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The compressible aerodynamic loads on a plunging flat plate are computed using Mathieu
functions for different subsonic Mach numbers and a large range of reduced frequency
(0-15). The obtained results are validated using previous theoretical ones and unsteady
inviscid computational fluid simulations. Results show that the normalized circulatory lift
magnitude decreases as frequency increases. The non-circulatory lift reaches an asymptotic
value with increasing frequencies, in contrast to the behavior of the incompressible fluid.
Also, a considerable phase shift in the lift response is found for small reduced frequencies,
which diminishes at high oscillation frequency. Finally, it is found that compressibility has an
insignificant effect on the aerodynamic loads at low frequencies.

I. Nomenclature

𝑎 = Semi-Chord Length.
𝑐 = Speed of sound in undisturbed flow.
𝐶 = Flat plate chord
𝐶 (𝜇) = Circulatory lift frequency response.
𝑐𝑒𝑚, 𝑠𝑒𝑚 = Cosine elliptic and sine elliptic angular Mathieu functions, respectively, of order 𝑚.
𝐻 = Plunging amplitude.
𝐾 = Radian Frequency.
𝐿𝑐 = Circulatory Lift.
𝐿𝑛𝑐 = Non-Circulatory Lift.
𝑀𝑐

( 𝑗)
𝑖
, 𝑀𝑠

( 𝑗)
𝑖

= Radial Mathieu functions of kind 𝑗 and order 𝑖
𝑢 = Velocity disturbance in X-direction.
𝜙 = Perturbation velocity potential.
𝑣 = Vertical velocity magnitude.
𝑝, 𝜌 = Perturbation pressure and density, respectively.
Φ = Total velocity potential.
Φ𝑜 = Steady velocity potential.
𝜙 = Transient velocity potential.
𝜌𝑜 = Undisturbed fluid density.
𝜇 = Reduced Frequency.
𝜈 = Compressible Reduced Frequency.

II. Introduction

Computation of the aerodynamic loads over an airfoil in steady incompressible flow has been an active topic of
research over the last century. However, in actual flight conditions, the aeroelastic stability formed a challenge

that researchers need to overcome by accounting for unsteadiness. Despite being vital in the development of avi-
ation, the unsteady aerodynamic theories should be extended to account for compressibility and viscosity effects.
The unsteady theories are complex by nature; therefore, Lin [1] and Miles [2] established the linearization of the
governing equation. They discussed the linearization limits based on the lifting surface motion amplitude, Mach
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number, and frequency. This research effort was launched by Theodorsen [3] publication on flutter characteris-
tics in a two-dimensional incompressible flow. Theodorsen decomposed the total lift force into "circulatory" and
"non-circulatory" components. As a side, this classification is ambiguous [4] as both components have interacting effects.

Extending the unsteady theories to account for compressibility is not straightforward as the flow is no longer
governed by the Laplace equation, rather by the wave equation. Moreover, the pressure waved travel to infinity at a
speed equal to the speed of sound. Possio [5] calculated the aerodynamic coefficients of oscillating airfoils in a subsonic
compressible flow, replacing the airfoil with a doublet distribution in the form of an integral equation known as Possio’s
integral equation. He obtained an approximate solution of the integral equation by expressing the doublet intensity
in a series form. Attempts to obtain an accurate solution of possio’s integral equation continued by Schade [6] and
Dietze [7]. Schade approximated the integral equation in a set of algebraic equations and Dietze solved the equation
iteratively. Later, Miles [8] expanded the kernel function of the integral equation in powers of Mach number. A different
integral equation solution of the wave equation is derived from green’s function of the first kind by W.P. Jones [9],[10].
He provided an approximate solution to the integral equation at the boundary and calculated the aerodynamic coeffi-
cients for pitching and plunging airfoil. His results showed a good agreement to the exact solution by I.T. Minhinnck [11].

