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Abstract
Many correlation inequalities for high-dimensional functions in the literature, such
as the Harris–Kleitman inequality, the Fortuin–Kasteleyn–Ginibre inequality and the
celebrated Gaussian Correlation Inequality of Royen, are qualitative statements which
establish that any two functions of a certain type have non-negative correlation. Pre-
vious work has used Markov semigroup arguments to obtain quantitative extensions
of some of these correlation inequalities. In this work, we augment this approach with
a new extremal bound on power series, proved using tools from complex analysis,
to obtain a range of new and near-optimal quantitative correlation inequalities. These
new results include: A quantitative version of Royen’s celebrated Gaussian Corre-
lation Inequality (Royen, 2014). In (Royen, 2014) Royen confirmed a conjecture,
open for 40years, stating that any two symmetric convex sets must be non-negatively
correlated under any centered Gaussian distribution. We give a lower bound on the
correlation in terms of the vector of degree-2 Hermite coefficients of the two convex
sets, conceptually similar to Talagrand’s quantitative correlation bound for monotone
Boolean functions over {0, 1}n (Talagrand in Combinatorica 16(2):243–258, 1996).
We show that our quantitative version of Royen’s theorem is within a logarithmic
factor of being optimal. A quantitative version of the well-known FKG inequality for
monotone functions over any finite product probability space. This is a broad gen-
eralization of Talagrand’s quantitative correlation bound for functions from {0, 1}n
to {0, 1} under the uniform distribution (Talagrand in Combinatorica 16(2):243–258,
1996). In the special case of p-biased distributions over {0, 1}n that was considered
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by Keller, our new bound essentially saves a factor of p log(1/p) over the quantitative
bounds given in Keller (Eur J Comb 33:1943–1957, 2012; Improved FKG inequality
for product measures on the discrete cube, 2008; Influences of variables on Boolean
functions. PhD thesis, Hebrew University of Jerusalem, 2009).

Mathematics Subject Classification 52 (Convex and discrete geometry) · 60
(Probability theory and stochastic processes)

1 Introduction

Correlation inequalities are theorems stating that for certain classes of functions and
certain probability distributions D, any two functions f , g in the class must be non-
negatively correlated with each other under D, i.e. it must be the case that ED[ f g] −
ED[ f ]ED[g] ≥ 0. Inequalities of this type have a long history, going back at least
to a well-known result of Chebyshev, “Chebyshev’s order inequality,” which states
that for any two nondecreasing sequences a1 ≤ · · · ≤ an , b1 ≤ · · · ≤ bn and any
probability distribution p over [n] = {1, . . . , n}, it holds that

n∑

i=1

aibi pi ≥
(

n∑

i=1

ai pi

)(
n∑

i=1

bi pi

)
.

Modern correlation inequalities typically deal with high-dimensional rather than one-
dimensional functions. Results of this sort have proved to be of fundamental interest in
many fields such as combinatorics, analysis of Boolean functions, statistical physics,
and beyond.

Perhaps the simplest high-dimensional correlation inequality is the well known
Harris–Kleitman theorem [14, 21], which states that if f , g : {0, 1}n → {0, 1} are
monotone functions (meaning that f (x) ≤ f (y) whenever xi ≤ yi for all i) then
E[ f g] −E[ f ]E[g] ≥ 0, where expectations are with respect to the uniform distribu-
tion over {0, 1}n . TheHarris-Kleitman theoremhas a one-paragraph proof by induction
on n; on the other end of the spectrum is the Gaussian Correlation Inequality (GCI),
which states that if K , L ⊆ Rn are any two symmetric convex sets and D is any
centered Gaussian distribution overRn , then ED[K L]−ED[K ]ED[L] ≥ 0 (where
we identify sets with their 0/1-valued indicator functions). This was a famous con-
jecture for four decades before it was proved by Thomas Royen in 2014 [29]. Other
well-known correlation inequalities include the Fortuin–Kasteleyn–Ginibre (FKG)
inequality [11], which is an important tool in statistical mechanics and probabilistic
combinatorics; the Griffiths–Kelly–Sherman (GKS) inequality [13, 24], which is a
correlation inequality for ferromagnetic spin systems; and various generalizations of
the GKS inequality to quantum spin systems [12].

1.1 Quantitative correlation inequalities

The agenda of the current work is to obtain quantitative correlation inequalities. Con-
sider the following representative example: For two monotone Boolean functions
f , g : {0, 1}n → {0, 1}, as discussed above, the Harris-Kleitman theorem states that
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Quantitative correlation inequalities via extremal power… 651

E[ f g] − E[ f ]E[g] ≥ 0. It is easy to check that the Harris–Kleitman inequality is
tight if and only if f and g depend on disjoint sets of variables. One might therefore
hope to get an improved bound by measuring how much f and g depend simultane-
ously on the same coordinates. Such a bound was obtained by Talagrand [31] in an
influential paper (appropriately titled “How much are increasing sets correlated?”).
To explain Talagrand’s main result, we recall the standard notion of influence from
Boolean function analysis [28]. For a Boolean function f : {0, 1}n → {0, 1}, the
influence of coordinate i on f is defined to be Inf i [ f ]:= Prx∼Un [ f (x) �= f (x⊕i )],
whereUn is the uniform distribution on {0, 1}n and x⊕i is obtained by flipping the ith
bit of x. Talagrand proved the following quantitative version of the Harris–Kleitman
inequality:

E[ f g] − E[ f ]E[g] ≥ 1

C
· �

(
n∑

i=1

Inf i [ f ]Inf i [g]
)

(1)

where �(x) := x/ log(e/x), C > 0 is an absolute constant, and the expectations
are with respect to the uniform measure. A simple corollary of this result is that
E[ f g] = E[ f ]E[g] if and only if the sets of influential variables for f and g are
disjoint. In [31] itself, Talagrand gives an example for which Eq. (1) is tight up to
constant factors.

Talagrand’s result has proven to be influential in the theory of Boolean functions,
and several works [17–20] have obtained extensions and variants of this inequality for
product distributions over {0, 1}n . Keller et al. [23] proved the following alternative
strengthening of the Harris–Kleitman inequality:

E[ f g] − E[ f ]E[g] ≥ 1

C
·

n∑

i=1

ϒ(Inf i [ f ])ϒ(Inf i [g]) (2)

where ϒ(x) := x/
√
log(e/x), C > 0 is an absolute constant, and the expectations

are with respect to the uniform measure. They also obtained analogues of Eqs. (1) and
(2) in the setting of monotone functions over Rn using a new notion of “geometric
influence” for functions over Gaussian space [22, 23].1 The paper [23] crucially relies
on semigroup methods such as reverse hypercontractivity and integration by parts. In
fact,Mossel [27] (see Remark 5.5) showed that the semigroupmethod can be extended
to yield analogues of Eqs. (1) and (2) for monotone functions over any poset where
an appropriate semigroup can be defined; the approach in [27] follows the work of
Cordero-Erausquin and Ledoux [6] who used semigroupmethods to prove Talagrand’s
generalization of the KKL inequality. Finally, Eldan [9] recently gave a new approach
towards obtaining Eqs. (1) and (2) via stochastic calculus, and gave a refinement of
Eq. (1) in terms of the degree-2 Fourier coefficients of the functions.

1 We note that both Eqs. (1) and (2) are sharp, and neither implies the other; see Sect. 4.1 of [23] or the
discussion following Theorem 1.4 in [20].
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1.2 Our contributions

In this paper, we establish a general framework to obtain a range of new quantitative
correlation inequalities. Similar to [23, 27], our approach also uses the semigroup
framework. However, unlike the previous papers, the key fact exploited here is that
for the semigroups of interest in this paper, the corresponding Laplacian has integer
eigenvalues. This is useful for us because it means that the action of the so-called
“noise operator” can be expressed as a power series in terms of the “noise rate”. We
then use a new extremal bound on power series, proved using elementary tools from
complex analysis to obtain several new quantitative correlation inequalities including:

1. Quantitative versions of Royen’s Gaussian Correlation Inequality and Hu’s corre-
lation inequality [16] for symmetric convex functions over Gaussian space. (We
also give a lower bound example which shows that our quantitative version of the
Gaussian Correlation Inequality is within a logarithmic factor of the best possible
bound.)

2. A quantitative FKG inequality for a broad class of product distributions, including
arbitrary product distributions over finite domains.

These results are obtained in a unified fashion via simple proofs that we view as quite
different from previous works [17–20, 23, 31]. In particular, unlike several of these
earlier papers, our proofs do not use semigroup tools such as reverse hypercontractivity
or integration by parts.

