filled 6s shell with
strong relativistic correlations leading to a large magnetic moment and large electronic orbital
angular momentum. This large angular momentum leads to strong anisotropies, i. e. orientation
dependencies, in their mutual interactions. The long-ranged molecular anisotropies are crucial for
proposals to use ultracold lanthanide atoms in spin-based quantum computers, the realization of
exotic states in correlated matter, and the simulation of orbitronics found in magnetic
technologies. Short-ranged interactions and bond formation among these atomic species have thus
far not been well characterized. Efficient relativistic computations are required. Here, for the first
time we theoretically determine the electronic and ro-vibrational states of heavy homonuclear
lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods. In spite of the
complexity of their internal structure, we were able to obtain reliable spin–orbit and
correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to
two ground-state atoms. A tensor analysis allows us to expand the potentials between the atoms in
terms of a sum of seven spin–spin tensor operators simplifying future research. The strengths of
the tensor operators as functions of atom separation are presented and relationships among the
strengths, derived from the dispersive long-range interactions, are explained. Finally, low-lying
spectroscopically relevant ro-vibrational energy levels are computed with coupled-channels
calculations and analyzed.

1. Introduction

A challenging question of molecular chemistry is an accurate description of inter-atomic and
inter-molecular bonding at the quantum-mechanical level. This problem has attracted much attention but
is not always resolved. Over the last decades, novel perspectives on the problem have relied on ultracold
atoms and molecules. For example, quantum degenerate gases of atoms offer a unique platform on which to
build and form small molecules in single internal state as they avoid unwanted system complexity. Ultracold
gasses of atoms and molecules typically also allow for a high level of control and tunability and are well
isolated from their surroundings.

As part of these developments experimental breakthroughs in realizing quantum gases of atoms with
large magnetic moments [1–9] have also contributed. These atomic species tend to have a far more complex
electronic structure than that of alkali-metal or alkaline-earth species most often studied in the field. The
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magnetic lanthanides from dysprosium to thulium with their exceptionally large magnetic moments and
large orbital momenta are extreme examples of such species. This experimental research relied on
controllable and tunable anisotropic dipolar interactions between the atoms. The highly anisotropic
short-range interactions between lanthanide atoms, however, remain poorly understood as they require
knowledge of their chemical bonds. These systems form an excellent environment for explorations at the
interface between quantum chemistry and atomic and molecular physics.

In previous research, we developed a successful model Hamiltonian to study the anisotropic interactions
of bosonic Dy and Er in an external magnetic field [10, 11] and in collaboration with the experimental
groups of Drs Ferlaino and Pfau we found and analyzed hundreds of magnetic Feshbach resonances in their
collisions [12–14]. These resonances can be used to convert an atomic gas into a gas of highly-magnetic
molecules as well as to study the threshold properties or the ultracold collision-energy dependence of
three-body relaxation [15]. These atom–atom interactions have also been studied in thulium (Tm) [16, 17].

In spite of advances in the simulation of ultracold collisional interactions between heavy lanthanide
atoms, the fundamental nature of the relativistic bond and short-range electronic states in lanthanide
dimers as well as in the even-heavier actinide dimers remains mostly unexplored. Precise knowledge of
these interactions is clearly desirable for predicting their quantum vibrations and rotations. There exists an
exception though. Substantial progress has been made in understanding interaction in the homonuclear
diuranium molecule U2 [18–21]. The latest studies [20, 21] paid particular attention to the chemical bond
of U2 with its multi-orbital character. Relativistic and correlation effects using the Dirac equation for the
electrons were fully incorporated by the authors of reference [21] and enabled them to determine the
energies of the lowest electronic states of U2 in the vicinity of the equilibrium separation. In addition,
accurate ground-state potentials for heteronuclear dimer molecules that include one open 4f-shell
lanthanide atom and one non-lanthanide atom have become available [22–28].

The bond between two ground-state Er and two ground-state Tm atoms is the focus of this paper. The
interactions between the j = 6 Er atoms and between the j = 7/2 Tm atoms are anisotropic and orientation
dependent. Here, j is the total electron angular momentum of an atom. The anisotropy is a consequence of
potential energy differences for different relative orientations of the electron angular momenta in the open
4f12 and 4f13 shells of Er and Tm, respectively. These 4f electrons lie beneath a closed 6s2 shell so that these
molecules are chemically similar but have distinct physical properties. Electron motion in lanthanides is
strongly correlated and relativistic and spin–orbit coupling is strong.

The ground-state manifold of Er2 and Tm2 has a large number of electronic states. They are labeled by
projection quantum number Ω with values up to 2j of the total dimer electron angular momentum on the
symmetry axis of the molecule and well as other selection quantum numbers. Because of this complexity,
the intermolecular interactions until now have not been accurately characterized. To fulfill these objectives
we have performed, for the first time, relativistic configuration-interaction calculations of all Ω states as a
function of interatomic separation R for Er2 and Tm2 using the DIRAC code [29]. These
configuration-interaction calculations determine the short-range energy splittings among the 91 and 36
distinct adiabatic potentials of the Er2 and Tm2 dimers, respectively.

Furthermore, we have setup an analytical spin-coupling or spin-tensor representation of the short-range
electronic potential surfaces for their use in determining rotational-vibrational levels in this paper and
future improved simulations of the scattering of ultra-cold Er and Tm atoms. This representation has seven
spin tensor operators and follows from the analytic form of the long-range anisotropic dispersion or
van-der-Waals interaction. We find that the splittings among the Er2 and Tm2 potentials are dominated by a
single anisotropic dipolar coupling between one of the atomic angular momenta and the mechanical
rotation of the atom pair. We have also computed the long-range coupling strengths for the seven tensor
operators based on all known atomic transition energies and transition dipole moments of Er and Tm. In
fact, we find simple relationships among the seven spin-tensor operators contributing to the long-range
interaction Hamiltonian.

Finally, we predict the relativistic Hund’s case (c) structure of the energetically-lowest
rotational-vibrational levels of the homonuclear Er2 and Tm2 dimers using a discrete-variable
representation for the vibrational motion. We hope that our predictions will pave the way to spectroscopic
studies of these complex and interesting molecules in the near future.

2. Results and discussion

2.1. Ground electronic states of Er2 and Tm2

In this section we provide the relevant information on molecular electronic properties for two homonuclear
lanthanide molecules, Er2 and Tm2, using a two-step approach to determine short-range electronic
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Figure 1. Potential energies of the energetically-lowest ‘spin-stretched’ states of Er2 (black curve, Ωσ = 12g) and Tm2 (red curve,
Ωσ = 7u) as functions of internuclear separation R. The calculations are based on non-relativistic configuration-interaction and
non-relativistic coupled-cluster theory for Er2 and Tm2, respectively. The zero of energy is at the dissociation limit of two
ground-state atoms.

potential surfaces for all molecular states that dissociate to Er or Tm atoms in the electronic ground states
[Xe]4f126s2(3H6) and [Xe]4f13 6s2(2F7/2), respectively. These electronic configurations contain
partially-filled or open submerged 4f and chemically-active 6s atomic orbitals. Computational details and
justification of the two step process are presented in section 3 as well as the appendices.

In the first step of our study, we focus on the spin-stretched states of Er2 with Ωσ = 12g and Tm2 with
Ωσ = 7u, where subscripts σ = g and u for gerade or ungerade indicate the inversion symmetry of the
electron wavefunction with respect to the center of charge. These states have the maximum allowed total
electron spin quantum number S and the maximum projection quantum number Λ of the total electron
orbital angular momentum along the internuclear axis, corresponding to the S = 2,Λ = 10 and
S = 1,Λ = 6 states for Er2 and Tm2, respectively. We have used non-relativistic configuration-interaction or
coupled-cluster calculations to determine an accurate depth for the potential energy of these spin-stretched
states.

Figure 1 shows the spin-stretched potential energy curves for Er2 and Tm2 as functions of interatomic
separation R. The relatively shallow potential depths of just under hc × 800 cm−1 reflect the covalent bond
of the two closed 6s2 orbitals. The equilibrium separations at the potential minima are Re = 8.7a0 and 8.6a0

for Er2 and Tm2, respectively. Here, h is Planck’s constant, c is the speed of light in vacuum, and
a0 = 0.052 9177 nm is the Bohr radius. The depth and shape of these potentials is similar to that of the
X1Σ+

g state of the non-magnetic Yb2 [30].
In a second step, we determine energy splittings among the Er2 and Tm2 potentials, using

fully-relativistic configuration-interaction method implemented into DIRAC 2019 [29] that includes
spin–orbit and anisotropic short-range interactions between atoms with two open 4f shells. The states are
described by the projection quantum number of the total electronic angular momentum �jel = �j1 + �j2 on
the internuclear axis Ω, the gerade and ungerade symmetry, and a parity symmetry for Ω = 0 states.
Here, Ω ranges from 0 to 12 for Er2 and 0 to 7 for Tm2 and labeling Ω± = 0+ or 0− indicates a
symmetry with respect to the reflection of the electron wavefunction through a plane containing the
internuclear axis.

