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ABSTRACT

The Kutta condition has been extensively used to determine aerodynamic loads of steady and unsteady flows over airfoils. Nevertheless, the
application of this condition to unsteady flows has been controversial for decades. A viscous correction to the Kutta condition was recently
developed by matching the potential flow solution with a special boundary layer theory that resolves the flow field in the immediate vicinity
of the trailing edge: the triple-deck boundary layer theory. In this work, we utilize this viscous condition to extend two common numerical
methods for unsteady aerodynamics to capture viscous effects on the dynamics of unsteady lift and pitching moment—we develop viscous
versions of the traditional discrete vortex method and unsteady vortex lattice/panel method. The resulting aerodynamic loads obtained from
the proposed numerical models are compared against higher-fidelity simulations of unsteady Reynolds-averaged Navier–Stokes equations for
an airfoil undergoing step, harmonic, and complex maneuvers. The obtained results are consistently in better agreement with the unsteady
Reynolds-averaged Navier–Stokes simulations in comparison to their potential flow counterpart. In conclusion, the developed numerical
methods are capable of capturing (i) unsteady effects; (ii) viscous effects (e.g., viscosity-induced lag) on the dynamics of lift and moment at
high frequencies and low Reynolds numbers; and (iii) wake deformation, for arbitrary time-varying motion.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0065293

I. INTRODUCTION

The ability and rich legacy of potential flow theory have paved
the path for aerodynamicists to exploit it in a wide range of aeronauti-
cal engineering problems. Although its history goes back to
D’Alambert and Euler,1 the theory did not ripen until Prandtl.2 Since
his seminal efforts, scholars have sought various analytical and numer-
ical techniques to extend its applicability to capture the essential phys-
ics of many complex problems. These potential flow-based approaches
(e.g., thin airfoil theory,3 lifting line theory,4 Wagner,5 and
Theodorsen models6) typically result in integral equations with singu-
lar kernels. As discussed by Belotserkovskii,7 one of the most conve-
nient techniques to solve singular integral equations is via
discretization, leading to a linear algebraic system of equations.8 This
approach constructs the basis of the so-called vortex lattice method
(VLM) introduced by Falkner9—one of the most common efficient
solvers in steady-state scenarios. In this approach, the wing is divided
into panels (lattice), and a vortex is placed at each panel. The strengths
of these bound vortices are determined to satisfy the no-penetration
boundary condition, resulting in a linear system of equations. In the

case of transient problems, such as those associated with unsteady
pitching, plunging, or surging, the unsteady vortex lattice method
(UVLM)10 is one of the most convenient tools, which allows for wake
deformation and arbitrary time-varying motion. The main difference
between the steady (VLM) and unsteady (UVLM) versions is that the
latter account for wake effects: vortices are continuously/discretely
shed at the sharp edge, and the solver has to track their free motion in
the fluid to account for their effect on the no-penetration boundary
condition on the airfoil.

Another vortex-based approach for numerical modeling of
unsteady aerodynamics is the discrete vortex method (DVM).11–15

Unlike the UVLM, the bound circulation distribution over the airfoil
is determined directly without dividing the airfoil into panels, hence
avoiding solving a linear system at each time step. The method
employs a conformal mapping between the airfoil and a circular cylin-
der whose potential flow solution is readily known. The main
unknown in the DVM at each time instant is the strength of the vortex
being shed at the sharp edge, which is typically determined by apply-
ing the Kutta condition at the edge. As such, this technique, while
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avoids the inversion of a linear system, does not allow for arbitrary
body shapes (e.g., time-varying camber); a conformal map between a
cylinder and the body must be known a priori.

Because of the ability of the potential flow-based methods, such
as UVLM or DVM, to capture the essential macroscopic physics of the
flow, they are adopted for variety of engineering and research prob-
lems. There have been several previous efforts to develop extensions of
UVLM and DVM to regions where the primary potential flow
assumptions fade out, hence broadening the applicability of the afore-
mentioned methods. For instance, Wang and Eldredge,16 Ford and
Babinsky,17 Hemati, Eldredge, and Speyer,18 Ramesh et al.,15

Darakananda and Eldredge,19 SureshBabu et al.,20 Epps et al.21 among
others have developed extensions of the UVLM/DVM to high angle of
attack maneuvers. Such regimes are commonly reached in modern
applications of bio-inspired flight22,23 and dynamic stall.24,25