We note that the special case of the second item above with the uniform distribution
on {0, 1}n essentially recovers Talagrand’s correlation inequality [31]. In more detail,
our bound is weaker than that obtained in [31] by a logarithmic factor, but our proof is
significantly simpler and easily generalizes to other domains. For p-biased distribu-
tions over {0, 1}n , our bound avoids any dependence on p compared to the results of
Keller [17–19] which have a p log(1/p) dependence (though, similar to the situation
vis-a-vis [31], we lose a logarithmic factor in other dependencies). Finally, we note that
our framework allows us to obtain two seemingly incomparable quantitative versions
of the FKG inequality for monotone functions over the solid cube [0, 1]n endowed
with the uniform measure; we refer the interested reader to the preprint version of this
paper for more details of these last two results.

1.3 The approach

We start with a high level meta-observation before explaining our framework and
techniques in detail. While the statements of the Harris–Kleitman inequality, the FKG
inequality, and the Gaussian Correlation Inequality have a common flavor, the proofs
of these results are extremely different from each other. As noted earlier, the Harris–
Kleitman inequality admits a simple inductive proof which is only a few lines long:
Given two monotone Boolean functions f , g : {0, 1}n → {0, 1}, we can write
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Quantitative correlation inequalities via extremal power… 653

E[ f · g] − E[ f ] · E[g] = E

[
f1 − f0

2

]
· E
[
g1 − g0

2

]

+
∑

i∈{0,1}

(
E[ fi · gi ] − E[ fi ] · E[gi ]

2

)

where fi (x) := f (i, x2, . . . , xn) and gi (x) := g(i, x2, . . . , xn) for i ∈ {0, 1}. Mono-
tonicity of f and g ensures that the first term is non-negative, whereas the inductive
hypothesis ensures that each summand in the second term is non-negative as well.

In contrast, the Gaussian Correlation Inequality was an open problem for nearly
four decades, and no inductive proof for it is known. Thus, at first glance, it is not clear
how one might come up with a common framework to obtain quantitative versions
of these varied qualitative inequalities. Our approach circumvents this difficulty by
using the qualitative inequalities essentially as “black boxes.” This allows us to extend
the qualitative inequalities into quantitative ones while essentially sidestepping the
difficulties of proving the initial qualitative statements themselves.

1.3.1 Our general framework

In this subsection we give an overview of our general framework and the high-level
ideas underlying it,with our quantitative version of theGaussianCorrelation Inequality
serving as a running example throughout for concreteness.

We begin by defining a function � : [0, 1] → [0, 1] which will play an important
role in our results:

�(x) := min

{
x,

x

log2(1/x)

}
. (3)

(Note the similarity between � and the function � mentioned earlier that arose in
Talagrand’s quantitative correlation inequality [31]; the difference is that � is smaller
by essentially a logarithmic factor in the small-x regime.)

Let F be a family of real-valued functions on some domain (endowed with
measure μ) with E μ

[
f 2
] ≤ 1 for all f ∈ F . For example, the Gaussian

Correlation Inequality is a correlation inequality for the family Fcsc of centrally
symmetric, convex sets (identified with their 0/1-indicator functions), and μ is the
standard Gaussian measure N (0, 1)n , usually denoted γ .2 A quantitative correla-
tion inequality for f , g ∈ F gives a (non-negative) lower bound on the quantity
E x∼μ[ f (x)g(x)]−E x∼μ[ f (x)]E y∼μ[g( y)], typically in terms of some measure of
“how much f and g simultaneously depend on the same coordinates.” Our general
approach establishes such a quantitative inequality in two main steps:
Step 1 For this step, we require an appropriate family of “noise operators” (Tρ)ρ∈[0,1]
with respect to the measure μ. Very briefly, each of these operators Tρ will be a (re-
indexed version of a) symmetric Markov operator whose stationary distribution is μ;

2 Since convexity is preserved under linear transformation, no loss of generality is incurred in assuming
that the background measure is the standard normal distributionN (0, 1)n rather than an arbitrary centered
Gaussian.
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this is defined more precisely in Sect. 4. (Looking ahead, we will see, for example,
that in the case of the GCI, the appropriate noise operator is the Ornstein-Uhlenbeck
noise operator, defined in Definition 15.) The crucial property we require of the family
(Tρ)ρ∈[0,1] with respect to F is what we refer to as monotone compatibility:

Definition 1 (Monotone compatibility). A class of functions F and background mea-
sure μ is said to be monotone compatible with respect to a family of noise operators
(Tρ)ρ∈[0,1] if (i) for all f , g ∈ F , the function

q(ρ) := E x∼μ[ f (x)Tρg(x)]

is a non-decreasing function of ρ, and (ii) for ρ = 1 we have T1 = Id (the identity
operator).

The notion of monotone compatibility should be seen as a mild extension of quali-
tative correlation inequalities. As an example, in the case of the Gaussian Correlation
Inequality, Royen’s proof [29] in fact shows that that the family Fcsc is monotone
compatible with Ornstein-Uhlenbeck operators.
Step 2 We express the operator Tρ in terms of its eigenfunctions. In all the cases we
consider in this paper, the eigenvalues of the operator Tρ are

{
ρ j
}
j≥0. Let {W j } j≥0

be the corresponding eigenspaces. Consequently, we can express q(ρ) − q(0) as

q(ρ) − q(0) = E x∼μ[ f (x)Tρg(x)] − E x∼μ[ f (x)] · E y∼μ[g( y)]
=
∑

j>0

ρ j E[ f j (x)g j (x)], (4)

where f j (respectively g j ) is the projection of f (respectively g) on the spaceW j . To
go back to our running example, for the Gaussian Correlation Inequality, W j is the
subspace spanned by degree- j Hermite polynomials on R

n .
Define a j :=E[ f j (x)g j (x)], so q(ρ) = ∑

j≥0 a jρ
j . Now, corresponding to any

family F and noise operators (Tρ)ρ∈[0,1], there will be a unique j∗ ∈ N such that the
following properties hold:

1. If a j∗ = 0, then E x∼μ[ f (x)g(x)] = E x∼μ[ f (x)] · E y∼μ[g( y)]. In other words,
a j∗ qualitatively captures the “slack” in the correlation inequality. For example, for
the Gaussian Correlation Inequality, it turns out that j∗ = 2 (and over the Boolean
hypercube {−1, 1}n , it turns out that j∗ = 1).

2. For any i such that j∗ does not divide i , ai = 0.

Now, from the fact that the spaces {W j } are orthonormal and the fact that every
f ∈ F has E μ

[
f 2
] ≤ 1, it follows that

∑
j>0 |a j | ≤ 1. Our main technical lemma,

Lemma 11, implies (see the proof of Theorem 13) that for any such power series q(·),
there exists some ρ∗ ∈ [0, 1] such that3

q(ρ∗) − q(0) ≥ 1

C
· �(a j∗).

3 Looking ahead (see Eq. (9)), it will be immediate from the monotone compatibility of F with Tρ that
a j∗ ≥ 0.
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The proof crucially uses tools from complex analysis. As the class F is monotone
compatible with the operators (Tρ)ρ∈[0,1], recalling Eq. (4), it follows that

q(1) − q(0) = E x∼μ[ f (x)g(x)] − E x∼μ[ f (x)] · E y∼μ[g( y)]
≥ 1

C
· �(a j∗), (5)

which is the desired quantitative correlation inequality for F .

Remark 2 We emphasize the generality of our framework; the argument sketched
above can be carried out in a range of different concrete settings. For example, by
using the Harris-Kleitman qualitative correlation inequality for monotone Boolean
functions in place of the GCI, and the Bonami-Beckner noise operator over {0, 1}n in
place of the Ornstein-Uhlenbeck noise operator, the above arguments give a simple
proof of the following (slightly weaker) version of Talagrand’s correlation inequality
(Eq. (1)):

E[ f g] − E[ f ]E[g] ≥ 1

C
· �

(
n∑

i=1

Inf i [ f ]Inf i [g]
)

, (6)

for an absolute constant C > 0. While our bound is weaker than that of [31] by a
log factor (recall the difference between � and �), our methods are applicable to a
wider range of settings (such as the GCI and the other applications given in this paper).
Finally, we emphasize that our proof strategy is really quite different from that of [31];
for example, [31]’s proof relies crucially on bounding the degree-2 Fourier weight of
monotone Boolean functions by the degree-1 Fourier weight, whereas our strategy
does not analyze the degree-2 spectrum of monotone Boolean functions at all.

