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Abstract

We study the enumeration of closed walks of given length and algebraic area
on the honeycomb lattice. Using an irreducible operator realization of honeycomb
lattice moves, we map the problem to a Hofstadter-like Hamiltonian and show that
the generating function of closed walks maps to the grand partition function of a
system of particles with exclusion statistics of order g = 2 and an appropriate spec-
trum, along the lines of a connection previously established by two of the authors.
Reinterpreting the results in terms of the standard Hofstadter spectrum calls for a
mixture of g = 1 (fermion) and g = 2 exclusion whose physical meaning and prop-
erties require further elucidation. In this context we also obtain some unexpected
Fibonacci sequences within the weights of the combinatorial factors appearing in
the counting of walks.
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1 Introduction

The algebraic area enumeration of closed random walks on two-dimensional lattices is a
topic with rich mathematical and physical implications since it has an intimate connec-
tion to discrete quantum models. The algebraic area is defined as the total oriented area
spanned by the walk as it traces the lattice. A unit lattice cell enclosed in a counter-
clockwise (positive) direction has an area +1, whereas when enclosed in a clockwise (neg-
ative) direction it has an area —1. The total algebraic area is the area enclosed by the
walk weighted by its winding number: if the walk winds around more than once, the area
is counted with multiplicity. Figure 1 represents examples of closed random walks on the
square, triangular and honeycomb lattices.
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Figure 1: Closed random walks of length n = 20 on the square, triangular and honeycomb
lattice with algebraic area —2, —12 and 6, respectively.

In the case of the square lattice, the algebraic area enumeration is known to be em-
bedded in the dynamics of the Hofstadter model [1] which describes the motion of an
electron hopping on a square lattice in a uniform perpendicular magnetic field. The gen-
erating function for the number Cy,(A) of closed walks of length n = 2n (necessarily even)
enclosing an algebraic area A is given in terms of the trace of the Hofstadter Hamiltonian
f,

3 Ca(A)Q = TeH, (1)
A

where v = 27¢/ ¢, stands for the flux per plaquette in units of the flux quantum, Q = e,
and H, is the Hofstadter Hamiltonian

Hy=u+u'+v+v"

The unitary operators u and v are unit magnetic translations (hopping operators) in the
x and y directions of the square lattice and satisfy the “quantum torus” algebra

vu=Quwv (2)

due to the perpendicular magnetic field piercing the lattice. Terms contributing to the
trace in (1) must involve an equal number of u and u™', and of v and v™'. Such terms
represent closed paths, each power of H., representing one step. Because of the non
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commuting u and v in (2) the total factor of Q for such paths can be seen to correspond
to the algebraic area A of the path, v"'u'vu = Q corresponding to a path around an
elementary plaquette. In quantum mechanics the trace becomes a sum of the expectation
value of H, over all quantum states, with an appropriate normalization.

In [2] an explicit algebraic area enumeration was obtained in terms of a sum over
compositions of the integer n. In [3] and [4], an interpretation of this enumeration was
given in terms of the statistical mechanics of particles obeying quantum exclusion statistics
with exclusion parameter g (¢ = 0 for bosons, g = 1 for fermions, and higher g means
a stronger exclusion beyond Fermi). The square lattice enumeration was found to be
governed by g = 2 exclusion together with a Hofstadter-induced spectral function sy
accounting for the 1-body quantum spectrum, whereas different types of lattice walks
were governed by higher values of g and, in general, other types of spectral functions.
Explicit examples of such enumerations were given, in particular for Kreweras-like chiral
walks on a triangular lattice [3], corresponding to yet another quantum Hofstadter-like
model (chiral and non Hermitian, though) and g = 3 exclusion. This particular chiral
model is to be distinguished from the triangular lattice Hofstadter-like model originally
proposed in [5]. Its butterfly structure — among other Hosftadter-like models — has been
studied in [6].