One of the main concerns about the potential flow framework
(either the analytical or numerical version) in two dimensions is its
inability to determine a unique value of the circulation around the
body26; hence, an auxiliary condition is needed. The Kutta condition27

is widely used as the closure condition, which dictates smooth flow off
the sharp trailing edge where separation happens and the wake begins.
The Kutta condition was first employed to determine the lift of a shell
of infinite span and cross section of a circular arc at a small angle of
incidence with respect to the flow.28 Using conformal mapping to
transform the flow around the shell into the flow around a cylinder,
Kutta observed that the potential velocity at the extremities of the shell
was infinitely large. To avoid such a “disturbing fact”—in his words
“st€orende Umstand”—he set the circulation to remove the singularity
at one of the edges (the rear edge) and assumed that the geometry in
reality would be rounded enough at the other edge (the leading edge)
to remove the other singularity. He observed good agreement between
the lift calculated using this consideration and Lilienthal’s experimen-
tal values.27

The Kutta condition is generally accepted as a proper closure
condition for steady attached flows at high Reynolds numbers, which
may also be applicable to unsteady problems at a relatively small oscil-
lation frequency. However, the discontent with the Kutta condition at
highly unsteady flows (high reduced frequency) or more viscous ones
(low Reynolds numbers) has been reported in numerous stud-
ies.19,28–33 The reader is referred to the recent work by Taha and
Rezaei34 for more references reporting flaws with the application of
Kutta condition in unsteady flows. In the same paper, the authors
developed a viscous extension of the classical potential flow unsteady
aerodynamics (with emphasis on the lift frequency response problem:
Theodorsen’s problem). They relaxed/corrected the Kutta condition
by matching the potential flow solution with a special boundary layer
theory that pays close attention to flow details in the immediate vicin-
ity of the trailing edge: the triple-deck boundary layer theory.34 Their
model introduces a singularity at the trailing edge, which must vanish
according to the Kutta condition. In contrast, its strength is obtained
from the triple-deck boundary layer theory, which provides depen-
dence on the Reynolds number and a viscous unsteady effective angle
of attack. Consequently, unlike the Theodorsen inviscid response,
which is only a function of the motion frequency, the new model pro-
vides dependence on both the frequency and Reynolds number. Their
model34 is called the viscous theory in this work. This viscous theory is
semi-analytical; it relies on several simplifying assumptions commonly

adopted in theoretical/analytical models of unsteady aerodynamics,
namely flat plate and flat wake assumptions. Also, its focus was on the
frequency response problem (i.e., considering harmonic motions
only).

The main contribution of this paper revolves around the integra-
tion of the recently developed unsteady viscous theory by Taha and
Rezaei34 and numerical vortex methods (UVLM and DVM) to allow
for

• arbitrary body shapes (not necessarily flat plate),
• wake deformation, and
• arbitrary motion kinematics (not necessarily harmonic),

hence making it useful for many applications in aeronautical engineer-
ing. That is, the objective is to develop viscous UVLM and DVM
methods. This goal is achieved by replacing the Kutta condition in the
vortex methods with a viscous condition based on the triple-deck
boundary layer theory.

In Sec. II, we present the viscous correction of the Kutta condi-
tion from the triple-deck boundary layer theory. We then develop a
viscous DVM in Sec. III, and a viscous UVLM in Sec. IV. Finally,
results and validations in terms of step response (i.e., Wagner func-
tion); frequency response (i.e., Theodorsen function); and lift history
for an arbitrary time-varying (e.g., non-harmonic) input are presented.

II. VISCOUS CORRECTION OF THE KUTTA CONDITION
USING THE TRIPLE-DECK BOUNDARY LAYER THEORY

The dynamics of fluid flows are governed by a set of nonlinear
partial differential equations (Navier–Stokes) representing conserva-
tion laws. In the early 1900, Prandtl derived an approximation of the
Navier–Stokes equations in the vicinity of a flat plate: the so-called
boundary layer equations.35 This formulation has formed the basis for
important advances in fluid mechanics from the early efforts of
Blasius36 until the recent efforts of Cantwell37 and Majdalani and
Xuan.38 Prandtl’s boundary layer concept2 assumes that at high
Reynolds numbers and small disturbances, vorticity effects are con-
fined to a thin layer around the surface, and the flow outside can be
assumed irrotational. An immediate consequence of such assumption
simplifies the nonlinear Navier–Stokes equations to the linear Laplace
equation, thereby allowing superposition of solutions. For example:
the flow over a circular cylinder can be constructed from the superpo-
sition of a free stream and a doublet.10,39

