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In this paper, we summarize our recently developed viscous unsteady theory, which couples potential flow with the
triple-deck boundary-layer theory. This approach provides a viscous extension of potential-flow unsteady
aerodynamics. As such, a Reynolds-number-dependent transfer function is determined for unsteady lift. We then
use the Wiener—Hammerstein structure to develop a finite-dimensional approximation of such an infinite-
dimensional theory, presenting it in a state-space model. This novel nonlinear state-space model of viscous
unsteady aerodynamic loads is expected to serve aerodynamicists better than the classical Theodorsen’s model
because it captures viscous effects (that is, Reynolds number dependence) as well as nonlinearity and additional lag in
the lift dynamics; it also allows simulation of arbitrary time-varying airfoil motions (not necessarily harmonic).
Moreover, being in a state-space form makes it quite convenient for simulation and coupling with structural dynamics
to perform aeroelasticity, flight dynamics analysis, and control design. We then develop a linearization of such a
model, which enables analytical results. Subsequently, we derive an analytical representation of the viscous lift
frequency response function: an explicit function of both the frequency and Reynolds number. We also develop a
state-space model of the linearized response. We finally simulate the nonlinear and linear models to a nonharmonic
small-amplitude pitching maneuver at a Reynolds number of 100,000 and compare the resulting lift and pitching
moment with those obtained from potential flow; this is in reference to relatively higher-fidelity computations of the
unsteady Reynolds-averaged Navier—Stokes equations.
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I. Introduction

HE theory of two-dimensional unsteady aerodynamics has a

long history that extends for a century. Perhaps the first formal
efforts were those of Prandtl [1] and Birnbaum [2] in 1924, consid-
ering incompressible, slightly viscous flows around thin airfoils with
sharp trailing edges. The key concept is that the flow nonuniformity
leads to vorticity generation that emanates at the sharp trailing edge
and freely sheds behind the airfoil. In addition, the flow outside these
sheets can be considered inviscid. As such, for example, the law of
zero total circulation (a consequence of the conservation of angular
momentum in inviscid flows) can be used. These assumptions alone
are not enough to determine a unique solution for the wing and wake
circulations. Then, the Kutta—Zhukovsky condition (smooth flow off
the sharp trailing edge) comes to play an essential role in the problem
closure. That is, no flow around the sharp edge; hence, the velocity
has to be finite at the edge. Finally, in order to obtain an analytical
explicit solution to the governing dynamics (the Laplace equation in
the velocity potential in this case), one more assumption is usually
adopted: assuming small disturbance to the mean flow so that the
vorticity sheet shed by the mean flow velocity (flat wake assumption)
completes the framework of the classical theory. In summary, the
classical theory of unsteady aerodynamics is based on replacing the
airfoil and the wake by vorticity distributions (singularities) that
satisfy the Laplace equation everywhere in the flowfield, except at
the surface of singularities. Three main conditions are applied: 1) no-
penetration boundary condition (fluid velocity is parallel to the wing
surface), 2) the Kutta condition (smooth flow off the sharp trailing
edge), and 3) the conservation of total circulation ((DI'/Dt) = 0).
This formulation along with the flat wake assumption constitute the
classical theory of unsteady aerodynamics.

The aforementioned formulation of the classical theory of un-
steady aerodynamics was extensively used throughout the years. In
1925, Wagner [3] used this formulation to solve the indicial problem
(lift response due to a step change in the angle of attack). In 1935,
Theodorsen [4] used the same formulation to solve the frequency
response problem (steady-state lift response due to harmonic oscil-
lation in the angle of attack). In 1938, von Kdrmédn and Sears [5]
provided a more general and elaborate representation of the classical
formulation, which is of hitherto importance in developing exten-
sions of the classical theory [6,7]. Also, the efforts of Kiissner [8]
on the sharp-edged gust problem, Schwarz [9] on the frequency
response problem, Sears [10] on the sinusoidal gust problem, and
Loewy [11] on the returning wake problem are worth mentioning. It
should be noted that although the approaches within this framework
may be different (i.e., different order of application of the boundary
conditions and assumptions as well as different means of calculating
the loads), these results are exactly equivalent. For example, Garrick
[12] showed that the Theodorsen function and the Wagner function
form a Fourier transform pair.

It should be pointed out that even with the several simplifying
assumptions mentioned earlier in this paper (potential flow, flat wake,
the Kutta assumption/condition, etc.), the unsteady lift response of a
two-dimensional airfoil is of an infinite-dimensional nature. That s, in
a dynamical-systems narrative, the lift transfer function has infinitely
many poles [13]. The need for calculating the aerodynamic loads due
to arbitrary time variations of the wing motion along with the need for
structural and/or dynamic coupling to assess aeroelastic and/or flight
dynamic stability problems invoked more compact representations of
the lift dynamics than the infinite-dimensional Theodorsen and Wag-
ner responses. Consequently, a number of finite-state approximations
to these response functions were developed. Jones [14] and Jones [15]
provided a two-state approximation to the Wagner function in the time
domain. Vepa [16] introduced the method of Padé approximants to
determine finite-state approximations of the Theodorsen function in
the frequency domain. Of particular interest to the aeroelasticity and
flight dynamics community is the state-space representation developed
by Leishman and Nguyen [17] using the convolution integral with
Jones approximation to the Wagner step response function. Unlike
these finite-state models that are based on approximating the Theo-
dorsen function in the frequency domain or the Wagner function in the

time domain, Peters and Karunamoorthy derived state-space models
from the basic governing principles using Glauert expansion [18], and
Peters et al. derived state-space models from the basic governing
principles using the expansion of potential functions [13,19]. In this
formulation, the internal aerodynamic states are of physical meaning;
they represent the inflow distributions. Although the formulation of
Peters [13] is quite neat, it necessitates a relatively large number (eight)
of inflow states to provide a good accuracy; whereas two states were
shown to be sufficient for this problem. More recently, Brunton and
Rowley [20] performed system identification to construct an empirical
state-space model for the unsteady lift dynamics from direct numerical
simulations at Reynolds number of 100. However, they maintained the
structure (low- and high-frequency behavior) of the Theodorsen lift
dynamics; we show in the following that such a structure does not
represent the viscous lift dynamics at high frequencies and/or low
Reynolds numbers. Recent efforts in developing state-space models of
unsteady aerodynamic loads include Refs. [21-23].

Having summarized the main results of the classical theory of
unsteady aerodynamics, we should emphasize the following point.
Insofar as Prandtl’s potential-flow formulation [1] is quite useful in
serving the community, and even provides the basis for many recent
developments [6,7,24-33], it is mainly based on inviscid flow
dynamics; no regard can be given to a finite Reynolds number. More
important, it is not complete and invokes a closure or auxiliary
condition (e.g., the Kutta condition). Thus, the potential-flow formu-
lation cannot alone determine the amount of shed vorticity at the
trailing edge, which is a very crucial quantity because it determines
the bound circulation over the airfoil (via conservation of circula-
tion), which in turn dictates the generated lift force. The most
common auxiliary condition used in literature is the Kutta condition,
whose application to steady flows has been very successful. How-
ever, its application to unsteady flows has been controversial (see the
work of Crighton [34]).

The need for an auxiliary condition alternative to the Kutta con-
dition goes as early as the work of Howarth [35] with a research flurry
on the applicability of the Kutta condition to unsteady flows in the
1970s and 1980s [34,36-39]. This research was mainly motivated by
the failure to capture an accurate flutter boundary [40—42]. Since
flutter simply lies in the intersection between unsteady aerodynamics
and structural dynamics, and because the structural dynamics theory
is in a much better status (the vibration of slender beams can be
accurately predicted using the exact beam theory, for example), it has
been deemed that the flaw stems from the classical unsteady aerody-
namic theory (particularly the Kutta condition), as suggested by Chu
[43] and Shen and Crimi [44], among others. Moreover, since these
deviations occurred even at a zero angle of attack (or lift) [45,46], it
was inferred that there is a fundamental issue with such a theory that is
not merely a higher-order effect due to nonlinearities at high angles of
attack [43]. Therefore, there was almost a consensus that the Kutta
condition has to be relaxed, particularly at large frequencies, large
angles of attack, and/or low Reynolds numbers [38,47,48]. In fact,
Orszag and Crow [49] regarded the full Kutta condition solution as
“indefensible.” Interestingly, this dissatisfaction of the Kutta condi-
tion and the need for its relaxation are recently rejuvenated with the
increased interests in the low-Reynolds-number high-frequency bio-
inspired flight [6,50-55]. For more recent discussions about the
unsteady Kutta condition, the reader is referred to the efforts of Xia
and Mohseni [56], Taha and Rezaei [57], and Zhu et al. [58].