Figures 2(a) and (c) show the gerade relativistic potential energy surfaces (PESs) for Er2 and Tm2 as
functions of internuclear separation near their equilibrium separation. There are 49 gerade potentials for
Er2 and 16 for Tm2. For the separations shown in the figure and, in fact, for larger separations the splittings
are less than 10 % of the depth of the potentials relative to the dissociation energy. The figures for the
ungerade states is qualitatively similar and reproduced in the appendices. There are 42 and 20 ungerade
potentials for Er2 and Tm2, respectively.

The splittings among the gerade relativistic potentials seem at first glance nontrivial. A pattern, however,
emerges when we plot the potential energies at a single R near the equilibrium separation as functions of
projection quantum number Ω, see figures 2(b) and (d). For both dimers the energetically lowest potential
is a 0+g state. We also observe that the splittings among states with the same Ω gradually decrease with
increasing Ω. In fact, the potential energies at the equilibrium separation are arranged in parabolic shapes.
Finally, for Er2 the 0+g state with the smallest well depth is nearly degenerate with the spin stretched 12g

state. A discussion of the origin of this pattern is given in the following subsection. Please note that the
Ω = 7 state for Tm2 has ungerade symmetry.
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Figure 2. Relativistic Ω±
g potential energy curves with gerade symmetry for Er2 (panel a) and Tm2 (panel c) as functions of

internuclear separation R near the equilibrium separation as obtained from electronic structure calculations. All potentials
approach zero energy for R →∞. Panels (b) and (d) show potential energies from panels (a) and (c) using the same line colors at
the equilibrium separation as functions of projection quantum number Ω for Er2 and Tm2, respectively. Gerade Ω = 0 states are
0+ states. Potentials of states with Ω and −Ω are degenerate.

2.2. Spin tensor decomposition of Er2 and Tm2 PESs
A tensor decomposition of the PESs enables us to write PESs as weighted sums of spin-spin coupling terms.
It removes the need for a complicated evaluation of non-adiabatic couplings among potentials. We believe
that the tensor format is essential for our molecular systems with their tens to hundred adiabatic channel
potentials in the ground configuration.

Here, we apply the tensor decomposition technique developed in our previous study of scattering
dynamics between ultracold Dy atoms [10] assuming that the molecular electronic wavefunction is well
represented by superpositions of (anti-)symmetrized, parity-conserving products of atomic electronic
ground states |jimi〉 or |jiΩi〉 for atom i = 1, 2. Atomic states are labeled by eigenvalues of the total
electronic angular momentum operator �ji, where projection quantum numbers along a space-fixed
quantization axis are denoted by mi and those along the body-fixed internuclear axis by Ωi. For
homonuclear systems j1 = j2 ≡ j. Nevertheless, subscripts 1 and 2 on operators �ji and atomic states are kept
to indicate the appropriate atom. (As always we omit the reduced Planck constant � in describing the
eigenvalues of angular momentum operators.)

The atom-atom interactions are then expressed as a sum of isotropic and anisotropic spin-tensor
interactions. In principle, an infinite number of such interactions of ever increasing complexity exist. We,
however, only include the seven low-rank tensors that describe the van-der-Waals interaction at large
interatomic separations [10]. These are

V(�R) =
∑

k=0,2,4

Nk∑
i=1

V (i)
k (R)

k∑
q=−k

(−1)qT(i)
kq Ck,−q(R̂) (1)

with rank-k spherical tensor operators T(i)
kq with components q, spherical harmonic functions Ckq(R̂) with

Ckq(0̂) = δq0, and R̂ is the orientation of the interatomic axis. Here, δij is the Kronecker delta. The seven T(i)
kq

correspond to three isotropic rank-0 tensors

T̂(1)
00 = I, (2)

T̂(2)
00 = [j1 ⊗ j2]00/�

2, (3)

T̂(3)
00 =

[
[j1 ⊗ j1]2 ⊗ [j2 ⊗ j2]2

]
00
/�4, (4)

three anisotropic rank-2 tensors

T̂(1)
2q = [j1 ⊗ j1]2q/�

2 + [j2 ⊗ j2]2q/�
2, (5)

T̂(2)
2q = [j1 ⊗ j2]2q/�

2, (6)

T̂(3)
2q =

[
[j1 ⊗ j1]2 ⊗ [j2 ⊗ j2]2

]
2q
/�4, (7)

4
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Figure 3. The fitted anisotropic spin-tensor strength V (1)
k=2(R) for Er2 (panel a) and Tm2 (panel b) as a function of R (black curve

labeled DIRAC with gray one-standard-deviation uncertainty band). The strength is compared to the van-der-Waals dispersion
potential C(1)

k=2/R6 (blue curve with brown one-standard-deviation uncertainty band).

and a single anisotropic rank-4 tensor

T̂(1)
4q =

[
[j1 ⊗ j1]2 ⊗ [j2 ⊗ j2]2

]
4q
/�4. (8)

Thus N0 = 3, N2 = 3, and N4 = 1 in equation (1). We have followed the ⊗ notation of reference [31] for
combining spherical tensor operators, which is equivalent to the notation used in reference [32]. Then I is
the identity operator, and [j1 ⊗ j2]kq denotes a tensor product of angular momentum operators �j1 and �j2

coupled to an operator of rank k and component q. Finally, V (i)
k (R) are R-dependent strengths with units of

energy.
The eigenvalues of the interaction operator V(�R) as functions of R correspond to the adiabatic

electronic potentials. The corresponding eigenstates are R-dependent superpositions of
|j1Ω1〉|j2Ω2〉+ εσ|j2Ω2〉|j1Ω1〉 (excluding normalization) with the constraints that Ω = Ω1 +Ω2 � 0 and
gerade/ungerade inversion symmetry are conserved. Here, σ = +1/− 1 for gerade/ungerade states and
ε = +1/− 1 for Er and Tm, respectively.

We obtain the strengths V (i)
k (R) by a least-squares procedure minimizing the differences of the splittings

with respect to the spin-stretched potential. We only do so for separations R � 12a0 for which DIRAC 2019
converged. All V (i)

k (R) except V (1)
k=0(R) and V (1)

k=2(R) are consistent with zero. Thus, the dominant
spin-tensor operators are either spin independent or a rank-2 tensor operator, corresponding to an
R-dependent effective atomic quadrupole moment coupled to the rotation of the dimer. The
spin-independent strength V (1)

k=0(R) closely follows the spin-stretch potential shown in figure 1. See the

appendices for our recommended choice to construct the seven V (i)
k (R), for uncertainty budgets, and for the

procedure to construct strengths for R > 12a0.
The fitted V (1)

k=2(R) for Er2 and Tm2 are shown in figure 3 as functions of R up to 12a0. The anisotropic
strength is positive, is at most a few times hc × 1 cm−1, and approaches zero for large R. Finally, these
anisotropic strengths are at least two orders of magnitude smaller than V (1)

k=0(R). Tables with values for

V (1)
k=0(R) and V (1)

k=2(R) can be found in the appendices.
The dominance of the isotropic spin-independent tensor operator is a consequence of the fact that the

spatial extent of the 4f orbital is much smaller than that of the 6s orbital. In fact, the 4f orbital of one atom
does not significantly overlap with that of a nearby Er or Tm atom even for R near the equilibrium
separation.

We can now explain the origin of the patterns seen in figure 2. Including only the two dominant spin
tensor operators in V(�R), eigenstates of V(�R) correspond to single |j1Ω1〉|j2Ω2〉+ εσ|j2Ω2〉|j1Ω1〉 states.
They have eigenenergies

V(R; Ω) = V (1)
k=0(R) + V (1)

k=2(R)
3(Ω2

1 +Ω2
2) − 2j(j + 1)√

6
. (9)

5



New J. Phys. 23 (2021) 085007 E Tiesinga et al

with quadratic or parabolic dependences on Ω1 and Ω2 (and thus Ω). For Er2 with positive V (1)
k=2(R) and

integer j, equation (9) predicts that the Ω1 = Ω2 = 0 state and thus an Ω = 0 state has the lowest potential
energy. In fact, for Er2 this is a 0+g state. In addition, equation (9) implies that the energetically-highest
Ω = 0 state is degenerate with the sole spin-stretched Ω = 12 state. In fact, multiple degenerate adiabatic
states with the same value for Ω1 but opposite-signed values for Ω2 exist.

For Tm2 also with positive V (1)
k=2(R) but now half-integer j, the model is quite satisfactory as well.

Equation (9) predicts that states with |Ω1| = |Ω2| = 1/2 have the lowest energy. In this case, Ωσ is either 0+g
or 0−u (both with Ω1 = −Ω2 = 1/2) or 1u (with Ω1 = Ω2 = 1/2) and the ground state should be three-fold
degenerate. In fact, the energetically-lowest level from the DIRAC calculations is a 0+g state. Any removal of
degeneracies is due to one or more of the five weaker spin-tensor operators not accounted for in
equation (9).

Although the five weaker spin-tensor operators could not be reliably extracted from the least-squares
adjustment to all splittings among the relativistic potentials of Tm2, additional analyses show that the
spin-tensors in equations (3) and (6) are the most important of the five. The first-order correction to the
energy due to these two spin-tensor operators is(

− 1√
3

V (2)
0 (R) +

2√
6

V (2)
2 (R)

)
Ω1Ω2 (10)

with a positive value within the parenthesis. Thus the 0+g state has a lower potential energy than the 1u state.