An interesting case is the honeycomb lattice. It arises naturally in the form of
graphene and carbon nanotubes, and many of its quantum properties have been ex-
tensively studied (see, for example, [7, 8, 9]). The honeycomb lattice is also relevant in
graph theory [10] and various physical models [11, 12, 13]. The quantum model for a
particle hopping on the honeycomb lattice pierced by a perpendicular magnetic field was
introduced in [14, 15]. The effect of lattice defects on its spectrum was investigated in
[16] and its butterfly-like spectrum was obtained in [17].

In this work we address the question of the algebraic area enumeration of closed
random walks on the honeycomb lattice: can this enumeration be explicitly obtained,
and does it fall in the category described in [3] and [4], i.e., does it correspond to a
particular exclusion statistics? We will show that, indeed, the honeycomb enumeration
can be interpreted in terms of ¢ = 2 exclusion provided that the Hofstadter spectral
function s, is “diluted” to a spectrum of alternating 1 and s;. On the other hand, if
we insist on using an undiluted s, then g = 2 exclusion has to be traded for a mixture
of g = 1 and g = 2 exclusion whose physical meaning needs further clarification. In
this process we will obtain some unexpected Fibonacci sequences, either for the number
of compositions entering the enumeration or for the sum of the coefficients weighting
particular compositions, the occurrence of which remains to be better understood.

The paper is structured as follows: In Section 2 we review the Hofstadter model on
the square lattice, where the coefficients of the secular determinant of the Hofstadter
Hamiltonian [18] are reinterpreted in terms of g = 2 exclusion partition functions. The
algebraic area enumeration is then obtained in terms of the associated cluster coefficients.
In Section 3 we study the honeycomb lattice and calculate the relevant partition functions



and cluster coefficients, arriving at an explicit algebraic area enumeration expression.
Some open questions are exposed in the Conclusions.

2 Square lattice walks algebraic area enumeration

From now on we consider the flux v per lattice cell to be rational, i.e., ¢/py = p/q with
p and ¢ co-prime, so Q = exp(2imp/q).

2.1 Hofstadter Hamiltonian

When the magnetic flux is rational the quantum torus algebra has a finite-dimensional
irreducible representation in which u and v are represented by the g x g “clock” and “shift”
matrices [19]

Q02 0 00 001 0---00

0Q 0 -~ 0 O
3 0001---00
ik, 00Q--- 0 0 ik . .

u=ew. - : .| v=er : ' (3)

00 0 - Q! 0 00 0 0 10
000 0 Qf 0O 0 0 0 - 01
1 00 0 - 0 0

k., € [0,27] and k, € [0, 27| are the quasimomenta in the = and y lattice directions and
are related to the Casimirs of the u, v algebra

ky

ul = ekt = gldke,

The Hofstadter Hamiltonian becomes the ¢ X ¢ matrix

Qeiky + Q—le—iky eikz 0 . 0 e—ikz
e—ikgc Q2eiky 4 Q—2e—iky eikz L 0 0
0 e the O - 0 0
Hq = . . . . . . 3
0 0 0 - 0 eiks
eikgc 0 0 . e—ikz Qqeiky + Q—qe—iky

whose spectrum follows from the zeros of the secular determinant det(1 — zH,), where z
denotes the inverse energy.

This secular determinant has been shown [18] to rewrite as

la/2]
det(1 — zH,) = Y _(=1)"Z(n)2"" — 2(cos(qk,) + cos(qk,)) 2", (4)

n=0



where the Z(n)’s are given by the nested trigonometric sums

"ikz ’“"214 ( w(ky +2n — Dp )4sm (W(k2+2n—3)p)‘”

k1=0 ko= kn=0 q q

A sin? (ﬁ(l{;n_;Jr S)p) A sin? (w(kn; 1)p) (5)

As we shall see, Z(n) in (5) is at the core of the lattice walks algebraic area enu-
meration. To recover (5) let us use an alternative form of the Hofstadter Hamiltonian
involving a different but equivalent representation of the operators v and v, namely —uw
and v. They still satisfy the same quantum torus algebra

v (—uv) = Q (—uv) v,

albeit with a different Casimir (—uv)? = —el?*s+ks) " and lead to the new Hamiltonian

with Z(0) = 1.

