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In this paper, we summarize our recently developed viscous unsteady theory, which couples potential flowwith the

triple-deck boundary-layer theory. This approach provides a viscous extension of potential-flow unsteady

aerodynamics. As such, a Reynolds-number-dependent transfer function is determined for unsteady lift. We then

use the Wiener–Hammerstein structure to develop a finite-dimensional approximation of such an infinite-

dimensional theory, presenting it in a state-space model. This novel nonlinear state-space model of viscous

unsteady aerodynamic loads is expected to serve aerodynamicists better than the classical Theodorsen’s model

because it captures viscous effects (that is, Reynolds number dependence) as well as nonlinearity and additional lag in

the lift dynamics; it also allows simulation of arbitrary time-varying airfoil motions (not necessarily harmonic).

Moreover, being in a state-space formmakes it quite convenient for simulation and couplingwith structural dynamics

to perform aeroelasticity, flight dynamics analysis, and control design. We then develop a linearization of such a

model, which enables analytical results. Subsequently, we derive an analytical representation of the viscous lift

frequency response function: an explicit function of both the frequency and Reynolds number. We also develop a

state-space model of the linearized response. We finally simulate the nonlinear and linear models to a nonharmonic

small-amplitude pitching maneuver at a Reynolds number of 100,000 and compare the resulting lift and pitching

moment with those obtained from potential flow; this is in reference to relatively higher-fidelity computations of the

unsteady Reynolds-averaged Navier–Stokes equations.

Nomenclature

�AP; BP; CP;DP� = state-space representation of the potential-
flow lift dynamics

Aα = pitching amplitude
a = chordwise distance from the midpoint to

the hinge point, normalized by the half-
chord

aj = coefficients in the Glauert series expansion
of the inviscid pressure distribution

a0v = leading-edge suction coefficient due to the
viscous correction to Kutta’s circulation

Be = equivalent scaled trailing-edge singularity
for the triple-deck theory

Be0 = Its value (0.53) ofBe at zero angle of attack
Bs = steady trailing-edge singularity
Bv, ~Bv

= unsteady trailing-edge singularity (viscous
correction) and its nondimensional value

b = half-chord
C�k� = Theodorsen function (lift deficiency func-

tion or lift frequency response function)
CL, CD = lift and drag coefficients
CLC

= circulatory lift coefficient
Cv = viscous lift frequency response function
G�p� = transfer function of a linear dynamical sys-

tem in the Laplace domain

H�m�
n

= Hankel function of mth kind of order n

h, H = plunging displacement (positive upward)
and its amplitude

i =
������
−1

p
k = reduced frequency

L,M0 = viscous lift and pitching moment at the
midchord point

LC, LQS = circulatory and quasi-steady lift
LP,M0P

= potential-flow lift and pitching moment at
the midchord point

mv = viscous added mass
P = unsteady pressure distribution
Ps = steady pressure distribution
P∞ = freestream pressure
R = Reynolds number
R�:� = real part of its complex argument
s = nondimensional Laplace variable
t = time variable
U = freestream velocity
u = control inputs for a dynamical system
v = airfoil velocity normal to the surface (pos-

itive upward)
v1∕2, v3∕4 = airfoil velocities normal to the surface at the

midchord and three-quarter-chord points
x, x̂ = coordinate along the airfoil chord and its

nondimensional value
y = coordinate normal the airfoil chord
yP = output of the potential-flow dynamical sys-

tem: the unsteady v3∕4
α = angle of attack or pitching displacement

(positive pitching up)
αe = equivalent scaled angle of attack for the

triple-deck theory (0–0.47)
αeff = viscous unsteady effective angle of attack
αs = steady angle of attack
α3∕4 = local angle of attack at the three-quarter-

chord point
Γv = viscous correction to Kutta’s circulation
ϵ = small parameter for perturbation analysis
θ = tangential angular coordinate along the air-

foil (or plate) chord
λ = Blasius skin-friction coefficient (0.332)
ρ = air density
τ = nondimensional time
ϕ = Wagner function
χ = vector of state variables of a dynamical

system
ω = angular frequency of the harmonic motion,

rad/s
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I. Introduction

T HE theory of two-dimensional unsteady aerodynamics has a
long history that extends for a century. Perhaps the first formal

efforts were those of Prandtl [1] and Birnbaum [2] in 1924, consid-
ering incompressible, slightly viscous flows around thin airfoils with
sharp trailing edges. The key concept is that the flow nonuniformity
leads to vorticity generation that emanates at the sharp trailing edge
and freely sheds behind the airfoil. In addition, the flow outside these
sheets can be considered inviscid. As such, for example, the law of
zero total circulation (a consequence of the conservation of angular
momentum in inviscid flows) can be used. These assumptions alone
are not enough to determine a unique solution for the wing and wake
circulations. Then, the Kutta–Zhukovsky condition (smooth flow off
the sharp trailing edge) comes to play an essential role in the problem
closure. That is, no flow around the sharp edge; hence, the velocity
has to be finite at the edge. Finally, in order to obtain an analytical
explicit solution to the governing dynamics (the Laplace equation in
the velocity potential in this case), one more assumption is usually
adopted: assuming small disturbance to the mean flow so that the
vorticity sheet shed by themean flow velocity (flat wake assumption)
completes the framework of the classical theory. In summary, the
classical theory of unsteady aerodynamics is based on replacing the
airfoil and the wake by vorticity distributions (singularities) that
satisfy the Laplace equation everywhere in the flowfield, except at
the surface of singularities. Three main conditions are applied: 1) no-
penetration boundary condition (fluid velocity is parallel to the wing
surface), 2) the Kutta condition (smooth flow off the sharp trailing
edge), and 3) the conservation of total circulation (�DΓ∕Dt� � 0).
This formulation along with the flat wake assumption constitute the
classical theory of unsteady aerodynamics.
The aforementioned formulation of the classical theory of un-

steady aerodynamics was extensively used throughout the years. In
1925, Wagner [3] used this formulation to solve the indicial problem
(lift response due to a step change in the angle of attack). In 1935,
Theodorsen [4] used the same formulation to solve the frequency
response problem (steady-state lift response due to harmonic oscil-
lation in the angle of attack). In 1938, von Kármán and Sears [5]
provided a more general and elaborate representation of the classical
formulation, which is of hitherto importance in developing exten-
sions of the classical theory [6,7]. Also, the efforts of Küssner [8]
on the sharp-edged gust problem, Schwarz [9] on the frequency
response problem, Sears [10] on the sinusoidal gust problem, and
Loewy [11] on the returning wake problem are worth mentioning. It
should be noted that although the approaches within this framework
may be different (i.e., different order of application of the boundary
conditions and assumptions as well as different means of calculating
the loads), these results are exactly equivalent. For example, Garrick
[12] showed that the Theodorsen function and the Wagner function
form a Fourier transform pair.
It should be pointed out that even with the several simplifying

assumptions mentioned earlier in this paper (potential flow, flat wake,
the Kutta assumption/condition, etc.), the unsteady lift response of a
two-dimensional airfoil is of an infinite-dimensional nature. That is, in
a dynamical-systems narrative, the lift transfer function has infinitely
many poles [13]. The need for calculating the aerodynamic loads due
to arbitrary time variations of the wing motion along with the need for
structural and/or dynamic coupling to assess aeroelastic and/or flight
dynamic stability problems invoked more compact representations of
the lift dynamics than the infinite-dimensional Theodorsen and Wag-
ner responses. Consequently, a number of finite-state approximations
to these response functions were developed. Jones [14] and Jones [15]
provided a two-state approximation to theWagner function in the time
domain. Vepa [16] introduced the method of Padé approximants to
determine finite-state approximations of the Theodorsen function in
the frequency domain. Of particular interest to the aeroelasticity and
flight dynamics community is the state-space representation developed
by Leishman and Nguyen [17] using the convolution integral with
Jones approximation to the Wagner step response function. Unlike
these finite-state models that are based on approximating the Theo-
dorsen function in the frequency domain or theWagner function in the

time domain, Peters and Karunamoorthy derived state-space models
from the basic governing principles using Glauert expansion [18], and
Peters et al. derived state-space models from the basic governing
principles using the expansion of potential functions [13,19]. In this
formulation, the internal aerodynamic states are of physical meaning;
they represent the inflow distributions. Although the formulation of
Peters [13] is quite neat, it necessitates a relatively large number (eight)
of inflow states to provide a good accuracy; whereas two states were
shown to be sufficient for this problem. More recently, Brunton and
Rowley [20] performed system identification to construct an empirical
state-spacemodel for the unsteady lift dynamics from direct numerical
simulations at Reynolds number of 100.However, theymaintained the
structure (low- and high-frequency behavior) of the Theodorsen lift
dynamics; we show in the following that such a structure does not
represent the viscous lift dynamics at high frequencies and/or low
Reynolds numbers. Recent efforts in developing state-spacemodels of
unsteady aerodynamic loads include Refs. [21–23].
Having summarized the main results of the classical theory of