Separation of variables had alternatively been used to solve the compressible flow problem. For this solution, the
flow field is expressed in either the velocity or acceleration potential with related methods known, in literature, as
"method of velocity potential" and "method of acceleration potential", respectively. Haskind [12], Ressiner [13], R.
Timman [14], R. Timman and Adriaan Isak [15] and Mazelsky [16] used the method of velocity potential and found
a solution in terms of Mathieu functions.They separated the total velocity potential into a regular (non-circulatory)
solution, satisfying the no penetration boundary condition and a singular (circulatory) solution that has a zero normal
derivative at the trailing edge. Mazelsky derived the aerodynamic coefficients formulas for a vanishing aspect ratio
airfoil and tabulated the lift and rolling moment coefficients for compressible and incompressible flow for a wide range
of reduced frequencies. His results showed a negligible effect of compressibility for small values of reduced frequencies.
However, for higher reduced frequencies, the compressibility effects are robust.

The acceleration potential method was adopted by Hofsommer [17], Kussner [18] and Timman and Van De
Vooren [19]. The regular solution is similar to the velocity potential solution. For the singular solution, the Laplace
equation is replaced by a solution of the wave equation that adds correction terms for compressible flow and satisfies
zero normal velocity derivative on the surface. Timman and Van de Vooren [20] obtained results for aerodynamic
coefficients of an oscillating airfoil in compressible flow at five values of Mach numbers and frequencies ranging from
0.1 to 3. Their results diverged from Dietze’s [21] solution of Possio’s integral equation.

In this article, we provide numerical computations for circulatory lift and non-circulatory lift for compressible
flow over a flat plate based on Haskind’s[12] method at three values of Mach numbers (𝑀 = 0.35, 0.5 𝑎𝑛𝑑 0.6).
Computations are performed using MATLAB code for solving Mathieu equations. Code accuracy and reduced frequency
effects on the error produced in Mathieu function computations were investigated. The results are validated against
previous theoretical results and unsteady inviscid Computational Fluid Dynamic (CFD) simulations were performed to
examine the validity of the theory at high frequencies.

The present article comprises seven sections. Section III of this article summarizes Haskind’s [12] derivation with
minor corrections. The circulatory and non-circulatory lift frequency response analytical results are presented in section
IV. The CFD setup is illustrated with mesh properties in section V. In section VI, the lift results for plunging motion are
presented and compared with simulations.

III. Theoretical Background
This section presents a summary of Haskind’s [12] derivation, including the governing equations, boundary, and

initial conditions for plunging motion. Some formulas mentioned in this section are in a simplified form of the original
derivation. Moreover, the symbols are identical to the original counterpart except for Mathieu functions as we adopted
Abramowitz [22] notations.
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A. Governing Equations and Boundary Conditions
A plan two-dimensional wing of infinite span performing a sinusoidal plunging motion is placed in a compressible

fluid with a mean velocity component𝑈 in positive X-direction. The linearized perturbation velocity potential equation
has the form,

(1 − 𝑀2) 𝜕
2Φ

𝜕𝑋2 + 𝜕
2Φ

𝜕𝑌2 + 2
𝑀

𝑐

𝜕2Φ

𝜕𝑋𝜕𝑡
− 1
𝑐2
𝜕2Φ

𝜕𝑡2
= 0 (1)

where 𝑐 =
√︁
𝛾𝑑𝑝/𝑑𝜌. The total velocity potential is divided into a steady-state component, Φ𝑜, and a transient

component, 𝜑, corresponds to the oscillatory motion. The steady state solution is simple and out of scope of our present
study. The non-dimensional coordinates 𝑥 = 𝑋

𝑎
and 𝑦 =

√
1 − 𝑀2𝑌

𝑎
are introduced. The reduced frequency, 𝜇 = 𝐾𝑎

𝑈
,

and Mach number, 𝑀 = 𝑈
𝑐

, are famous resulting non-dimensional variables.
The vertical oscillation velocity is defined as𝑉 (𝑥) = 𝑣 𝑒 (𝑖𝐾𝑡) , where 𝑣 is the vertical velocity amplitude. Substituting

the non-dimensional variables and plunging motion defined above into Eq. (1). The resulting governing equation and
boundary conditions will be expressed as:

𝜕2𝜑

𝜕𝑥2 + 𝜕
2𝜑

𝜕𝑦2 + 𝜈2𝜑 = 0, (2)

|𝑋 | ≤ 1, 𝑦 = 0,
𝜕𝜑

𝜕𝑦
=

𝑎
√

1 − 𝑀2
𝑒 (𝑖𝜆𝑥) = 𝑉 (𝑥), (3)