The flow over a cylinder can be conformally mapped to the flow
over an arbitrarily given shape (thanks to Riemann mapping theorem),
which allows solving the flow field over more complex shapes, such as
airfoils. However, no lift force can be computed from this framework,
unless a vortex is placed at the center of the cylinder, which retains the
cylinder as a streamline yet generates circulation or lift force through
the Kutta–Joukowsky theorem. The potential flow framework requires
an auxiliary condition to determine the strength of the added vortex,
typically taken as the Kutta condition if the body has a sharp trailing
edge. Formulating the problem in the cylinder domain, the Kutta con-
dition dictates the value of the circulation by forcing the point on the
cylinder corresponding to the body trailing edge to be a stagnation
point. As such, the Kutta condition removes the velocity (and pres-
sure) singularity at the trailing edge.26 It should be noted that there is
also a singularity at the leading edge, which remains intact. Kutta left it
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to be removed via a smooth geometry around the edge, which is typi-
cally the case.

If the Kutta condition is relaxed, the velocity u on a flat plate of
length 2b in a free stream U at a steady angle of attack as is written as40

follows:

u
U

¼ 16as

ffiffiffiffiffiffiffiffiffiffiffi
b� x
bþ x

r
7

Bsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx=bÞ2

q ; (1)

where x is the plate coordinate (i.e., �b � x � b). The first row of
signs corresponds to the suction side and the second row corresponds
to the pressure side of the plate. The first two terms on the right-hand
side of Eq. (1) represent the potential flow solution, satisfying the
Kutta condition. However, the third term represents a correction to
the Kutta condition. This term is equivalent to the velocity induced by
a vortex Cs ¼ 2pbUBs at the center of the cylinder. In other words,
the Kutta condition dictates Bs¼ 0 so that the trailing edge singularity
is removed.26 It should be noted that similar to the common leading
edge singularity, the new trailing edge singularity is an integrable sin-
gularity: although the velocity (or pressure) is singular, the integrated
lift and moment are finite. Thus, by applying Bernoulli’s equation to
Eq. (1) and integrating over the plate, the aerodynamic coefficients for
lift and moment at the leading edge can be written as

cl ¼ 2p as � Bsð Þ ; (2)

cm ¼ 0:5p as � 2Bsð Þ : (3)

It can easily be shown that after relaxing the Kutta condition, the new
stagnation point sits at hst ¼ arcsinBs, where h is defined as
x ¼ b cos h.

To find the strength Bs of the trailing edge singularity, Brown and
Stewartson40 adopted the triple-deck boundary layer theory to the case
of a flat plate with a non-zero angle of attack on the order of <�1=16.
This theory investigates flow events in the vicinity of the plate trailing
edge. In this region, two boundary layers interact with each other, as
illustrated in Fig. 1: the flow upstream of the edge with a Blasius
boundary layer36 (satisfying the no-slip boundary condition on the
plate) and the flow downstream of the edge with a Goldstein shear
layer41 in the wake region (which satisfies a zero-stress condition on
the wake centerline). To resolve the rapid variations of flow quantities
in the tangential direction in the singular region around the trailing
edge, the triple-deck theory applies scaling and asymptotic analysis
also in the tangential direction (differently from Prandtl’s boundary
layer theory,35 which performs asymptotic analysis only in the normal

direction). By doing so, the triple-deck theory accounts for the discon-
tinuity of the viscous boundary condition: from a zero slip on the plate
to a zero stress on the wake centerline. In this theory, three decks
divide the fluid domain: (i) the upper deck, representing irrotational
flow outside the boundary layer; (ii) the main layer, which constitutes
an inviscid layer (though rotational); and (iii) the lower deck—a sub-
layer inside the boundary layer where Prandtl’s nonlinear boundary
layer equations apply subject to a discontinuous viscous boundary
condition. The interaction between the decks is such that asymptotic
solutions from one deck approaching a neighboring one must match.