unsteady aerodynamics, we should emphasize the following point.
Insofar as Prandtl’s potential-flow formulation [1] is quite useful in
serving the community, and even provides the basis for many recent
developments [6,7,24–33], it is mainly based on inviscid flow
dynamics; no regard can be given to a finite Reynolds number. More
important, it is not complete and invokes a closure or auxiliary
condition (e.g., the Kutta condition). Thus, the potential-flow formu-
lation cannot alone determine the amount of shed vorticity at the
trailing edge, which is a very crucial quantity because it determines
the bound circulation over the airfoil (via conservation of circula-
tion), which in turn dictates the generated lift force. The most
common auxiliary condition used in literature is the Kutta condition,
whose application to steady flows has been very successful. How-
ever, its application to unsteady flows has been controversial (see the
work of Crighton [34]).
The need for an auxiliary condition alternative to the Kutta con-

dition goes as early as thework of Howarth [35] with a research flurry
on the applicability of the Kutta condition to unsteady flows in the
1970s and 1980s [34,36–39]. This research was mainly motivated by
the failure to capture an accurate flutter boundary [40–42]. Since
flutter simply lies in the intersection between unsteady aerodynamics
and structural dynamics, and because the structural dynamics theory
is in a much better status (the vibration of slender beams can be
accurately predicted using the exact beam theory, for example), it has
been deemed that the flaw stems from the classical unsteady aerody-
namic theory (particularly the Kutta condition), as suggested by Chu
[43] and Shen and Crimi [44], among others. Moreover, since these
deviations occurred even at a zero angle of attack (or lift) [45,46], it
was inferred that there is a fundamental issuewith such a theory that is
notmerely a higher-order effect due to nonlinearities at high angles of
attack [43]. Therefore, there was almost a consensus that the Kutta
condition has to be relaxed, particularly at large frequencies, large
angles of attack, and/or low Reynolds numbers [38,47,48]. In fact,
Orszag and Crow [49] regarded the full Kutta condition solution as
“indefensible.” Interestingly, this dissatisfaction of the Kutta condi-
tion and the need for its relaxation are recently rejuvenated with the
increased interests in the low-Reynolds-number high-frequency bio-
inspired flight [6,50–55]. For more recent discussions about the
unsteady Kutta condition, the reader is referred to the efforts of Xia
and Mohseni [56], Taha and Rezaei [57], and Zhu et al. [58].
We note that the main concern about the Kutta condition in

unsteady flows is because vorticity generation and unsteady lift
development may enjoy important viscous effects, which may not
be captured in a purely inviscid theory. To resolve this issue,
we recently developed a viscous extension of the classical theory
of unsteady aerodynamics [57], equivalently, an unsteady extension
of the viscous boundary-layer theory. It is based on a special boun-
dary-layer theory (the triple deck [59–61]) that pays close attention to
the details in the vicinity of the trailing edge where the Blasius
boundary layer [62] interacts with the Goldstein near-wake layer
[63]. Our viscous extension resulted in a Reynolds-number-depen-
dent extension of the Theodorsen lift frequency response. It was
found that the viscous correction induces a significant phase lag
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to the circulatory lift component, particularly at low Reynolds
numbers and high frequencies, that matches high-fidelity simula-
tions of Navier–Stokes and previous experimental results
[39,42,46,64].
In this paper, we summarize the developed viscous unsteady aero-

dynamic theory. Based on which, we use the Wiener–Hammerstein
structure to develop a nonlinear state-space model of the viscous un-
steady loads.We then linearize such a theory to determine an analytical
representation, extending the Theodorsen lift frequency response
function to the viscous case. That is, we provide an analytical lift
frequency response function that explicitly depends not only on the
reduced frequency but also on the Reynolds number. Similar to the
Theodorsen function, this viscous frequency response function is
infinite-dimensional (i.e., has infinitely many poles). We then develop
a finite-state approximation of this infinite-dimensional viscous fre-
quency response. That is, we provide a linearized state-space model,
extending that of Leishman and Nguyen [17] to the viscous case; the
Reynolds number appears as a parameter in such a state-space model.
These tools will be of paramount importance in coupling viscous
unsteady aerodynamics with structural dynamics for aeroelasticity
and flight dynamics analysis as well as control synthesis. However,
similar to most classical models, the proposed one adopts some
simplifying assumptions; Table 1 summarizes these assumptions in
comparison to the unsteady models commonly used in the literature.
The specific contributions of this paper are summarized in the

following three points:
1) Develop a nonlinear state-space model for the viscous unsteady

lift and moment on a pitching–plunging flat plate. The Reynolds
number R is a parameter in this model.
2)Develop a linearizedversionof the aforementionednonlinear state-

space model; this linear model can be easily combined with structural/
body dynamics for standard linear stability analysis (e.g., flutter).
3) Derive analytical expressions for the viscous lift frequency

response function (i.e., a viscous Theodorsen function) that does not
only depend on the reduced frequency but also the Reynolds number.

II. Viscous Theory of Unsteady Aerodynamics

A. Background: The Triple-Deck Boundary-Layer Theory

In the early 1900s, Prandtl formulated the well-known boundary-
layer equations [65]: the nonlinear partial differential equations that

approximate Navier–Stokes equations in the thin viscous layer
around the airfoil. In 1908, Blasius [62] solved this set of equations
over a flat plate at a zero angle of attack subject to the no-slip
boundary condition on the plate, which led to the celebrated Blasius
boundary-layer solution. Later (in 1930), Goldstein [63] solved the
same boundary-layer equations of Prandtl in the wake region behind
the plate, replacing the no-slip condition with a zero-stress condition
on the wake centerline. He found that the removal of the wall
accelerates the flow, leading to a favorable pressure gradient. That
is, near the trailing edge, there are two boundary layers interacting
with each other, as shown in Fig. 1: theBlasius boundary layer,whose
thickness is of order R−1∕2; and the Goldstein near wake, whose
thickness is scaled asR−1∕2x1∕3, whereR is the Reynolds number and
x is the distance downstream of the edge [34]. The triple-deck theory
has been devised to model such local interactions near the trailing
edge of a flat plate in steady flow. In contrast to the classical
boundary-layer theory where only the normal coordinate is scaled,
the tangential coordinate is also scaled (zoomed) in the triple-deck
theory to resolve such interactions. Scaling dictates that the transition
region between the two layers takes place over a short length of order
R−3∕8 (as shown in Fig. 1), which is similar to Lighthill’s supersonic
shock-wave/boundary-layer interaction [66]. In conclusion, the tri-
ple-deck theory represents a solution to the discontinuity of the
viscous boundary condition at the edge [67]: from a zero tangential
velocity on the airfoil to a zero pressure discontinuity on the wake
centerline.
Aerodynamicists modeled this transition through three layers

(triple-deck theory): 1) the upper deck, which constitutes an irrota-
tional flow outside of the main boundary layer; 2) the main deck,
which is an inviscid layer, although rotational; and 3) the lower deck,
which is a viscous sublayer inside the main deck (as shown in Fig. 1),
where the full boundary-layer equations apply. Stewartson [59] and
Messiter [60] were the first to develop the triple-deck theory for a flat
plate in a steady flow at a zero angle of attack.
Brown and Stewartson [61] extended the work of Stewartson [59]

andMessiter [60] to the case of a small but nonzero angle of attack αs
in the order ofR−1∕16. This range is of interest because 1) ifαs ismuch
smaller, then the flow can be considered as a perturbation to the case
of αs � 0; and 2) if it is much larger, then the flow would separate
well before the trailing edge. Over this range, the resulting adverse
pressure gradient is of the same order as the favorable pressure

Table 1 Comparison among different assumptions adopted in classical inviscid unsteady models and the proposed
viscous one, in addition to the applicability of these models

Classical theory [3–5] Approximations [13–19] Vortex methods Proposed model

Assumptions Small disturbance × × — — ×
Flat wake × × — — ×
Kutta condition × × × — —

Applications Arbitrary kinematics —— ✓ ✓ ✓

State space —— ✓ — — ✓

R effect —— — — — — ✓

A cross indicates an assumption (i.e., weakness) in the model, while a a check indicates an applicability of the model to the point of concern (i.e.,
strength).