𝑋 > 1, 𝑦 = 0, 𝜑 = 0, (4)

𝑋 < −1, 𝑦 = 0,
𝜕𝜑

𝜕𝑥
− 𝑖𝛼𝜑 = 0, (5)

where 𝜈 =
𝜇𝑀

1−𝑀2 , 𝜆 =
𝑀2𝜇

1−𝑀2 and 𝛼 = 𝜆

𝑀2 . Equation. (2) and its corresponding boundary conditions are the famous
exterior boundary value problem. A solution in the form of Mathieu equations is obtained by transforming Eqns. (2)-(5)
into elliptic coordinates, which have the form:

𝜑(𝜁, 𝜂) = 𝜑𝑜 + 𝜓 =

∞∑︁
𝑛=0

𝑏𝑛𝑐𝑒𝑛 (𝜁)𝑀𝑐 (4)𝑛 (𝜂) +
∞∑︁
𝑛=0

𝑎𝑛𝑠𝑒𝑛 (𝜁)𝑀𝑠 (4)𝑛 (𝜂). (6)

For more details about Mathieu functions code validation and computational accuracy, reader is referred to appendix A.

B. Non-Circulatory Lift
From Eqn. (6) the non-circulatory component is given by

𝜑𝑜 =

∞∑︁
𝑛=0

𝑎𝑛𝑠𝑒𝑛 (𝜁)𝑀𝑠 (4)𝑛 (𝜂). (7)

The non-circulatory pressure distribution over the airfoil surface is obtained by substituting the no-penetration
boundary condition into Eq. (7) and have the form

𝑝 =
𝜌𝑜𝑈

𝑎
𝑒𝑖 (𝑘𝑡−𝜆 cos 𝜂)

[
− 1

sin 𝜂

∞∑︁
𝑛=1

𝑎𝑛𝑠𝑒
′
𝑛 (𝜂)𝑀𝑠

(4)
𝑛 (0) − 𝑖𝛼

∞∑︁
𝑛=1

𝑎𝑛𝑀𝑠
(4)
𝑛 (0)𝑠𝑒𝑛 (𝜂)

]
. (8)

From Eqn. (7), the non-circulatory lift over the airfoil surface is

𝐿𝑛𝑐 = 2𝜌𝑜𝑈
∞∑︁
𝑛=1

𝑎𝑛𝑀𝑠
(4)
𝑛 (0)𝑒𝑖𝑘𝑡

∫ 𝜋

0
𝑒−𝑖𝜆 cos 𝜂

[
−𝑖𝛼 sin 𝜂 𝑠𝑒𝑛 (𝜂) − 𝑠𝑒

′
𝑛 (𝜂)

]
𝑑𝜂, (9)

where the value of coefficient 𝑎𝑛 depends on the type of motion.
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C. Circulatory Lift
From Eqn. (7), the circulatory component of the velocity potential will be

𝜓 =

∞∑︁
𝑛=0

𝑏𝑛𝑐𝑒𝑛 (𝜁)𝑀𝑐 (4)𝑛 (𝜂). (10)

Introducing function𝑊 (𝑥, 𝑦), related to the function 𝜓 as

𝜕𝜓

𝜕𝑥
− 𝑖𝛼𝜓 =

𝜕𝑤

𝜕𝑦
, (11)

Satisfying the differential equation ∇2𝑤 + 𝜈2𝑤 = 0 and the radiation condition at infinity. Applying the boundary
condition over the surface of the airfoil, |𝑥 | ≤ 1, a solution of the function𝑊 (𝑥, 𝑦) is obtained as𝑤(𝑥, 0) = 𝐴𝑒𝑖𝜈𝑥+𝐵𝑒−𝑖𝜈𝑥
for 𝑦 = 0, |𝑥 | ≤ 1. Haskind [12] , also, expressed 𝑤(𝑥, 𝑧) in an integral form by excluding the sources on the airfoil
(−1, +1) as

𝑤(𝑥, 𝑦) =
∫ +1

−1
𝛾(𝑠)𝐻 (2)