We note that the main concern about the Kutta condition in
unsteady flows is because vorticity generation and unsteady lift
development may enjoy important viscous effects, which may not
be captured in a purely inviscid theory. To resolve this issue,
we recently developed a viscous extension of the classical theory
of unsteady aerodynamics [57], equivalently, an unsteady extension
of the viscous boundary-layer theory. It is based on a special boun-
dary-layer theory (the triple deck [59—-61]) that pays close attention to
the details in the vicinity of the trailing edge where the Blasius
boundary layer [62] interacts with the Goldstein near-wake layer
[63]. Our viscous extension resulted in a Reynolds-number-depen-
dent extension of the Theodorsen lift frequency response. It was
found that the viscous correction induces a significant phase lag
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to the circulatory lift component, particularly at low Reynolds
numbers and high frequencies, that matches high-fidelity simula-
tions of Navier—Stokes and previous experimental results
[39,42,46,64].

In this paper, we summarize the developed viscous unsteady aero-
dynamic theory. Based on which, we use the Wiener—-Hammerstein
structure to develop a nonlinear state-space model of the viscous un-
steady loads. We then linearize such a theory to determine an analytical
representation, extending the Theodorsen lift frequency response
function to the viscous case. That is, we provide an analytical lift
frequency response function that explicitly depends not only on the
reduced frequency but also on the Reynolds number. Similar to the
Theodorsen function, this viscous frequency response function is
infinite-dimensional (i.e., has infinitely many poles). We then develop
a finite-state approximation of this infinite-dimensional viscous fre-
quency response. That is, we provide a linearized state-space model,
extending that of Leishman and Nguyen [17] to the viscous case; the
Reynolds number appears as a parameter in such a state-space model.
These tools will be of paramount importance in coupling viscous
unsteady aerodynamics with structural dynamics for aeroelasticity
and flight dynamics analysis as well as control synthesis. However,
similar to most classical models, the proposed one adopts some
simplifying assumptions; Table 1 summarizes these assumptions in
comparison to the unsteady models commonly used in the literature.

The specific contributions of this paper are summarized in the
following three points:

1) Develop a nonlinear state-space model for the viscous unsteady
lift and moment on a pitching—plunging flat plate. The Reynolds
number R is a parameter in this model.

2) Develop alinearized version of the aforementioned nonlinear state-
space model; this linear model can be easily combined with structural/
body dynamics for standard linear stability analysis (e.g., flutter).

3) Derive analytical expressions for the viscous lift frequency
response function (i.e., a viscous Theodorsen function) that does not
only depend on the reduced frequency but also the Reynolds number.

II. Viscous Theory of Unsteady Aerodynamics
A. Background: The Triple-Deck Boundary-Layer Theory

In the early 1900s, Prandtl formulated the well-known boundary-
layer equations [65]: the nonlinear partial differential equations that

approximate Navier—Stokes equations in the thin viscous layer
around the airfoil. In 1908, Blasius [62] solved this set of equations
over a flat plate at a zero angle of attack subject to the no-slip
boundary condition on the plate, which led to the celebrated Blasius
boundary-layer solution. Later (in 1930), Goldstein [63] solved the
same boundary-layer equations of Prandtl in the wake region behind
the plate, replacing the no-slip condition with a zero-stress condition
on the wake centerline. He found that the removal of the wall
accelerates the flow, leading to a favorable pressure gradient. That
is, near the trailing edge, there are two boundary layers interacting
with each other, as shown in Fig. 1: the Blasius boundary layer, whose
thickness is of order R~'/2; and the Goldstein near wake, whose
thickness is scaled as R~'/2x!/3, where R is the Reynolds number and
x is the distance downstream of the edge [34]. The triple-deck theory
has been devised to model such local interactions near the trailing
edge of a flat plate in steady flow. In contrast to the classical
boundary-layer theory where only the normal coordinate is scaled,
the tangential coordinate is also scaled (zoomed) in the triple-deck
theory to resolve such interactions. Scaling dictates that the transition
region between the two layers takes place over a short length of order
R~3/3 (as shown in Fig. 1), which is similar to Lighthill’s supersonic
shock-wave/boundary-layer interaction [66]. In conclusion, the tri-
ple-deck theory represents a solution to the discontinuity of the
viscous boundary condition at the edge [67]: from a zero tangential
velocity on the airfoil to a zero pressure discontinuity on the wake
centerline.

Aerodynamicists modeled this transition through three layers
(triple-deck theory): 1) the upper deck, which constitutes an irrota-
tional flow outside of the main boundary layer; 2) the main deck,
which is an inviscid layer, although rotational; and 3) the lower deck,
which is a viscous sublayer inside the main deck (as shown in Fig. 1),
where the full boundary-layer equations apply. Stewartson [59] and
Messiter [60] were the first to develop the triple-deck theory for a flat
plate in a steady flow at a zero angle of attack.

Brown and Stewartson [61] extended the work of Stewartson [59]
and Messiter [60] to the case of a small but nonzero angle of attack a;
inthe order of R~'/1°. This range is of interest because 1) if @, is much
smaller, then the flow can be considered as a perturbation to the case
of a;, = 0; and 2) if it is much larger, then the flow would separate
well before the trailing edge. Over this range, the resulting adverse
pressure gradient is of the same order as the favorable pressure

Table1 Comparison among different assumptions adopted in classical inviscid unsteady models and the proposed
viscous one, in addition to the applicability of these models
Classical theory [3—5] Approximations [13—19] Vortex methods Proposed model
Assumptions  Small disturbance X X —_ X
Flat wake X X _ X
Kutta condition X X X —_—
Applications  Arbitrary kinematics — N v v
State space —_— v —_— v
R effect —_— — —— v

A cross indicates an assumption (i.e., weakness) in the model, while a a check indicates an applicability of the model to the point of concern (i.e.,

strength).
y

Upper Deck: Potential Flow

- _‘I___ l
O(R'3 :

l —————— l--_\oi?. [ J’ _____

Blasius | \ ~——~~~7° 1 7| ---- -———-
Boundary | -2 f_
Layer F— O(R™#)—= O(R™3/8)

Triple-Deck Structure OR®)

Fig.1 Triple-deck structure and various flow regimes. Adapted from the work of Messiter [60].
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gradient in the triple deck, leading to separation in the immediate
vicinity of the trailing edge, which is called trailing-edge stall. Brown
and Stewartson [61] formulated such a problem and showed that the
flow in the lower deck is governed by partial differential equations
that are solved numerically for each value of a, = R'/191~/3q,
where 4 = 0.332 is the Blasius skin-friction coefficient. Chow and
Melnik [68] solved the triple-deck boundary-layer equations in the
case of 0 < a, < 0.45 and concluded that the flow will separate from
the suction side of the airfoil from the trailing edge at a, = 0.47
(trailing-edge stall angle). We remark that this «, value for trailing-
edge stall corresponds to quite a small value for the actual angle of
attack: a = 3.1-4.2 deg for R = 10*-10°.