Fig. 1 Triple-deck structure and various flow regimes. Adapted from the work of Messiter [60].
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gradient in the triple deck, leading to separation in the immediate
vicinity of the trailing edge,which is called trailing-edge stall. Brown
and Stewartson [61] formulated such a problem and showed that the
flow in the lower deck is governed by partial differential equations
that are solved numerically for each value of αe � R1∕16λ−9∕8αs,
where λ � 0.332 is the Blasius skin-friction coefficient. Chow and
Melnik [68] solved the triple-deck boundary-layer equations in the
case of 0 < αe < 0.45 and concluded that the flow will separate from
the suction side of the airfoil from the trailing edge at αe � 0.47
(trailing-edge stall angle). We remark that this αe value for trailing-
edge stall corresponds to quite a small value for the actual angle of
attack: α � 3.1–4.2 deg for R � 104–106.
Setting the axes at the center of the plate (−1 ≤ x̂ ≤ 1 on the plate),

Brown and Stewartson [61] wrote the steady pressure distribution
near the trailing edge (x̂ � 1) as

Ps�x̂ → 1� � ρU2

2
64−αs

�����������
1 − x̂

2

r
� Bs∕2������

1−x̂
2

q
3
75sgn�y� (1)

where ρ is the fluid density;U is the freestream; sgn�y� is positive on
the upper surface; αs is the steady angle of attack; andBs is the steady
trailing-edge singularity term, which is supposed to be zero accord-
ing to the Kutta condition. In contrast, it is determined by matching
the triple deck with the outer flow. The numerical solution by Chow
and Melnik [68] provides Be as a nonlinear function of αe, which is
represented here in Fig. 2a, where

αe � αsϵ
−1∕2λ−9∕8 and Bs � 2ϵ3λ−5∕4Be�αe�αs (2)

where αs and αe are in radians, and ϵ � R−1∕8 ≪ 1 [59]. In other
words, Fig. 2a andEq. (2) provide the trailing-edge singularityBs as a
nonlinear function of the angle of attack αs in a steady flow. Based on
this theory, the Kutta steady lift can be corrected as

CL � 2π�sin αs − Bs� (3)

which results in the viscous lift shown in Fig. 2b at different Reynolds
numbers.

B. Viscous Unsteady Lift Frequency Response Using Triple-Deck
Theory

Brown and Daniels [67] were the first to extend the steady triple-
deck theory to the case of an oscillatory pitching flat plate. Unlike the
steady case, there is a Stokes layer near thewall that is of order

���������
ν∕ω

p
,

where the viscous term is balanced by the time-derivative term in the
equations. Brown and Daniels considered the impractical yet math-
ematically appealing case of very high-frequency k � O�R1∕4� �
1∕ϵ2 and very small-amplitude O�R−9∕16�, where k is the reduced
frequency. Luckily, focusing on the more practical case of 0 < k ≪
Re1∕4 and α � O�R−1∕16� results in vanishing the time-derivative
term in both the main deck and lower deck equations, as shown by
Brown and Cheng [69]. Therefore, the boundary-layer equations
look the same as those governing the steady case at a nonzero αs
(studied by Brown and Stewartson [61]) with a proper definition for
the equivalent steady angle of attack. However, we emphasize that
this approach is not a quasi-steady solution; although the time
derivative does not show up in the lower deck equations, the corre-
spondence with the steady equations implies an equivalent angle of
attack that is dependent on the oscillation frequency, as will be shown
in the following. Therefore, the lower deck system is dynamical
(i.e., possesses a nontrivial frequency response).
In our recent efforts [57,70], we have developed a viscous exten-

sion of the classical theory of unsteady aerodynamics using the triple-
deck boundary-layer theory discussed earlier in this paper. For an
arbitrarily deforming thin airfoil in the presence of a uniform stream
U, the inviscid pressure distribution is typically written as [71–73]

P�θ; t� − P∞ � ρ

�
1

2
a0�t� tan

θ

2
�
X∞
n�1

an�t� sin nθ
�

(4)

where θ is the tangential angular coordinate along the plate (zero at
the trailing edge, and π at the leading edge). Each term in the series of
Eq. (4) automatically satisfies the Kutta condition (zero loading at the
trailing edge). The pressure on the lower side is given by the negative
of Eq. (4). The no-penetration boundary condition provides a means
to determine all the coefficients an (except a0) in terms of the plate
motion kinematics, as shown by Robinson and Laurmann (Ref. [73]
p. 491). For example, for a pitching–plunging flat plate, as shown in
Fig. 3, the normal velocity of the plate is written as

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

e
 (rad)

0.5

0.6

0.7

0.8

0.9

1

1.1

B
e

0 0.5 1 1.5 2 2.5 3 3.5 4

s
 (deg)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

C
L

Linear Potential Flow

Nonlinear Viscous Theory R=105

Nonlinear Viscous Theory R=104

a) Numerical solution of Be = Be (`e) b) CL vs `

Fig. 2 Chow and Melnik numerical solution of the steady lower deck equations for 0 < αe < 0.45 [68] and the corresponding nonlinear viscous steady
CL − α curve at different Reynolds numbers.

Fig. 3 Schematic diagram for an oscillating flat plate.
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v�x; t� � _h�t� cos α�t� − _α�t��x − ab� −U sin α�t�;
−b ≤ x ≤ b (5)

where b is the half-chord length, h is the plunging displacement
(positive upward), α is the pitching angle (angle of attack, positive
pitching up), and ab represents the chordwise distance from the
midpoint to the hinge point, as shown in Fig. 3. This type of
kinematics results in

a1�t� � b� _v1∕2�t� −U _α�t��; a2�t� � −
b2 �α�t�

4
; and

an � 0 ∀ n > 2 (6)

where v1∕2 is the normal velocity at the midchord point, which is
given by

v1∕2�t� � _h�t� cos α�t� � ab _α�t� −U sin α�t�

The determination of a0 (leading-edge singularity term) is more
involved in the sense that it requires solving an integral equation,
which cannot be solved analytically for arbitrary time-varying wing
motion. It has been solved for some common inputs, e.g., step change
in the angle of attack resulting in the Wagner response [3], simple
harmonic motion resulting in Theodorsen’s frequency response [4],
sharp-edged gust resulting in Küssner’s function [8], and sinusoidal
gust resulting in Sears’s function [10]. For example, the harmonic
solution of Theodorsen implies [73]

a0 � U�2v3∕4C�k� � b_α� (7)

where v3∕4 is the normal velocity at the three-quarter-chord point; and
C�k� is the Theodorsen frequency response function, which depends
on the reduced frequency k � ωb∕U as

C�k� � H�2�
1 �k�

H�2�
1 �k� � iH�2�

0 �k�
(8)

where H�m�
n is the Hankel function of the mth mth kind of order n.

Finally, the potential-flow lift force and pitching moment (positive
pitching up) at the midchord point are written as

LP � −πρb�a0 � a1� and M0P
� π

2
ρb2�a2 − a0� (9)

In the common classification proposed by Theodorsen [4], the terms
proportional to C�k� represent the circulatory contribution; whereas
the other algebraic terms (i.e., free of dynamic lag), which are
proportional to acceleration, represent the noncirculatory contribu-
tion [74].
Relaxing the Kutta condition is equivalent to introducing an addi-

tional circulation Γv beyond Kutta’s. If the problem is formulated
using conformal mapping (i.e., mapping a circular cylinder to a flat
plate), this vortex is introduced at the center of the cylinder, which
induces singularities at the trailing and leading edges of the plate.
Clearly, this circulation is of unknown strength; there is no means
within potential flow for its determination. The Kutta condition
dictates that it must vanish so as to remove the singularity at the
trailing edge. However, we relax the Kutta condition and determine
its dynamics via matching with the triple-deck boundary-layer
theory. This additional circulation modifies the inviscid unsteady
pressure distribution [Eq. (4)] as