1.4 Organization

The rest of the paper is organized as follows: Sect. 2 recalls the necessary background
on Markov semigroups and functional analysis, and recalls a well-known result from
complex analysis that we will require to prove our main lemma. In Sect. 3, we prove
our main technical lemma, Lemma 11, which is at the heart of our approach to quanti-
tative correlation inequalities. Section 4 presents our general approach to quantitative
correlation inequalities, Theorem 13, which we instantiate with concrete examples in
subsequent sections as follows: In Sect. 5, we obtain quantitative analogues of sev-
eral correlation inequalities over Gaussian space; in particular, we give robust forms
of Royen’s Gaussian Correlation Inequality (GCI) [29], present an extension of the
quantitative GCI to quasiconcave functions, and also obtain a robust form of Hu’s
correlation inequality for convex functions [16]. In Sect. 6, we obtain an analogue
of Talagrand’s correlation inequality [31] in the setting of monotone functions over
finite product spaces.We note that this setting includes the Boolean hypercube {0, 1}n ,
wherein we obtain a generalization of Talagrand’s inequality to real-valued functions
and p-biased distributions.
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2 Preliminaries

In this section we give preliminaries setting notation, recalling useful background on
noise operators and orthogonal decomposition of functions over product spaces, and
recalling a well-known result that we will require from complex analysis.

2.1 Noise operators and orthogonal decompositions

Let (�, π) be a probability space; we do not require � to be finite, and we assume
without loss of generality that π has full support.

The background we require for noise operators on functions in L2(�, π) is most
naturally given using the language of “Markov semigroups.” Our exposition below
will be self-contained; for a general and extensive resource on Markov semigroups,
we refer the interested reader to [5].

Definition 3 (Markov semigroup). A collection of linear operators (Pt )t≥0 on
L2(�, π) is said to be a Markov semigroup if

1. P0 = Id;
2. for all s, t ∈ [0,∞), we have Ps ◦ Pt = Ps+t ; and
3. for all t ∈ [0,∞) and all f , g ∈ L2(�, π), the following hold:

(a) Identity: Pt1 = 1 where 1 is the identically-1 function.
(b) Positivity: Pt f ≥ 0 almost everywhere if f ≥ 0 almost everywhere.4

It is well known that a Markov semigroup can be constructed from a Markov
process and vice versa [5]. We call a Markov semigroup symmetric if the underlying
Markov process is time-reversible; the following definition is an alternative elementary
characterization of symmetric Markov semigroups. (Recall that for f , g ∈ L2(�, π)

the inner product 〈 f , g〉 is defined as E x∼π [ f (x)g(x)].)
Definition 4 (Symmetric Markov semigroup). A Markov semigroup (Pt )t≥0 on
L2(�, π) is symmetric if for all t ∈ [0,∞), the operator Pt is self-adjoint; equiv-
alently, for all t ∈ [0,∞) and all f , g ∈ L2(�, π), we have 〈 f ,Pt g〉 = 〈Pt f , g〉.

We note that the families of noise operators (Uρ)ρ∈[0,1] and (Tρ)ρ∈[0,1] that we
consider in Sects. 5 and 6 respectively will be parametrized by ρ ∈ [0, 1] where
ρ = e−t for t ∈ [0,∞), as is standard in theoretical computer science. (For example,
the Bonami-Beckner noise operator operator Tρ mentioned in the Introduction, which
is a special case of the Tρ operator defined in Sect. 6, corresponds to Pt for (Pt )t≥0 a
suitable Markov semigroup and ρ = e−t .)

Given a Markov semigroup (Pt )t≥0 on the probability space (�, π), we can nat-
urally define the Markov semigroup

(⊗n
i=1Pti

)
ti≥0 on L2

(
�n, π⊗n

)
; we will often

abuse notation and denote this operator on L2
(
�n, π⊗n

)
by simply Pt . We next define

a decomposition of L2
(
�n, π⊗n

)
that is particularly well-suited to the action of a

Markov semigroup (Pt )t≥0.

4 Note that this implies the following order property: if f ≥ g almost everywhere, then Pt f ≥ Pt g almost
everywhere.
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Definition 5 (Chaos decomposition). Consider a Markov semigroup (Pt )t≥0 on
L2
(
�n, π⊗n

)
. We call an orthogonal decomposition of

L2 (�n, π⊗n) =
∞⊕

i=0

Wi

a chaos decomposition with respect to the Markov semigroup (Pt )t≥0 if

1. W0 = span{1} where 1 is the identically-1 function (i.e.W0 = R).
2. For all t ≥ 0, there exists λt ∈ [0, 1] such that if f ∈ Wi , then Pt f = λit f .
3. If t1 > t2, then λt1 < λt2 .

The term “chaos decomposition” is used in the literature to describe the spectral
decomposition of L2(Rn, γ )with respect to the Laplacian of the Ornstein–Uhlenbeck
semigroup (see Fact 16); its usage in the broader sense defined above is not standard
(to our knowledge).

Remark 6 The semigroup property (Item 2 of Definition 3) together with strict mono-
tonicity (Item 3 of Definition 5) together imply that in fact λt = λt∗ for some
λ∗ ∈ (0, 1). (This follows immediately from Cauchy’s functional equation.) In other
words, Item 2 in Definition 5 can be restated as follows: There exists λ∗ ∈ (0, 1) such
that for all t ≥ 0, if f ∈ Wi then we have Pt f = λi t∗ f .

Example 7 To provide intuition for Definition 5, note that

• Over Gaussian space, a natural chaos decomposition with respect to the Ornstein–
Uhlenbeck semigroup is given by the basis of Hermite polynomials (Sect. 5.1);

• For real-valued functions over finite product domains, a natural chaos decompo-
sition with respect to the Bonami–Beckner semigroup is given by the Efron–Stein
decomposition (Sect. 6.1).

Notation 8 Given an orthogonal decomposition L2
(
�n, π⊗n

) = ⊕
i Wi , for f ∈

L2
(
�n, π⊗n

)
we will write f = ⊕i fi where fi is the projection of f onto Wi .

We note that λ0 = 1, and as 1 ∈ W0, it follows that f0 = 〈 f , 1〉. We revisit
the definition of monotone compatibility given in the introduction in the language of
Markov semigroups:

Definition 9 (Monotone compatibility). Let (Pt )t≥0 be a Markov semigroup on
L2
(
�n, π⊗n

)
. We say that (Pt )t≥0 is monotone compatible with a family of func-

tions F ⊆ L2
(
�n, π⊗n

)
if for all f , g ∈ F , we have

∂

∂t
〈Pt f , g〉 ≤ 0

when the above derivative exists.

Recalling that our noise operators such as (Tρ)ρ∈[0,1] are reparameterized versions
of the Markov semigroup operators (Pt )t≥0 under the reparameterization Tρ = Pt
with ρ = e−t , and recalling item 1 in Definition 3, we see that Definition 9 coincides
with Definition 1.
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2.2 Complex analysis

Let U ⊆ C be a connected, open set. Recall that a function f : U → C is said to be
holomorphic if at every point inU it is complex differentiable in a neighborhood of the
point. ForU a connected closed set, f is said to be holomorphic if it is holomorphic in
an open set containingU . Our main technical lemma appeals to the following classical
result, a proof of which can be found in [30].

Theorem 10 (Hadamard Three Circles Theorem). Suppose f is holomorphic on the
annulus {z ∈ C | r1 ≤ |z| ≤ r2}. For r ∈ [r1, r2], let M(r) := max|z|=r | f (z)|. Then

log

(
r2
r1

)
logM(r) ≤ log

(r2
r

)
logM(r1) + log

(
r

r1

)
logM(r2).

3 A new extremal bound for power series with bounded length

Given a complex power series p(t) =∑∞
i=1 ci t

i where ci ∈ C, its length is defined to
be the sum of the absolute values of its coefficients, i.e.

∑∞
i=1 |ci |. Our main technical

lemma is a lower bound on the sup-norm of complex power series with no constant
term and bounded length:5

Lemma 11 (Main Technical Lemma). Let p(t) = ∑∞
i=1 ci t

i with c1 = 1 and∑∞
i=1 |ci | ≤ M where M ≥ 3/2. Then:

sup
t∈[0,1]

|p(t)| ≥ �(1)

log2 M
.

The proof given below is inspired by arguments with a similar flavor in [2, 3], where
the Hadamard Three Circles Theorem is used to prove various extremal bounds on
polynomials.