0 (𝜈𝑟)𝑑𝑠, 𝑟2 = (𝑥 − 𝑠)2 + 𝑦2, (12)

where 𝛾(𝑠) is expressed as summation of angular and radial Mathieu functions. Equation (12) satisfies boundary
conditions and radiation principle at infinity. Two equations relating the coefficients 𝐴 and 𝐵 are required to solve the
circulatory lift problem. With the aid of Eq. (12) and satisfying the boundary conditions on the plane of symmetry and
the radiation condition at infinity, an equation relating constants A and B have the form

𝐴

(
𝐶+ +

𝑖 𝑒𝑖 (𝜈−𝛼)

𝜈 − 𝛼

)
+ 𝐵

(
𝐶− − 𝑖 𝑒

−𝑖 (𝜈+𝛼)

𝜈 + 𝛼

)
= 0 ∗ (13)

where

𝑐± =
1
2𝑖

∞∑︁
𝑚=0

𝑀𝑐
(4)
𝑚

′ (0) 𝛼 (𝑚)
±

∫ 𝜋

0
𝑓 (cos 𝜁) 𝑐𝑒𝑚 (𝜁) 𝑑𝜁, 𝛼± =

∫ 𝜋
0 𝑒±𝑖𝜈 cos 𝜁 𝑐𝑒𝑚 (𝜁)𝑑𝜁

𝑀𝑐
(4)
𝑚 (0)

∫ 𝜋
0 [𝑐𝑒𝑚 (𝜁)𝑑𝜁]

† (14)

𝑓 (cos 𝜁) = 𝑒−𝑖𝛼 cos 𝜁
∫ 1−cos 𝜁

∞
𝑒−𝑖𝛼𝜉𝐻 (2)

0 (𝜈𝜉) 𝑑𝜉 ‡ (15)

A second equation relating A and B is obtained by satisfying trailing edge finite velocity (Kutta condition). The
circulatory Lift amplitude is obtained in away similar to the non-circulatory lift.

IV. Compressible Circulatory and Non-circulatory Lift Frequency Response
Plunging circulatory and non-circulatory lift frequency responses are presented in this section for a range

of reduced frequencies of 0 to 15 and multiple values of Mach numbers using normalized plunging magnitude
𝐻
𝐶

= 0.001. The circulatory lift frequency response, 𝐶 (𝜇), is the ratio of the circulatory lift, 𝐿𝑐, to the quasi-steady
lift, 𝐿𝑄𝑆 = 2𝜋𝑖𝜌𝑜𝑈2𝑎𝜇𝐻𝑒𝑖𝐾𝑡 . Figures 3a and 3b show the circulatory lift frequency response magnitude and phase,
respectively. As shown in the figures, the function magnitude decreases as the Mach number increases. The high
frequency gain of the frequency response approaches zero asymptotically. Also, there exists a significant phase lag
between the plate motion and resulting lift; the lag is almost independent of the reduced frequency.

Similar to the circulatory frequency response, the non-circulatory frequency response is the ratio of the non-
circulatory lift, 𝐿𝑛𝑐, to the quasi-steady lift. For a plate oscillating in an incompressible fluid, the non-circulatory
frequency response increases as the reduced frequency increases and responds promptly with a 90𝑜 phase difference.
However, in the case of a compressible fluid, the non-circulatory frequency response tends to be independent of the
reduced frequency for high frequency values, as shown in figure 2a. Moreover, the function magnitude decreases as the
Mach number increases. Finally, from figure 2b, the phase difference decreases with frequency and converges to zero
asymptotically.

∗ A minus sign is missing in the exponential in the second bracket in Haskind[12] formulation.
† This expression is reformulated to cancel normalization.
‡ Analytical solution of the infinite integral in the Appendix B.
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(b)

Fig. 1 Analytical results of plunging circulatory lift frequency response at different compressible Mach numbers.
(a) Circulatory lift frequency response magnitude vs. reduced frequency. (b) Phase vs reduced frequency.
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0

20
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(b)

Fig. 2 Analytical results of plunging non-circulatory lift frequency response at different compressible Mach
numbers. (a) Non-circulatory lift magnitude vs. reduced frequency. (b) Non-circulatory lift phase vs. reduced
frequency.