P�θ; t� − P∞ � ρ

�
1

2
a0�t� tan

θ

2
�
X∞
n�1

an�t� sinnθ

� 1

2
Bv�t�

�
cot

θ

2
� a0v�t� tan

θ

2

��
(10)

where the correction Bv is related to the additional circulation as
Bv � �UΓv∕2πb�, and a0v is the leading-edge singularity due to Γv.
This term has a nontrivial dynamics (there is a nontrivial transfer
function from Γv to a0v ). It can be determined from potential-flow
considerations: it is the a0 term in the unsteady inviscid pressure
distribution Eq. (4) over the plate due to a bound circulation Γv,
ignoring the quasi-steady contribution (i.e., the wake effects only).
Therefore, similar to the general a0 term, it cannot be determined
analytically for arbitrary kinematics; there is an analytical expression
in the special case of harmonicmotion (a0v � 2C�k� − 1 [69]). In our
recent effort [57], we used the unsteady triple-deck theory, exploiting
the vanishing of the time-derivative term from the boundary-layer
equations to determine Bv in terms of k and R. Then, the viscous
unsteady lift and pitching moment will be written as

L � −πρb�a0 � a1 � Bv�1� a0v�� and

M0 �
π

2
ρb2�a2 − a0 � Bv�1 − a0v�� (11)

To determine the viscous correctionBv of the pressure distribution,
consider approaching the trailing edge (θ → 0 or x̂ � �x∕b� → 1),
the pressure distribution [Eq. (10)] is then written as

P�x̂ → 1; t� − P∞ � ρ

2
4�1

2
a0�t� � 2

X∞
n�1

nan�t�

� 1

2
Bv�t�a0v�t�

� �����������
1 − x̂

2

r
� Bv�t�∕2������

1−x̂
2

q
3
5 (12)

which has the same form as the steady distribution given in Eq. (1)
with the equivalence

αs�t� ≡
1

U2

���� 12 a0�t� � 2
X∞
n�1

nan�t�
���� and

Bv�t� ≡ Bs � −2ϵ3λ−5∕4
�
1

2
a0�t� � 2

X∞
n�1

nan�t�
�
Be�αe� (13)

where αs and Bs are the equivalent steady angle of attack and the
trailing-edge singularity term, respectively. Note that the negligence
of the termBva0v when performing such an equivalencewas justified
in our earlier effort [57]. This comparison along with the fact that the
time-derivative term does not enter the triple-deck equations is
suggestive to use the steady solution by Chow and Melnik [68] of
the inner deck equations for the unsteady case with the equivalence
shown earlier in this paper, which is valid in the range 0 < k <
O�R1∕4�. In the aforementioned equivalence, if the term

1

2
a0�t� � 2

X∞
n�1

nan�t�

is negative, then the top of the oscillating plate will correspond to the
top of the steady plate; if it is positive, then the top of the oscillating
plate should correspond to the bottom of the steady one. In either
case, αs would be positive.
For a harmonically oscillating flat plate at a given reduced fre-

quency k and Reynolds number R, the coefficients a0, a1, and a2 of
the inviscid pressure distribution are given in Eqs. (6) and (7). Thus,
αs can be obtained accordingly from Eq. (13). Care should be taken
when applying Eq. (13). It should be applied instantaneously: at each
time instant, the right-hand side containing the a coefficients is
complex because a0 contains the complex-valued function C�k�.
The instantaneous αs�t� should be given by

αs�t� �
1

U2

����R
�
1

2
a0�t� � 2a1�t� � 4a2�t�

�����
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where R�:� denotes the real part of its complex argument. As such,
the equivalent angle of attack αe�t� for the numerical solution of
Chow andMelnik [68] is obtained fromEq. (2) with ϵ � R−1∕8. Note
that if αe�t� exceeds 0.47, then the simulation should be terminated
because such a value implies trailing-edge stall; beyond which,
the current analysis is not valid. Using Fig. 2a, one can obtain
Be�t�, which in turn is substituted in Eq. (13) to determine the viscous
correction Bv�t�. Finally, the unsteady viscous lift and moment are
written as

L � Noncirculatory

−πρb2 _v1∕2|�����{z�����}
Circulatory

−2πρUbv3∕4C�k�|������������{z������������}|��������������������������{z��������������������������}
Potential FlowSolution LP

− 2πρbBvC�k�|�������{z�������}
Viscous Correction

(14)

This equation implies that the viscous contribution to the lift appears
as a correction to the angle of attack α3∕4 � −v3∕4∕U at the three-

quarter-chord point by an amount of ~Bv � �Bv∕U2�. That is, the
viscous unsteady circulatory lift coefficient can be written as
CLC

� 2π�α3∕4 − ~Bv�C�k�. Also, the pitching moment at the mid-
chord point can be written as

M0 � −πρb2

2
664b28 �α� b

2
U _α�Uv3∕4C�k�|���������������������{z���������������������}

Potential FlowSolutionM0P

− Bv�1 − C�k��|��������{z��������}
Viscous Correction

3
775 (15)

The viscous correction BvC�k� to the unsteady circulatory lift is
inherited in the pitching moment as well. However, there is an addi-
tional viscous correction to the pitching moment. As can be inferred
from Eq. (11), the viscous lift contribution has two components:
Bva0v acting at the quarter-chord point, similar to the inviscid circu-
latory lift; and Bv acting at the three-quarter-chord point. Hence,
viscosity, not only induces lag to the circulatory lift [57] but also
shifts the center of pressure; both effects are expected to impact the
flutter boundary [75,76].

III. Nonlinear State-Space Model of Viscous Unsteady
Loads

A. Model Development

Similar to the classical potential-flow models of unsteady aerody-
namics (e.g., Theodorsen [4]), the aforementioned viscous unsteady
model is infinite-dimensional; i.e., the lift transfer function has infi-
nitely many poles. The development of a finite-dimensional approxi-
mation of the current infinite-dimensional nonlinear dynamical model
may be challenging; the search for a special class/form of nonlinear
systems that can fit such an infinite-dimensional model is not trivial.
Luckily, the nature of the system, as depicted in the block diagram
in Fig. 4, invokes the Wiener–Hammerstein structure as a paradigm
model of the viscous unsteady lift dynamics, where a static/algebraic
nonlinear function is sandwiched between two linear dynamical sys-
tems [77–79], as shown in Fig. 5. Moreover, identification of the
Wiener–Hammerstein model parameters (the static nonlinear function
and the two linear transfer functions) is straightforward in the current
viscous unsteady model. As shown in Fig. 4, the static nonlinear
function comes from the steady triple-deck nonlinearity, and the two

linear dynamical systems come from the potential-flow lift dynamics.
So,we can construct a state-spacemodel for theviscousunsteady loads
by using a proper finite-state approximation of such a linear lift
dynamics (e.g., Leishman and Nguyen [17] or Peters [13]); see the
Appendix for a brief study of different finite-state approximations of
the potential-flow lift dynamics.
Let the quadruple �AP;BP;CP;DP� represent a state-space model

of potential-flow lift dynamics [i.e., a state-space representation of
C�k�]. Then, the corresponding transfer function must have a high-
frequency gain of 1∕2, which implies that Dp � 1∕2 [74]. Also, the
corresponding transfer function must have a unity dc gain. That is, if
it is fed by, say, v3∕4, the output would be v3∕4C�k� in the time domain
(i.e., the unsteady version of v3∕4). Therefore, we can write

_χ 1 � �AP�χ 1 � �BP�v3∕4;
yP � �CP�χ 1 � �DP�v3∕4 (16)

where χ 1 ∈ Rn is the vector of internal aerodynamic states constitut-
ing the adopted potential-flow finite-state model of order n. The
subscript of 1 is used since another set of potential-flow states will
be needed, as will be shown in the following. In this formulation, the
output yp represents v3∕4C�k� in the time domain. As such, the
potential-flow circulatory aerodynamic loads can be determined
directly from yP according to Eqs. (6)–(9) as�

LP

M0P

�
C

� −πρUb

�
2

b

�
yP ≜ U�F�yP (17)

where F is the matrix (column) defining such a linear algebraic
relation. In addition, the noncirculatory loads can be written in an
abstract way as �

LP

M0P

�
NC

� �M�
�
�α
�h

�
� �C�

�
_α
_h

�
(18)

where the matrices M and C represent added mass and damping
(actually, the negative of mass and damping) induced by the non-
circulatory loads, which are given by

M � −πρb2
�

ab cos α

b2∕8 0

�
; C � πρb2

�
U cos α _α sin α

−Ub∕2 0

�
(19)

As such, adding the circulatory and noncirculatory contributions, the
total potential-flow aerodynamic loads can be written in an abstract
form as

Fig. 4 Block diagram describing the dynamics of the viscous unsteady circulatory lift.