Proof Consider the meromorphic map (easily seen to have a single pole at z = 0)
given by

h(z) = A

(
z + 1

z

)
+ B,

which maps origin-centered circles to ellipses centered at B. Let 0 < δ < c be a
parameter that we will fix later, where 0 < c < 1 is an absolute constant that will be
specified later. We impose the following constraints on A and B:

−2A + B = δ
17

4
A + B = 1,

5 The “3/2” in the lemma below could be replaced by any constant bounded above 1; we use 3/2 because
it is convenient in our later application of Lemma 11.
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and note that these constraints imply that A = 4(1−δ)
25 and B = 8+17δ

25 .
We define three circles in the complex plane that we will use for the Hadamard

Three Circles Theorem:

(i) Let C1 be the circle centered at 0 with radius 1. Note that for all z ∈ C1, the value
h(z) is a real number in the interval

[
δ, 16+9δ

25

] ⊆ [δ, 1).
(ii) Let r > 1 be such that h(−r) = 0, so r + 1

r = 8+17δ
4−4δ = 2 + �(δ) and hence

r = 1+ �(
√

δ), which is less than 4. Define C2 to be the circle centered at 0 with
radius r .

(iii) Let C3 be the circle centered at 0 with radius 4. Note that |h(z)| ≤ 1 for z ∈ C3.

Define q(t) := p(t)
t . Note that q(0) = c1 = 1 and that for all z ∈ C such that

|z| ≤ 1, we have |q(z)| ≤ M . Define ψ(z) := q(h(z)). Note that ψ is holomorphic
on {z ∈ C : |z| ≤ 4} \ {0}; in particular, it is holomorphic on the (closed) annulus
defined by C1 and C3. Consequently, by Theorem 10, we have:

log

(
4

1

)
logα(r) ≤ log

(
4

r

)
logα(1) + log

(r
1

)
logα(4)

withα(r) := sup|z|=r |ψ(z)|. As h(−r) = 0,we haveψ(−r) = 1 and so logα(r) ≥ 0.
Consequently, the left hand side of the above inequality is non-negative,which implies:

1 ≤ α(1)
log
(
4
r

)

· α(4)log r .

As log
( 4
r

) = �(1), log r = log
(
1 + �

(√
δ
))

= �
(√

δ
)
, and α(4) ≤ M , we get:

1 ≤ α(1)�(1) · M�
(√

δ
)

, and hence M
−�
(√

δ
)

≤ α(1).

By (i) and the definition of α, we have:

sup
t∈[δ,1)

q(t) ≥ M
−�
(√

δ
)

and hence sup
t∈[0,1]

p(t) ≥ sup
δ∈[0,1]

δM
−�
(√

δ
)

.

Setting δ = �(1)
log2 M

, we get that

sup
t∈[0,1]

|p(t)| ≥ �(1)

log2 M
,

and the lemma is proved. ��
It is natural to wonder whether Lemma 11 is quantitatively tight. The polynomial

p(t) = t(1−t)logM is easily seen to have lengthM and supt∈[0,1] p(t) = �(1/ logM),
and it is tempting to conjecture that this might be the smallest achievable value. How-
ever, it turns out that the 1/ log2 M dependence of Lemma 11 is in fact the best possible
result, as shown by the following claim which we prove in Appendix A:
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Claim 12 For sufficiently large M, there exists a real polynomial p(t) = ∑d
i=1 ci t

i

with c1 = 1 and
∑d

i=1 |ci | ≤ M such that

sup
t∈[0,1]

p(t) ≤ O

((
1

logM

)2
)

.

4 A general approach to quantitative correlation inequalities

This section presents our general approach to obtaining quantitative correlation
inequalities from qualitative correlation inequalities. While our main result, Theo-
rem 13, is stated in an abstract setting, subsequent sections will instantiate this result
in concrete settings that provided the initial impetus for this work. Section 5 deals with
the setting of centrally symmetric, convex sets over Gaussian space, and Sect. 6 deals
with finite product domains.

Theorem 13 (Main Theorem). Consider a symmetric Markov semigroup (Pt )t≥0 on
L2
(
�n,�⊗n

)
with a chaos decomposition

L2 (�n,�⊗n) =
⊕

�

W�.

Let (Pt )t≥0 be monotone compatible with F ⊆ L2
(
�n,�⊗n

)
, where ‖ f ‖ ≤ 1 for all

f ∈ F . Furthermore, suppose that there exists j∗ ∈ N>0 such that every f ∈ F has
a decomposition as

f =
∞⊕

�=0

f�· j∗ ,

i.e. f� = 0 for j∗ � �. Then for all f , g ∈ F , we have

〈 f , g〉 − f0g0 ≥ 1

C
· �
(〈 f j∗ , g j∗〉

)
, (7)

where recall from Eq. (3) that � : [0, 1] → [0, 1] is �(x) = min
{
x, x

log2(1/x)

}
and

C > 0 is a universal constant.

The proof of the above theorem uses an interpolating argument along the Markov
semigroup, and appeals to Lemma 11 to obtain the lower bound.

Proof of Theorem 13 Fix f , g ∈ F and let us write a� := 〈 f�, g�〉. It follows from
Definition 5 that f�, g� are eigenfunctions of Pt with eigenvalue λ�

t . This, together
with the assumption that f = ⊕ j∗|� f� and g = ⊕ j∗|�g�, implies that for t > 0 we
have

〈Pt f , g〉 =
∑

j∗|�
λ�
t 〈 f�, g�〉 =

∑

j∗|�
a�λ

�
t . (8)
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Here we remark that the argument to �(·) in the right hand side of Eq. (7) is non-
negative, i.e. a j∗ ≥ 0. To see this, observe that

a j∗ = ∂

∂λ
j∗
t

〈Pt f , g〉 = ∂

∂t
〈Pt f , g〉 · ∂t

∂λ
t · j∗∗

≥ 0 (9)

where we used the monotone compatibility of F with (Pt )t≥0, Property 3 of Defini-
tion 5, and Remark 6.

Returning to Eq. (8), rearranging terms gives that

〈Pt f , g〉 − f0g0 =
∑

�>0
j∗|�

a�λ
�
t = a j∗ p(λ

j∗
t ) where

p(λ j∗
t ) := λ

j∗
t + 1

a j∗

∑

�> j∗
j∗|�

a�λ
�
t . (10)

As λt ∈ [0, 1], we re-parametrize u := λ
j∗
t and write b� := a� j∗

a j∗ for ease of notation;

this gives us

p(u) = u +
∑

�≥2

b�u
�.

By the Cauchy–Schwarz inequality, we have

a2� = 〈 f�, g�〉2 ≤ 〈 f�, f�〉〈g�, g�〉 = ‖ f�‖2‖g�‖2, and hence |a�| ≤ ‖ f�‖‖g�‖.

Once again using the Cauchy–Schwarz inequality, we get

∑

�

|a�| ≤
∑

�=0

‖ f�‖ · ‖g�‖ ≤
√√√√
(
∑

�

‖ f�‖2
)

·
(
∑

�

‖g�‖2
)

≤ 1

where the last inequality follows from the assumption that ‖ f ‖ ≤ 1 for all f ∈ F .
This implies that

∑

�

|b�| = 1

|a j∗ |
∑

�

∣∣a�· j∗
∣∣ ≤ 1

|a j∗ | = 1

a j∗
.

where the last equality holds because of a j∗ ≥ 0 as shown earlier. If a j∗ > 2/3 then∑
�≥2 |bi | ≤ 1/2 while b1 = 1, from which it easily follows that supu∈[0,1] p(u) ≥

1/2. If a j∗ < 2/3 then the power series p(u) satisfies the assumptions of Lemma 11
with M = 1

a j∗ . This gives us
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sup
u∈[0,1]

p(u) ≥ min

⎧
⎨

⎩
1

2
,�

⎛

⎝ 1

log2
(
a−1
j∗
)

⎞

⎠

⎫
⎬

⎭ .

It follows from Definition 5 that as t ranges over (0,∞), λt = λt∗ (cf. Remark 6) and
consequently u ranges over the interval (0, 1]. Together with Eq. (10), this implies that

sup
t∈(0,∞)

〈Pt f , g〉 − f0g0 = sup
t∈(0,∞)

a j∗ · p(λt ) = a j∗ · sup
u∈(0,1]

p(u)

≥ �

⎛

⎝min

⎧
⎨

⎩a j∗ ,
a j∗

log2
(
a−1
j∗
)

⎫
⎬

⎭

⎞

⎠ .

However, because of monotone compatibility, we have that 〈Pt f , g〉 is decreasing in
t . As P0 = Id, we can conclude that

〈 f , g〉 − f0g0 ≥ �

⎛

⎝min

⎧
⎨

⎩a j∗ ,
a j∗

log2
(
a−1
j∗
)

⎫
⎬

⎭

⎞

⎠ ,

which completes the proof. ��

5 Robust correlation inequalities over Gaussian space

In this sectionweprove quantitative versions ofRoyen’sGaussianCorrelation Inequal-
ity (GCI) [29] for symmetric convex sets and Hu’s inequality for symmetric convex
functions [16].6 We start by recalling some elementary facts about harmonic analysis
over Gaussian space, after which we derive our “robust” form of the GCI in Sect. 5.2 as
a consequence of Theorem 13.We analyze the tightness of our robust GCI in Sect. 5.3.
In Sect. 5.4, we state and prove our quantitative version of Hu’s correlation inequality
for symmetric convex functions over Gaussian space.