Brown and Stewartson40 constructed an asymptotic solution
(� ! 0 where � is related to the Reynolds number < as � ¼ <�1=8) to
model the local interactions between the Blasius boundary layer and the
shear layer in the wake in the immediate vicinity of the trailing edge.
Their approach resulted in a nonlinear boundary value partial differen-
tial equation; and they provided a solution for its linear approximations.
Six years later, Chow and Melnik42 solved this partial differential equa-
tion numerically, and provided the strength of the singularity

Bs ¼ 2ase
3k�5=4BeðaeÞ; (4)

in terms of the normalized angle of attack

ae ¼ as�
�1=2k�9=8; (5)

where k ¼ 0:334 is the Blasius skin friction coefficient. The term
BeðaeÞ is a nonlinear function that is obtained from the numerical
solution of Chow and Melnik,42 as shown in Fig. 2; the function pos-
sesses a vertical asymptote at ae ¼ 0:47 where trailing edge stall occurs
according to the triple-deck results.40 This value of ae corresponds to
as ¼ 3:1� � 4:2� for < ¼ 104 � 106 beyond which the flow separates
upstream of the trailing edge.

As for the unsteady cases, Taha and Rezaei34 introduced an addi-
tional (beyond Kutta’s) vortex at the center of the cylinder, which
modifies the pressure distribution over the airfoil as follows:

Pðh; tÞ � P1 ¼ q
1
2
a0ðtÞ tan

h
2
þ
X1
n¼1

anðtÞ sin nh
"

þ 1
2
BvðtÞ cot

h
2
þ a0v ðtÞ tan

h
2

� ��
; (6)

where q is the air density; the first two terms represent the inviscid
pressure distribution, which satisfies the Kutta condition; BvðtÞ repre-
sents the viscous correction, which is given by Taha and Rezaei34 as
follows:

FIG. 1. Schematic of the triple-deck boundary layer theory.
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BvðtÞ ¼ �2�3k�5=4 1
2
a0ðtÞ þ 2

X1
n¼1

nanðtÞ
 !

BeðaeÞ ; (7)

and the normalized angle of attack ae is determined from as and
Reynolds number using Eq. (5). Here, as represents an effective angle
of attack: an equivalent steady angle of attack defined as34

asðtÞ ¼
1
U2

���� 12 a0ðtÞ þ 2
X1
n¼1

nanðtÞ
���� : (8)

Therefore, to determine the viscous correction Bv, the coefficients
an (n ¼ 0; 1; 2; …), representing the potential flow pressure distribu-
tion, must be evaluated. We write the plate normal velocity in the
Fourier cosine series as follows:

vpðh; tÞ ¼
1
2
b0ðtÞ þ

X1
n¼1

bnðtÞ cos nh : (9)

The no-penetration boundary condition provides the coefficients an
(n ¼ 1; 2; …) as follows:

anðtÞ ¼
b
2n

_bn�1ðtÞ þ UbnðtÞ �
b
2n

_bnþ1ðtÞ: (10)

The above expression can be numerically determined for any
arbitrary motion including a flexible one-dimensional structure (e.g.,
time-varying camber). The only unknown term at this point is a0ðtÞ.
Robinson and Laurmann43 presented an integral equation to deter-
mine a0ðtÞ for any arbitrary motion. In the case of harmonic motions
of a flat plate, ignoring wake deformation a0ðtÞ ¼ U½2v3=4ðtÞCðkÞ
þb _aðtÞ�, where C(k) is the Theodorsen’s lift frequency response func-
tion, CðkÞ ¼ Hð2Þ

1 ðkÞ
Hð2Þ

1 ðkÞþiHð2Þ
0 ðkÞ

, written in terms of Hankel functions of the

second kind, k ¼ xb=U is the reduced frequency of oscillation; aðtÞ is
the instantaneous angle of attack; and v3=4ðtÞ ¼ V3=4eixt is the normal
velocity at the three-quarter-chord point (positive upward). However,
to allow for arbitrary motion and to account for wake deformation, a0

can be obtained from the inviscid pressure distribution (coming from
a traditional UVLM/DVM) as

a0ðtÞ ¼
ðb
�b

DP
pqb

dx � a1ðtÞ ; (11)

where DP ¼ Pl � Pu, Pu and Pl denote the pressure on the upper and
lower airfoil surfaces, respectively. Alternatively, it can be determined
from the potential flow lift coefficient as

a0ðtÞ ¼ �U2 clðtÞ
p

� a1ðtÞ : (12)