Fig. 5 Wiener–Hammerstein model.
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�
LP

M0P

�
� �M�

�
�α
�h

�
� �C�

�
_α
_h

�
�U�F�yP (20)

The block diagram shown in Fig. 4 implies that the sought state-
space model would include at least double the number n of the states
constituting the adopted potential-flow finite-state model because it
includes the potential-flow dynamics twice. In addition, to have a

proper representation, we consider �α and �h to be the inputs to the

aerodynamical system [80,81]; hence, α, _α, and _hwill be states. That
is, the sought state-space model would be of order 2n� 3, whose

state vector is χ � �χ1; χ2; α; _α; _h�T and input vector is u � � �α; �h�T .
As can be concluded from Eqs. (14) and (15), the potential-flow lift
given earlier in this paper needs to be corrected by adding terms
proportional to Bv and BvC�k�. The latter can be determined by
passing the former to the potential-flow state-space representa-
tion [Eq. (16)].
To develop a state-space representation for the viscous correction

termsBv andBvC�k�, which is themain contribution of this work, we
recall Eq. (13) and define the effective angle of attack

αeff �
1

U2

�
1

2
a0�t� � 2

X∞
n�1

nan�t�
�

Note that this αeff is different from the common notion of the effective
angle of attack in potential flow. The former is a term special to the
developed viscous theory, whereas the latter is simply given by the
angle of attack α3∕4 at the three-quarter-chord point (Ref. [71] p. 80).
Based on this definition, the equivalent steady angle of attack is
simply given by αs � jαeff j. Then, we use Eqs. (6) and (7) to write
αeff as

αeff �
v3∕4
U

C�k� − 3b _α

2U
� 2b _v1∕2 − b2 �α

U2
(21)

Realizing that v3∕4C�k� is simply yP, and substituting for _v1∕2, we
write αeff in terms of the states and inputs:

αeff�χ ;u��
−1
U

h
CP b

	
3
2
�2cosα�DP

	
1
2
−a




2b _α
U sinα−DPcosα

i
0
B@
χ1

_α

_h

1
CA−DP sinα�

b

U2

h
�2a−1�b 2cosα

i� �α

�h

�
(22)

As can be seen from Eq. (22), the effective angle of attack in the
viscous theory depends on the accelerations. So, for relatively fast
motion, αeff reaches significant values, which trigger nonlinearity of
the Be�αe� curve (Fig. 2a), even with small amplitudes.
Having developed a state-space representation of αeff (and con-

sequently αs), Eq. (13) implies that the viscous correction Bv can be
written in terms of the states and inputs as

Bv�χ ; u� � −2ϵ3λ−5∕4U2αeff�χ; u�Be

	
ϵ−1∕2λ−9∕8jαeff�χ; u�j



(23)

where Be�:� is a nonlinear function coming from the numerical
solution of Chow and Melnik [68] to the triple-deck problem: specifi-
cally from Fig. 2a. Finally, the unsteady version of Bv [i.e., BvC�k�]
can be written with the aid of the potential-flow finite-state model
[Eq. (16)] as

_χ 2 � �AP�χ 2 � �BP�Bv;

yv � �CP�χ 2 � �DP�Bv (24)

where yv simply represents BvC�k� in the time domain. The total
viscous unsteady loads can then be written according to Eqs. (14) and
(15) as

�
L
M0

�
�
�

LP

M0P

�
− πρb

�
2

b

�
BvC�k� � πρb2

�
0

1

�
Bv (25)

where the potential-flow loads�
LP

M0P

�

are given by Eq. (20). Realizing that

F � −πρb
�
2

b

�

and that BvC�k� is yv, which is given by Eq. (24), we finalize the
state-space model as follows. The state equation is written as

d

dt

0
BBBBBBBB@

χ 1

χ 2

α

_α

_h

1
CCCCCCCCA
�

2
666666664

AP 0n×n 0n×1 −BPb
	
1
2
−a



BP cosα

0n×n AP 0n×1 0n×1 0n×1

01×n 01×n 0 1 0

01×n 01×n 0 0 0

01×n 01×n 0 0 0

3
777777775

0
BBBBBBBB@

χ1

χ2

α

_α

_h

1
CCCCCCCCA
�

0
BBBBBBBB@

−BPU sinα

BPBv�χ ;u�
0

0

0

1
CCCCCCCCA
�

2
666666664

0n×1 0n×1

0n×1 0n×1

0 0

1 0

0 1

3
777777775
�
�α

�h

�
(26)

where Bv�χ ;u� is given in Eq. (23) in terms of the states

χ � �χ1; χ2; α; _α; _h�T and the inputs u � � �α; �h�T . The output equation
for the total viscous unsteady loads is then written as

�
L

M0

�

�
h
UFCP FCP 02×1 −UDPb

	
1
2
−a


F�C�1� UDPFcosα�C�2�

i
0
BBBBBBB@

χ1

χ2

α

_α

_h

1
CCCCCCCA
�Bv�χ ;u�F0−U2DPsinαF�M

�
�α

�h

�
(27)

whereM and C are defined in Eq. (19), C�j� is the jth column of C,

and F 0 � DpF�
�

0

πρb2

�
.

B. Model Validation

To assess the accuracy of the developed model, computational fluid
dynamic simulations of a pitching NACA 0012 airfoil are performed
using ANSYS Fluent. The computational setup was developed and
refined in our earlier efforts [57,82,83]; only its main features are
described in the following. A hybrid mesh was constructed where the
airfoil is enclosed by a fine structured grid that is linked to the far-field
boundary through an unstructured triangular mesh zone. There are 300
nodes on each side of the airfoil and a total number of cells of about
200,000 in the entire domain. The mesh resolution is denser near the
airfoil andwake, and it becomes coarserwhen approaching the far-field
boundaries. This technique helps maintain a high-quality mesh reso-
lution near the surface and can accommodate the airfoilmotion through
a dynamic mesh. The Reynolds number was set to R � 105, and
the unsteady Reynolds-averaged Navier–Stokes (URANS) equations
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were solved using the k − ω shear-stress transport turbulence
model. Velocity inlet and pressure outlet boundary conditions were
adopted at the far field, and the no-slip boundary condition was set
at the airfoil surface. It was ensured that y� remains under one
during all simulations. The inlet flow turbulent intensity was set to
0.1%, and the gauge pressure at the outlet boundary condition was
set to zero. This computational setup was validated against exper-
imental data in Refs. [82,83]. For more details of the simulation
setup, boundary conditions, and dynamic mesh, the reader is re-
ferred to Refs. [57,82,83].
The state-space model presented in Eqs. (26) and (27) is simulated

for the case of a pitching plate around the midchord point at R � 105

and k � 1. The following nonharmonic waveform is used to dem-
onstrate the power of the developed state-space model in simulating
arbitrary time-varying airfoil motion, in contrast to the frequency
response model developed in our earlier effort [57]

α�t� � Aα�esinωt − 1� (28)

whereAα is set to ensure that the maximum α throughout the cycle is
1 deg. Figure 6 shows the lift and pitching moment (at the hinge
point; i.e., quarter-chord) coefficients resulting from the state-space
model [Eqs. (26) and (27)] in comparison to the potential-flow
simulation (i.e., Bv � 0). Both results are compared in reference
to the relatively higher-fidelity simulations of the URANS equa-
tions described earlier in this paper. In simulating the viscous state-
space model [Eqs. (26) and (27)], the following potential-flow
finite-state model is adopted, which is similar to that of Leishman
and Beddoes [84]:

AP � U

b

�
−b1 0

0 −b2

�
; Bp � U

b

�
b1A1

b2A2

�
;

CP � �
1 1

�
; DP � 1 − A1 − A2

where the constants A1, A2, b1, and b2 are those defining Jones’s
two-state approximation [14]

ϕ�τ� � 1 − A1e
−b1τ − A2e

−b2τ

of the Wagner function, where τ � �Ut∕b�. Their values are:
A1 � 0.165, A2 � 0.335, b1 � 0.0445, and b2 � 0.3. In the
Appendix, we show that this two-state approximation by Jones
is one of the best approximations in the literature in terms of
the tradeoff between accuracy and controllability/observability
properties.

Inspecting the results shown in Fig. 6, it is interesting to observe
significant deviation from the classical potential-flow theory at this
very small-amplitude oscillation (maximum α is 1 deg) but relatively
large frequency (k � 1). It is also interesting to report a very good
matching between the computational results and the developed state-
space model. Indeed, it should serve aerodynamicists better than the
classical Theodorsen model because it transcends the latter in the
following aspects:
1) it provides viscous effects (i.e., Reynolds number dependence).
2) It captures nonlinearity and additional lag in the lift dynamics

due to viscosity, which will affect instability boundaries.
3) It allows simulation of arbitrary time-varying airfoil motions

(i.e., not confined to harmonic motions).
4) Being in a state-space formmakes itmuchmore convenient than

a frequency response function for simulation and coupling with
structural dynamics to perform aeroelasticity, flight dynamics analy-
sis, and control design.
5) It is simply more accurate.