2.3. Spin-tensors for long-range interactions
The results shown in figures 2 and 3 were focused on the deepest parts of the potentials. For scattering of
ultracold atoms the long-range or large R part of the potential is equally important. The long-range form
involves the van-der-Waals as well as magnetic and quadrupolar interactions.

In our model for V(�R) all seven strengths V (i)
k (R) have a C(i)

k /R6 contribution for R →∞. Here, C(i)
k are

van-der-Waals coefficients. The k = 2, i = 2 strength has a second long-range contribution. That is,
V (2)

2 (R) → D(2)
2 /R3 + C(2)

2 /R6, where D(2)
2 /R3 describes the magnetic dipole–dipole interaction between the

magnetic moments of the lanthanides atoms. Its strength D(2)
2 is −

√
6α2(gj/2)2Eha3

0, where gj is the
electronic g-factor of the atomic ground state, α is the fine-structure constant, and Eh = 4.359 74 × 10−18 J
is the Hartree energy. The magnetic dipole-dipole interaction is not captured by electronic structure
calculations, but is relevant for scattering calculations.

The rank-4 strength V (1)
k=4(R) has a second long-range contribution as well. It approaches

Q(1)
4 /R5 + C(1)

4 /R6 for large R with a 1/R5 quadrupole–quadrupole term with coefficient
Q(1)

4 = 6
√

70(Q/ea2
0)2/[j2

i (2ji − 1)2] × Eha5
0 for homonuclear dimers that is solely determined by the

atomic quadrupole moment Q = 〈jiji|Q20|jiji〉 of the mi = ji spin-stretched state of Er or Tm [33] and e is
the positive elementary charge. The quadrupole moment for erbium was calculated in our previous paper
[12] and equals 0.029ea2

0. For thulium Q is not available, but expected to be equally small compared to ea2
0.

For ro-vibrational simulations with thulium we use Q = 0.
We have determined the C(i)

k coefficients for Er2 and Tm2 from second-order perturbation theory in the
electric dipole-dipole interaction using experimentally-determined atomic transition frequencies and
oscillator strengths or Einstein A coefficients as well as their reported uncertainties. We closely follow the
calculations in references [10, 34] for the dysprosium dimer. The evaluation of the seven van-der-Waals
coefficients is described in the appendices. Values are given in table 1, while correlation coefficients are
given in the appendices. The relative sizes of the C(i)

k reinforce the observations regarding the strengths

V (i)
k (R) derived from the electronic structure calculations

For Er2 we observe that the absolute value of the magnetic dipole–dipole interaction |D(2)
2 |/R3 equals

C(1)
2 /R6 at R ≈ 35a0 and C(2)

2 /R6 at R ≈ 18a0. Hence, for R � 35a0 the magnetic dipole–dipole interaction
is the strongest anisotropic interaction, while for smaller R the effective quadrupole interaction of
equation (5) is the strongest anisotropic interaction.

Less obvious from table 1 is that we have been able to derive non-trivial algebraic relationships among
the C(i)

k thereby reducing the number of independent dispersion coefficients from 7 to 4. We find that

C(2)
2 =

√
2C(2)

0 (11)

showing that the spin-exchange strength and the effective dipole–dipole strength multiplying equations (3)
and (6), respectively, are related. Similarly, we find that

C(3)
2 =

√
10

7
C(3)

0 and C(1)
4 = 6

√
18

7
C(3)

0 (12)

6
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Table 1. Isotropic and anisotropic van-der-Waals dispersion coefficients C(i)
k for Er + Er and

Tm + Tm sorted by value and then by rank k. The first three columns label the seven tensor
operators. The last two columns give their value and its one-standard-deviation statistical
uncertainties. The strength of tensor operator [j1 ⊗ j2]2 is

√
2 times larger than that of

[j1 ⊗ j2]0. Similarly, the strengths of the last three tensor operators of each dimer are related
by simple algebraic factors discussed in the text. For numerical convenience the strengths are
given with additional digits.

Homonuclear erbium dimer

k i Operator T(i)
k C(i)

k (units of Eha6
0) u(C(i)

k ) (units of Eha6
0)

0 1 I −1723.072 389 927 65
2 1 [j1 ⊗ j1]2 + [j2 ⊗ j2]2 1.903 660 883 0.57
0 2 [j1 ⊗ j2]0 0.171 750 953 0.099
2 2 [j1 ⊗ j2]2 0.242 892 527 0.14
0 3 [[j1 ⊗ j1]2 ⊗ [j2 ⊗ j2]2]0 −0.000 943 784 0.000 55
2 3 [[j1 ⊗ j1]2 ⊗ [j2 ⊗ j2]2]2 −0.001 128 037 0.000 66
4 1 [[j1 ⊗ j1]2 ⊗ [j2 ⊗ j2]2]4 −0.009 080 527 0.0053

Homonuclear thulium dimer
0 1 I −1672.115 030 649 54
2 1 [j1 ⊗ j1]2 + [j2 ⊗ j2]2 0.788 488 761 1.47
0 2 [j1 ⊗ j2]0 0.001 566 976 0.012
2 2 [j1 ⊗ j2]2 0.002 216 039 0.017
0 3 [[j1 ⊗ j1]2 ⊗ [j2 ⊗ j2]2]0 −0.000 309 025 0.000 60
2 3 [[j1 ⊗ j1]2 ⊗ [j2 ⊗ j2]2]2 −0.000 369 355 0.000 72
4 1 [[j1 ⊗ j1]2 ⊗ [j2 ⊗ j2]2]4 −0.002 973 250 0.0058

relating the strengths of the three spin-tensors constructed from the two effective atomic quadrupole
operators [j1 ⊗ j1]2 and [j2 ⊗ j2]2. The derivation of these relations can be found in the appendices.

2.4. Ro-vibrational eigenstates
We finish our analyses of Er2 and Tm2 by computing their energetically-lowest ro-vibrational eigenstates.
That is, we compute eigenstates of −�

2∇2/(2μ) + V(�R), where μ = m/2 and m is the mass of the Er or Tm
atom [35]. We discretize the radial component of the kinetic energy operator −�

2∇2/(2μ) using the
discrete-variable representation of reference [36]. Details regarding the selection of the spin and angular
momentum basis and, in particular, the orbital or partial-wave angular momentum �� and total molecular
angular momentum�J of the two rotating atoms are given in section 3.3. We present results from two
calculations. One is based on potential V(�R) including only the two dominant spin tensors T̂(1)

0 and T̂(1)
2 ,

constructed by joining the electronic structure data with the long-range potentials, and one where all seven
tensor operators are included. For latter case, the R-dependence of the remaining five weaker spin tensor
operators is given by their long-range form for all R.

Figure 4 shows three views of ro-vibrational eigenenergies of bosonic 168Er2 states near the minimum of
the adiabatic potentials. As the nuclear spin of 168Er is zero gerade basis states have even values for partial
wave �. Ungerade basis states require odd �. The pattern of the energy levels in the hc × 150 cm−1 energy
range in figure 4(a) can be understood from the seven 0+g adiabatic potentials shown in figures 2(a) and (b)
and equation (9). The vibrational energy spacing based on the harmonic approximation around the
minima of the nearly-parallel adiabatic potentials is hc × 27.0 cm−1 so that vibrational levels v = 0, 1, . . . , 5
are visible in the figure. For each v the spacings among the seven 0+g states are to good approximation

found from
√

6V (1)
k=2(Re)Ω2

1 for |Ω1| = 0, . . . , 6 with
√

6V (1)
k=2(Re) = hc × 2.3 cm−1 at the equilibrium

separation. The molecular fine-structure thus overlaps with the vibrational structure.
Figure 4(b) shows v = 0 Ω±

g/u
168Er2 eigenstates over an energy region of only hc × 15 cm−1 versus total

molecular angular momentum J. Based on calculations that include all spin tensors. Panel (c) shows
equivalent data including only the two strongest spin tensors. The level density in both two panels is large,
although the level patterns are distinct with differences around hc × 1 cm−1. In other words, the weaker
spin-tensors cannot be ignored in an accurate analysis of the lowest energy states of Er2.

Surprisingly, we predict that the J = 10 rotational state of the v = 0 0+g ground state has the absolute
lowest energy when all interactions are included. The reason for this and other unexpected rotational
progressions is the degeneracies of different Ω states inherent in the model of equation (9) as well as more
accidental degeneracies due to the high level density. The Coriolis force in a rotating molecule breaks these
(near-)degeneracies for states with Ω values that differ by one unit. For large J coupling matrix elements are
on the order of BeJj1, which can easily reach values of order hc × 1 cm−1 comparable to or larger than
V (1)

k=2(Re), even when Be is not. Degenerate perturbation theory then predicts ‘rotational’ progressions

7
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Figure 4. Three views of eigenenergies E of bosonic 168Er2 near the minima of its potentials. Energies are with respect to the
dissociation limit of two 168Er atoms. Panel (a) shows the energies of the fine-structure components for the six
energetically-lowest J = 0 vibrational levels v of the 0+

g state. For each v these 0+
g states are uniquely labeled by the expectation

value of |Ω1|, which are close to integer valued. Orange-filled and yellow-filled circles are the result of calculations that include all
spin-tensor interactions and only include the two strongest spin tensors, respectively. Panel (b) shows the energies of v = 0
rotational eigenstates versus J for calculations that include all tensor operators, while panel (c) shows equivalent data including
only the two strongest spin tensors. Labeled colored circles correspond to gerade states. Solid gray markers correspond to the
energies of ungerade states. Finally, black curves in panels (b) and (c) correspond to progressions BeJ(J + 1), where
Be = hc × 0.0095 cm−1 is the rotational constant at the equilibrium separation. Note the different energy range in panel (a)
versus that in panels (b) and (c).

of the form ±AeJ + BeJ(J + 1), where energy Ae with |Ae| � Be can be computed on a case by
case basis.