_ —1 —1
H) = —uv — (uwv)" +v+v,

le.,

0 (1 - Qe't)ette 0 S 0 (1 — Q e ihy)eiks

(1 _ Q 1 —1k ) —iky 0 (1 _ Q2eiky)eikm . 0 0

, 0 (1 — Q2e ikv)e~iks 0 . 0 0

H =

q : : : : :
0 0 0 o 0 (1- Q(q—l)eiky)eikx

(1- Qqeiky)eikz 0 0 e (1= Q*(qfl)efiky)efikz 0

or, denoting w(k) = (1 — QFelkv)elk

0 w1 0 --- 0 w(q)
5(1) 0 w®2) - 0 0
0 @(2) 0 0 0
H, = : : . : :
b o 0 -- 0 w(@g-1)

w(@ 0 0 ---w(@-1) 0

Its secular determinant is the same as that of H, given in (4) but for the new Casimirs,
that is,

la/2] q q
det(1 — zH]) = > (=1)"Z(n)z*" — (Hw(j) + Hw(j)) 2

n=0 7j=1 j=1
lq/2]

— Z (=1)"Z(n)z"" — 2(cos(gk,) — cos(qk, + qk,))z". (6)
n=0



Let us set w(q) = 0, which makes the cosine term in (6) vanish and the matrix H;
tridiagonal

0 (1—Ql9)cihe 0 S 0 0

(1-Qi1)e ke 0 (1-Q¥ 9= ... 0 0

0 (1—Qi~2)e ks 0 S 0 0

H¢/1|w(f1)=0 - : : : . : :
0 0 0 0 (1-Qe

0 0 0 L (1=Q)ehe 0

This form provides an iterative procedure for calculating the Z(n)’s. Putting aside for
a moment that Q = exp(2imp/q) and leaving it as a free parameter, we introduce the
spectral function
se=(1-QN(1-Q™). (7)

Denoting the secular determinant det(1 — zH; |.(g)=0) = d, its expansion in terms of the
first row yields

dy=d, 1 — 2*sq1dy 9, q>2, (8)
where, by convention, dy = d; = 1. Expanding d, as a polynomial in z and solving the
corresponding recursion relation for its coefficients, we obtain (see Appendix A)

q—2n+1 ki

knfl
Z(n) = Z Z Z Sk1+2n—25ka+2n—4 """ Sky_14+25kn (9)

k1=1 ko=1 kn=1

which, upon restoring Q to its actual value exp(2imp/q), i.e., the spectral function s to
its actual form s = 4sin®*(7kp/q), gives (5).

The recursion (8) is at the root of the connection between square lattice walks and
g = 2 exclusion statistics. Interpreting the spectral function s, as the Boltzmann factor
for a 1-body level e #% and —z? as the fugacity 2/, (8) can be interpreted as an expansion
of a grand partition function Z,_; — here identified with d, — of noninteracting particles
in ¢ — 1 quantum levels €, ..., €,_1, obeying the exclusion principle that no two particles
can occupy adjacent levels, namely

Zq—l = Zq—2 + Z,Sq—l Zq—3

in terms of the last level €,_; being empty (first term) or occupied (second term). Then
(6) identifies Z(n) as the n-body partition function for particles occupying these ¢ — 1
quantum states, with gaps of 2 between successive terms reproducing g = 2 exclusion.

2.2 Algebraic area enumeration on the square lattice

As already stressed, when Q = exp(2imp/q) the algebraic area counting (1)

D Cu(A)Q* = éTrH; (10)
A
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involves a trace over a finite number ¢ of quantum states. To normalize the contribution of
each path to Q* and reproduce the left-hand side of (10), a factor of 1/q must be included
in the normalization. Also, when n > ¢ the trace involves extra terms arising from the
Casimirs k,, k,, similar to the cosine terms in (4), corresponding to open paths that close
only up to periods (g, q) on the lattice (“umklapp” terms on the quantum torus). These
spurious contributions can be eliminated by integrating the Casimirs k, and &, over [0, 27]
which makes all factors of e'%%= and e!?%v vanish. So the definition of the trace in (10) is

n 1 o n
TI'Hq = W/O / dl{? tI'H

which corresponds to summing over the ¢ bands of the spectrum and over the scattering
states labeled by k,, k,, in a continuum normalization.
To relate this trace to the Z(n)’s in (5) or, equivalently, in (9), one has to use