IV. Linearization of the Nonlinear Viscous
Unsteady Theory

Although the state-space model [Eqs. (26) and (27)] is indeed
useful in simulation and analysis, it is always encouraging to seek
analytical results. This goal is typically hard to achieve with a non-
linear theory, which invokes linearization of the nonlinear viscous
unsteady theory developed earlier in this paper. Moreover, one draw-
back in the developed theory is its inability to tackle larger angles of
attack; if αe exceeds 0.47 (which corresponds to α ∼ 3 deg), the
simulation must be terminated, which poses a good research problem
on how to extend such a model (specifically, Fig. 2a) to at least
relatively larger angles of attack below stall (up to α ∼ 10 deg),
perhaps by matching a given steady CL − α curve [21]. It should
be noted that the classical inviscid theory (e.g., Theodorsen model)
suffers from the same issue of validity over a small-α range. Yet, it
does not stipulate terminating the simulation if the angle of attack
exceeds a certain value. Therefore, insofar as the inability to continue
simulation of the developed theory is a limiting factor, it is an
advantage beyond the classical theory in the sense that it precisely
defines a region of applicability. Having said that, this issue will be
circumvented any way in the linearized model below, realizing that
linearization is typically valid for sufficiently small disturbances.

A. Analytical Representation of the Viscous Lift Frequency Response

It is indeed intriguing to develop an analytical representation of the
viscous unsteady lift frequency response, similar to the Theodorsen
model, that depends not only on the frequency but also on the

0 0.5 1 1.5 2

t/T
a) Lift response

-0.04

-0.02

0

0.02

0.04

0.06

0.08
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C
L

Nonlinear Viscous Theory
Potential Flow
URANS Computations

0 0.5 1 1.5 2

t/T

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

C
M

Nonlinear Viscous Theory
Potential Flow
URANS Computations

b) Pitching moment response

Fig. 6 Response of nonlinear state-space model [Eqs. (26) and (27)] of viscous lift and pitching moment (at hinge point; i.e., quarter-chord) to
nonharmonic pitching maneuver [Eq. (28)] in comparison to potential-flow and URANS computations.
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Reynolds number. This goal is pursued in the following by simply
linearizing the nonlinear viscous unsteady theory developed earlier in
this paper.
Equation (25) [or Eq. (14)] implies

L � LP − 2πρbBv

The potential-flow liftLP only possesses geometric nonlinearities;
hence, it can be easily linearized, resulting in the Theodrsen trans-
fer function of the circulatory lift. Therefore, the main nonlinearity
in the developed theory of the viscous unsteady lift resides in Bv,
which stems from the viscous triple-deck boundary-layer theory,
as shown in the block diagram in Fig. 4. The Bv contribution
possesses two nonlinearities: the nonlinearity of the relation
Be�αe� shown in Fig. 2a, and a multiplicative nonlinearity repre-
sented by the term αeff × Be in Eq. (23). Expanding Bv in a Taylor
series around the origin (χ � 0, u � 0) and retaining only linear
terms, we write

Bv�χ ; u� ≃ Bv�0; 0� − 2ϵ3λ−5∕4U2�αeff�0; 0�ΔBe�αe�0; 0��
� Be�αe�0; 0��Δαeff�0; 0��

where Δ represents first-order variations. Equation (22) implies
that αeff�0; 0� � 0, which results in zero αs and αe. This zero
αe, when plugged in the relation Be�αe� of Fig. 2a, results in
Be�αe�0; 0�� ≜ Be0 � 0.53. Moreover, the first-order variation of
Be at zero is almost zero; Be�αe� has an almost-zero slope at
αe � 0. Hence, we have

Bv�χ ; u� ≃ −2ϵ3λ−5∕4U2Be0Δαeff�0; 0�

Substituting the first variations of αeff from Eq. (21), we obtain the
following linearization of Bv

Bv�χ ;u�≃−2ϵ3λ−5∕4Be0

�
U�Δv3∕4�C�k�−

3

2
bU _α�2bΔ _v1∕2−b2 �α

�
(29)

where

Δv3∕4 � _h−b

�
1

2
− a

�
_α−Uα; and Δ _v1∕2 � �h� ab �α−U _α (30)

Recalling the classification of lift in Eq. (14) and interpreting
the viscous contribution as circulatory (since it is associated with an
additional circulation) (i.e., assuming the noncirculatory loads remain
intact), the linearized viscous circulatory lift is then written as

LC�−2πρb

×
�
Uv3∕4−2ϵ3λ−5∕4Be0

�
Uv3∕4C�k�−

3

2
bU _α�2b _v1∕2−b2 �α

��
C�k�

(31)

Unlike the inviscid theory, there is no special point (e.g., the three-
quarter-chord point) over the airfoil whose angle of attack solely
dictates the circulatory lift. The lift response depends on the motion
in a complicated way; it would not be possible to obtain a lift transfer
function independent of kinematics. Nevertheless, we can derive ana-
lytical representations of the lift transfer function for harmonic pitching
and plunging separately. In both cases, we define the viscous lift
frequency response function Cv, similar to the Theodorsen model, as

Cv�k;R� ≜
LC�k;R�
LQS�k�

where LQS is the quasi-steady lift given by LQS � −2πρbUv3∕4.

1. Frequency Response due to Plunging

For a harmonic plunging motion h�t� � Heiωt, v3∕4 � _h and
_v1∕2 � �h. As such, we obtain the viscous lift frequency response
function

Cv;Plunging�k;R� �
�
1 − 2R−3∕8λ−5∕4Be0�C�k� � 2ik��C�k� (32)

2. Frequency Response due to Pitching

For a harmonic pitching motion α�t� � Aαe
iωt,

v3∕4 � −U sin α − _αb

�
1

2
− a

�

and _v1∕2 � ab �α −U cos α _α, resulting in

Δv3∕4�k� � −UAα

�
1� ik

�
1

2
− a

��
; and

Δ _v1∕2�k� � −
U2

b
Aα�ak2 � ik�

As such, we obtain the viscous lift frequency response function

Cv;Pitching�k;R�

�
�
1− 2R−3∕8λ−5∕4Be0

�
C�k��

7
2
ik− �1− 2a�k2
1� ik�1∕2−a�

��
C�k� (33)

Equations (32) and (33) represent, for the first time, analytical
representations of the viscous lift frequency response. That is, one
can account for the Reynolds number dependence in an explicit way.
Clearly, asR → ∞, both transfer functions (of pitching and plunging)
Cv → C�k�; one recovers the inviscid behavior as the Reynolds num-
ber approaches infinity. Therefore, these two functionsmay replace the
Theodorsen function in future analysis. Figure 7 shows the variations
of these two viscous lift frequency response functions with reduced
frequency at different Reynolds numbers in comparison to the inviscid
response of the Theodorsen theory. Although the theory does not
predict a considerable change in the magnitude of the transfer function
from the inviscid response, it predicts a significant deviation in phase;
the larger the frequency and the lower the Reynolds number, the larger
the deviation in phase from the Theodorsen phase. These results were
observed in our earlier effort [57] using a describing function analysis
of the nonlinear theory. They are also captured here by the simple
analytical relations [Eqs. (32) and (33)]. For a discussion about the
physical reason behind this viscosity-induced lag and its relation to the
Kutta condition, the reader is referred to our earlier effort [57].
The obtained phase results are also in accordance with the exper-