III. VISCOUS EXTENSION OF THE DVM

Based on the viscous correction discussed above, Taha and
Rezaei34,44 provided a viscous version of the celebrated Theodorsen’s
inviscid lift frequency response. Building up on this effort, the objec-
tive of this work is to develop a computational tool for unsteady aero-
dynamic simulation of airfoils undergoing arbitrary motion, not
necessarily harmonic. We achieve this following the seminal theoreti-
cal effort of von K�arm�an and Sears,45 replacing the classical Kutta con-
dition in their effort with the viscous correction provided by Taha and
Rezaei.34 The model proposed by von K�arm�an and Sears45 assumes
wake singularities convecting along the x axis only (i.e., rigid flat
wake)—a convenient assumption for small amplitudes. However, for
relatively large-amplitude maneuvers, wake deformation becomes rele-
vant (allowing wake vortices to move with the local fluid velocity) to
capture some of the essential flow physics; for the importance of wake
deformation effects, the reader is referred to Refs. 46 and 47.

Figure 3 illustrates a schematic of the modified von K�arman and
Sears approach. Consider a wake vortex C1 at f ¼ f1, where the f-
plane (f ¼ vþ iu) is a plane containing a circular cylinder of radius
r ¼ b=2 centered at the origin. A standard conformal mapping then
transforms the cylinder in the f-domain to a plate of chord 2b aligned
with the x axis of the z-plane (z ¼ x þ iy). Using the method of
images, we place an image vortex of intensity �C1 inside the cylinder
at f ¼ r2=f1 , where f1 is the complex conjugate of f1, so the resulting
flow field (due to the two vortices) is tangential to the cylinder every-
where (i.e., it does not disturb the no-penetration boundary condi-
tion). However, this pair of vortices induces a non-zero tangential
velocity at the point f ¼ r (corresponding to the trailing edge in the
plate domain), thereby violating the Kutta condition. At this point,
von K�arm�an and Sears45 satisfied the Kutta condition by introducing a
vortex Ck at the center of the cylinder. Note that this vortex does not
disturb the no-penetration boundary condition on the cylinder either.
Therefore, the complex potential F1 associated with this system of vor-
tices is written as follows:

F1 ¼ i
C1

2p
ln ðf� f1Þ � ln f� r2

f1

 !" #
þ i

Ck

2p
ln f : (13)

Enforcing the Kutta condition (the total tangential velocity at the point
f ¼ r must vanish), we obtain

Ck ¼ �C1r
1

r � f1
� 1

r � r2

f1

0
B@

1
CA : (14)

FIG. 2. Numerical solution of the lower deck equations.
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The addition of Ck violates Kelvin’s conservation of circulation:
the sum of all vortices in the system is equal to Ck 6¼ 0. In addition,
the strength of the wake vortex C1 remains unknown. Both problems
are solved when the quasi-steady circulation around the airfoil, c0ðxÞ,
is taken into account. This distribution, by construction, already satis-
fies the no-penetration boundary condition (accounting for the airfoil
motion), and also the Kutta condition. The resultant quasi-steady
bound circulation is defined as C0 ¼

Ð b
�b c0ðxÞdx. Hence, Kelvin’s

conservation of circulation requires Ck ¼ �C0, which results in the
following equation for the strength C1 of the nascent wake vortex:

C1 ¼ �r
v0 � r
v0 þ r

C0

r
�
XN
n¼2

Cn
1

r � fn
� 1

r � r2

fn

0
B@

1
CA

2
664

3
775 ; (15)

where the nascent position of the new vortex at each time step is
f ¼ v0, with v0 2 R > 0 and the N � 1 previously shed vortices
remain constant while moving with the local fluid velocity (the
Kirchhoff velocity) according to Helmholtz laws of vortex dynamics.48

On the other hand, the approach formulated by Taha and
Rezaei34 and presented in Sec. II is equivalent to the addition of a vor-
tex Cv ¼ 2pbBvðtÞ=U at the center of the cylinder. Consequently, the
conservation of circulation must be modified as follows:

Ck ¼ �C0 � Cv ; (16)

which yields the strength C1 of the wake vortex as

C1 ¼ �r
v0 � r
v0 þ r

C0 þ Cv

r
�
XN
n¼2

Cn
1

r � fn
� 1

r � r2

fn

0
B@

1
CA

2
664

3
775 : (17)

Equation (17) provides an extension of the theoretical model of
von K�arm�an and Sears45 [Eq. (11) in their work] to account for (i)
wake deformation, considering discrete vortices; and more impor-
tantly to the objective of this paper (ii) viscous effects through the Cv-
term. If the vortices are only allowed to move along the x axis and the
Kutta condition is applied (i.e., Cv ¼ 0), one can observe after some

mathematical manipulation that Eq. (17) recovers the result obtained
by Tchieu and Leonard14 in their Eq. (18).