[e.e]

log det(1 — 2H,) = trlog(1 — zH,) = — Y —— trH",
n
n=1

and the fact that, in statistical mechanics, the Z(n) are viewed as n-body partition func-
tions with cluster coefficients b(n) defined via the grand partition function >~ Z(n)z"

log (Z Z(n)z”) = b(n)2" (11)

with z playing the role of the fugacity. Trading z for —2? in (11), keeping in mind that
trivially tr 2" = 0, and putting everything together we reach the conclusion [2, 3] that
the trace in (10) for n = 2n is nothing but the cluster coefficient b(n) up to a trivial factor

TrH? = 2n(—1)"""b(n). (12)
The cluster coefficients can in turn be directly read from the Z(n)’s in (9): one gets

b(n) = (=" > c(lih,. .l Zskﬂl s s (13)

117127"'71]
composition of n

where the c(l, s, ...,1;)’s are labeled by the compositions of the integer n with
I+ lo+ L1+,
c(ly,ly, ... 1) = z(ll+zz l l(gl+zi zj_l%. (14)
Further, the trigonometric sums % i ]152 I sﬁj +1s§€1 can also be computed [2, 4]
_Zsk-w L SE S = Jf cos <2/;7rp>
A=—o0
J .
ks;ls k4z_l4 z_: ; (ll +A+ ;:lfl (1 —2)k ) (12 s ;:ZQ (i — 1)ki> g (li izkz) 1)



Using (12), (13), (14) and (15) and keeping in mind that n = 2n, we deduce the desired
algebraic area counting

—J
ZC _—Tan—z > el L) Z L1t S
k:

li,l2,..005
composition of n

CalAd)=2n Y cllil,....15)

l1,l2,...,0l5
composition of n

f: i ﬁ: <11 +A+ 22:21:3(1 - 2)/%) <l2 - A- ;:l’ig(l - 1)/%) g (lz' %flk‘z)

k3=—l3 ka=—l4 kj=—1;
(16)

We also note that, since

. cabz%.”,@)::(iﬁ

l1,l2,...,l5
composition of n

and, when ¢ — oo |2, 3],

2L+l + ...+ 1)
_Zsk-i-jl 8k+12_><l1+l2+...+l; ) (17)

the overall closed square lattice walks counting

2l +la+ ...+ 1) on\ > n \’
2 I la, 7 = =
' h;l,c(l’ ) ”)< l1+l2+---+lj) <n) n/2

composition of n

is recovered as it should (see Appendix B for some enumeration examples).

3 Honeycomb lattice walks algebraic area enumera-
tion

We plan to follow the same route as above to obtain an explicit algebraic area enumeration
for closed walks on the honeycomb lattice.



3.1 Honeycomb Hamiltonian

o o e c
o e o e
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Figure 2: Hopping operators U, V, W on the honeycomb lattice with U? = V2 =W? =1
and (UVIV)? = Q.

Consider a particle hopping on a honeycomb lattice pierced by a constant magnetic field
(see Fig. 2). The lattice is bipartite with unitary operators U, V, W generating the hop-
pings in each direction and such that when the particle hops around a honeycomb cell it
picks up a phase Q due to the magnetic field. They satisfy the honeycomb algebra

U2:V2:W2:1, (UVW)2:Q. (18)
The Hofstadter-like Hamiltonian follows as
Hhoneycomb =aU + bV + CWv

with a,b,c € RT transition amplitudes. The physical Hilbert space consists of the ir-
reducible representations of the honeycomb algebra. As in the square lattice case, the
quasimomenta are encoded in the Casimirs of the algebra.