imental results of Chu and Abramson [46], Henry [42], Abramson
and Ransleben [64], and Bass et al. [39]. In these experimental
efforts, the authors reconciled the deviation between the Theodorsen
prediction of the unsteady aerodynamic loads and their measure-
ments by adding some suggested phase lag to the Theodorsen func-
tion, which is naturally captured in the developed viscous theory. For
example, Chu and Abramson [46] suggested adding a phase lag of
−10 deg to the Theodorsen function for a better estimate of the
unsteady lift and flutter boundary when k ≃ 0.5. Bass et al. [39]
conducted a water-tunnel experiment for a NACA 16-012 under-
going pitching oscillations around its quarter-chord point in the
ranges of 0.5 < k < 10 and R � 6500–26;500. They compared their
force measurements to the Theodorsen potential-flow frequency
response. They found bad agreement in the range of 0.5 < k < 2,
where the most pronounced boundary-layer activity is observed and
the flow near the trailing edge is separating and alternating around the
trailing edge. They concluded that adding a phase lag of −30 deg to
the TheodorsenC�k�would make the predicted lift from the classical
theory of unsteady aerodynamics match their experimental measure-
ments over this range. Similarly, there are several efforts in the
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literature that suggest adding phase lag to the Theodorsen inviscid
frequency response. However, there was no theoretical model that
could predict the appropriate phase lag at a given combination of
frequency and Reynolds number. The developed viscous unsteady
theory fills this gap by providing a reasonable estimate of such a
phase lag. This result is particularly important for flutter calculation.
Note that the flutter instability, similar to any typical Hopf bifurca-
tion, is mainly dictated by when energy is added/subtracted during
the cycle. That is, the phase difference between the applied loads
(aerodynamic loads) and the system motion (e.g., angle of attack)
plays a crucial role in dictating the stability boundary. Therefore, if
the Theodorsenmodel does not capture such a phase lag accurately, it
may lead to a deviation in the flutter boundary. As such, it is expected
that the developed viscous frequency response will result in a more
accurate, yet efficient, estimate of the flutter boundary.
To present an example for the importance of the viscosity-induced

phase lag and shift in the center of pressure for estimating the flutter
boundary, we perform the standard typical-section flutter analysis
[72,85] of the following wing:

m � 0.2 slug; b � 3 ft; Iα � 0.45 slug ⋅ ft2;

Kh � 15.3 lb∕ft; Kα � 98.5 lb ⋅ ft∕rad

wherem is the mass of the wing, Iα is its pitching moment of inertia
about the elastic axis, and Kh and Kα represent the bending and
torsional stiffness of thewing section. Also, the elastic axis is located
ab behind the midchord point, and the section center of mass is
located xαb behind the elastic axis with

xα � −0.1 and a � 0.1

Applying the standard typical-section flutter calculations [72,85] on
this example using the Theodorsen inviscid lift dynamics and the
proposed viscous lift dynamics, we obtain the following results for
the flutter speed UF and reduced frequency kF:

kFjTheodorsen � 0.28; UFjTheodorsen � 123.6 ft∕s; kFjViscous
� 0.40 and UFjViscous � 87.4 ft∕s

That is, we observemore than 40% deviation in the flutter speed from
the Theodorsen method and an even larger deviation in the flutter
reduced frequency. To obtain this estimate, a Reynolds number of
106 is assumed whose associated Reynolds number based on turbu-
lent viscosity is approximately 105; we used the latter value in our

viscous model. It should be noted that although the developed
viscous unsteady model is validated in this paper, the corresponding
flutter boundary remains to be validated using a high-fidelity fluid–
structure-interaction computational or experimental model, which
will be the focus of our future work.
Finally, it may be interesting to discuss the following point. Unlike

the pitching case, where it is hard to interpret the _α terms in the
viscous correction as circulatory or noncirculatory (since both con-
tributions in potential flow include _α terms), such a classification is
straightforward in the plunging case. In this case, the total viscous
unsteady lift can be written as

L � Noncirculatory

−πρb2 _v1∕2|�����{z�����}
Circulatory

−2πρbUv3∕4C�k�|������������{z������������}|��������������������������{z��������������������������}
Inviscid

− 2R−3∕8λ−5∕4Be0�−2πρbUv3∕4C
2�k� − 4πρb2 _v1∕2�|��������������������������������������������{z��������������������������������������������}

Viscous

which suggests classifying the v3∕4 term in the viscous contribution
as circulatory and the _v1∕2 term as noncirculatory (added mass). By
doing so, we obtain a viscous frequency response of the circulatory
lift as

Cv�k;R� � �1 − 2R−3∕8λ−5∕4Be0C�k��C�k�

simultaneously with a viscous (i.e., Reynolds-number-dependent)
added mass that is also frequency dependent:

mv�k;R� � πρb2
�
1 − 8R−3∕8λ−5∕4Be0C�k�

�
(34)

Following this classification, the resulting viscous frequency
response Cv of the circulatory lift is quite close to the Theodorsen
method. That is, the main viscous contribution actually resides in
the acceleration term, which explains why the viscous response
deviates from the Theodorsen response at higher frequencies. There-
fore, this discussion suggests that, for pure plunging, one can model
the viscous effects by just considering the modified (decreased)
frequency-dependent added mass mv given in Eq. (34).

B. Analytical Linear State-Space Representation of Viscous Unsteady
Loads

Since the nonlinear state-space model [Eqs. (26) and (27)] is valid
only for small angles, it may be prudent to develop a linearized
version of it. Having linearized the viscous frequency response
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Fig. 7 Variation of viscous lift frequency response with Reynolds number in the case of plunging and pitching (around the midchord) in comparison to

inviscid response of Theodorsen [4].
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theory (developed earlier [57]) to obtain the analytical frequency
response functions [Eqs. (32) and (33)], it should be straightforward
to linearize the nonlinear state-space model [Eqs. (26) and (27)]. The
geometric nonlinearities in the model [Eqs. (26) and (27)] can be
easily linearized; the main nontrivial nonlinear term is Bv, which has
been already linearized earlier in this paper, as given in Eq. (29) in the
frequency domain. Therefore, it can be written in the time domain as

Bv�χ ; u� ≃ −2ϵ3λ−5∕4Be0

h
UyP −

7

2
bU _α� 2b �h − �1 − 2a�b2 �α

i

where yP is the output from the potential-flow state-space model
[Eq. (16)], i.e., the time-domain version of v3∕4C�k�. Substituting yP
from Eq. (16) and the linearized v3∕4 from Eq. (30), then Bv can be
written linearly in the states in the time domain as

Bv�χ ; u� ≃ −RL

h
U�CPχ 1 �DPH3∕4χ 3� −

7

2
bU _α� 2b �h

− �1 − 2a�b2 �α
i

(35)

where RL � 2R−3∕8λ−5∕4Be0 is a constant (related to the effect of the

Reynolds numberRon lift), χ 3 is the third set of states χ3 � �α; _α; _h�T ,
and H3∕4 defines the linear dependence of v3∕4 on χ3:

Δv3∕4 �
�
−U −b



1
2
− a

�
1
� α

_α
_h

!
≜ H3∕4χ 3 (36)

As such, the nonlinear state-spacemodel [Eqs. (26) and (27)] can then
be linearized into the following form:

d
dt

0
BB@
χ 1

χ 2

χ 3

1
CCA�

2
664

AP 0n×n BPH3∕4

−URLBPCP AP −URLDPBPH3∕4

03×n 03×n 03×3

3
775
0
BB@
χ1

χ2

χ3

1
CCA

�

2
664

0n×1 0n×1 0n×1

7
2
UbRLBP �1−2a�b2RLBP −2bRLBP

I3×3

3
775
0
BB@
_α

�α

�h

1
CCA (37)

and the output equation can be written in the linear form:

�
L

M0

�
� �

U�F−RLDpF
0�CP FCP UDP�F−RLDpF

0�H3∕4
�

0
BB@
χ 1

χ 2

χ 3

1
CCA−

π

2
ρUb2

 
−2�1−7RLDp�

b�1−7RL�1−DP��

!
_α�Mv

�
�α

�h

�
(38)

whereMv represents the viscous version of the mass matrixM and is
given by

Mv �−πρb2
"

b�a�2RLDp�1−2a�� 1−4RLDp

b2
�
1
8
−RL�1−2a��1−DP�

�
2RLb�1−DP�

#
(39)

Figure 8 shows the simulation of the linearized viscous state-
space model [Eqs. (37) and (38)] subject to the nonharmonic
small-amplitude maneuver defined in Eq. (28). As expected, for
small-amplitude maneuvers such as the one considered here, the
response of the linearized viscous system matches that of the non-
linear system [Eqs. (26) and (27)] well; both match the higher-
fidelity URANS simulations. As such, the simple four-state (plus
three kinematic states) system [Eqs. (37) and (38)] is expected to
be of a significant benefit to aeroelasticians and flight dynamic-
ists because it captures viscous unsteady effects in a convenient
dynamical-system form (state-space form), allowing efficient sim-
ulation and coupling with structural dynamics for linear stability
analysis (e.g., flutter analysis) and control design.