5.1 Harmonic (Hermite) analysis over Gaussian space

Our notation and terminology presented in this subsection follows Chapter 11 of [28].
We say that an n-dimensional multi-index is a tuple α ∈ Nn , and we define

supp(α) := {i : αi �= 0}, #α := |supp(α)|, |α| :=
n∑

i=1

αi . (11)

WewriteN (0, 1)n to denote the n-dimensional standard Gaussian distribution. It is
a standard fact (see, for example, Proposition 11.33 of [28]) that the univariateHermite

6 Note that the 0/1 indicator function of a convex set is not a convex function.
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polynomials (h j ) j∈N form a complete, orthonormal basis for L2(R, γ ). For n > 1
the collection of n-variate polynomials given by (hα)α∈Nn where

hα(x) :=
n∏

i=1

hαi (x)

forms a complete, orthonormal basis for L2(Rn, γ ). Given a function f ∈ L2(Rn, γ )

and α ∈ Nn , we define its Hermite coefficient on α as f̃ (α) = 〈 f , hα〉. It follows
that f is uniquely expressible as f = ∑

α∈Nn f̃ (α)hα with the equality holding in
L2(Rn, γ ); we will refer to this expansion as the Hermite expansion of f . One can
check that Parseval’s and Plancharel’s identities hold in this setting.

Fact 14 (Plancharel’s and Parseval’s identities). For f , g ∈ L2(Rn, γ ), we have:

〈 f , g〉 = E z∼N (0,1)n [ f (z)g(z)] =
∑

α∈Nn

f̃ (α)g̃(α), (Plancherel)

〈 f , f 〉 = E z∼N (0,1)n [ f (z)2] =
∑

α∈Nn

f̃ (α)2. (Parseval)

Next we recall the standard Gaussian noise operator (parameterized so that the
noise rate ρ ranges over [0, 1]):
Definition 15 (Ornstein-Uhlenbeck semigroup). We define the Ornstein-Uhlenbeck
semigroup as the family of operators (Uρ)ρ∈[0,1] on the space of functions f ∈
L1(Rn, γ ) given by

Uρ f (x) := E g∼N (0,1)n

[
f
(
ρ · x +√1 − ρ · g

)]
.

The Ornstein-Uhlenbeck semigroup is sometimes referred to as the family ofGaus-
sian noise operators or Mehler transforms. The Ornstein-Uhlenbeck semigroup acts
on the Hermite expansion as follows:

Fact 16 (Proposition 11.33, [28]). For f ∈ L2(Rn, γ ), the functionUρ f has Hermite
expansion

Uρ f =
∑

α∈Nn

ρ|α| f̃ (α)hα.

5.2 A robust extension of the Gaussian correlation inequality

We start by making a crucial observation regarding Royen’s proof of the Gaussian
correlation inequality (GCI) [29]. Recall that the GCI states that if K and L are the
indicator functions of two centrally symmetric (i.e. K (x) = 1 implies K (−x) = 1),
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convex sets, then they are non-negatively correlated under the Gaussian measure; that
is,

E x∼N (0,1)n [K (x)L(x)] − E x∼N (0,1)n [K (x)]E y∼N (0,1)n [K ( y)] ≥ 0.

In order to prove this, Royen interpolates between E[K ]E[L] and E[K L] via
the Ornstein-Uhlenbeck semigroup, and shows that this interpolation is monotone
nondecreasing; indeed, note that

〈U1K , L〉 = E x∼N (0,1)n [K (x)L(x)], and that

〈U0K , L〉E x∼N (0,1)n [K (x)]E y∼N (0,1)n [K ( y)].

Thus, Royen’s main result can be interpreted as follows (we refer the interested
reader to a simplified exposition of Royen’s proof by Latała and Matlak [25] for
further details):

Proposition 17 (Royen’s Theorem, [29]) Let Fcsc ⊆ L2 (Rn, γ ) be the family of
indicators of centrally symmetric, convex sets, and let (Uρ)ρ∈[0,1] be the Ornstein-
Uhlenbeck semigroup. Then for K , L ∈ Fcsc, we have

∂

∂ρ
〈UρK , L〉 ≥ 0 for all 0 < ρ < 1.

In particular, Fcsc is monotone compatible with (Uρ)ρ∈[0,1].

Recall that we are parametrizing the Ornstein-Uhlenbeck semigroup by ρ ∈ [0, 1]
where ρ = e−t for t ∈ [0,∞); see the discussion following Definition 3. We can now
state our main result:

Theorem 18 (Quantitative GCI). Let Fcsc ⊆ L2 (Rn, γ ) be the family of indicators
of centrally symmetric, convex sets. Then for K , L ∈ Fcsc, we have

E[K L] − E[K ]E[L] ≥ 1

C
· �

⎛

⎝
∑

|α|=2

K̃ (α)L̃(α)

⎞

⎠ (12)

where recall from Eq. (3) that � : [0, 1] → [0, 1] is �(x) = min
{
x, x

log2(1/x)

}
and

C > 0 is a universal constant.

Proof Consider the orthogonal decomposition

L2(Rn, γ ) =
∞⊕

i=0

Wi

where Wi = span {hα : |α| = i}; the orthogonality of this decomposition follows
from the orthonormality of the Hermite polynomials. From Fact 16, it follows that this
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decomposition is in fact a chaos decomposition (recall Definition 5) with respect to
the Ornstein-Uhlenbeck semigroup (Uρ)ρ∈[0,1].

If K ∈ Fcsc, then K (x) = K (−x) as K is the indicator of a centrally symmetric
set; in other words, K is an even function. Consequently, its Hermite expansion is
given by

K =
∞⊕

i=0|α|=2i

hα.

Furthermore, from Fact 14, we have that

‖K‖2 =
∑

α∈Nn

K̃ (α)2 = E
[
K 2
]

≤ 1.

It follows that the hypotheses of Theorem 13 hold forFcsc with j∗ = 2; consequently,
for K , L ∈ Fcsc we have

〈U1K , L〉 − 〈U0K , L〉 = E[K L] − E[K ]E[L] ≥ 1

C
· �

⎛

⎝
∑

|α|=2

K̃ (α)L̃(α)

⎞

⎠ ,

which completes the proof of the theorem. ��
Remark 19 It is natural to ask whether Theorem 18 can be extended to a broader
class of functions than 0/1-valued indicator functions of centrally symmetric, convex
setsFcsc. Indeed, the GCI implies the monotone compatibility of centrally symmetric,
quasiconcave7, non-negative functions (which is a larger family of functions thanFcsc)
with the Ornstein-Uhlenbeck semigroup. This allows us to once again use Theorem 13
to obtain a quantitative correlation inequality for this family of functions.

Remark 20 Inspired by the resemblance between Eq. (12) and Talagrand’s correlation
inequality, we believe that the (negated) degree-2 Hermite coefficients of centrally
symmetric, convex sets over Gaussian space are natural analogues of the degree-1
Fourier coefficients (i.e. the coordinate influences) of monotone Boolean functions. A
forthcoming manuscript [8] explores this notion further.

5.3 On the tightness of theorem 18

In [31], Talagrand gave the following family of example functions for which Eq. (1)
is tight up to constant factors: let f , g : {0, 1}n → {0, 1} be given by

f (x) =
{
1
∑

i xi ≥ n − k

0 otherwise
, and g(x) =

{
1
∑

i xi > k

0 otherwise

7 A function f : Rn → R is quasiconcave if for all λ ∈ [0, 1] we have f (λx + (1 − λ)y) ≥
min { f (x), f (y)}.

123



666 A. De et al.

where k ≤ n/2. Writing ε to denote E[ f ], we have ε2 = ε − ε(1 − ε) =
E[ f g] −E[ f ]E[g], and it can be shown that � (∑n

i=1 f̂ (i)ĝ(i)
) = �(ε2), so Eq. (1)

is tight up to constant factors. We note that in this example f and g are the indicator
functions of Hamming balls, and that f ⊆ g (i.e. f (x) = 1 implies that g(x) = 1).
Motivated by this example, we consider an analogous pair of functions in the setting of
centrally symmetric, convex sets over Gaussian space, where we use origin-centered
balls of different radii in place of Hamming balls. The main result of this subsection
is that such an example witnesses that Theorem 18 can be tight up to a logarithmic
factor (corresponding to the log factor difference between � and �). In what follows,
all expectations and probabilities are with respect to the n-dimensional Gaussian mea-
sure. As before, we will identify centrally symmetric, convex sets with their indicator
functions.