Setting the axes at the center of the plate (—1 < X < 1 on the plate),
Brown and Stewartson [61] wrote the steady pressure distribution
near the trailing edge (X = 1) as

Py = 1) = pU? —ax\/l%+i7ﬁ sen® (1)
2

where p is the fluid density; U is the freestream; sgn(y) is positive on
the upper surface; a, is the steady angle of attack; and B, is the steady
trailing-edge singularity term, which is supposed to be zero accord-
ing to the Kutta condition. In contrast, it is determined by matching
the triple deck with the outer flow. The numerical solution by Chow
and Melnik [68] provides B, as a nonlinear function of «,, which is
represented here in Fig. 2a, where

a, = a,e '?)7°/% and B, = 26327/*B,(a,)a; 2)

where @, and a, are in radians, and € = R™!/% <« 1 [59]. In other
words, Fig. 2a and Eq. (2) provide the trailing-edge singularity B, as a
nonlinear function of the angle of attack a; in a steady flow. Based on
this theory, the Kutta steady lift can be corrected as

C; = 2n(sina, — By) 3)

which results in the viscous lift shown in Fig. 2b at different Reynolds
numbers.

B. Viscous Unsteady Lift Frequency Response Using Triple-Deck
Theory

Brown and Daniels [67] were the first to extend the steady triple-
deck theory to the case of an oscillatory pitching flat plate. Unlike the
steady case, there is a Stokes layer near the wall that is of order /v /w,

1.1

09 4

0.7 J

0.6 4

05 I I I I I I I I I
0 005 01 015 02 025 03 035 04 045 05

o, (rad)

a) Numerical solution of B, = B, (&)

where the viscous term is balanced by the time-derivative term in the
equations. Brown and Daniels considered the impractical yet math-
ematically appealing case of very high-frequency k = O(R!/*) =
1/€? and very small-amplitude O(R=%/'¢), where & is the reduced
frequency. Luckily, focusing on the more practical case of 0 < k <
Re'/* and @ = O(R~'/1%) results in vanishing the time-derivative
term in both the main deck and lower deck equations, as shown by
Brown and Cheng [69]. Therefore, the boundary-layer equations
look the same as those governing the steady case at a nonzero a
(studied by Brown and Stewartson [61]) with a proper definition for
the equivalent steady angle of attack. However, we emphasize that
this approach is not a quasi-steady solution; although the time
derivative does not show up in the lower deck equations, the corre-
spondence with the steady equations implies an equivalent angle of
attack that is dependent on the oscillation frequency, as will be shown
in the following. Therefore, the lower deck system is dynamical
(i.e., possesses a nontrivial frequency response).

In our recent efforts [57,70], we have developed a viscous exten-
sion of the classical theory of unsteady aerodynamics using the triple-
deck boundary-layer theory discussed earlier in this paper. For an
arbitrarily deforming thin airfoil in the presence of a uniform stream
U, the inviscid pressure distribution is typically written as [71-73]

P@O,1)— P, = pB ay(t) tang + Z a, () sin nﬁ] “)
n=1

where 0 is the tangential angular coordinate along the plate (zero at
the trailing edge, and x at the leading edge). Each term in the series of
Eq. (4) automatically satisfies the Kutta condition (zero loading at the
trailing edge). The pressure on the lower side is given by the negative
of Eq. (4). The no-penetration boundary condition provides a means
to determine all the coefficients a,, (except ay) in terms of the plate
motion kinematics, as shown by Robinson and Laurmann (Ref. [73]
p- 491). For example, for a pitching—plunging flat plate, as shown in
Fig. 3, the normal velocity of the plate is written as

AY

m ab
}Nbcose

— X

Fig.3 Schematic diagram for an oscillating flat plate.

0.45

......... Linear Potential Flow

0.4 ===="Nonlinear Viscous Theory R=10° ““" ]
’ Nonlinear Viscous Theory R=10* o

0.35

03 [

0.25 |

0.2

0.1 |

0.05 [ 8

0 0.5 1 1.5 2 2.5 3 3.5 4
ag (deg)

b)CLVSlZ

Fig.2 Chow and Melnik numerical solution of the steady lower deck equations for 0 < a, < 0.45 [68] and the corresponding nonlinear viscous steady

C; — a curve at different Reynolds numbers.



Downloaded by UNIV CA - IRVINE on May 25, 2022 | http://arc.aiaa.org | DOI: 10.2514/1.J060956

TAHA AND REZAEI 2255

v(x, 1) = h(f) cos a(t) — a(f)(x — ab) — Usina(?),
—b<x<bh S)

where b is the half-chord length, % is the plunging displacement
(positive upward), « is the pitching angle (angle of attack, positive
pitching up), and ab represents the chordwise distance from the
midpoint to the hinge point, as shown in Fig. 3. This type of
kinematics results in

.
@) = blo o) = Uat), - ax() = =222,

a,=0 Vn>2 (6)

where v, is the normal velocity at the midchord point, which is
given by

vi2(1) = h(1) cos a(t) + abé(r) — Ussina()

The determination of a, (leading-edge singularity term) is more
involved in the sense that it requires solving an integral equation,
which cannot be solved analytically for arbitrary time-varying wing
motion. It has been solved for some common inputs, e.g., step change
in the angle of attack resulting in the Wagner response [3], simple
harmonic motion resulting in Theodorsen’s frequency response [4],
sharp-edged gust resulting in Kiissner’s function [8], and sinusoidal
gust resulting in Sears’s function [10]. For example, the harmonic
solution of Theodorsen implies [73]

where v3 4 is the normal velocity at the three-quarter-chord point; and
C(k) is the Theodorsen frequency response function, which depends
on the reduced frequency k = wb /U as

HP (k)

Ck) = g
® HP (k) + iH (k)

®)

where Hff") is the Hankel function of the mth mth kind of order n.
Finally, the potential-flow lift force and pitching moment (positive
pitching up) at the midchord point are written as

Lp = —mpb(ap +a;) and My, = %pbz(az —ap) )

In the common classification proposed by Theodorsen [4], the terms
proportional to C(k) represent the circulatory contribution; whereas
the other algebraic terms (i.e., free of dynamic lag), which are
proportional to acceleration, represent the noncirculatory contribu-
tion [74].

Relaxing the Kutta condition is equivalent to introducing an addi-
tional circulation I', beyond Kutta’s. If the problem is formulated
using conformal mapping (i.e., mapping a circular cylinder to a flat
plate), this vortex is introduced at the center of the cylinder, which
induces singularities at the trailing and leading edges of the plate.
Clearly, this circulation is of unknown strength; there is no means
within potential flow for its determination. The Kutta condition
dictates that it must vanish so as to remove the singularity at the
trailing edge. However, we relax the Kutta condition and determine
its dynamics via matching with the triple-deck boundary-layer
theory. This additional circulation modifies the inviscid unsteady
pressure distribution [Eq. (4)] as

1 0 &
P@6,t) - P, = p|:§ ay(t) tani + Z a,(t)sinn@
n=1

1 0 0
+ EB\,(Z) (Cotz + aov (t) tan z)} (10)

where the correction B, is related to the additional circulation as
B, = (UT'y/2xb), and a, is the leading-edge singularity due to I',..
This term has a nontrivial dynamics (there is a nontrivial transfer
function from Iy to ag ). It can be determined from potential-flow
considerations: it is the a, term in the unsteady inviscid pressure
distribution Eq. (4) over the plate due to a bound circulation I,
ignoring the quasi-steady contribution (i.e., the wake effects only).
Therefore, similar to the general a, term, it cannot be determined
analytically for arbitrary kinematics; there is an analytical expression
in the special case of harmonic motion (ay, = 2C(k) — 1[69]). Inour
recent effort [57], we used the unsteady triple-deck theory, exploiting
the vanishing of the time-derivative term from the boundary-layer
equations to determine B, in terms of k and R. Then, the viscous
unsteady lift and pitching moment will be written as

L = —nmpb(ay + a; + B,(1 + ay)) and

T
M, =§Pb2(az—ao+3v(1 —ao,)) (11)

To determine the viscous correction B, of the pressure distribution,
consider approaching the trailing edge (0 — 0 or X = (x/b) — 1),
the pressure distribution [Eq. (10)] is then written as

PEX—- 1;0)—Py=p (%ao(t) + Zinan(t)
n=1

1-x +Bv(t)/

2 1%
2

+ 30 0) (1)

which has the same form as the steady distribution given in Eq. (1)
with the equivalence

1
a,(t) = 7 and

%ao(t) +2 i na, (1)
n=1

B,(1) =B, = —2&347%/4 (% ao(t) +2 i nan(t))Be(ae) (13)
n=1

where a; and B, are the equivalent steady angle of attack and the
trailing-edge singularity term, respectively. Note that the negligence
of the term B, ao, when performing such an equivalence was justified
in our earlier effort [57]. This comparison along with the fact that the
time-derivative term does not enter the triple-deck equations is
suggestive to use the steady solution by Chow and Melnik [68] of
the inner deck equations for the unsteady case with the equivalence
shown earlier in this paper, which is valid in the range 0 < k <
O(R'/*). In the aforementioned equivalence, if the term

1 [o9)
an(t) +2 ; na,(t)

is negative, then the top of the oscillating plate will correspond to the
top of the steady plate; if it is positive, then the top of the oscillating
plate should correspond to the bottom of the steady one. In either
case, a, would be positive.