Figure 5 shows the lowest eigenenergies of 169Tm2 near the minimum of its adiabatic potentials versus
total molecular angular momentum J. Both gerade and ungerade states are shown and assigned Ω±

g/u labels.

The nuclear spin�ı of 169Tm is 1/2, making the atoms bosons, and hyperfine interactions of the form
ahf�j1 ·�ı1/�

2 etc mix gerade and ungerade states, although even and odd � remain uncoupled. We do not
include such interactions and gerade states with either even and odd � must be shown. Similarly, ungerade
states with even and odd � exist. It is worth noting that the 169Tm hyperfine constant ahf = hc ×
0.0062 cm−1 [16] and hyperfine couplings can mostly be neglected in the analysis of the bound states on
the scale shown in the figure.

The Tm2 level structure is significantly simpler than that for Er2, even though the vibrational spacings
and rotational constants of the two dimers are nearly the same. The dominant anisotropic spin-tensor
interaction in Tm2 is close to three times larger than in Er2, as seen in figure 3, thereby reducing the number
of Ω±

σ states between the v = 0 and 1 vibrational states. The vibrational and rotational spectroscopic
constants for Tm2 are hc × 27.2 cm−1 and hc × 0.0096 cm−1, respectively. Unlike for Er2 the remaining five
weaker spin-tensor operator play no significant role.

Figure 5(b) shows that the v = 0, J = 0 0+g state is the absolute ground state. This 0+g state has a ‘simple’
BeJ(J + 1) rotational progression. The nearby ungerade states have a less-conventional rotational
progression. Here, this follows from the four-fold degeneracy for the lowest-energy states implied by
equation (9). The four states have |Ω1| = |Ω2| = 1/2 and labels Ω±

σ = 0+g , 0−u and twice 1u. In fact, a careful
analytical analysis of the centrifugal and coriolis interactions within the degenerate manifold shows that in
the limit J → 0 the ungerade levels have energies that lie tens of Be above that of the 0+g state. For large J two
of the three ungerade states become equal mixtures of 1u and 0−u . The ungerade state with the second-lowest
energy remains of pure 1u symmetry. Finally, we observe that the energetically-lowest ungerade state has
J = 3.

8
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Figure 5. Eigenenergies E of 169Tm2 near the minima of its potentials. Energies are with respect to the dissociation limit of two
169Tm atoms. Panel (a) shows energies of v = 0 and v = 1 Ω±

σ vibrational and fine-structure eigenstates versus total molecular
angular momentum J for calculations that include all spin-tensors interactions. Levels enclosed by orange dashed boxes are v = 1
states. All others are v = 0 states. Panel (b) shows a blowup of the energies of the energetically-lowest 0+

g , 0−
u , and 1u states.

Unusual rotational progressions are visible and are discussed in the text. Color and type of markers, as indicated in the legend
box, separate gerade from ungerade states as well as even from odd partial wave � states and are the same in both panels. Note the
different energy ranges shown in the two panels.

3. Methods

3.1. Spin-stretched electronic potentials
The spin-stretched potentials Vss(R) for Er2 and Tm2 have been obtained from (partially-) spin-restricted
single-reference non-relativistic coupled-cluster calculations that included single, double and perturbative
triple (RCCSD(T)) excitations [37]. For the calculations the total electron spin S is 2 and 1 for Er2 and Tm2,
respectively. In addition, the projection quantum number Λ of the total electron orbital angular
momentum along the internuclear axis is 10 and 6 for Er2 and Tm2, respectively.

We use the Stuttgart/Cologne ‘small-core’ quasi-relativistic effective core potentials (ECPs) developed
for rare-earth elements (ECP28MWBSO) [38] to describe the twenty eight 1s, 2sp, and 3spd electrons of the
Er and Tm atoms. The remaining electrons are described by the relativistic small core segmented [39]
atomic basis set of quadruple-zeta quality developed for the ECPs. We extend the basis set with three diffuse
Gaussian s functions with exponents 0.1495, 0.01, and 0.004 12; two p functions with exponents 0.048 95
and 0.0211; one d function with exponent 0.027 99; and one f and g function both with exponent 0.1068,
respectively. All exponents are in units of a−2

0 . In order to converge the preliminary self-consistent-field
(SCF) calculations of neutral Er2 and Tm2, we start from the SCF orbitals for molecular ions Er4+

2 and
Tm4+

2 .
Based on a comparison of results found with different basis set size, the one-standard-deviation

uncertainty of the spin-stretched potential is about hc × 50 cm−1 at the equilibrium separation and drops
to less than hc × 1 cm−1 at R = 20a0. See tables in the appendices for precise data on the spin-stretched
potentials. A description of the extrapolation to R > 20a0 can also be found there.

3.2. Relativistic calculation of potential splittings
We use the direct relativistic configuration interaction (DIRRCI) method [40] in DIRAC [29] to determine
the energy splittings between the relativistic adiabatic potential curves of Er2 and Tm2 dissociating to two
ground-state atoms.

As in the non-relativistic calculations converging SCF calculations for the neutral dimers start from SCF
orbitals for Er4+

2 and Tm4+
2 . A reordering of the occupied 6s and open-shell 4f orbitals is then required in

the input data for DIRAC. In practice, we only determine the SCF orbitals at R = 12a0 in this manner. SCF
orbitals for R < 12a0 are found starting from orbitals for the neutral dimer obtained for a slightly larger R.
We repeat the scheme to small R until the potentials are repulsive.

The active space in the DIRRCI calculations is solely composed of molecular orbitals arising from the 4f
atomic shells. The 6s orbitals are kept doubly occupied and are not part of the active space. In addition, 5d
orbitals remain unoccupied. These constraints balance the need for reasonable estimates of splittings among
the relativistic potentials and a reasonable run-time and memory usage for the calculations. For R > 12a0,
we find that the splittings contain noticeable numerical noise and unphysical jumps, sometimes reordering
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states. This is likely due to an insufficient accuracy of molecular orbitals in the initial SCF calculations. We
do not include R > 12a0 DIRAC calculations in our analysis. For state assignment it proved useful to
determine the expectation values of the z-components of the total electronic orbital angular momentum
and spin operators along the internuclear axis.

DIRRCI calculations have been performed for 25 and 28 internuclear separations between
7a0 < R � 12a0 for Er2 and Tm2, respectively. At each of these R values, we determine the 91 relativistic
potential energies and eigenstates for Er2. For Tm2 we find 36 eigenpairs. An eigenstate is uniquely labeled
by n,Ω±

g/u with n = 1, 2, 3, . . . for Ω±
g/u states ordered by increasing potential energy. We denote relativistic

eigenenergies by Urel(R; n,Ω±
g/u). For the 12g and 7u spin-stretched state for Er2 and Tm2, respectively, there

exists just one potential dissociating to two ground state atoms. For our identical ground-state atoms gerade
states are 0+ states, while ungerade states are 0− states. A discussion of di-atomic symmetries and molecular
state labels can be found in references [41, 42].

With the constraints on the active space in the DIRRCI calculations, we sacrificed on the accuracy of the
depth of the potentials. Those are mainly determined by excitations of electrons out of the 6s orbitals. In
order to obtain accurate adiabatic potential energy curves Vrel(R; n,Ω±

g/u), we assume that the
non-relativistic spin-stretched potential Vss(R) is a good representation of the potential for the relativistic
spin-stretched state. The adiabatic potentials for the other adiabatic states are then

Vrel(R; n,Ω±
g/u) = Vss(R) −

(
Urel(R; n,Ω±

g/u) − Urel(R; 1,Ωss)
)

(13)

when R � 12a0 and Ωss = 12g and 7u for Er2 and Tm2, respectively. The uncertainties in the R � 12a0

calculations and extrapolation to R > 12a0 using the long-range dispersion potentials are discussed in the
appendices. The potentials in equation (13) are used in the least-squares fitting to spin-tensor operators as
described in the main text.

3.3. Basis sets in ro-vibrational state calculations
We use the unit-normalized coupled spin and angular momentum basis

|(jel�)JM〉 ≡
∑
mjm�

|(j1j2)jelmel〉Y�m�
(R̂)〈jel�melm�|JM〉 (14)

for the calculation of ro-vibrational states of Er2 and Tm2 with

|(j1j2)jelmel〉 =
∑
m1m2

|j1m1〉|j2m2〉〈j1j2m1m2|jelmel〉

and spherical harmonic functions Y�m(R̂). Here, 〈j1j2m1m2|jm〉 are Clebsch–Gordan coefficients. The total

molecular angular momentum�J = ��+ �jel is conserved, �jel = �j1 + �j2, and projection quantum numbers mx

and M are with respect to a space-fixed coordinate system. Basis states with even and odd jel contribute to
gerade and ungerade molecular states, respectively, and are not mixed by the molecular Hamiltonian.
Similarly, the Hamiltonian does not couple basis states with even partial wave � with those with odd �.
Atomic masses have been taken from references [43, 44] and atomic g-factors from reference [45].