V. Computational Simulation
Simulations using Navier-Stokes equations were performed to validate the theoretical results and examine the theory

robustness at high frequencies. The simulations were proceeded using ANSYS FLUENT 20.1 package. The plunging
motion is defined using velocity oscillation as

𝑉 (𝑡) = 𝑣 cos (𝐾𝑡) (16)

where 𝑣 = 𝐻 × 𝐾 , guarantying the validity of small perturbation analysis. The flat plate has a half chord length of 0.5 𝑚.

A. Computational Grid
A two-dimensional structured O-grid is generated using ICEM CFD package. For grid quality purposes, the flat

plate assumption was replaced by a rectangle of length 1 𝑚 and a thickness of 10−4𝑚. As shown in Figure (3), the
computational grid is divided into three rings. The inner ring is 5𝑐 in radius. This region has a dense mesh to capture
the shed vertices from the trailing edge. The first cell, on the flat plate surface, height is 1 × 10−6 𝑐 with an expansion
ration of 1.1. A total number of 160 cells is used on each side of the flat plate. To maintain a high-quality mesh near the
flat plate surface, the inner ring and the flat plate move as a rigid body performing the plunging motion using a user
defined function (UDF). The intermediate ring has an outer radius of 9 𝑐. The dynamic mesh motion is assigned to the
intermediate ring with a deforming technique to absorb the inner ring motion. The outer ring has an outer radius of
12.5 𝐶 with stationary outer boundary.
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(a) (b)

Fig. 3 The mesh around the flat plate. (a) The total mesh: the inner domain move sinusoidal, the intermediate
mesh ring deforms dynamically and the outer mesh ring is fixed. (b) The mesh around leading and trailing edge
of the plate (symmetric).

B. Solver Setup
Inviscid flow model is used for the simulations. The density based solver is considered for compressible flow with

implicit formulation. Green-Gauss Node Based (GGNB) is selected for spatial gradient discretization and Second order
upwind was chosen for the remaining spatial discretization. Second order implicit in transient formulation is chosen.

A pressure far-field is considered for the outer boundary. As the frequency of oscillation increase, the time period
per cycle decrease. A number of 300 time steps per cycle is maintained for all computations ensuring that CFL < 1. The
transient solution is initialized using converged steady state solution.

VI. Compressible Total Lift Frequency Response
The compressible total lift is computed for a plate performing a harmonically plunging motion. The theoretical

results by Haskind [12] are validated against CFD results and compared to Theodorsen [3] incompressible lift at
𝑀 = 0. Figure 4 shows the total lift, 𝐿𝑇𝑜𝑡 , normalized by the quasi-steady lift for three values of Mach number,
𝑀 = 0.35, 0.6 𝑎𝑛𝑑 0.6. As shown in figure, the compressible lift shows a good agreement to the inviscid flow
simulations even at high frequency values. It can be noticed that the lift magnitude decreases as Mach number increases.
Moreover, at low frequency values, the compressible lift and phase shift are comparable to Theodorsen incompressible
lift, showing that compressibility effect is small at low frequency values, however, the effect is significant at high
frequencies.

VII. Conclusion
The aerodynamic loads of a plunging flat plate in a compressible fluid have a significantly different behaviour

compared to the incomressible fluid. The total lift for the compressible fluid doesn’t increase with frequency but
converges to a steady constant value at high reduced frequency values. Moreover, the total lift magnitude decreases as
the Mach number increases and the phase shift increases significantly for reduced frequency around 1, then decreases to
zero asymptotically for high frequencies. Also, the fluid compressibility has a trivial effect on the aerodynamic loads at
a low frequency, however, the effect is notable at high frequencies. The frequency response of the circulatory lift tends
to decrease to a very small values as the frequency increase. The non-circulatory phase leads decreases as the frequency
increase.
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Fig. 4 Total lift frequency response comparison between analytical (solid lines), CFD results (markers) and
incompressible potential flow, i.e Theodorsen’s, (dotted line).(a) Total lift vs. reduced frequency. (b) Lift phase
angle vs. reduced frequency.