For a harmonically oscillating flat plate at a given reduced fre-
quency k and Reynolds number R, the coefficients a, a1, and a, of
the inviscid pressure distribution are given in Egs. (6) and (7). Thus,
a, can be obtained accordingly from Eq. (13). Care should be taken
when applying Eq. (13). It should be applied instantaneously: at each
time instant, the right-hand side containing the a coefficients is
complex because a, contains the complex-valued function C(k).
The instantaneous «,(#) should be given by

a,(t) = % %Bao(t) + 2a,(t) + 4a2(t)]‘
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where 3i(.) denotes the real part of its complex argument. As such,
the equivalent angle of attack «,(f) for the numerical solution of
Chow and Melnik [68] is obtained from Eq. (2) withe = R~!/3. Note
that if a,(¢) exceeds 0.47, then the simulation should be terminated
because such a value implies trailing-edge stall; beyond which,
the current analysis is not valid. Using Fig. 2a, one can obtain
B, (1), which in turn is substituted in Eq. (13) to determine the viscous
correction B, (). Finally, the unsteady viscous lift and moment are
written as

—ﬂf)bzl.)l/Q —27[/)Ubv3/4C(k)
L = Noncirculatory Circulatory - 27tpbBVC(k) (14)

Potential Flow Solution Lp Viscous Correction

This equation implies that the viscous contribution to the lift appears
as a correction to the angle of attack a3/, = —v3,4/U at the three-
quarter-chord point by an amount of B, = (B,/U?). That is, the
viscous unsteady circulatory lift coefficient can be written as
Cr. = 2n(o34 — B,)C(k). Also, the pitching moment at the mid-
chord point can be written as

2

. b .
Mo = —mph? | i+ 5 Ui+ vy C(k) = B,(1 = C(K)) | (1)

- - Viscous Correction
Potential Flow Solution Mo,

The viscous correction B,C(k) to the unsteady circulatory lift is
inherited in the pitching moment as well. However, there is an addi-
tional viscous correction to the pitching moment. As can be inferred
from Eq. (11), the viscous lift contribution has two components:
Byay, acting at the quarter-chord point, similar to the inviscid circu-
latory lift; and B, acting at the three-quarter-chord point. Hence,
viscosity, not only induces lag to the circulatory lift [57] but also
shifts the center of pressure; both effects are expected to impact the
flutter boundary [75,76].

III. Nonlinear State-Space Model of Viscous Unsteady
Loads

A. Model Development

Similar to the classical potential-flow models of unsteady aerody-
namics (e.g., Theodorsen [4]), the aforementioned viscous unsteady
model is infinite-dimensional; i.e., the lift transfer function has infi-
nitely many poles. The development of a finite-dimensional approxi-
mation of the current infinite-dimensional nonlinear dynamical model
may be challenging; the search for a special class/form of nonlinear
systems that can fit such an infinite-dimensional model is not trivial.
Luckily, the nature of the system, as depicted in the block diagram
in Fig. 4, invokes the Wiener—Hammerstein structure as a paradigm
model of the viscous unsteady lift dynamics, where a static/algebraic
nonlinear function is sandwiched between two linear dynamical sys-
tems [77-79], as shown in Fig. 5. Moreover, identification of the
Wiener—-Hammerstein model parameters (the static nonlinear function
and the two linear transfer functions) is straightforward in the current
viscous unsteady model. As shown in Fig. 4, the static nonlinear
function comes from the steady triple-deck nonlinearity, and the two

linear dynamical systems come from the potential-flow lift dynamics.
So, we can construct a state-space model for the viscous unsteady loads
by using a proper finite-state approximation of such a linear lift
dynamics (e.g., Leishman and Nguyen [17] or Peters [13]); see the
Appendix for a brief study of different finite-state approximations of
the potential-flow lift dynamics.

Let the quadruple (A p, Bp, Cp, Dp) represent a state-space model
of potential-flow lift dynamics [i.e., a state-space representation of
C(k)]. Then, the corresponding transfer function must have a high-
frequency gain of 1/2, which implies that D, = 1/2 [74]. Also, the
corresponding transfer function must have a unity dc gain. That is, if
itis fed by, say, v3 4, the output would be v3 4, C (k) in the time domain
(i.e., the unsteady version of v3/4). Therefore, we can write

X1 =[Aplx1 + [Bplvzja.
yp = [Cplt1 + [Dplvsys (16)

where y; € R” is the vector of internal aerodynamic states constitut-
ing the adopted potential-flow finite-state model of order n. The
subscript of 1 is used since another set of potential-flow states will
be needed, as will be shown in the following. In this formulation, the
output y, represents v3,,C(k) in the time domain. As such, the
potential-flow circulatory aerodynamic loads can be determined
directly from yp according to Egs. (6)-(9) as

Lp\ _ 2\ a
(Mop )C = —ﬂpUb(b)yp < U[F]yp 17)

where F is the matrix (column) defining such a linear algebraic
relation. In addition, the noncirculatory loads can be written in an
abstract way as

() =eai) re(i) - ow
where the matrices M and C represent added mass and damping

(actually, the negative of mass and damping) induced by the non-
circulatory loads, which are given by

5 ab cosa 5 Ucosa asina
Mz—npb[z :|, (Cznpb[ ]
b*/8 0 -Ub/2 0
(19)

As such, adding the circulatory and noncirculatory contributions, the
total potential-flow aerodynamic loads can be written in an abstract

form as
Linear I ] Linear
Dynamics | Dynamics
G1(s) | G(s)

Nonlinear
Algebraic Function

Fig. 5 Wiener-Hammerstein model.

h(t), a(t)

Airfoil|Motion

Potential-Flow | as(t)
Linear Dynamics

Triple-Deck Viscous Nonlinearity

+
« U

ozb(l/z-a)—h

] Theodorsen

| B C, (t

| Bs(t) By(t) - Linear Dynamics"f_().
2nC (k)

a3/4(t)

Fig. 4 Block diagram describing the dynamics of the viscous unsteady circulatory lift.
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(Z‘IZ;) Z[M](Z)“L[C](Z)ﬂLU[F]yP (20)

The block diagram shown in Fig. 4 implies that the sought state-
space model would include at least double the number 7 of the states
constituting the adopted potential-flow finite-state model because it
includes the potential-flow dynamics twice. In addition, to have a
proper representation, we consider @ and i to be the inputs to the

aerodynamical system [80,81]; hence, a, &, and 7 will be states. That
is, the sought state-space model would be of order 2n + 3, whose
state vector is ¥y = [y1,x2,a, @, h]T and input vector is u = [a, h]T
As can be concluded from Eqgs. (14) and (15), the potential-flow lift
given earlier in this paper needs to be corrected by adding terms
proportional to B, and B,C(k). The latter can be determined by
passing the former to the potential-flow state-space representa-
tion [Eq. (16)].