4. Conclusions

We have studied the electronic properties of two heavy homonuclear lanthanide molecules, Er2 and Tm2. A
hybrid non-relativistic/relativistic electronic structure approach was needed to overcome the computational
challenges arising from the complexity of their open submerged 4f electronic shell structure partially hidden
by a closed 6s2 shell. This allowed us for the first time to determine a complete set of ground-state
potentials for a wide range of interatomic separations.

A non-relativistic coupled-cluster calculation was used to determine the spin-stretched PESs with the
maximum allowed total electron spin S and projection quantum number Λ of the total electron orbital
angular momentum along the internuclear axis. Then we used a relativistic multi-configuration-interaction
calculation to determine the splittings among the potentials dissociating to two ground state atoms. There
are 91 gerade/ungerade potentials for Er2 (with Ωs from 0 to 12) and 36 potentials for Tm2 (with Ωs from 0
to 7). We identified the splittings as due to different relative orientations of the angular momenta of 4f shell
electrons.

To facilitate the application of our electronic structure predictions in spectroscopic and scattering
dynamics studies we analytically expressed the potential energy operator for Er2 and Tm2 as a sum of a
small number of spherical-tensor operators and elucidated the relationships between their electrostatic,
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relativistic, and magnetic dipole–dipole interactions. The largest tensor operator is spin-independent and
isotropic, followed by an anisotropic one coupling the quadrupole moment of the atom to the rotation of
the molecule.

Finally, we computed the spectroscopically relevant lowest ro-vibrational eigenstates of Er2 and Tm2.
This data can be used as preliminary information for setting up spectroscopic studies of these exotic and
technologically important systems.
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Appendix A. Table of content for appendices

These appendices contain the input data and a derivation needed to reproduce the potentials presented in
our article on the interactions between two ground-state erbium atoms and two ground-state thulium
atoms. We give tables for non-relativistic spin-stretched potentials and relativistic anisotropic spin-tensor
strengths. The main text has a graph of the potentials of gerade states of the two dimers. Here, we present
the equivalent figure of potentials for ungerade states.

In addition, we derive the long-range van-der-Waals dispersion interactions for our high-spin Er and
Tm atoms. We find that these interactions can be described in terms of seven spin-tensor operators, whose
strengths or van-der-Waals coefficients are linearly dependent. In fact, only four independent dispersion
coefficients exist. We also give tables of Er and Tm atomic transition frequencies and Einstein A coefficients
or oscillator strengths on which the values of the dispersion coefficients in the table in the main text are
based.

We use Planck’s constant h and the speed of light in vacuum c in converting energies into wavenumbers.

Appendix B. Non-relativistic spin-stretched states of Er2 and Tm2

The spin-stretched potentials for Er2 and Tm2 dissociating to two ground-state atoms have been obtained
from non-relativistic single-reference coupled-cluster calculations that included single, double and
perturbative triple excitations (RCCSD(T)). The orbital basis sets for these calculations have been described
in section 3. The total electron spin S and orbital-angular-momentum projection quantum number Λ are
conserved quantities and for this state have their maximum allowed value. We have (S,Λ) = (2, 10) and
(1, 6) for Er2 and Tm2, respectively.

The spin-stretched potential Uss(R) for Er2 has been determined with coupled-cluster theory as
implemented in CFOUR [46] at 59 separations between Rmin = 7.3a0 and Rmax = 20a0 as well as at
R∞ = 200a0 in order to determine the dissociation energy of the potential. Here, a0 = 0.052 9177 nm is the
Bohr radius. The spin-stretched potential for Tm2 has been determined using coupled-cluster theory as
implemented in Molpro [47] at 72 separations between Rmin = 6.25a0 and Rmax = 20a0 as well as at
R∞ = 60a0. Potentials

Vss(R) = Uss(R) − Uss(R∞) (B1)

of Er2 and Tm2 up to R = Rmax are given in tables 2 and 3, respectively.
The spin-stretched potential for R < Rmin is found by linear extrapolation using the first two separations

larger than or equal to Rmin. For R > Rdisp with Rdisp > Rmax we use the dispersive form

Vdisp(R) = C6,ss/R6 + C8,ss/R8 + C10,ss/R10, (B2)

where the van-der-Waals coefficient C6,ss is

Css = C(1)
0 + (2j)(2j − 1)C(1)

2 /
√

6 (B3)

with j = 6 and 7/2 for Er2 and Tm2, respectively based on two relevant values for C(i)
k are given in the table

in the main text and the derivation in this appendix B. Coefficients C8,ss and C10,ss are fixed such that the
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Table 2. Potential energy Vss(R) of the energetically-lowest ‘spin-stretched’ state of Er2Ω= 12g

as function of internuclear separation R. The R-dependent uncertainty of this potential is
discussed in the text.

R/a0 Vss/hc (cm−1) R/a0 Vss/hc (cm−1) R/a0 Vss/hc (cm−1)

7.3 136.928 967 055 564 9.3 −702.972 094 884 141 11.6 −290.170 412 396 272
7.4 −33.406 301 542 6345 9.4 −685.377 674 371 753 11.8 −265.152 758 759 965
7.5 −179.030 466 142 739 9.5 −666.764 780 470 275 12.2 −221.189 686 201 221
7.6 −302.624 146 371 783 9.6 −647.392 883 509 601 12.6 −184.510 652 309 416
7.7 −406.626 745 855 377 9.7 −627.480 644 193 817 13.0 −154.076 250 986 245
7.8 −493.261 808 207 445 9.8 −607.236 006 360 562 13.5 −123.313 365 467 909
7.9 −564.543 330 776 862 9.9 −586.808 634 364 519 14.0 −99.051 708 898 4615
8.0 −622.296 924 164 693 10.0 −566.344 786 996 666 14.5 −79.886 802 233 5593
8.1 −668.163 414 255 055 10.1 −545.963 873 169 331 15.0 −64.705 663 449 5449
8.2 −703.629 551 622 843 10.2 −525.767 267 986 650 15.5 −52.640 114 033 3373
8.3 −730.026 393 137 440 10.3 −505.840 657 675 087 16.0 −43.017 485 089 5937
8.4 −748.547 347 148 735 10.4 −486.253 895 514 174 16.5 −35.313 312 122 6139
8.5 −760.256 868 094 275 10.5 −467.064 631 313 888 17.0 −29.121 524 427 1569
8.6 −766.106 999 612 316 10.6 −448.319 777 407 923 17.5 −24.127 342 901 4569
8.7 −766.942 290 212 839 10.7 −430.056 805 726 134 18.0 −20.083 495 395 4821
8.8 −763.511 447 018 345 10.8 −412.304 806 381 708 18.5 −16.795 839 427 4081
8.9 −756.477 032 518 151 10.9 −395.085 506 635 547 19.0 −14.113 977 371 4497
9.0 −746.423 038 708 948 11.0 −378.414 408 279 889 19.5 −11.909 450 699 9236
9.1 −733.862 648 819 818 11.2 −346.752 289 713 281 20.0 −10.094 344 030 2398
9.2 −719.246 967 350 335 11.4 −317.346 954 936 712

Table 3. Potential energy Vss(R) of the energetically-lowest ‘spin-stretched’ state of Tm2 as function
of internuclear separation R. The R-dependent uncertainty of this potential is discussed in the text.

R/a0 Vss/hc (cm−1) R/a0 Vss/hc (cm−1) R/a0 Vss/hc (cm−1)

6.25 3874.150 188 674 83 8.6 −775.049 924 968 957 10.75 −409.392 022 314 815
6.5 2452.881 954 497 37 8.7 −772.468 793 423 23 11.0 −367.345 465 164 348
6.75 1398.481 432 962 68 8.75 −769.709 228 982 994 11.25 −328.942 955 195 758
6.8 1224.595 206 433 07 8.8 −766.073 434 020 327 11.5 −294.175 889 173 847
6.9 909.168 531 269 16 8.9 −756.484 235 631 714 11.75 −262.878 651 327 859
7.0 633.431 409 261 034 9.0 −744.222 911 614 132 12.0 −234.883 475 377 653
7.1 393.453 268 965 899 9.1 −729.769 650 342 498 12.25 −209.924 884 847 286
7.2 185.614 885 631 341 9.2 −713.532 718 742 361 12.5 −187.720 788 736 913
7.25 92.684 339 502 4816 9.25 −704.864 106 741 569 12.75 −168.003 713 562 084
7.3 6.567 910 359 323 26 9.3 −695.884 191 964 824 13.0 −150.499 513 340 797
7.4 −146.706 530 584 091 9.4 −677.132 015 128 778 13.5 −121.195 083 284 982
7.5 −276.986 305 870 368 9.5 −657.551 518 907 663 14.0 −98.021 831 132 6522
7.6 −386.841 551 372 091 9.6 −637.379 384 988 748 14.5 −79.616 511 988 0272
7.7 −478.589 634 023 197 9.7 −616.821 173 105 488 15.0 −64.911 337 709 8249
7.75 −518.306 204 431 474 9.75 −606.453 871 377 68 15.5 −53.123 749 640 7613
7.8 −554.273 972 390 536 9.8 −596.054 548 248 776 16.0 −43.650 785 151 5064
7.9 −615.850 590 443 533 9.9 −575.229 126 068 204 16.5 −36.020 200 485 7629
8.0 −664.991 862 988 103 10.0 −554.467 856 276 277 17.0 −29.854 652 957 0767
8.1 −703.262 622 294 269 10.1 −533.883 746 459 349 17.5 −24.854 757 166 5504
8.2 −732.035 857 769 05 10.2 −513.570 051 395 331 18.0 −20.775 206 334 3089
8.25 −743.254 940 662 834 10.25 −503.537 338 666 485 18.5 −17.464 628 932 3737
8.3 −752.551 798 724 083 10.3 −493.597 463 728 117 19.0 −14.746 852 461 4891
8.4 −765.919 099 466 286 10.4 −474.031 826 052 711 19.5 −12.515 387 932 7555
8.5 −773.126 032 186 692 10.5 −454.926 141 284 319 20.0 −10.664 119 330 474