Having obtained the strength C1 of the nascent vortex, the aero-
dynamic lift force can be computed from conservation of momen-
tum.13,14,16,45 The original work by von K�arm�an and Sears45 classifies
the aerodynamic loading into three parts: a contribution of the appar-
ent mass, which is analogous to the non-circulatory lift introduced by
Theodorsen6; a contribution of quasi-steady aerodynamics, which is
directly related to (solely determined by) the airfoil motion; and finally
a contribution from the wake. The non-circulatory lift is assumed to
remain the same in the present work. However, following the deriva-
tion by Michelin and Smith,13 one can note that the circulatory lift
coefficient in the language of Theodorsen6—which corresponds to the
sum of quasi-steady and wake components of von K�arm�an and
Sears45—is given by

ccl ¼
1

U2b
= eiaðtÞ

XN
n¼1

Cni
d
dt

fn �
r2

fn

 !" #
; (18)

where = denotes the imaginary part of a complex number.
Similarly, following Tchieu and Leonard,14 the circulatory

moment coefficient at the mid chord is

ccm ¼ � ccl
4
� C0 þ Cv

4Ub
: (19)

Finally, all the wake vortices move in the physical domain
according to the local induced velocity13 as follows:

dx
dt

� i
dy
dt

¼ 1
z0ðfÞ Ue�iaðtÞ 1� r2

f2
e2iaðtÞ

 !(

� lim
f!fj

XN
n¼1

i
Cn

2p
1

f� fn
� 1

f� r2

fn

0
B@

1
CA

2
664

�i
Cj

2p
1

f� fj
� 1

f� r2

fj

0
B@

1
CA
3
75
9>=
>;
: (20)

FIG. 3. Schematic of the adopted unsteady aerodynamic model including free wake.
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IV. VISCOUS EXTENSION OF THE UVLM

Unlike the DVM, which relies on conformal mapping between a
cylinder and the airfoil shape, the UVLM works directly in the airfoil
domain. Hence, it allows more freedom in handling arbitrary shapes
and flexible (time-varying) cambers. Consider the standard UVLM,
which divides the airfoil camber in panels, with a vortex placed at 1/4
of the panel length and a control point at 3/4 of the panel length, as
illustrated in Fig. 4.

The Neumann boundary condition (no-penetrability condition)
is applied at the control points in contrast to the DVM where the no-
penetration boundary condition is satisfied everywhere over the airfoil.
As such, we have

ðUþ vb þ vwÞ � n ¼ 0 ; (21)

whereU is the local freestream velocity, vb is the total velocity induced
by bound vortices, vw is the velocity induced by the wake vortices, and
n is the normal vector to each panel. The velocity induced by a vortex
at (xv, yv) onto a point (xp, yp) is

v ¼ C
2p

ðyp � yvÞx̂ � ðxp � xvÞŷ
ðxp � xvÞ2 þ ðyp � yvÞ2

; (22)

where C is the vortex strength and x̂ and ŷ represent vectors along the
x and y directions, respectively.

Similar to the DVM, one vortex C1 is shed in the wake at each
time step, typically from the trailing edge. If the airfoil is divided into
m panels, the no-penetration boundary condition offers m equations.
However, one more equation is required because we have mþ 1
unknowns: m bound circulations and the newly shed vortex C1. The
additional equation is given through Kelvin’s conservation of circula-
tion as follows:

CbðtÞ � Cbðt � DtÞ þ C1 ¼ 0 ; (23)

where Cb ¼
Pm

i¼1 Cbi denotes the total bound circulation.
The replacement of the Kutta condition by the viscous correction

proposed by Taha and Rezaei34 must consider the effects of the addi-
tional vortex Cv at the center of the cylinder that is conformally
mapped to the airfoil (as presented in Sec. III). To account for its

effects in the UVLM framework without relying on conformal map-
ping, we follow von Karman and Sears ideas as follows: The additional
vortex, Cv, induces a tangential velocity distribution over the cylinder
by the spatial constant vh ¼ 2BvðtÞ=U . Consequently, this change
affects the tangential velocity over the plate as

u ¼ � vh

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx=bÞ2

q ; (24)

which corresponds to an additional distribution of circulation as follows:

DCbi ¼ 2uiDsi ; (25)

where Dsi is the length of the ith panel.
As such, a simple modification in the UVLM system of equations

provides a viscous extension of the Kutta condition in the problem.
Recalling the original system of equations,m no-penetration boundary
conditions applied at the control points and Kelvin’s condition, and
adding the effects of DCbi , we write

A1;1 A1;2 … A1;m A1;w

A2;1 A2;2 … A2;m A1;w

..