To develop a state-space representation for the viscous correction
terms B, and B, C(k), which is the main contribution of this work, we
recall Eq. (13) and define the effective angle of attack

1|1 =
Aot = —5 | 5 a0() +2 Z na, (1)
U~ (2 —~

Note that this o, is different from the common notion of the effective
angle of attack in potential flow. The former is a term special to the
developed viscous theory, whereas the latter is simply given by the
angle of attack a3 4 at the three-quarter-chord point (Ref. [71] p. 80).
Based on this definition, the equivalent steady angle of attack is
simply given by @, = |a.| Then, we use Egs. (6) and (7) to write
et AS

3ba  2bvy ), - bl
Cky -2 12—~ 21
()= 5 + =12 @

U3/4
et = U
Realizing that v3,4,C(k) is simply yp, and substituting for v;,, we
write dg in terms of the states and inputs:

_1 .
Qe (3 10) :U[Cp b(%—l—Zcosa—l—Dp (%—a)) 2”T‘"sinoz—Dpcosoz]

)('I i b 2a—1)b 2 @ 22
(J.! —DPsm(H—m[( a—1) cosa](h.) (22)
h

As can be seen from Eq. (22), the effective angle of attack in the
viscous theory depends on the accelerations. So, for relatively fast
motion, a.g reaches significant values, which trigger nonlinearity of
the B, (a,) curve (Fig. 2a), even with small amplitudes.

Having developed a state-space representation of . (and con-
sequently a;), Eq. (13) implies that the viscous correction B, can be
written in terms of the states and inputs as

BuGriw) = 263054 U (s ) B (€727 Bl ()] ) (23)

where B,(.) is a nonlinear function coming from the numerical
solution of Chow and Melnik [68] to the triple-deck problem: specifi-
cally from Fig. 2a. Finally, the unsteady version of B, [i.e., B,C(k)]
can be written with the aid of the potential-flow finite-state model
[Eq. (16)] as

X2 = [Aplx2 + [Bp]B,,
vy = [Cplxa + [Dp]B, (24)
where y, simply represents B,C(k) in the time domain. The total

viscous unsteady loads can then be written according to Egs. (14) and
(15) as

(Ajo) = (z\]}; ) - ﬂpb(i)BVC(k) + ﬂpbz(?)Bv (25)
where the potential-flow loads
(3,)
My,
are given by Eq. (20). Realizing that

F= —ﬂpb(i)

and that B,C(k) is y,, which is given by Eq. (24), we finalize the
state-space model as follows. The state equation is written as

X1 [ Ap 0.y, 0,51 —pr(%—a) chosa_
d X2 Opscn Ap Onx Opx1 Opx1
il 217 O O O 1 0
a Oisn O1xn O 0 0
) Lo O 0 0 0
1 —BpUsina [0 O |
X2 BpB,(x;u) Onx1 Onxt .
a |+ 0 +| 0 O (a) (26)
a 0 1 0 "
h 0 L0 1]

where B,(x;u) is given in Eq. (23) in terms of the states
% = lx1.02. a. &, h]" and the inputs u = [&, A]” . The output equation
for the total viscous unsteady loads is then written as

L
(1)
- [U]FCP FCp 0,y —UDPb(%-a)JFHC(l) UDPIFcosa—HC(Z)]
X1
X2 .
a | +B,(;u)Fr—U?Dp sinaF—i—M(Z) 27)
a
h
where M and C are defined in Eq. (19), C(j) is the jth column of C,

, 0
and ' = D,F + (ﬂ_pb2 .

B. Model Validation

To assess the accuracy of the developed model, computational fluid
dynamic simulations of a pitching NACA 0012 airfoil are performed
using ANSYS Fluent. The computational setup was developed and
refined in our earlier efforts [57,82,83]; only its main features are
described in the following. A hybrid mesh was constructed where the
airfoil is enclosed by a fine structured grid that is linked to the far-field
boundary through an unstructured triangular mesh zone. There are 300
nodes on each side of the airfoil and a total number of cells of about
200,000 in the entire domain. The mesh resolution is denser near the
airfoil and wake, and it becomes coarser when approaching the far-field
boundaries. This technique helps maintain a high-quality mesh reso-
lution near the surface and can accommodate the airfoil motion through
a dynamic mesh. The Reynolds number was set to R = 10°, and
the unsteady Reynolds-averaged Navier—Stokes (URANS) equations
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were solved using the k& —w shear-stress transport turbulence
model. Velocity inlet and pressure outlet boundary conditions were
adopted at the far field, and the no-slip boundary condition was set
at the airfoil surface. It was ensured that y* remains under one
during all simulations. The inlet flow turbulent intensity was set to
0.1%, and the gauge pressure at the outlet boundary condition was
set to zero. This computational setup was validated against exper-
imental data in Refs. [82,83]. For more details of the simulation
setup, boundary conditions, and dynamic mesh, the reader is re-
ferred to Refs. [57,82,83].

The state-space model presented in Eqs. (26) and (27) is simulated
for the case of a pitching plate around the midchord point at R = 103
and k = 1. The following nonharmonic waveform is used to dem-
onstrate the power of the developed state-space model in simulating
arbitrary time-varying airfoil motion, in contrast to the frequency
response model developed in our earlier effort [57]

a(t) = Ay (e — 1) 28)

where A, is set to ensure that the maximum « throughout the cycle is
1 deg. Figure 6 shows the lift and pitching moment (at the hinge
point; i.e., quarter-chord) coefficients resulting from the state-space
model [Eqgs. (26) and (27)] in comparison to the potential-flow
simulation (i.e., B, = 0). Both results are compared in reference
to the relatively higher-fidelity simulations of the URANS equa-
tions described earlier in this paper. In simulating the viscous state-
space model [Eqgs. (26) and (27)], the following potential-flow
finite-state model is adopted, which is similar to that of Leishman
and Beddoes [84]:

_U[-b, 0 U (b4,
AP—b|:0 —b2:|’ Bp_b(b2A2 s
DPZI_AI_AZ

where the constants A, A,, b, and b, are those defining Jones’s
two-state approximation [14]

¢(r) =1 —Ale_b" —Aze‘_bzf

of the Wagner function, where 7 = (Ut/b). Their values are:
A} =0.165, A, =0.335, by =0.0445, and b, =0.3. In the
Appendix, we show that this two-state approximation by Jones
is one of the best approximations in the literature in terms of
the tradeoff between accuracy and controllability/observability
properties.

0.12

0.1

0.08

Nonlinear Viscous Theory i
""""" Potential Flow /
URANS Computations 47

a) Lift response

Inspecting the results shown in Fig. 6, it is interesting to observe
significant deviation from the classical potential-flow theory at this
very small-amplitude oscillation (maximum « is 1 deg) but relatively
large frequency (k = 1). It is also interesting to report a very good
matching between the computational results and the developed state-
space model. Indeed, it should serve aerodynamicists better than the
classical Theodorsen model because it transcends the latter in the
following aspects:

1) it provides viscous effects (i.e., Reynolds number dependence).

2) It captures nonlinearity and additional lag in the lift dynamics
due to viscosity, which will affect instability boundaries.

3) It allows simulation of arbitrary time-varying airfoil motions
(i.e., not confined to harmonic motions).

4) Being in a state-space form makes it much more convenient than
a frequency response function for simulation and coupling with
structural dynamics to perform aeroelasticity, flight dynamics analy-
sis, and control design.

5) It is simply more accurate.

IV. Linearization of the Nonlinear Viscous
Unsteady Theory

Although the state-space model [Eqs. (26) and (27)] is indeed
useful in simulation and analysis, it is always encouraging to seek
analytical results. This goal is typically hard to achieve with a non-
linear theory, which invokes linearization of the nonlinear viscous
unsteady theory developed earlier in this paper. Moreover, one draw-
back in the developed theory is its inability to tackle larger angles of
attack; if a, exceeds 0.47 (which corresponds to @ ~3 deg), the
simulation must be terminated, which poses a good research problem
on how to extend such a model (specifically, Fig. 2a) to at least
relatively larger angles of attack below stall (up to @ ~ 10 deg),
perhaps by matching a given steady C; — a curve [21]. It should
be noted that the classical inviscid theory (e.g., Theodorsen model)
suffers from the same issue of validity over a small-a range. Yet, it
does not stipulate terminating the simulation if the angle of attack
exceeds a certain value. Therefore, insofar as the inability to continue
simulation of the developed theory is a limiting factor, it is an
advantage beyond the classical theory in the sense that it precisely
defines a region of applicability. Having said that, this issue will be
circumvented any way in the linearized model below, realizing that
linearization is typically valid for sufficiently small disturbances.