dispersive form agrees with the potential energy from coupled-cluster theory at the two largest radial points
R � Rmax. We use Rdisp = Rmax + 0.5a0 for both Er2 and Tm2, add (Rdisp, Vdisp(Rdisp)) to the coupled-cluster
data, and for R ∈ (Rmin, Rdisp) interpolate this extended coupled-cluster data set times R6 using the Akima
spline [48]. The function R6Vss(R) varies significantly less than Vss(R). The fitted C8,ss are consistent with
typical values based on the induced quadrupole-quadrupole interaction for other di-atomic molecules [49]
and the contributions from the five omitted dispersion terms is small compared to the uncertainties in the
potentials.

The uncertainty budget of Vss(R) as function of R has two components. The first is the complete basis
set error of the RCCSD(T) calculations. The second is that four-electron excitations might need to be
included in our open-shell molecules. This corresponds to accounting for non-perturbative triple as well as
quadruple excitations. Basis-set superpositions errors increase the depth of the potentials Vss(R), while
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non-perturbative triple and quadruple corrections often are of opposite sign, nearly cancel, but lead to
shallower potentials for dimers [50, 51]. Here, based on the differences of calculations with triple- and
quadruple-zeta accuracy basis sets, we assume that the one-standard-deviation uncertainties of Vss(R) is
2 × u(C(1)

0 )/R6 for R < Rmax, where u(C(1)
0 ) is the one-standard-deviation uncertainty of the isotropic

dispersion coefficient C(1)
0 .

Appendix C. Relativistic configuration-interaction calculations and expansion in spin
tensor operators

We have used the DIRRCI method in DIRAC 2019 [29] to determine the energy splittings among the
relativistic adiabatic potential curves of Er2 and Tm2 for R � 12a0. Basis sets have been described in
section 3. In section 3, we also described how the spin-stretched potential Vss(R) and the energy splittings
are used to construct relativistic adiabatic potential curves Vrel(R; n,Ω±

g/u). We find a common uncorrelated

one-standard-deviation uncertainty u(R) = hc × 10 cm−1 independent of R for all potential energy
splittings. This follows from a comparison of DIRRCI calculations with different basis set size. In addition,
the uncertainty in the splittings and that of Vss(R) are uncorrelated.

The Vrel(R; n,Ω±
g/u) were fit to an expansion in terms of seven spin–spin tensor operators with strengths

V (i)
k (R) defined in the main text. Only V (1)

0 (R) and V (1)
2 (R) were found to be statistically relevant and we

finally decided to only present results with those two strengths as fitting parameters with the remaining five
strengths set to zero. The reduced chi-square χ2

ν of this adjustment is less than one for all R < 12a0 so that
the fit is consistent.

Tables 4 and 5 contain values of the spin tensor strengths V (1)
0 (R) and V (1)

2 (R) as functions of
interatomic separations for Er2 and Tm2, respectively. Note that as the uncertainty in the splittings and that
of Vss(R) are uncorrelated strictly speaking strength V (1)

2 (R) is the only adjusted constant and

V (1)
0 (R) = Vss(R) − (2j)(2j − 1)V (1)

2 (R)/
√

6, (C1)

where j = 6 and 7/2 for Er2 and Tm2, respectively. The spin-tensor strength V (1)
2 (R) has an

one-standard-deviation uncertainty of hc × 0.094 cm−1 and hc × 0.40 cm−1 for Er2 and Tm2 independent
of R, respectively. The uncertainty of V (1)

0 (R) follows from error propagation of equation (C1). The
contribution from Vss(R) always dominates. In addition, the absolute value of the difference between
V (1)

0 (R) and Vss(R) are no larger than the uncertainty of Vss(R) for all R. Hence, we surmise that the
relativistic corrections to the non-relativistic spin-stretched potential Vss(R) are of similar magnitude as
well.

For R > 12a0 the relativistic configuration-interaction calculations do not converge. As shown in
figure 4 in the main text, however, the adjusted anisotropic strengths V (1)

2 (R) at R = 12a0 for the two dimers
are already consistent, i.e. within our uncertainties, with its asymptotic van-der-Waals C(1)

2 /R6 behavior. We
then use the van-der-Waals behavior for R > Rrel with Rrel = 12a0 + 0.5a0. A smooth connection of the
strength between 12a0 and Rrel is ensured by adding point (Rrel, C(1)

2 /R6
rel) to the R � 12a0 fitted values for

V (1)
2 (R) and interpolate R6V (1)

2 (R) with the Akima spline [48].
Finally, even though the five weaker V (i)

k (R) are consistent with zero in the least-squares adjustment, we

use V (i)
k (R) = C(i)

k /R6 for all R for these five strengths in the calculation of the rovibrational levels of Er2

and Tm2.
Figure 6 shows the ungerade potentials of Er2 and Tm2 near their equilibrium separation. The figure

complements the figure with gerade state potentials in the main text

Appendix D. Derivation of the dispersion potentials

Long-range van-der-Waals dispersion interactions have been derived and studied in many settings [34,
52–54]. We repeat part of these derivations in order to explain the relationships among the strengths of the
seven spin-tensor operators contributing the atom-atom interaction V(�R) for large separations R. In this
section we rely on reference [32] for notation regarding angular momentum operators as well as the
manipulation of these operators with one clearly-stated exception regarding reduced matrix elements.

We consider interacting atoms with electronic eigenstates |nbβ〉 with total electronic angular
momentum quantum numbers b, projection quantum numbers β on a space- or laboratory-fixed axis, and
energies Enb that are independent of β. Label n further uniquely specifies states. The ground state of the
atoms is |gjm〉.

The van-der-Waals potential operator between two ground-state atoms, |g1j1m1, g2j2m2〉 =
|g1j1m1〉|g2j2m2〉, is derived from (degenerate) second-order perturbation theory in the anisotropic electric

13
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Table 4. Spin tensor strengths V (1)
0 (R) and V (1)

2 (R) for Er2 as functions of separation R for
R � 12a0. The isotropic strength V (1)

0 (R) is found from equation (C1). Its R-dependent
uncertainty equals that of the potential of the spin-stretched state. The uncertainty of V (1)

2 (R)
is hc × 0.094 cm−1 independent of R.

R/a0 V (1)
0 /hc (cm−1) V (1)

2 /hc (cm−1)

7.2 0.753 349 48
7.4 −86.142 826 11 0.978 618 00
7.6 −362.331 598 84 1.107 975 70
7.8 −555.792 687 57 1.160 369 30
8.0 −684.701 380 46 1.158 023 30
8.2 −763.820 046 90 1.116 939 40
8.4 −805.155 666 99 1.050 465 90
8.6 −818.303 474 06 0.968 596 43
8.8 −810.885 319 12 0.879 104 65
9.0 −788.864 471 84 0.787 574 66
9.2 −756.857 582 80 0.697 930 43
9.4 −718.377 859 98 0.612 375 88
9.6 −676.095 385 48 0.532 624 88
9.8 −632.016 380 40 0.459 842 97
10.0 −587.592 963 66 0.394 296 90
10.2 −543.844 352 18 0.335 451 76
10.4 −501.521 231 95 0.283 312 00
10.6 −461.135 226 34 0.237 812 96
10.8 −423.001 435 47 0.198 494 57
11.0 −387.293 699 89 0.164 770 71
11.2 −354.080 269 01 0.135 983 41
11.4 −323.360 789 65 0.111 597 17
11.6 −295.070 537 24 0.090 930 34
11.8 −269.111 696 06 0.073 464 97
12.0 0.058 714 69

Figure 6. Relativistic Ω±
u potential energy curves with ungerade symmetry for Er2 (panel a) and Tm2 (panel c) as functions of

internuclear separation R near the equilibrium separation as obtained from electronic structure calculations. All potentials
approach zero energy for R →∞. Panels (b) and (d) show potential energies from panels (a) and (c) using the same line colors at
the equilibrium separation as functions of projection quantum number Ω for Er2 and Tm2, respectively. Ungerade Ω = 0 states
are 0− states.

dipole-dipole interaction Vdd(�R) and is given by

VvdW(�R) =
′∑

n1b1β1, n2b2β2

Vdd(�R)|n1b1β1, n2b2β2〉
1

Eg1j1 + Eg2j2 − En1b1 − En2b2

〈n1b1β1, n2b2β2|Vdd(�R), (D1)

where

Vdd(�R) = − 1

4πε0

√
6

1

R3
T2(d1, d2) · C2(R̂), (D2)

di is the rank-1 electric dipole moment operator of atom i = 1 or 2, Ckq(R̂) is a spherical harmonic, and
rank-k spherical-tensor operator Tkq(R, S) ≡ [R ⊗ S]kq with the ⊗ notation of [31] is constructed from

14
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Table 5. Spin tensor strengths V (1)
0 (R) and V (1)

2 (R) for Tm2 as functions of separation R for
R � 12a0. The isotropic strength V (1)

0 (R) is found from equation (C1). Its R-dependent
uncertainty equals that of the potential of the spin-stretched state. The uncertainty of V (1)

2 (R)
is hc × 0.40 cm−1 independent of R.