. ..
. . .

. ..
. ..

.

Am;1 Am;2 … Am;m A1;w

1 1 … 1 1

0
BBBBBBBB@

1
CCCCCCCCA

Cb1

Cb2

..

.

Cbm

C1

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

þ

DCb1

DCb2

..

.

DCbm

0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

0
BBBBBBBB@

1
CCCCCCCCA

¼ �

ðUþ vwÞ1 � n1
ðUþ vwÞ2 � n2

..

.

ðUþ vwÞm � nmXN
j¼2

Cj �
Xm
i¼1

DCbi

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

; (26)

where Ai;j are the influence coefficients depending solely on the airfoil
geometry. The values of DCbi are previously computed from the calcu-
lation of BvðtÞ at each time step. As a consequence, the only unknowns

FIG. 4. Schematic of the UVLM.
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remaining in the problem are the values of the circulations Cbi and the
nascent wake vortex, C1. The other (previously shed) wake vortices are
assumed to move freely with the local fluid velocity (Kirckhhoff veloc-
ity) while maintaining their strength (dictated at the shedding time) to
satisfy Helmholtz laws of vortex dynamics.49,50 The reader may refer
to Katz and Plotkin10 for the standard UVLM setup.

The pressure difference on each panel is given by the unsteady
Bernoulli’s equation as follows:

DPi ¼ qU
Cbi

di
þ q

@

@t

Xi
j¼1

Cbj ; (27)

and the integration of this pressure difference provides the lift force
and pitching moment.

A flow chart is presented in Fig. 5 to illustrate how to proceed
when applying viscous corrections in UVLM and DVM (according to
the model developed by Taha and Rezaei34).

V. COMPARISON OF THE METHODS

To verify and validate the proposed methods (viscous DVM and
viscous UVLM), three different cases are considered: the step response;
the frequency response (harmonic motion) to verify the proposed
numerical methods with reference to the theoretical results of Taha
and Rezaei;34 and the response due to a multi-frequency non-
harmonic signal. In the viscous DVM simulations, the nascent vortices
are shed at x0 ¼ 1:01b to avoid a trivial result in Eq. (17). The viscous

FIG. 5. Flow chart illustrating the main steps of the developed numerical
methodologies.

FIG. 6. Wagner (step) response at < ¼ 104 and a ¼ 3�: (a) lift coefficient and (b)
moment coefficient at the leading edge.
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UVLM simulations are performed with m¼ 40 and Dt ¼ 0:02b=U
was selected for both UVLM and DVM.

Figure 6 shows the time-history of lift and moment due to a step
change as ¼ 3� in the angle of attack at < ¼ 104, also known as the
Wagner response.5 The inviscid and viscous solutions approach differ-
ent asymptotes; expectedly, the traditional UVLM and DVM approach
Kutta’s potential flow loading whereas the modified versions approach
the viscous values given by Eqs. (2) and (3). In fact, these results verify
that the coupling between the traditional UVLM/DVM and the vis-
cous theory is correctly achieved.

An important advantage of the viscous UVLM, in contrast to
DVM, is its ability to handle arbitrary airfoil shapes (i.e., not confined
to airfoils that are conformally mapped to a cylinder). To demonstrate
this point, we simulate a step change in the camber line from zero (i.e.,
a flat plate) to that of a National Advisory Committee for Aeronautics
(NACA) 2412 at a zero angle of attack and< ¼ 105. Figure 7(a) shows
aerodynamic loads computed from the viscous UVLM. Figure 7(b)
also presents a visualization of the airfoil wake.