A. Analytical Representation of the Viscous Lift Frequency Response

Itis indeed intriguing to develop an analytical representation of the
viscous unsteady lift frequency response, similar to the Theodorsen
model, that depends not only on the frequency but also on the

0.025
002 f i i 8

0.015

0.005

Nonlinear Viscous Theory
-------- Potential Flow
URANS Computations

-0.005

-0.01

0015 Vi B

-0.025

b) Pitching moment response

Fig. 6 Response of nonlinear state-space model [Egs. (26) and (27)] of viscous lift and pitching moment (at hinge point; i.e., quarter-chord) to
nonharmonic pitching maneuver [Eq. (28)] in comparison to potential-flow and URANS computations.
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Reynolds number. This goal is pursued in the following by simply
linearizing the nonlinear viscous unsteady theory developed earlier in
this paper.

Equation (25) [or Eq. (14)] implies

L =Lp—2mpbB,

The potential-flow lift L » only possesses geometric nonlinearities;
hence, it can be easily linearized, resulting in the Theodrsen trans-
fer function of the circulatory lift. Therefore, the main nonlinearity
in the developed theory of the viscous unsteady lift resides in B,,
which stems from the viscous triple-deck boundary-layer theory,
as shown in the block diagram in Fig. 4. The B, contribution
possesses two nonlinearities: the nonlinearity of the relation
B,(a,) shown in Fig. 2a, and a multiplicative nonlinearity repre-
sented by the term o, X B, in Eq. (23). Expanding B, in a Taylor
series around the origin (y = 0, # = 0) and retaining only linear
terms, we write

B, (x:u) =~ B,(0;0) — 26’17/ U? [0 (0; 0) AB, (2, (0; 0))
+ Be(ae(O; O))Aaeff((); 0)]

where A represents first-order variations. Equation (22) implies
that a.¢(0;0) = 0, which results in zero a, and a,. This zero
a,, when plugged in the relation B,(a,) of Fig. 2a, results in
B,(a,(0;0)) 2 B,, = 0.53. Moreover, the first-order variation of
B, at zero is almost zero; B,(a,) has an almost-zero slope at
a, = 0. Hence, we have

B,(x;u) ~ —263/1‘5/4U2360Aa5ff(0; 0)

Substituting the first variations of a.¢ from Eq. (21), we obtain the
following linearization of B,

3
B, (y;u)~—2e31"*B,, [U(Av3 /2)C (k) —EbU&—f— 2bAY, ) —bza]
(29)

where
Av3/4=h—b(§—a)a—U0{, and Avy, = h+aba—Ua (30)

Recalling the classification of lift in Eq. (14) and interpreting
the viscous contribution as circulatory (since it is associated with an
additional circulation) (i.e., assuming the noncirculatory loads remain
intact), the linearized viscous circulatory lift is then written as

Lc=-2npb
3
X |:UU3/4 —2631_5/4360 (UU3/4 C(k) —EbUa + 2bv1/2 — b2a):| C(k)
€2y

Unlike the inviscid theory, there is no special point (e.g., the three-
quarter-chord point) over the airfoil whose angle of attack solely
dictates the circulatory lift. The lift response depends on the motion
in a complicated way; it would not be possible to obtain a lift transfer
function independent of kinematics. Nevertheless, we can derive ana-
lytical representations of the lift transfer function for harmonic pitching
and plunging separately. In both cases, we define the viscous lift
frequency response function C,, similar to the Theodorsen model, as

Lc(k;R)

C,(k;R) = Los®)

where Ly is the quasi-steady lift given by Lys = —2zpbUvs 4.

1. Frequency Response due to Plunging

For a harmonic plunging motion h(t) = He™', vy,4 = h and
Vi = h. As such, we obtain the viscous lift frequency response
function

Cy plunging (ks R) = [1 = 2R73/8475/4B, (C(k) + 2ik)|C(k) (32)

2. Frequency Response due to Pitching
For a harmonic pitching motion a(f) = A,e',

1
U3/4 = —Usina—db(z—a)

and v, = abd — U cos aq, resulting in

1
AU3/4(1€) = —UAa|:] + lk(i— a):|, and

U2
Av1/2(k) = _7Aa[ak2 + lk]

As such, we obtain the viscous lift frequency response function

Cv‘Pitching (k’ R)
N Tik—(1=2a)k?

=|1-2R73/8)75/4B
[ A B (C(k) 1+ ik(1/2—a)

)] Clk)  (33)

Equations (32) and (33) represent, for the first time, analytical
representations of the viscous lift frequency response. That is, one
can account for the Reynolds number dependence in an explicit way.
Clearly, as R — o0, both transfer functions (of pitching and plunging)
C, — C(k); one recovers the inviscid behavior as the Reynolds num-
ber approaches infinity. Therefore, these two functions may replace the
Theodorsen function in future analysis. Figure 7 shows the variations
of these two viscous lift frequency response functions with reduced
frequency at different Reynolds numbers in comparison to the inviscid
response of the Theodorsen theory. Although the theory does not
predict a considerable change in the magnitude of the transfer function
from the inviscid response, it predicts a significant deviation in phase;
the larger the frequency and the lower the Reynolds number, the larger
the deviation in phase from the Theodorsen phase. These results were
observed in our earlier effort [57] using a describing function analysis
of the nonlinear theory. They are also captured here by the simple
analytical relations [Egs. (32) and (33)]. For a discussion about the
physical reason behind this viscosity-induced lag and its relation to the
Kutta condition, the reader is referred to our earlier effort [57].

The obtained phase results are also in accordance with the exper-
imental results of Chu and Abramson [46], Henry [42], Abramson
and Ransleben [64], and Bass et al. [39]. In these experimental
efforts, the authors reconciled the deviation between the Theodorsen
prediction of the unsteady aerodynamic loads and their measure-
ments by adding some suggested phase lag to the Theodorsen func-
tion, which is naturally captured in the developed viscous theory. For
example, Chu and Abramson [46] suggested adding a phase lag of
—10 deg to the Theodorsen function for a better estimate of the
unsteady lift and flutter boundary when k ~ 0.5. Bass et al. [39]
conducted a water-tunnel experiment for a NACA 16-012 under-
going pitching oscillations around its quarter-chord point in the
ranges of 0.5 < k < 10 and R = 6500-26,500. They compared their
force measurements to the Theodorsen potential-flow frequency
response. They found bad agreement in the range of 0.5 < k <2,
where the most pronounced boundary-layer activity is observed and
the flow near the trailing edge is separating and alternating around the
trailing edge. They concluded that adding a phase lag of —30 deg to
the Theodorsen C(k) would make the predicted lift from the classical
theory of unsteady aerodynamics match their experimental measure-
ments over this range. Similarly, there are several efforts in the
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Viscous Frequency Response for Plunging

Viscous Frequency Response for Pitching (around half-chord)
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Fig.7 Variation of viscous lift frequency response with Reynolds number in the case of plunging and pitching (around the midchord) in comparison to

inviscid response of Theodorsen [4].

literature that suggest adding phase lag to the Theodorsen inviscid
frequency response. However, there was no theoretical model that
could predict the appropriate phase lag at a given combination of
frequency and Reynolds number. The developed viscous unsteady
theory fills this gap by providing a reasonable estimate of such a
phase lag. This result is particularly important for flutter calculation.
Note that the flutter instability, similar to any typical Hopf bifurca-
tion, is mainly dictated by when energy is added/subtracted during
the cycle. That is, the phase difference between the applied loads
(aerodynamic loads) and the system motion (e.g., angle of attack)
plays a crucial role in dictating the stability boundary. Therefore, if
the Theodorsen model does not capture such a phase lag accurately, it
may lead to a deviation in the flutter boundary. As such, itis expected
that the developed viscous frequency response will result in a more
accurate, yet efficient, estimate of the flutter boundary.