R/a0 V (1)
0 /hc (cm−1) V (1)

2 /hc (cm−1)

7.0 594.906 552 04 2.246 8153
7.2 133.540 325 87 3.037 0500
7.4 −206.867 117 84 3.508 6367
7.6 −450.800 902 36 3.730 1851
7.8 −618.718 066 62 3.758 4559
8.0 −727.597 306 29 3.651 2236
8.1 −764.327 963 12 3.561 4030
8.2 −791.258 439 38 3.453 9311
8.3 −809.698 587 44 3.332 8684
8.4 −820.814 682 19 3.201 5754
8.5 −825.645 850 40 3.063 0180
8.6 −825.113 513 91 2.919 7678
8.7 −820.036 541 42 2.774 2074
8.8 −811.133 570 04 2.627 9605
8.9 −799.049 674 38 2.482 4668
9.0 −784.329 271 35 2.339 0504
9.1 −767.469 327 13 2.198 6898
9.2 −748.892 381 32 2.062 2174
9.3 −728.980 728 35 1.930 2292
9.4 −708.050 363 58 1.803 1947
9.5 −686.382 234 86 1.681 4415
9.6 −664.216 950 40 1.565 1986
9.8 −619.197 027 52 1.349 6968
10.0 −574.306 981 85 1.157 0413
10.2 −530.483 733 64 0.986 425 98
10.4 −488.378 117 53 0.836 692 71
11.0 −375.856 140 24 0.496 352 65
12.0 −238.113 607 14 0.188 385 11

spherical-tensor operators R and S with rank r and s, respectively. The prime on the sums in equation (D1)
indicates that the sums exclude the term where both atoms are in the ground state and
bi = |ji − 1|, . . . , ji + 1. The energy denominator is negative and does not depend on projection quantum
numbers. Finally, ε0 is the vacuum electric permittivity.

The sums in equation (D1) can be rearranged in several steps using appendix VI of reference [32]. As
operators d1 and d2 commute, we first note that

(T2(d1, d2) · C2)(T2(d1, d2) · C2) =
∑

k

(−1)kTk(T2(d1, d2), T2(d1, d2)) · Tk(C2, C2) (D3)

with Tkq(C2, C2) = 〈k0|2200〉Ckq and Clebsch–Gordan coefficient 〈j3m3|j1j2m1m2〉. We omitted the
dependence on orientation R̂ of the spherical harmonics for clarity. The right-hand side of equation (D3) is
only nonzero for even k = 0, 2, or 4. Secondly, we note that

Tkq(T2(d1, d2), T2(d1, d2)) = 5
∑
l1 l2

√
(2l1 + 1)(2l2 + 1)

⎧⎨
⎩

1 1 l1
1 1 l2
2 2 k

⎫⎬
⎭Tkq(Tl1 (d1, d1), Tl2 (d2, d2)), (D4)

where the di have been grouped by atom and li = 0, 1, or 2 and l1 + l2 is even for a nonzero value of the
nine-j symbol

Next, we isolate the sums over projection quantum numbers and labels n in equation (D1). For atom i,
we define spherical tensor operators

Blq(b, j; i) =
∑
β

Tlq

(
di|nbβ〉

〈gj‖di‖nb〉 ,
〈nbβ|di

〈nb‖di‖gj〉

)
(D5)
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with rank l = 0, 1, or 2 and b = |j − 1|, . . . , j + 1. Here, 〈gj‖di‖nb〉 and 〈nb‖di‖gj〉 are reduced matrix
elements of the electric dipole moment operator between the atomic ground state and excited state |nbβ〉.
Crucially, for a ground-state atom we derive that

〈gjm|Blq(b, j; i)|gjm′〉 = 〈jm|jlm′q〉
√

(2b + 1)(2l + 1)W(j1j1; bl) (D6)

based on the Wigner-Eckart theorem, equation (3.12) of reference [32], and symmetries of the Racah
symbol W(abcd; ef). These matrix elements are independent of label n of the excited state, but still depend
on its total angular momentum b.

Moreover, using the Wigner–Eckart theorem again, we realize that the m, m′, and q dependences of
〈gjm|Blq(b, j; i)|gjm′〉 are identical to those for the identity operator, atomic angular momentum operator jq,
and dipole operator T2q(j, j) for l = 0, 1, and 2, respectively. In fact, we find

Blq(b, j; i) = Olq(i)M(b, j) (D7)

with rank-l operator Olq(i) = I, jiq/�, and T2q(ji, ji)/�
2 for atom i and l = 0, 1, and 2, respectively. Here, � is

the reduced Planck constant and the function M(b, j; l) is given by

M(b, j; l = 0) = (−1)b−j+1 1√
3

√
2b + 1

2j + 1
, (D8)

M(b, j; l = 1) =
(−1)b−j

2
√

2

√
2b + 1

2j + 1

2 + j(j + 1) − b(b + 1)

j(j + 1)
, (D9)

and

M(b, j; l = 2) =

√
2b + 1

2j + 1

W(j1j1; b2)

W(j1j1; j2)

1

j(j + 1)
. (D10)

We put everything together to find for two ground-state atoms

VvdW(�R) =
1

R6

∑
k=0,2,4

∑
l1l2

(Tk

(
Ol1 (1), Ol2 (2)

)
· Ck(R̂))30

√
(2l1 + 1)(2l2 + 1)

(2j1 + 1)(2j2 + 1)

⎧⎨
⎩

1 1 l1
1 1 l2
2 2 k

⎫⎬
⎭ 〈k0|2200〉

×
j1+1∑

b1=|j1−1|

j2+1∑
b2=|j2−1|

(−1)b1−j1 (−1)b2−j2
√

(2b1 + 1)(2b2 + 1)
M(b1, j1; l1)M(b2, j2; l2)hb1b2 , (D11)

where the matrix

hb1b2 =
1

(4πε0)2

′∑
n1n2

(g1j1‖d1‖n1b1)2(g2j2‖d2‖n2b2)2

Eg1j1 + Eg2j2 − En1b1 − En2b2

(D12)

or, equivalently,

Eha6
0

′∑
n1n2

(g1j1‖d1/(ea0)‖n1b1)2(g2j2‖d2/(ea0)‖n2b2)2

(Eg1j1 + Eg2j2 − En1b1 − En2b2 )/Eh

is symmetric for homonuclear dimers. Here, e is the elementary charge, Eh is the Hartree energy, and a0 is
the Bohr radius. The prime in the sums over labels n1 and n2 excludes the case where both atoms are in
their ground state and we have introduced the more symmetric reduced matrix elements
(j‖d‖j′) = (−1)j−j′(j′‖d‖j)∗ =

√
2j + 1〈j‖d‖j′〉 used by, for example, Edmonds in reference [55].

The allowed values for k, l1, and l2 and the operators on the first line of equation (D11) lead to the seven
spin-tensor operators defined in the main text. The last three lines of equation (D11) correspond to the
van-der-Waals coefficients C(i)

k . For example, the choice Ol1 (1) = j1/� and Ol2 (2) = j2/� leads to
spin-tensor operators [j1 ⊗ j2]k0/�

2 with k = 0 or 2 in the main text using the ⊗ notation of reference [31]
for combining spherical tensor operators. This notation is equivalent to the notation used in reference [32].
Further analysis of equation (D11) shows that the operators with the same l1 and l2 but different k have
related van-der-Waals coefficients as the k dependence is isolated in the nine-j symbol and the
Clebsch–Gordan coefficient in the second line. This leads to the relationships between the two spin-tensors
with l1 = l2 = 1 and the three spin-tensors with l1 = l2 = 2 given in the main text.
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Table 6. Atomic transition energies and Einstein A coefficients from exited states of erbium to its j′ = 6 ground state. Columns labeled
ΔE, A, u(A), and j give transition energies, the value and one-standard deviation uncertainty of the Einstein A coefficients, and the total
electronic angular momenta j of the excited states, respectively. A reference to the original data is given in columns labeled by ‘Ref.’.

ΔE/hc (cm−1) A (106 s−1) u(A) (106 s−1) j Ref. ΔE/hc (cm−1) A (106 s−1) u(A) (106 s−1) j Ref.