Figure 8(a) provides a comparison in terms of the circulatory lift
frequency response from Theodorsen, the viscous theory of Taha and
Rezaei,34 the proposed viscous DVM and viscous UVLM, in reference
to URANS simulations of a harmonically pitching NACA 0012 at
< ¼ 105. URANS simulations employed the k� x SST turbulence
model. The reader is referred to Rezaei and Taha51 or Taha and
Rezaei34 for more details on the setup in the computational fluid
dynamics (CFD) solver. The viscous UVLM and DVM capture the
additional phase lag between the airfoil motion (represented by the

quasi-steady lift) and the resulting unsteady circulatory lift in contrast
to Theodorsen’s inviscid response, as discussed by Taha and Rezaei.34

Moreover, the amplitude of the circulatory lift slightly decreases with
the relaxation of the Kutta condition due to viscous effects. The ampli-
tude and phase of the viscous approaches are in consonance with CFD
data. The wake computed by the viscous UVLM considering k¼ 1 is
also presented in Fig. 8(b).

The proposed viscous DVM and UVLM also have the ability to
simulate arbitrary time-varying motion, not necessarily harmonic
oscillations. Figure 9 provides a comparison of the total lift and pitch-
ing moment predicted by the potential flow theory, URANS simula-
tions and the two viscous methods presented in this work due to the
non-harmonic maneuver

aðtÞ ¼ A e sin ðxtÞ � 1½ � ; (28)

with k¼ 1 at < ¼ 105 andA designed to ensure the maximum angle
of attack equal to 1� during the maneuver. The wake simulated by the
viscous UVLM for this case is presented in Fig. 9(c). The lift coefficient
predicted by the viscous UVLM and DVM are basically the same and
they are closer to the CFD results than the results from the potential
theory. The latter clearly over-predicts the unsteady loading. The
resulting moment coefficient from the viscous approaches (DVM and
UVLM) are even closer to the URANS computations. Therefore, the
developed numerical techniques are capable of handling (i) unsteady
effects; (ii) viscous effects (e.g., viscosity-induced lag) on the lift
dynamics at high reduced frequencies and small Reynolds numbers;

FIG. 7. Step change of the camber from zero (flat plate) to that of a NACA 2412 at
< ¼ 105 and a ¼ 0�: (a) lift coefficient and moment coefficient at the leading edge
and (b) wake visualization from the viscous UVLM.

FIG. 8. Analyses of harmonic oscillations: (a) frequency response between the cir-
culatory and quasi-steady lift (< ¼ 105) and (b) wake visualization from the viscous
UVLM (k¼ 1).
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(iii) wake deformation; and (iv) arbitrary time-varying motion. In
addition, the viscous UVLM allows handling arbitrary shapes and flex-
ible time-varying cambers. It should be noted that the proposed two
methods provide these features without requiring significant changes
of existing potential flow codes. Given a traditional DVM code, one
only needs to replace the Kutta condition in Eq. (15) with the viscous
correction in Eq. (17); and given a potential flow UVLM code, one
only needs to add the additional column of DCbi in Eq. (26).

Finally, it is worth mentioning that the proposed viscous DVM
has a strong dependence on the position of the nascent wake vortices.
Such a limitation is not observed in the viscous UVLM. Therefore, the

latter may represent a better (though more expensive) numerical
method for viscous simulation of unsteady aerodynamics.

VI. CONCLUDING REMARKS

This article proposes two different numerical viscous extensions
of commonly used computational methods for unsteady aerodynam-
ics: the discrete vortex method (DVM) and the unsteady vortex lattice/
panel method (UVLM). The extensions replace the largely used Kutta
condition by a condition derived from a special boundary layer theory
that resolves the flow field in the immediate vicinity of the trailing
edge: the triple-deck boundary layer theory. The traditional DVM,
which relies on conformal mapping between a cylinder and the body,
is modified by introducing an additional vortex beyond Kutta’s at the
center of the cylinder whose strength is determined from the triple-
deck boundary layer theory based on the airfoil motion and Reynolds
number. Similarly, the classical potential flow UVLM is modified by
introducing additional circulation over each panel such that the corre-
sponding tangential velocity distribution, when mapped to a cylinder,
matches the one dictated by the triple-deck additional vortex. As such,
the proposed numerical techniques keep the same layout of the poten-
tial flow solvers (DVM and UVLM) while applying viscous corrections
for any generic maneuver. The obtained results are validated against
URANS simulations for harmonic, step, and complex maneuvers. The
resulting lift and pitching moment are consistently in better agreement
with the URANS simulations in comparison to their potential flow
counterparts.
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