Appendix

A. Angular and Radial Mathieu Functions
Mathieu functions are defined in the elliptic-cylinder coordinate system P.Moon [23]. As Mathieu functions

have different notations we adopted notations given by Abramowitz [22]. As a reference for further reading, J.C.
Gutierrez-Vega [24] summarized the most commonly used notations, for Mathieu functions. The angular Mathieu
functions are classified into four categories as [22]

𝑐𝑒2𝑟+𝑝 (𝜁, 𝑞) =
∞∑︁
𝑘=0

𝐴
2𝑟+𝑝
2𝑘+𝑝 cos (2𝑘 + 𝑝)𝜁 𝑤ℎ𝑒𝑟𝑒 (𝑟 ≥ 0; 𝑝 = 0, 1), (17)

𝑠𝑒2𝑟+𝑝 (𝜁, 𝑞) =
∞∑︁
𝑘=0

𝐵
2𝑟+𝑝
2𝑘+𝑝 sin (2𝑘 + 𝑝)𝜁 𝑤ℎ𝑒𝑟𝑒 (𝑟 ≥ 0; 𝑝 = 0, 1), (18)

where 𝐴, 𝐵 are expansion coefficients. The radial Mathieu equations of the fourth kind will be denoted as 𝑀𝑐 (4)2𝑟+𝑝 and
𝑀𝑠

(4)
2𝑟+𝑝 where 𝑟 = 0, 1, 2, ... and 𝑝 = 0, 1. In our calculations, we used the expression given by [22]. The functions are

defined as a product of Bessel functions and Hankel function of the second kind and have the form:

𝑀𝑐
(4)
2𝑟 (𝜉, 𝑞) =

1
𝜖𝑠𝐴

2𝑟
2𝑠

∞∑︁
𝑘=0

(−1)𝑘+𝑟 𝐴2𝑟
2𝑘 (𝑞)

[
𝐽𝑘−𝑠 (𝑢1)𝐻 (2)

𝑘+𝑠 (𝑢2) + 𝐽𝑘+𝑠 (𝑢1)𝐻 (2)
𝑘−𝑠 (𝑢2)

]
(19)

𝑀𝑐
(4)
2𝑟+1 (𝜉, 𝑞) =

1
𝜖𝑠𝐴

2𝑟+1
2𝑠+1

∞∑︁
𝑘=0

(−1)𝑘+𝑟 𝐴2𝑟+1
2𝑘+1 (𝑞)

[
𝐽𝑘−𝑠 (𝑢1)𝐻 (2)

𝑘+𝑠+1 (𝑢2) + 𝐽𝑘+𝑠+1 (𝑢1)𝐻 (2)
𝑘−𝑠 (𝑢2)

]
(20)

𝑀𝑠
(4)
2𝑟 (𝜉, 𝑞) =

1
𝐵2𝑟

2𝑠

∞∑︁
𝑘=1

(−1)𝑘+𝑟𝐵2𝑟
2𝑘 (𝑞)

[
𝐽𝑘−𝑠 (𝑢1)𝐻 (2)

𝑘+𝑠 (𝑢2) − 𝐽𝑘+𝑠 (𝑢1)𝐻 (2)
𝑘−𝑠 (𝑢2)

]
(21)

𝑀𝑠
(4)
2𝑟+1 (𝜉, 𝑞) =

1
𝐵2𝑟+1

2𝑠+1

∞∑︁
𝑘=0

(−1)𝑘+𝑟𝐵2𝑟+1
2𝑘+1 (𝑞)

[
𝐽𝑘−𝑠 (𝑢1)𝐻 (2)

𝑘+𝑠+1 (𝑢2) − 𝐽𝑘+𝑠+1 (𝑢1)𝐻 (2)
𝑘−𝑠 (𝑢2)

]
(22)

where 𝜖0 = 2, 𝜖𝑠 = 1, for 𝑠 = 1, 2, 3, ...., 𝑢1 =
√
𝑞𝑒 𝜉 , 𝑢2 =

√
𝑞𝑒−𝜉 and 𝐴, 𝐵 are the same expansion coefficients

in Eqs.(17),(18). Mathieu functions are essential in the computation of the aerodynamic loads; therefore, validation
of our MATLAB code, used in the function computations, is essential to provide in the results. Figure 5 shows a
comparison between the results from MATLAB code and Abramowitz [22]. Figures 5a compares the even periodic
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Mathieu functions for functions order from 1 to 3 at 𝑞 = 1. The radial Mathieu function of first kind and zero order is
shown in Fig. (5b) for four different values of 𝑞 ranging from 𝑞 = 0.75 to 𝑞 = 3.75. For all 𝑞 values, our calculations
fall to an excellent agreement with Abramowitz.