11 401.197 0.006 377 0.001 594 25 5 [57] 23 885.406 1.02 0.06 5 [56]
11 799.778 0.010 76 0.002 69 6 [57] 24 083.166 102 5. 5 [56]
11 887.503 0.015 39 0.003 8475 7 [57] 24 457.139 32.6 1.6 6 [56]
15 185.352 0.1431 0.035 775 5 [57] 24 943.272 220 10. 7 [61]
15 846.549 0.2624 0.0656 7 [57] 25 159.143 40.3 2.1 7 [56]
16 070.095 0.92 0.05 6 [56] 25 162.553 37.6 1.9 5 [56]
16 321.110 0.090 51 0.022 6275 6 [57] 25 268.259 3.59 0.18 6 [56]
17 073.800 0.24 0.06 6 [59] 25 392.779 31.9 1.6 6 [56]
17 157.307 1.17 0.06 7 [56] 25 598.286 15.1 0.8 7 [56]
17 347.860 0.84 0.04 5 [56] 25 681.933 63 3 5 [56]
17 456.383 0.1833 0.045 825 6 [57] 25 880.274 122 6 6 [56]
19 201.343 0.53 0.053 5 [60] 26 237.004 29.0 1.4 6 [56]
19 326.598 0.663 0.165 75 6 [57] 28 026.045 0.59 0.05 5 [56]
19 508.432 0.6392 0.1598 6 [57] 28 053.943 4.33 0.22 6 [56]
21 168.430 1.16 0.06 7 [56] 29 550.807 0.064 0.007 5 [56]
21 392.817 1.26 0.06 5 [56] 29 794.862 0.296 0.025 5 [56]
21 701.885 7.1 0.4 6 [56] 29 894.203 4.10 0.29 5 [56]
22 124.268 0.264 0.019 5 [56] 30 007.369 7.7 1.93 6 [58]
22 583.504 2.55 0.13 6 [56] 30 251.891 1.05 0.08 5 [56]
22 672.766 5.52 0.28 5 [56] 30 380.282 4.3 0.3 5 [56]
23 080.952 0.7405 0.185 125 7 [57] 30 600.160 0.168 0.017 5 [56]
23 311.577 0.4924 0.1231 6 [57] 31 442.927 0.084 0.009 5 [56]
23 447.079 0.6011 0.150 275 5 [57] 32 062.166 0.175 0.027 5 [56]
23 855.654 6.6 0.3 5 [56] 33 485.216 9.6 0.7 5 [56]

Table 7. Some thulium excited atomic eigen energies with respect to its j′ = 7/2 ground state and oscillator strengths f from the
ground state to these excited states. The first column gives the transition energy. The second and third column are the value and
one-standard deviation uncertainty of the oscillator strength, respectively. The fourth column gives the total electronic angular
momentum j of the excited state. A reference to the original data is given in the last column. Relevant thulium lines for which Einstein A
coefficients are available can be found in table 8.

ΔE/hc (cm−1) f u(f) j Ref.

38 342.570 0.001 69 0.003 38 7/2 [63]
39 019.090 0.000 98 0.001 96 9/2 [63]
39 259.920 0.002 62 0.005 25 5/2 [63]
39 580.720 0.008 22 0.016 44 7/2 [63]
39 847.040 0.001 92 0.003 84 7/2 [63]
40 101.720 0.001 21 0.002 42 9/2 [63]

Lists of currently available atomic transition energies Enb − Egj and observed Einstein A coefficients or
oscillator strengths f for erbium and thulium atoms are given in tables 6–8 below. The relevant relationships
between the reduced matrix elements (gj‖d‖nb) in equation (D12) on the one hand and A and f on the
other are

Anb→gj =
4

3

Eh

�
α3

(
Enb − Eg j

Eh

)3∣∣∣∣
(

gj‖ d

ea0
‖nb

)∣∣∣∣
2 1

2b + 1
(D13)

and

fgj,nb =
2

3

Enb − Eg j

Eh

∣∣∣∣
(

gj‖ d

ea0
‖nb

)∣∣∣∣
2 1

2j + 1
, (D14)

respectively. Here, α is the fine-structure constant.
For Er2 atomic transition data or lines from 48 excited states to the ground state are available. The

majority of the data is taken from references [56, 57]. References [58, 59] each supply one line, while for
two other lines we rely on private communications [60, 61]. For Tm2 atomic transition data from 65 excited
states to the ground state are available. Data have been taken from references [45, 62, 63]. When line
strength information of a transition is available from more than one source, the most accurate datum is
chosen.
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Table 8. Atomic transition energies and Einstein A coefficients from exited states of thulium to its j′ = 7/2 ground state. Columns
labeled ΔE, A, u(A), and j give transition energies, the value and one-standard deviation uncertainty of the Einstein A coefficients, and
the total electronic angular momenta j of the excited states, respectively. A reference to the original data is given in columns labeled by
‘Ref.’. Relevant thulium lines for which oscillator strengths are available can be found in table 7.

ΔE/hc (cm−1) A (106 s−1) u(A) (106 s−1) j Ref. ΔE/hc (cm−1) A (106 s−1) u(A) (106 s−1) j Ref.

16 742.237 0.147 0.026 46 7/2 [45] 29 260.590 5.28 0.264 7/2 [62]
16 957.006 0.651 0.032 55 7/2 [62] 29 316.690 9.80 0.49 9/2 [62]
17 343.374 0.388 0.031 04 7/2 [62] 30 082.180 0.089 0.011 57 5/2 [62]
17 613.659 1.30 0.065 9/2 [62] 30 124.020 0.615 0.055 35 7/2 [62]
17 752.634 1.09 0.0545 5/2 [62] 30 302.420 1.61 0.1127 5/2 [62]
18 837.385 2.17 0.1085 9/2 [62] 30 915.020 4.29 0.2145 9/2 [62]
19 548.834 0.241 0.036 15 5/2 [62] 31 431.880 3.82 0.191 5/2 [62]
19 748.543 0.049 0.008 82 9/2 [45] 31 440.540 1.04 0.052 9/2 [62]
19 753.830 0.398 0.031 84 7/2 [62] 31 510.240 15.9 1.272 7/2 [62]
21 120.836 2.0 0.1 7/2 [62] 32 174.490 1.50 0.135 5/2 [62]
21 161.401 0.421 0.021 05 5/2 [62] 32 446.260 17.5 1.225 7/2 [62]
21 737.685 0.518 0.0259 9/2 [62] 32 811.020 16.1 1.127 7/2 [45]
22 791.176 3.71 0.1855 7/2 [62] 33 623.780 21.7 1.085 7/2 [62]
22 929.717 12.0 0.6 5/2 [62] 34 085.200 11.3 1.13 5/2 [62]
23 781.698 24.3 1.215 9/2 [62] 34 297.170 9.44 1.1328 7/2 [62]
23 873.207 64.0 3.2 7/2 [62] 35 026.220 24.2 1.936 5/2 [62]
24 348.692 63.6 3.18 9/2 [62] 35 261.762 1.13 0.2034 5/2 [45]
24 418.018 97.9 4.895 5/2 [62] 37 576.866 0.46 0.0828 9/2 [45]
25 656.019 2.95 0.1475 5/2 [62] 37 711.074 0.38 0.0684 9/2 [45]
25 717.197 37.2 1.86 7/2 [62] 38 120.710 5.2 0.936 9/2 [45]
25 745.117 106 5.3 5/2 [62] 38 128.370 0.62 0.1116 5/2 [45]
26 126.907 2.94 0.147 5/2 [62] 38 433.920 14.9 1.043 5/2 [45]
26 439.491 0.806 0.056 42 7/2 [62] 38 502.000 14.0 0.98 9/2 [45]
26 646.214 17.4 1.392 9/2 [62] 38 696.790 3.5 0.63 5/2 [45]
26 701.325 99.0 4.95 7/2 [62] 39 161.450 36.8 2.576 7/2 [45]
26 889.125 144 7.2 9/2 [62] 39 206.840 2.7 0.486 9/2 [45]
28 024.010 3.80 0.19 9/2 [62] 39 547.310 6.4 1.152 5/2 [45]
28 051.370 8.99 0.4495 5/2 [62] 39 560.410 14.7 1.029 7/2 [45]
28 448.585 1.42 0.071 5/2 [62] 39 768.790 5.29 0.2645 9/2 [62]
28 555.799 0.668 0.040 08 7/2 [62]

Table 9. Correlation coefficients r(C(i)
k , C(j)

l ) among four of the seven dispersion coefficients
C(i)

k of Er2 and Tm2. Their values and uncertainties are given in table 1 of the main text.
Coefficients are labeled by rank k and index i following the notation in the main text.
Correlation coefficients with the remaining three dispersion coefficients follow from the exact
algebraic relationships among the dispersion coefficients.

Homonuclear erbium dimer

Correlation coeff.

k, i\l, j 0, 1 2, 1 0, 2 0, 3

0, 1 1.00 −0.38 −0.50 0.32
2, 1 −0.38 1.00 0.37 −1.00
0, 2 −0.50 0.37 1.00 −0.34
0, 3 0.32 −1.00 −0.34 1.00

Homonuclear thulium dimer
0, 1 1.00 −0.03 0.15 0.05
2, 1 −0.03 1.00 −0.10 −1.00
0, 2 0.15 −0.10 1.00 0.09
0, 3 0.05 −1.00 0.09 1.00

The uncertainties of and correlations among the van-der-Waals coefficients follow from error
propagation on equations (D11) and (D12) and are dominated by the uncorrelated uncertainties of the
Einstein A coefficients and oscillator strengths. Uncertainties in the transition energies give negligible
contributions. Our values for the van-der-Waals coefficients are listed in the table in the main text. Their
covariances can be found in table 9 below.
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