Let K , L ∈ Fcsc be n-dimensional origin-centered balls of radii r1 and r2
respectively such that r1 < r2, E[K ] = ε, and E[L] = 1 − ε. As K ⊆ L ,
we have E[K L] − E[K ]E[L] = ε − ε(1 − ε) = ε2. Since K (x1, . . . , xn) =
K (x1, . . . , xi−1,−xi , xi+1, . . . , xn) for all x ∈ Rn and all i ∈ [n], it easily fol-
lows that K̃ (ei + e j ) = E[K (x)xi x j ] = 0 for all i �= j , and the same is true for L .
It follows that

∑

|α|=2

K̃ (α) =
n∑

i=1

K̃ (2ei )

and similarly for L . Furthermore, as K , L are rotationally invariant, we have K̃ (2ei ) =
K̃ (2e j ) and L̃(2ei ) = L̃(2e j ) for all 1 ≤ i, j ≤ n. By definition, we have

−K̃ (2ei ) = 〈K ,−h2(xi )〉 = E x∼N (0,1)n

[
K (x)

(
1 − x2i

)
√
2

]

as h2(x) = x2−1√
2
. Now, note that

−
n∑

i=1

K̃ (2ei ) = 1√
2

n∑

i=1

E x∼N (0,1)n

[
K (x)

(
1 − x2i

)]

= 1√
2
E x∼N (0,1)n

[
K (x)

(
n∑

i=1

1 − x2i

)]

= 1√
2
E x∼N (0,1)n

[
K (x)

(
n − ‖x‖2

)]
.

In order to obtain a lower bound on the above quantity, wewill show that (n−‖x‖2)
is “large” with non-trivial probability for x ∈ K ; we will do so by approximating
(n−‖x‖2) by a Gaussian distribution, and then appealing to the Berry-Esseen Central
Limit Theorem (see [4, 10] or, for example, Sect. 11.5 of [28]). By the Berry-Esseen
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theorem, we have that for t ∈ R,

∣∣∣∣ Pr
x∼N (0,1)n

[‖x‖2 − n√
n

≤ t

]
− Pr

y∼N (0,1)

[
y ≤ t

]∣∣∣∣ ≤
c1√
n

(13)

for some absolute constant c1. We assume that ε � c1/
√
n. By standard

anti-concentration of the lower tail of the Gaussian distribution, we have that

Pr y∼N (0,1)
[
y ≤ t

] ≥ ε
2 for t = −c2

√
ln
( 2

ε

)
where c2 is an absolute constant. Then

it follows from Eq. (13) that

Pr
x∼N (0,1)n

[
‖x‖2 − n√

n
≤ −c2

√

ln

(
2

ε

)]
≥ ε

2
± c1√

n
� ε

2

which can be rewritten as

Pr
x∼N (0,1)n

[
‖x‖2 ≤ n − c2

√

n ln

(
2

ε

)]
� ε

2
.

As E[K ] = ε, it follows that

E x∼N (0,1)n

[
K (x)

(
n − ‖x‖2

)]
= �

(
ε

√

n ln

(
2

ε

))

from which we have −K̃ (2ei ) ≥ �

(
ε

√
1
n ln

( 2
ε

))
for all i ∈ [n]. A similar cal-

culation for L gives that −L̃(2ei ) ≥ �

(
ε

√
1
n ln

( 2
ε

))
, from which it follows that

∑n
i=1 K̃ (2ei )L̃(2ei ) = �

(
ε2 ln

( 2
ε

))
. Recalling Eq. (3), we get that for small enough

ε, the quantity

�

⎛

⎝
∑

|α|=2

K̃ (α)L̃(α)

⎞

⎠ = �

(
ε2

log(2/ε)

)
,

which lets us conclude that Theorem 18 is tight to within a logarithmic factor.

5.4 A quantitative extension of Hu’s inequality for convex functions

In this section, we consider the following special case of Hu’s inequality [16]:

Theorem 21 (Hu’s inequality). Let f , g : Rn → R be centrally symmetric, convex
functions. Then

E x∼N (0,1)n [ f (x)g(x)] − E x∼N (0,1)n [ f (x)]E y∼N (0,1)n
[
g( y)

] ≥ 0.
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As in Sect. 5.2, we will obtain a quantitative extension of Theorem 21 by appeal-
ing to Theorem 13. The Markov semigroup we will use here will once again be the
Ornstein–Uhlenbeck semigroup (Uρ)ρ∈[0,1]—monotone compatibility of this semi-
group with the family of centrally symmetric, convex functions (which we will denote
Fcvx) was proved by Hargé [15].

Fact 22 (Proof of Theorem 2.1, [15]). Let Fcvx denote the family of centrally sym-
metric, convex functions with ‖ f ‖ ≤ 1 for all f ∈ Fcvx. Then Fcvx is monotone
compatible with (Uρ)ρ∈[0,1].

The proof of the following result is identical to that of Theorem 18 and is therefore
omitted.

Theorem 23 (Quantitative Hu’s inequality). Let Fcvx ⊆ L2 (Rn, γ ) be the family of
centrally symmetric, convex functions. Then for f , g ∈ Fcvx, we have

E[ f g] − E[ f ]E[g] ≥ 1

C
· �

⎛

⎝
∑

|α|=2

f̃ (α)g̃(α)

⎞

⎠

where recall from Eq. (3) that � : [0, 1] → [0, 1] is �(x) = min
{
x, x

log2(1/x)

}
and

C > 0 is a universal constant.

6 A quantitative correlation inequality for arbitrary finite product
domains

The main result of this section, Theorem 28, is an extension of Talagrand’s correlation
inequality [31] to real-valued functions on general, finite, product spaces. (Recall that
Talagrand’s inequality applies only to Boolean-valued functions on the domain {0, 1}n
under the uniform distribution.)

6.1 Harmonic analysis over finite product spaces

Our notation and terminology presented in this subsection follows Chapter 8 of [28].
We use multi-index notation for α ∈ Nn as defined in Eq. (11).

Let (�, π) be a finite probability spacewith |�| = m ≥ 2,wherewe always assume
that the distribution π over � has full support (i.e. π(ω) > 0 for every ω ∈ �). We
write L2(�n, π⊗n) for the real inner product space of functions f : �n → R, with
inner product 〈 f , g〉 := E x∼π⊗n [ f (x)g(x)].

It is easy to see that there exists an orthonormal basis for the inner product space
L2(�, π), i.e. a set of functions φ0, . . . , φm−1 : � → R, with φ0 = 1, that are
orthonormal with respect to π . Moreover, such a basis extends to an orthonormal basis
for L2(�n, π⊗n) by a straightforward n-fold product construction: given amulti-index
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α ∈ Nn
<m , if we define φα ∈ L2(�n, π⊗n) as

φα(x) :=
n∏

i=1

φαi (xi ),

then the collection (φα)α∈Nn
<m

is an orthonormal basis for L2(�n, π⊗n) (see Propo-
sition 8.13 of [28]). So every function f : �n → R has a decomposition

f =
∑

α∈Nn
<m

f̂ (α)φα. (14)

This can be thought of as a “Fourier decomposition” for f , in that it satisfies both
Parseval’s and Plancharel’s identities (see Proposition 8.16 of [28]). We now proceed
to define a noise operator for finite product spaces.

Definition 24 (Noise operator for finite product spaces). Fix a finite product probabil-
ity space L2(�n, π⊗n). For ρ ∈ [0, 1] we define the noise operator for L2(�n, π⊗n)

as the linear operator

Tρ f (x) := E y∼Nρ(x)[ f ( y)],

where “ y ∼ Nρ(x)” means that y ∈ �n is randomly chosen as follows: for each
i ∈ [n], with probability ρ set yi to be xi and with the remaining 1−ρ probability set
yi by independently making a draw from π .

It is easy to check that Tρ f =∑α ρ#α f̂ (α)φα (Proposition 8.28 of [28]).

6.2 A quantitative correlation inequality for finite product domains

Throughout this subsection, let� = {0, 1, . . . ,m−1} endowedwith the natural order-
ing (though any m-element totally ordered set would do). We will consider monotone
functions on (�n, π⊗); while our results hold in the more general setting of functions
on (�n,⊗n

i=1πi ), we stick to the setting of L2(�n, π⊗n) for ease of exposition.
In order to appeal to Theorem 13, we must first show that the family of monotone

(nondecreasing) functions on �n is monotone compatible with the Bonami–Beckner
noise operator (see Definition 24). To this end, we define noise operators that act on
each coordinate of the input:

Definition 25 (coordinate-wise noise operators). Let Ti
ρ be the operator on functions

f : �n → R defined by

Ti
ρ f (x) = E y∼Nρ(xi )

[
f (x1, . . . , y, . . . , xn)

]
,

and define Tρ1,...,ρn f := T1
ρ1

◦ T2
ρ2

◦ . . . ◦ Tn
ρn

f .