0 10 20 30 40 50 60 70 80 90

-1

-0.5

0

0.5

1

(a)

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b)

Fig. 5 Even periodic Mathieu functions.(a) Even periodic Mathieu functions at (𝑞 = 1) compared to
Abramowitz [22].(b) Radial mathieu function of the first kind and zero order compared to Abramowitz.

As angular Mathieu functions are functions of elliptic angle 𝜁 , 𝑞 and eigenvector matrix 𝑁 (see Apendix A).
Bibby [25] recommended investigating the effect of the preceding variables on the accuracy of the summations as these
parameters are application based. Double precision (15 decimal digits) is used in calculation using MATLAB Symbolic
Math Toolbox and Variable Precision Arithmetic for high computational accuracy.

0 20 40 60 80 100 120 140 160 180

0

1

2

3

4

5

6

(a)

0 20 40 60 80 100 120 140 160 180

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(b)

Fig. 6 Subtraction error versus the elliptic angle 𝜁 at 𝑁 = 100. (a) Even angular Mathieu function of zero order
𝒄𝒆0(𝜻, 𝒒). (b) Odd angular Mathieu function of first order 𝒔𝒆1(𝜻, 𝒒).

Figure (6a) shows the angle 𝜂 effect on subtraction error [26] for the angular Mathieu function of zero order. As
shown, the maximum error is associated with angle extremes 0, 𝜋 with a value around 5 digits for 𝑞 = 50, which exceeds
our application range. Subtraction error for the odd Mathieu function of the first order is shown in Fig. (6b) with
maximum errors at graph extreme locations for 𝑞 = 50. From the previous discussion, it can be concluded that double
precision computations are sufficient for accurate results.
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B. Analytical solution on Infinite integral in Eqn. 15
For simplicity cos 𝜁 in Eqn. 15 will be replaced by 𝑥.

𝑓 (𝑥) = 𝑒−𝑖𝜈𝑥
∫ 1−𝑥

∞
𝑒−𝑖𝜈 𝜉𝐻 (2)

0 (𝜅𝜉) 𝑑𝜉 (23)

expressing 𝐻 (2)
𝑜 (𝑧) as a linear combination of Bessel functions in the form 𝐻

(2)
𝑜 (𝑧) = 𝐽𝑜 (𝑧) − 𝑖 𝑌𝑜 (𝑧) where

𝐽𝑜 (𝑧) =
∞∑︁
𝑚=0

(−1)𝑚 (𝑧/2)2𝑚

𝑚! Γ(𝑚 + 1)

𝑌𝑜 (𝑧) = − 1
𝜋

𝑛−1∑︁
𝑚=0

(−𝑚 − 1)!
𝑚!

(
𝑧2

4

)𝑚
+ 2
𝜋
𝐽𝑜 (𝑧) ln (𝑧/2) − 2

𝜋

∞∑︁
𝑚=0

(
−𝑧2

4

)
𝑚! 𝑚!

𝜓(𝑚 + 1)

(24)

The first summation of𝑌𝑜 (𝑧) vanishes as the function order is zero (𝑛 = 0). Changing the variables of Eqn. 23 as follows

𝜅𝜉 = 𝑧, 𝑑𝜉 =
𝑑𝑧

𝜅
, , 𝜉 = 1 − 𝑥 → 𝑧 = 𝜈(1 − 𝑥), 𝜉 = ∞ → 𝑧 = ∞ (25)

Substituting Eqns. 24 and 25 into Eqn. 23 and labeling the resulting term as 𝐿1, 𝐿2 and 𝐿3, then

𝐿1 =

∫ ∞

𝜅 (1−𝑥)
𝑒−

𝑖𝜈𝑧
𝜅

∞∑︁
𝑚=0

(−1)𝑚 (𝑧/2)2𝑚

𝑚! Γ(𝑚 + 1) =

∞∑︁
𝑚=0

(−1)𝑚 (0.5)2𝑚

𝑚! Γ(𝑚 + 1)