V. Conclusions

In this paper, a nonlinear state-space model of viscous unsteady
aerodynamic loads was developed. The model presents a finite-state
approximation of the recently developed infinite-dimensional viscous,
unsteady aerodynamic theory that couples potential flowwith the triple-
deck boundary-layer theory. The model uses the Wiener–Hammerstein
structure and consists of four internal aerodynamic states and three
kinematic states. It is validated against relatively higher-fidelity compu-
tations of the unsteady Reynolds-averaged Navier–Stokes equations.
Comparisons show that the potential-flow results could deviate signifi-
cantly from the viscous theory, even for a very small-amplitude oscil-
lation (down to 1 deg1°) when the reduced frequency is relatively large.
Moreover, the developed nonlinear state-space model is in very good
agreement with the URANS predictions of the lift and moment over a
specified range of angle of attack. Therefore, this model will be of
paramount importance to aeroelasticians and flight dynamicists because
1) it captures viscous Reynolds number effects, including nonlinearity
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Fig. 8 Response of linear state-space model [Eqs. (37) and (38)] of viscous lift and pitching moment (at hinge point; i.e., quarter-chord) to nonharmonic
pitching maneuver [Eq. (28)] in comparison to nonlinear model [Eqs. (26) and (27)] and URANS computations.
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and additional lag in the lift dynamics; 2) it allows simulationof arbitrary
time-varying maneuvers (not necessarily harmonic); and 3) being in a
state-space form, it allows straightforward coupling with structural
dynamics for aeroelasticity and flight dynamics analysis and control
design. Moreover, linearizing such a theory, a linear state-space model
and an analytical representation of the viscous lift frequency response
function were derived, which are explicit functions of both frequency
and the Reynolds number.

Appendix: Finite-State Approximations of the Potential-
Flow Lift Dynamics

There have been several finite-dimensional approximations of
the potential-flow lift dynamics [13–19,22,23]. Since the viscous
unsteady model (developed in this paper) includes potential-flow
lift as a submodel, it may be prudent to present a comparison among
the common finite-dimensional approximations of the infinite-
dimensional potential-flow lift response, as well as to studywhether
a better approximation can be developed. In particular, we consider
the behavior of the common finite-state approximations of Jones
[14] and Vepa [16] in comparison to the MATLAB system identi-
fication algorithm tfest.
Jones [14] introduced the following two-state approximation of the

Wagner function in the time domain

ϕ�τ� � 1 − A1e
−b1τ − A2e

−b2τ (A1)

where τ � �Ut∕b� is the nondimensional time; and

A1 � 0.165; A2 � 0.335; b1 � 0.0445; and b2 � 0.3

It is one of the most common approximations in the literature. Taking
the Laplace transform of the step response ϕ�τ� and dividing it by the
Laplace transform 1∕s of the step input, we can easily write the
corresponding transfer function

GJ�s��
�1−A1−A2�s2��b1�b2−A1b2−A2b1�s�b1b2

s2��b1�b2�s�b1b2
(A2)

Vepa [14] used the method of Padé approximants to develop a
finite-dimensional approximation of the Theodorsen function in the
frequency domain. His first four Padé approximants are given by

GV;1�s� �
s� 0.5

2s� 0.5
; GV;2�s� �

s2 � 1.5s� 0.375

2 s2 � 2.5s� 0.375
;

GV;3�s� �
s3 � 3.5 s2 � 2.7125s� 0.46875

2 s3 � 6.5 s2 � 4.25s� 0.46875
; and

GV;4�s� �
s4 � 4.64696s3 � 9.33371 s2 � 5.51735s� 0.49334

2s4 � 8.79392s3 � 16.71894s2 � 7.67296s� 0.49334

(A3)

He also used a least-squares (LS) approach to develop the following
fourth 4th-order approximation of the potential-flow lift dynamics:

GV;LS�s�

�s4�0.761036s3�0.102058s2�0.00255067s�9.55732×10−6

2s4�1.063939s3�0.113938s2�0.0026168s�9.55732×10−6

(A4)

It is clear that, in all of these approximations, the high-frequency gain

lims→∞ G�s�

is 1∕2 and the dc gain

lims→0 G�s�

is one [74]. The former implies the same order of the numerator and
denominator of the transfer function; this fact was also necessary for
Vepa [16] to structure the approximants. Using the same number of
poles and zeros, one can use the MATLAB system identification
algorithm tfest to develop a dynamical system from the frequency
response data given by the Theodorsen function. The following
fourth 4th-order system is obtained:

GM�s� �
0.5001s4 � 0.8309s3 � 0.356s2 � 0.03972s� 0.0007756

s4 � 1.413s3 � 0.47816s2 � 0.04377s� 0007795

(A5)

Note that this technique, being data driven, will depend on the range
of frequencies considered in the estimation and its resolution. How-
ever, nice convergence is observed for large enough k range and fine
enough resolution; the preceding transfer function was developed
using a k range of 0–10 with 10,000 equidistant points.
Figure A1 shows the frequency response of Jones’s [15] second

2nd-order transfer function [Eq. (A2)], Vepa’s [16] second 2nd- and
fourth 4th-order Padé approximants given in Eq. (A3), Vepa’s fourth
4th-order LS transfer function [Eq. (A4)], and the fourth 4th-order
transfer function [Eq. (A5)] identified using MATLAB’S tfest in
comparison to the Theodorsen exact formula

C�k� � H�2�
1 �k�

H�2�
1 �k� � iH�2�

0 �k�

where H�m�
n is the Hankel function of the mth mth kind of order n.

The figure shows that Vepa’s Padé approximants experience some
deviation from the exact response, whereas Vepa’s fourth 4th-order
LS andMATLAB’S fourth 4th-order transfer function are close to the
Theodorsen exact response. Interestingly, Jones’s transfer function
[15], although only second 2nd order, captures the lift frequency
response well (even better than Vepa’s fourth 4th-order Padé approx-
imant [16]).
It should be noted that accuracy is not the only goal when devel-

oping these finite-dimensional approximations. Since these approx-
imations are mainly developed for dynamics and control analysis, it
may be judicious to investigate their controllability and observability
properties; an accurate approximation may be weakly controllable
(or observable), and hence not so useful in control design (or esti-
mation). To study the controllability and observability properties
simultaneously, it is convenient to transform a given system into a
balanced canonical form where the controllability and observability
gramians are equal:Wc � Wo [A1,A2]. Given a minimal realization
(A; B;C;D) of any of the aforementioned approximate transfer
functions [Eqs. (A2)–(A5)], the controllability and observability
gramians are computed by solving the Lyapunov equations

AWc �WcA
T � BBT � 0 and ATWo �WoA� CTC � 0 (A6)

We then perform Cholesky factorization forWc andWo as

Wc � LcL
T
c and Wo � LoL

T
o

Finally, the controllability and observability gramians in the balanced
form are equal and given by Σ, which comes from the singular value
decomposition of LT

oLc; i.e., we have LT
oLc � UΣVT . We then

consider the condition number of Σ as an indicator of how close it
is to being singular (i.e., how weakly controllable the system is); the
larger the condition number of Σ, the closer it is to being singular,
indicating weaker controllability of the system.
Table A1 shows a comparison among the finite-dimensional

approximations, presented earlier in this paper, of the potential-flow
lift dynamics in terms of accuracy and controllability/observability
properties; the former is represented by the root-mean-square (RMS)
error/deviation from the Theodorsen exact response, and the latter is
represented by the condition number of the controllability/observ-
ability gramianΣ in the balanced form. The table data corroborate the
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behavior shown in Fig. A1: Vepa’s Padé approximants [16] experi-
ence the largest error/deviation, relatively, although their absolute
RMSmaybe satisfactory (RMS is less than 3%). It also shows that the
MATLAB tfest identified fourth 4th-order model and Vepa’s fourth
4th-order LS model are quite close to the exact response (RMSs are
less than 0.1 and 1%, respectively). However, these accurate models
are weakly controllable (due to a pole-zero pair close to cancelation).
Interestingly, Vepa’s fourth 4th-order Padé approximant suffers from
the weakest controllability/observability, even though it does not
enjoy a very high accuracy, excluding its candidacy as a good
finite-state approximation of the potential-flow lift dynamics. Sur-
prisingly, Jones’s model (the first model developed in the literature
[15]) enjoys the strongest controllability/observability properties
along with a satisfactory accuracy (RMS is 1.28%) with even a low
order, making it the best candidate among the selected group; the
model that was developed in the 1940s without any consideration for
controllability/observability (these concepts were developed later in
the 1960s byKalman et al. [A3]) turns out to be themost controllable/
observable approximation with a low order and high accuracy.
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