To present an example for the importance of the viscosity-induced
phase lag and shift in the center of pressure for estimating the flutter
boundary, we perform the standard typical-section flutter analysis
[72,85] of the following wing:

b=3ft, I,=045slug- ft2,
K, =9851b-ft/rad

m = 0.2 slug,
K, = 153 Ib/ft,

where m is the mass of the wing, I, is its pitching moment of inertia
about the elastic axis, and K, and K, represent the bending and
torsional stiffness of the wing section. Also, the elastic axis is located
ab behind the midchord point, and the section center of mass is
located x,b behind the elastic axis with

Xe =—0.1 and a =0.1
Applying the standard typical-section flutter calculations [72,85] on
this example using the Theodorsen inviscid lift dynamics and the
proposed viscous lift dynamics, we obtain the following results for
the flutter speed U and reduced frequency kp:

kF|Theodorsen = 028’ UF|The0d0rsen =123.6 ft/S, kFlViscous

= 0.40 and Up|yieons = 87.4 ft/s

That s, we observe more than 40% deviation in the flutter speed from
the Theodorsen method and an even larger deviation in the flutter
reduced frequency. To obtain this estimate, a Reynolds number of
109 is assumed whose associated Reynolds number based on turbu-
lent viscosity is approximately 10°; we used the latter value in our

viscous model. It should be noted that although the developed
viscous unsteady model is validated in this paper, the corresponding
flutter boundary remains to be validated using a high-fidelity fluid—
structure-interaction computational or experimental model, which
will be the focus of our future work.

Finally, it may be interesting to discuss the following point. Unlike
the pitching case, where it is hard to interpret the @ terms in the
viscous correction as circulatory or noncirculatory (since both con-
tributions in potential flow include & terms), such a classification is
straightforward in the plunging case. In this case, the total viscous
unsteady lift can be written as

—ﬂpri)l/z —27[prv3/4C(k)
———— —_—
L= Noncirculatory Circulatory
Inviscid

— 2R73/8)75/4B,, (=2mpbUvs,4C? (k) — 4mpbV; 12)

Viscous

which suggests classifying the v3/4 term in the viscous contribution
as circulatory and the v, term as noncirculatory (added mass). By
doing so, we obtain a viscous frequency response of the circulatory
lift as

Cy(k;R) = [l —2R-3/8;75/*B,, C(k)]C(k)

simultaneously with a viscous (i.e., Reynolds-number-dependent)
added mass that is also frequency dependent:

my(k; R) = npb*[1 — 8R™3/3)75/*B, C(k)] (34)

Following this classification, the resulting viscous frequency
response C, of the circulatory lift is quite close to the Theodorsen
method. That is, the main viscous contribution actually resides in
the acceleration term, which explains why the viscous response
deviates from the Theodorsen response at higher frequencies. There-
fore, this discussion suggests that, for pure plunging, one can model
the viscous effects by just considering the modified (decreased)
frequency-dependent added mass m, given in Eq. (34).

B. Analytical Linear State-Space Representation of Viscous Unsteady
Loads

Since the nonlinear state-space model [Eqgs. (26) and (27)] is valid
only for small angles, it may be prudent to develop a linearized
version of it. Having linearized the viscous frequency response
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theory (developed earlier [57]) to obtain the analytical frequency
response functions [Egs. (32) and (33)], it should be straightforward
to linearize the nonlinear state-space model [Eqs. (26) and (27)]. The
geometric nonlinearities in the model [Egs. (26) and (27)] can be
easily linearized; the main nontrivial nonlinear term is B,, which has
been already linearized earlier in this paper, as given in Eq. (29) in the
frequency domain. Therefore, it can be written in the time domain as

7 .
B,(r;u) ~ 2617548, [pr — S bUa+ 2bli = (1 - 2a)b2b'c]

where yp is the output from the potential-flow state-space model
[Egq. (16)], i.., the time-domain version of v3,4,C(k). Substituting y
from Eq. (16) and the linearized v34 from Eq. (30), then B, can be
written linearly in the states in the time domain as

7 .
By(r;u) ~ —R, [U(Cp)(l + DpHyyz3) =5 bUi + 2bi

—(- 2a)b2'0’c] 35)

where R, = 2R™3/8)75/4B, , is a constant (related to the effect of the

Reynolds number R on lift), x; is the third set of states y3 = [a, &, h]
and H3, defines the linear dependence of v, on yj3:
a
AU3/4: [—U —b(%—a) 1]((1) éH3/4}{3 (36)
h

As such, the nonlinear state-space model [Eqs. (26) and (27)] can then
be linearized into the following form:

X1 Ap Onxn ByH; )y X1

42 |=| -UR.BpCp Ap —UR,DpBpHyy || 12

X3 035z 035 0353 X3
051 051 0,x1 a

+ %UbRLBP (1—2a)b2RLBP —2bRLBP a (37)

I 3x3
and the output equation can be written in the linear form:

0.12

01 F R |

Nonlinear Viscous Theory

URANS Computations
L . N Linearized Viscous Theory
-0.02 [

-0.04 :
0 0.5 1 1.5

)

a) Lift response

D,F)Cp FCp UDp(F~R,D,F')H; ]

(4t

P =2(1-7R.D,) a

—ZpUb? x4+ M, | .. 38
x2 2/) (b[l—7RL(1—DP)])Ol+ (h) ©8
X3

where M, represents the viscous version of the mass matrix M and is
given by

bla+2R.D,(1-2a)] 1-4R, D
M, = —zpb? (39)
b*[§—R.(1-2a)(1-Dp)] 2R b(1-Dp)

Figure 8 shows the simulation of the linearized viscous state-
space model [Eqgs. (37) and (38)] subject to the nonharmonic
small-amplitude maneuver defined in Eq. (28). As expected, for
small-amplitude maneuvers such as the one considered here, the
response of the linearized viscous system matches that of the non-
linear system [Eqgs. (26) and (27)] well; both match the higher-
fidelity URANS simulations. As such, the simple four-state (plus
three kinematic states) system [Eqgs. (37) and (38)] is expected to
be of a significant benefit to aeroelasticians and flight dynamic-
ists because it captures viscous unsteady effects in a convenient
dynamical-system form (state-space form), allowing efficient sim-
ulation and coupling with structural dynamics for linear stability
analysis (e.g., flutter analysis) and control design.

V. Conclusions

In this paper, a nonlinear state-space model of viscous unsteady
aerodynamic loads was developed. The model presents a finite-state
approximation of the recently developed infinite-dimensional viscous,
unsteady aerodynamic theory that couples potential flow with the triple-
deck boundary-layer theory. The model uses the Wiener—Hammerstein
structure and consists of four internal aerodynamic states and three
kinematic states. It is validated against relatively higher-fidelity compu-
tations of the unsteady Reynolds-averaged Navier—Stokes equations.
Comparisons show that the potential-flow results could deviate signifi-
cantly from the viscous theory, even for a very small-amplitude oscil-
lation (down to 1 deg1°) when the reduced frequency is relatively large.
Moreover, the developed nonlinear state-space model is in very good
agreement with the URANS predictions of the lift and moment over a
specified range of angle of attack. Therefore, this model will be of
paramount importance to aeroelasticians and flight dynamicists because
1) it captures viscous Reynolds number effects, including nonlinearity

0.02

0.015

0.01

0.005

Nonlinear Viscous Theory
URANS Computations
Linearized Viscous Theory

-0.005

-0.01

-0.015

-0.02 : : :

b) Pitching moment response

Fig.8 Response of linear state-space model [Eqgs. (37) and (38)] of viscous lift and pitching moment (at hinge point; i.e., quarter-chord) to nonharmonic
pitching maneuver [Eq. (28)] in comparison to nonlinear model [Eqs. (26) and (27)] and URANS computations.
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and additional lag in the lift dynamics; 2) it allows simulation of arbitrary
time-varying maneuvers (not necessarily harmonic); and 3) being in a
state-space form, it allows straightforward coupling with structural
dynamics for aeroelasticity and flight dynamics analysis and control
design. Moreover, linearizing such a theory, a linear state-space model
and an analytical representation of the viscous lift frequency response
function were derived, which are explicit functions of both frequency
and the Reynolds number.