∫ ∞

𝜅 (1−𝑥)
𝑒−

𝑖𝜈𝑧
𝜅 𝑧2𝑚 𝑑𝑧

=

∞∑︁
𝑚=0

(−1)𝑚 (0.5)2𝑚 Γ(2𝑚 + 1, 𝜈(1 − 𝑥))
𝑚! Γ(𝑚 + 1) ( 𝑖𝜈

𝜅
) (2𝑚+1)

(26)

𝐿2 =
2
𝜋 𝜅

∫ ∞

𝜅 (1−𝑥)
𝑒 (

−𝑖𝜈𝑧
𝜅

)
∞∑︁
𝑚=0

(−1)𝑚 (0.5)2𝑚

𝑚! Γ(𝑚 + 1) ln
( 𝑧
2

)
𝑑𝑧

=
2
𝜋 𝜅

∞∑︁
𝑚=0

(−1)𝑚 (0.5)2𝑚

𝑚! Γ(𝑚 + 1)

[
− ln (2)

∫ ∞

𝜅 (1−𝑥)
𝑒

−𝑖𝜈
𝜅
𝑧𝑧2𝑚𝑑𝑧 +

∫ ∞

𝜅 (1−𝑥)
𝑒

−𝑖𝜈
𝜅
𝑧𝑧2𝑚 ln (𝑧)𝑑𝑧

] (27)

Applying appropriate change of variables and with the aid of Leibniz integral rule, the second integral of Eqn. 27 can be
expressed as∫ ∞

𝜅 (1−𝑥)
𝑒

−𝑖𝜈
𝜅
𝑧𝑧2𝑚 ln (𝑧)𝑑𝑧 =

( 𝜅
𝑖𝜈

) (2𝑚+1)
[
1
2
𝑑

𝑑𝑚
Γ(2𝑚 + 1, 𝑖𝜈(1 − 𝑥)) + ln

( 𝜅
𝑖𝜈

)
Γ(2𝑚 + 1, 𝑖𝜈(1 − 𝑥))

]
(28)

Substituting Eqn. 28 into Eqn. 27, 𝐿2 have the form

𝐿2 =
2
𝜋 𝜅

∞∑︁
𝑚=0

(−1)𝑚 (0.5)2𝑚

𝑚! Γ(𝑚 + 1) ×[
− ln (2)

(
𝑖𝜈

𝜅

) (−2𝑚−1)
+
( 𝜅
𝑖𝜈

) (2𝑚+1)
(
1
2
𝑑

𝑑𝑚
Γ(2𝑚 + 1, 𝑖𝜈(1 − 𝑥)) + ln

( 𝜅
𝑖𝜈

)
Γ(2𝑚 + 1, 𝑖𝜈(1 − 𝑥))

)] (29)

where
𝑑

𝑑𝑚
Γ(2𝑚 + 1, 𝑖𝜈(1 − 𝑥)) = 2 ×

[
Γ(2𝑚 + 1, 𝑖𝜈(1 − 𝑥)) ln (𝑖𝜈(1 − 𝑥)) + 𝐺 3 0

2 3

(
1, 1

0, 0, (2𝑚+1)

���𝑖𝜈(1 − 𝑥)
)]

(30)

𝐿3 =
2
𝜋

∞∑︁
𝑚=0

𝜓(𝑚 + 1) (−0.25)𝑚
(𝑚!)2

∫ ∞

𝜅 (1−𝑥)
𝑒

−𝑖𝜈
𝜅
𝑧𝑧2𝑚𝑑𝑧 =

2
𝜋

∞∑︁
𝑚=0

𝜓(𝑚 + 1) (−0.25)𝑚Γ(2𝑚 + 1, 𝜈(1 − 𝑥)
(𝑚!)2 (𝜈/𝜅) (2𝑚+1) (31)

Finally, from Eqns. 23, 26, 29 and 31 the function 𝑓 (𝑥) can be expressed as

𝑓 (𝑥) = 𝑒−𝑖𝜈𝑥
∫ 1−𝑥

∞
𝑒−𝑖𝜈 𝜉𝐻 (2)

0 (𝜅𝜉) 𝑑𝜉 =
−1
𝜅
𝑒−𝑖𝜈𝑥 [𝐿1 − 𝑖 (𝐿2 − 𝐿3)] (32)
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