This is well-defined as the operators Ti
ρi
and T j

ρ j commute.
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Lemma 26 Let � = {0, 1, . . . ,m − 1} and let f : �n → R be a monotone function.
Then Ti

ρ f : �n → R is a monotone function.

Proof Suppose x, y ∈ �n are such that xi ≤ yi for all i ∈ [n]. We wish to show that
Ti

ρ f (x) ≤ Ti
ρ f (y), which is equivalent to showing

E z∼Nρ(xi )

[
f
(
xi �→z

)]
≤ E z∼Nρ(yi )

[
f
(
yi �→z

)]
.

Indeed, because of the monotonicity of f , via the natural coupling we have

E z∼Nρ(xi )

[
f
(
xi �→z

)]
= δ f (x) + (1 − δ)E z∼�n

[
f
(
xi �→z

)]

≤ δ f (y) + (1 − δ)E z∼�n

[
f
(
yi �→z

)]

= E z∼Nρ(yi )

[
f
(
yi �→z

)]
.

��
Lemma 27 Let� = {0, 1, . . . ,m−1} and let f , g : �n → R be monotone functions.
Then 〈Tρ f , g〉 is nondecreasing in ρ ∈ [0, 1].
Proof We have

〈
Tρ1,...,ρn f , g

〉 = 〈Tρ,1,...,1 f , T1,ρ2,...,ρn g
〉 =
〈
T1

ρ1
f , h
〉

where h := T1,ρ2,...,ρn g. It follows from a repeated application of Lemma 26 that h is
monotone. Now, note that

〈
T1

ρ1
f , h
〉
= f̂

(
0̄
) · ĥ(0̄)+

∑

α1>0

ρ1 f̂ (α)̂h(α) +
∑

0̄ �=α
α1=0

f̂ (α)̂h(α)

where 0̄ = (0, . . . , 0). By Cheybshev’s order inequality, we know that
〈
T1
1 f , h

〉 ≥〈
T1
0 f , h

〉 = f̂
(
0̄
) · ĥ(0̄) + ∑

0̄ �=α,α1=0 f̂ (α)̂h(α). From the above expression, we
have:

∂

∂ρ1

〈
T1

ρ1
f , h
〉
=
∑

α1>0

f̂ (α)̂h(α)

which must be nonnegative since
〈
T1
1 f , h

〉 ≥ 〈
T1
0 f , h

〉
, and so we can conclude that〈

T1
ρ1

f , h
〉
is nondecreasing in ρ1. The result then follows by repeating this for each

coordinate. ��
LetFmon ⊆ L2(�n, π⊗n) be the family of monotone functions f : �n → R. Then

Lemma 27 shows that Fmon is monotone compatible with the Bonami–Beckner noise
operator. We can now prove our Talagrand-analogue for monotone functions over �n :
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Theorem 28 Let � = {0, 1, . . . ,m − 1}n and let Fmon ⊆ L2(�n, π⊗n) denote the
family of monotone functions on �n such that ‖ f ‖ ≤ 1 for all f ∈ Fmon. Then for
f , g ∈ Fmon, we have

E[ f g] − E[ f ]E[g] ≥ 1

C
· �

(
∑

#α=1

f̂ (α)ĝ(α)

)

where recall from Eq. (3) that � : [0, 1] → [0, 1] is �(x) = min
{
x, x

log2(1/x)

}
and

C > 0 is a universal constant.

Proof Consider the orthogonal decomposition

L2(�n, π⊗n) =
n⊕

i=0

Wi

where Wi = span {φα : #α = i}; the orthogonality of this decomposition follows
from the orthonormality of (φα)α∈Nn

<m
. Furthermore, this decomposition is a chaos

decomposition with respect to the Bonami–Beckner operator (Tρ)ρ∈[0,1]). It follows
that the hypotheses of Theorem 13 hold for Fmon with j∗ = 1, from which the result
follows. ��

6.3 Comparison with Keller’s quantitative correlation inequality for the p-biased
hypercube

In this subsection we restrict our attention to the p-biased hypercube {−1, 1}np =
({−1, 1}n, π⊗n

p ) where πp(−1) = p and πp(+1) = 1 − p. In this setting our
Theorem 28 generalizes Talagrand’s inequality in two ways: it holds for real-valued
monotone functions on {−1, 1}n that have 2-norm at most 1 (rather than just monotone
Boolean functions), and it holds for any p (as opposed to just p = 1/2). Keller [17,
18] has earlier given a generalization of Talagrand’s inequality that holds for general
p and for real-valued monotone functions with ∞-norm at most 1:

Theorem 29 (Theorem 7 of [17]; see also [19] for a slightly weaker version). Let
f , g ∈ L2({0, 1}n, π⊗n

p ) be monotone functions such that for all x ∈ {−1, 1}n, we
have | f (x)|, |g(x)| ≤ 1. Then

E[ f g] − E[ f ]E[g] ≥ 1

C
· H(p) · �

(
n∑

i=1

f̂ p(i)ĝp(i)

)

where f̂ p(i) is the p-biased degree-1 Fourier coefficient on coordinate i ,� : [0, 1] →
[0, 1] is given by�(x) = x

log(e/x) as in Sect.1.1, C > 0 is a universal constant, and H :
[0, 1] → [0, 1] is the binary entropy function H(x) = −x log x − (1− x) log(1− x).
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Comparing Theorem 28 to Theorem 29, we see that the latter has an extra factor
of H(p), whereas the former shows that in fact no dependence on p is necessary (but
the former has an extra factor of 1

log(1/
∑

i f̂ p(i)ĝp(i))
). Theorem 28 can be significantly

stronger than Theorem 29 in a range of natural settings because of these differences.
In Appendix B we show that for every ω(1)/n ≤ p ≤ 1/2, there is a pair of {−1, 1}-
valued functions f , g (depending on p) such that under the p-biased distribution (i)
the quantity E[ f g] − E[ f ]E[g] is at least an absolute constant independent of n and
p; (ii) the RHS of Theorem 28 is at least an absolute constant independent of n and
p; but (iii) the RHS of Theorem 29 is �(p log(1/p)).
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A Proof of Claim 12

For c ∈ N, let Tc(x) denote the degree-c Chebyshev polynomial of the first kind.
Define the univariate polynomial:

ad(t) := T√
d

(
t
(
1 + 3

d

))

T√
d

(
1 + 3

d

)

where d is a parameter (a perfect square) that we will set later. We make the following
simple observations:

• |ad(t)| ≤ 1 for all t ∈ [0, 1], and a(1) = 1.
• Let d ≥ 4. For t ∈ [0, 1 − 3

d

]
, we have ad(t) ∈ [− 1

4 ,
1
4

]
. This follows from the

fact that
(
1 − 3

d

) (
1 + 3

d

)
< 1, that |T√

d(t)| ≤ 1 for |t | ≤ 1, and that the derivative
T ′√

d
(t) is at least d for all t ≥ 1.

• The sum of the absolute values of the coefficients of ad(t) is at most 2
O
(√

d
)

. This
is an easy consequence of standard coefficient bounds for Chebyshev polynomials
(see e.g. Sect. 2.3.2 of [26]).

For simplicity, assume log2 M = 4k for some k ∈ N. We define b(t) as

b(t) := a1(1 − t) · a4(1 − t) · a16(1 − t) · · · alog2 M (1 − t).

Note that b(t) is a polynomial of degree
√
1+√

4+√
16+. . .+

√
log2 M = �(logM),

and that |b(t)| ≤ 1 for all t ∈ [0, 1]. It follows from the third item above that the sum
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of the absolute values of the coefficients of b(t) is at most

2
O
(√

1
)
+O

(√
4
)
+...+O

(√
log2 M

)

= 2O(logM).

Finally, we define

p(t) := t · b(t).
In order to upper bound |p(t)| for t ∈ [0, 1], we first observe that if t ≤ 1

4k
then

we have |p(t)| ≤ 1
4k

|b(t)| ≤ 1
4k

≤ 1
log2 M

as desired. Thus we may suppose that

t ∈
[
1
4i

, 1
4i−1

]
for some i ∈ {1, . . . , k}; in particular, let t = 1

4i
+ δ for δ ∈

[
0, 3

4i

]
.