Appendix: Finite-State Approximations of the Potential-
Flow Lift Dynamics

There have been several finite-dimensional approximations of
the potential-flow lift dynamics [13-19,22,23]. Since the viscous
unsteady model (developed in this paper) includes potential-flow
lift as a submodel, it may be prudent to present a comparison among
the common finite-dimensional approximations of the infinite-
dimensional potential-flow lift response, as well as to study whether
a better approximation can be developed. In particular, we consider
the behavior of the common finite-state approximations of Jones
[14] and Vepa [16] in comparison to the MATLAB system identi-
fication algorithm #fest.

Jones [14] introduced the following two-state approximation of the
Wagner function in the time domain

P(r) =1 —Aje™P17 — Ayjehot (Al)
where 7 = (Ut/b) is the nondimensional time; and
A; =0.165, A, =0.335, b; =0.0445, and b, =03

Itis one of the most common approximations in the literature. Taking
the Laplace transform of the step response ¢(7) and dividing it by the
Laplace transform 1/s of the step input, we can easily write the
corresponding transfer function

(1-A;—A))s> + (by+by—A1by —Arby)s+ by b,

G,(s)=
s(s) 52+ (b1 +by)s+biby

(A2)

Vepa [14] used the method of Padé approximants to develop a
finite-dimensional approximation of the Theodorsen function in the
frequency domain. His first four Padé approximants are given by

s+05 s2 4+ 1.55 + 0.375
o =5"705 =35 0510975
Gyals) = §3 +3.5 52 4+ 2.71255 + 0.46875 o
: 2§34+ 6.5 52 +4.255 + 0.46875°
s* + 4.64696s3 + 9.33371 52 + 5.51735s + 0.49334
Gv,4(5) =

25* + 8.793925% + 16.718945 + 7.672965 + 0.49334
(A3)

He also used a least-squares (LS) approach to develop the following
fourth 4th-order approximation of the potential-flow lift dynamics:

GV,LS(S)
_ 5" +0.7610365” 40.1020585> +0.00255067s 4+ 9.55732x 10~
T 254 +1.063939s% 4+0.1139385% +0.0026168s +9.55732x 10~°
(A4)

Itis clear that, in all of these approximations, the high-frequency gain
lim,_, G(s)
is 1/2 and the dc gain

lim,_,q G(s)

is one [74]. The former implies the same order of the numerator and
denominator of the transfer function; this fact was also necessary for
Vepa [16] to structure the approximants. Using the same number of
poles and zeros, one can use the MATLAB system identification
algorithm tfest to develop a dynamical system from the frequency
response data given by the Theodorsen function. The following
fourth 4th-order system is obtained:

0.5001s* 4 0.8309s3 + 0.356s2 + 0.03972s + 0.0007756
s* 4+ 1.413s5% + 0.4781652 + 0.04377s + 0007795
(A5)

Gu(s) =

Note that this technique, being data driven, will depend on the range
of frequencies considered in the estimation and its resolution. How-
ever, nice convergence is observed for large enough k range and fine
enough resolution; the preceding transfer function was developed
using a k range of 0—10 with 10,000 equidistant points.

Figure A1 shows the frequency response of Jones’s [15] second
2nd-order transfer function [Eq. (A2)], Vepa’s [16] second 2nd- and
fourth 4th-order Padé approximants given in Eq. (A3), Vepa’s fourth
4th-order LS transfer function [Eq. (A4)], and the fourth 4th-order
transfer function [Eq. (AS5)] identified using MATLAB’S f#fest in
comparison to the Theodorsen exact formula

(2)
o) =5 = (-k) @

H” (k) + iH; (k)
where H{" is the Hankel function of the mth mth kind of order n.
The figure shows that Vepa’s Padé approximants experience some
deviation from the exact response, whereas Vepa’s fourth 4th-order
LS and MATLAB’S fourth 4th-order transfer function are close to the
Theodorsen exact response. Interestingly, Jones’s transfer function
[15], although only second 2nd order, captures the lift frequency
response well (even better than Vepa’s fourth 4th-order Padé approx-
imant [16]).

It should be noted that accuracy is not the only goal when devel-
oping these finite-dimensional approximations. Since these approx-
imations are mainly developed for dynamics and control analysis, it
may be judicious to investigate their controllability and observability
properties; an accurate approximation may be weakly controllable
(or observable), and hence not so useful in control design (or esti-
mation). To study the controllability and observability properties
simultaneously, it is convenient to transform a given system into a
balanced canonical form where the controllability and observability
gramians are equal: W, = W, [A1,A2]. Given a minimal realization
(A,B,C,D) of any of the aforementioned approximate transfer
functions [Eqs. (A2)-(AS5)], the controllability and observability
gramians are computed by solving the Lyapunov equations

AW,.+ W AT + BBT =0 and ATW, + W,A+ CTC =0 (A6)
We then perform Cholesky factorization for W. and W, as
W.=L.LT and W, = L,L7

Finally, the controllability and observability gramians in the balanced
form are equal and given by X, which comes from the singular value
decomposition of LTL.; i.e., we have LTL. = UZVT. We then
consider the condition number of X as an indicator of how close it
is to being singular (i.e., how weakly controllable the system is); the
larger the condition number of X, the closer it is to being singular,
indicating weaker controllability of the system.

Table A1 shows a comparison among the finite-dimensional
approximations, presented earlier in this paper, of the potential-flow
lift dynamics in terms of accuracy and controllability/observability
properties; the former is represented by the root-mean-square (RMS)
error/deviation from the Theodorsen exact response, and the latter is
represented by the condition number of the controllability/observ-
ability gramian X in the balanced form. The table data corroborate the
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Fig. A1 Frequency response of different finite-dimensional approximations of the potential-flow lift.

Table A1 Comparison among different finite-dimensional approximations of potential-flow lift dynamics in
terms of accuracy and controllability/observability properties

Author Transfer function RMS error, % Condition number of X
Jones [14] 0.552+0.28085-+0.0136 1.28 6.17
5740.34555+0.0136
Vepa second-2nd order Padé [16] 524+ 1.55+0.375 2.93 22.96
25%+2.55+0.375
Vepa fourth 4th-order Padé [16] 5% +4.64696s +9.33371 5> +5.517355+0.49334 1.83 11374
25%+8.793925% +16.718945% +7.672965+0.49334
Vepa fourth 4th-order LS [16] 5*40.7610365% +0.10205852 +0.00255067549.55732x 10~ 0.55 147.42
257+ 1.0639395° +0.11393852+0.0026 1685 +9.55732x 10~
MATLAB tfest fourth 4th order 0.50015*40.83095%+0.35652+0.039725+0.0007756 0.08 140.74
s*+1.413574+0.4781652 +0.043775+0007795
behavior shown in Fig. Al: Vepa’s Padé approximants [16] experi- References

ence the largest error/deviation, relatively, although their absolute
RMS may be satisfactory (RMS is less than 3%). It also shows that the
MATLAB ftfest identified fourth 4th-order model and Vepa’s fourth
4th-order LS model are quite close to the exact response (RMSs are
less than 0.1 and 1%, respectively). However, these accurate models
are weakly controllable (due to a pole-zero pair close to cancelation).
Interestingly, Vepa’s fourth 4th-order Padé approximant suffers from
the weakest controllability/observability, even though it does not
enjoy a very high accuracy, excluding its candidacy as a good
finite-state approximation of the potential-flow lift dynamics. Sur-
prisingly, Jones’s model (the first model developed in the literature
[15]) enjoys the strongest controllability/observability properties
along with a satisfactory accuracy (RMS is 1.28%) with even a low
order, making it the best candidate among the selected group; the
model that was developed in the 1940s without any consideration for
controllability/observability (these concepts were developed later in
the 1960s by Kalman et al. [A3]) turns out to be the most controllable/
observable approximation with a low order and high accuracy.
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