Now, for each j ≥ i + 1, we have

|a4 j (1 − t)| ≤ 1

4
which implies that |a4(i+1) (t)| ·

|a4(i+2) (t)| · · · |a4k (t)| ≤ 1

4k−i
.

As t ≤ 1
4i−1 , it follows that

|p(t)| = |t · b(t)| ≤ 1

4i−1 · 1

4k−i
= 1

4k−1 = �

(
1

log2 M

)
,

and Claim 12 is proved. It follows that Lemma 11 is tight up to constant factors.

B Comparison of Theorem 28 and Theorem 29

Let ω(1)/n ≤ p ≤ 1/2. Observe that under {−1, 1}np we have E[x1 + · · · + xn] =
n(1 − 2p). We define f : {−1, 1}n → {−1, 1} to be the “p-biased analogue of the
majority function,” i.e.

f (x) := sign(x1 + · · · + xn − n(1 − 2p)),

and we take g = f .
Since (as is well known) the median of the Binomial distribution Bin(n, p) differs

from the mean by at most 1, it follows (using the Littlewood-Offord anticoncen-
tration inequality described below) that E[ f ] = o(1), and hence we have (i):
E[ f g] − E[ f ]E[g] ≥ 1 − o(1). To establish (ii) and (iii) it remains only to show
that for any fixed i ∈ [n] we have that the p-biased degree-1 Fourier coefficient f̂ p(i)
is at least �(1/

√
n), or equivalently, that f̂ p(1) + · · · + f̂ p(n) = �(

√
n). To see this,

we observe that this sum of degree-1 Fourier coefficients is

n∑

i=1

f̂ p(i) = E

[
f (x) ·

n∑

i=1

xi − (1 − 2p)

2
√
p(1 − p)

]
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= 1

2
√
p(1 − p)

E

[∣∣∣∣∣

(
n∑

i=1

xi

)
− n(1 − 2p)

∣∣∣∣∣

]
. (15)

We now recall the Littlewood-Offord anticoncentration inequality for the p-biased
Boolean hypercube (see e.g. Theorem 5 of [7] or [1]). Specialized to our context, this
says that for any real interval I of length at least 1, it holds that Pr

[∑n
i=1 xi ∈ I

] ≤
O(|I |)/√np(1 − p). Taking I to be the interval of length c

√
np(1 − p) centered at

n(1 − 2p) for a suitably small positive constant c, it holds that

Pr

[∣∣∣∣∣

(
n∑

i=1

xi

)
− n(1 − 2p)

∣∣∣∣∣ ≥ c
√
np(1 − p)

]
≥ 1

2
.

Consequently

E

[∣∣∣∣∣

(
n∑

i=1

xi

)
− n(1 − 2p)

∣∣∣∣∣

]
≥ c

√
np(1 − p)

2
,

which together with Eq. (15) gives that
∑n

i=1 f̂ p(i) ≥ c
√
n/4 as desired.

References

1. Aizenman, M., Germinet, F., Klein, A., Warzel, S.: On Bernoulli decompositions for random vari-
ables, concentration bounds, and spectral localization. Probab. Theory Relat. Fields 143(1–2), 219–238
(2009)

2. Borwein, P., Erdélyi, T.: Littlewood-type polynomials on subarcs of the unit circle. Indiana Univ.Math.
J. 46(4), 1323–1346 (1997)

3. Borwein, P., Erdélyi, T., Kós, G.: Littlewood-type problems on [0, 1]. In: Proceedings of the London
Mathematical Society, vol. 3, no. 79, pp. 22–46 (1999)

4. Berry, A.C.: The accuracy of the Gaussian approximation to the sum of independent variates. Trans.
Am. Math. Soc. 49(1), 122–136 (1941)

5. Bakry, D., Gentil, I., LeDoux, M.: Analysis and Geometry of Markov Diffusion Operators. Springer,
New York (2013)

6. Cordero-Erausquin, D., Ledoux, M.: Hypercontractive measures, Talagrand’s inequality, and influ-
ences. In: Klartag, B., Mendelson, S., Milman, V. (Eds.) Geometric Aspects of Functional Analysis.
Lecture Notes in Mathematics, vol 2050. Springer, Berlin, Heidelberg, pp. 169–189 (2012)

7. De, A., Diakonikolas, I., Servedio, R.A.: The inverse Shapley value problem. Games Econ. Behav.
105, 122–147 (2017)

8. De, A., Nadimpalli, S., Servedio, R.A.: Convex influences. In preparation. (2021)
9. Eldan, R.: Second-order bounds on correlations between increasing families. arXiv:1912.11641 (2019)

10. Esseen, C.-G.: On the Liapunoff limit of error in the theory of probability. Ark. Mat. Astron. Fys. A,
1–19 (1942)

11. Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation inequalities on some partially ordered sets.
Commun. Math. Phys. 22(2), 89–103 (1971)

12. Gallavotti, G.: A proof of the Griffiths inequalities for the XY model. Stud. Appl. Math 50(1), 89–92
(1971)

13. Griffiths, R.: Correlations in Ising ferromagnets. I. J. Math. Phys. 8(3), 478–483 (1967)
14. Harris, T.E.: A lower bound for the critical probability in a certain percolation process. In: Proceedings

of the Cambridge Philosophical Society, vol. 56, pp. 13–20 (1960)

123

http://arxiv.org/abs/1912.11641


Quantitative correlation inequalities via extremal power… 675

15. Hargé, G.: Characterization of equality in the correlation inequality for convex functions, the U-
conjecture. Ann. Inst. Henri Poincaré Probabilités et Stat. 41(4), 753–765 (2005)

16. Hu, Y.: Itô-Wiener chaos expansion with exact residual and correlation, variance inequalities. J. Theor.
Probab. 10(4), 835–848 (1997)

17. Keller, N.: Improved FKG inequality for product measures on the discrete cube. (2008)
18. Keller, N.: Influences of variables on Boolean functions. PhD thesis, Hebrew University of Jerusalem,

(2009)
19. Keller, N.: A simple reduction from a biased measure on the discrete cube to the uniform measure.

Eur. J. Comb. 33, 1943–1957 (2012)
20. Kalai, G., Keller, N., Mossel, E.: On the correlation of increasing families. J. Comb. Theory Ser. A

144, 11 (2015)
21. Kleitman, D.J.: Families of non-disjoint subsets. J. Comb. Theory 1(1), 153–155 (1966)
22. Keller, N., Mossel, E., Sen, A.: Geometric influences. Ann. Probab. 40(3), 1135–1166 (2012)
23. Keller, N., Mossel, E., Sen, A.: Geometric influences II: correlation inequalities and noise sensitivity.

Ann. Inst. l’IHP Poincaré Probab. Stat. 50(4), 1121–1139 (2014)
24. Kelly, D., Sherman, S.: General Griffiths’ inequalities on correlations in Ising ferromagnets. J. Math.

Phys. 9(3), 466–484 (1968)
25. Latała, R., Matlak D.: Royen’s Proof of the Gaussian Correlation Inequality. In: Klartag B., Milman E.

(Eds.) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2169. Springer,
Cham, pp. 265–275(2017)

26. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. CRC Press, Boca Raton (2002)
27. Mossel, E.: Probabilistic aspects of voting, intransitivity and manipulation. (2020)
28. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, Cambridge (2014)
29. Royen, T.: A simple proof of the Gaussian correlation conjecture extended to multivariate gamma

distributions. arXiv preprint arXiv:1408.1028, (2014)
30. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Inc., New York (1987)
31. Talagrand, M.: How much are increasing sets positively correlated? Combinatorica 16(2), 243–258

(1996)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1408.1028

	Quantitative correlation inequalities via extremal power series
	Abstract
	1 Introduction
	1.1 Quantitative correlation inequalities
	1.2 Our contributions
	1.3 The approach
	1.3.1 Our general framework

	1.4 Organization

	2 Preliminaries
	2.1 Noise operators and orthogonal decompositions
	2.2 Complex analysis

	3 A new extremal bound for power series with bounded length
	4 A general approach to quantitative correlation inequalities
	5 Robust correlation inequalities over Gaussian space
	5.1 Harmonic (Hermite) analysis over Gaussian space
	5.2 A robust extension of the Gaussian correlation inequality
	5.3 On the tightness of theorem 18
	5.4 A quantitative extension of Hu's inequality for convex functions

	6 A quantitative correlation inequality for arbitrary finite product domains
	6.1 Harmonic analysis over finite product spaces
	6.2 A quantitative correlation inequality for finite product domains
	6.3 Comparison with Keller's quantitative correlation inequality for the p-biased hypercube

	Acknowledgements
	A Proof of Claim 12
	B Comparison of Theorem 28 and Theorem 29
	References