In the case of an isotropic lattice, a = b = ¢ = 1, and a rational flux, Q = exp(2imp/q)
with p and ¢ co-prime, the irreducible representation of U, V and W for generic quasi-
momenta (Casimirs) becomes 2¢-dimensional (see Appendix C)

(0w (0 v - 0 QY 2vu~t
U= (u—l 0) ) V= (,U—l O) ) W= (Q—l/Zu,U—l 0

with u, v given in (3), and the honeycomb Hamiltonian reduces to the 2¢ x 2¢ matrix

B 0 ut+v+QY2u"t (0 A
o = (u‘1+v_1+Q_1/2uv_1 0 —\4to /- (19)

Its square is block-diagonal
s  (AAT 0\ (H, 0
Hu=1\"0 ata) = o H,)’
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where H, = AAT and lflq = ATA have identical spectra equal to the square of the honey-
comb Hamiltonian spectrum. Denoting

w(k) = Q—k(l + e—ikyQ%—k)e—i(ky—km)’

H, can be rewritten as

1+ w(2)w(2) w(2) 0 0 w(1)
w(2) l1+wB)w(3) w(3) --- 0 0
0 w(3) () 0 0
0 0 0 0 w(q)
w(1) 0 0 w(qg) 14+w(l)w(l)

with secular determinant

det(1 — zHy,) = det(1 — 2*H,)
=3z + (0 [ewe) - [[o0) - T[26)) =

— Z 2"+ 2( Q% (cos(qk, — 2qk,) + cos(qk,)) + (—1)7( cos(qk, — gk,) + 1)) 24,
(21)

3.2 Honeycomb coefficients Z(n)

Our aim is to find for the Z(n) in (21) an expression analogous to the one in (5) or (9)
obtained in the Hofstadter case. To this end, we reduce the honeycomb matrix (20) to a
tridiagonal form by making both corners w(1) and @(1) vanish, i.e., by setting e v = —Qz
so that w(k) becomes

w(k)|w(1):0 = —Q7 ( Ql k) 1kx

and
1+ (1-Q7N)(1-Q) -Q 2(1-Q e 0 0 0
_Q%(l_Q)eﬂk 14+ (1— 2)(1 ) Q—g(l_Q—Q)eikI 0 0
B 0 Q%u Qz)e“’“ ) 0 0
6 0 0 .. () _Q%_q(l _'Q—(q—l))eik,
0 0 0 e —QUEIL—Qr et 14+ (1-Q (1 - Q)

This also eliminates the 2% umklapp term in (21), i.e., the secular determinant reduces to

q

det (1 — 2°Hyluay—o) = Y _(—1)"Z(n)2>

n=0

11



Let us now consider Q) as a free parameter and denote d, = det(1 — z2H_|,(1)=0). Then
expanding d, in terms of its bottom row we obtain the recursion relation

dy= (1= [1+1-Q)1-Q 1] 2*)dyr —z"1-Q" (1 - QU )dy s, ¢>1,

ie.,
dq = <1 -1+ SQ)Z2>dq—1 — 2ts4-1dy-a, (22)

with dy = 1, d; = 0 for j <0, and s; as in (7). From (22) we can iteratively derive the
Z(n) (see Appendix D).

The above recursion admits a simple g = 2 exclusion statistics interpretation. Con-
sider a set of 2¢ energy levels with spectral parameters S,,, n =1,2,...,2q given by

Sok—1 = 1, Sor = Sk

that is, s; “diluted” by unit insertions: 1, s;,1,s2,...,1,s,, and consider the grand parti-
tion function of g = 2 exclusion particles in the above spectrum S,, with fugacity param-
eter z. Calling Z;,, the truncated grand partition function for levels S;, 5, ...,5, and

expanding it in terms of the last level n being empty or filled, we obtain the recursion
relations

n =2k : Ziok = Z12k—1 + 25521 262,
n=2k—1: Ziop_1 = Z1op—2+ 221263

From the n = 2k relation we can express the odd functions Z9;_; in terms of even ones,
Z1ok—1 = 212k — 25K 21 26—2. Substituting this expression in the n = 2k — 1 relation and
rearranging we obtain

Ziogp = (14 2+ zsp) Z10h2 — 2°8k1Z19%—4-

This is identical to the recursion (22) upon shifting z — —z2 and identifying Z; o, = dy.
Moreover, Zy, satisfies the same initial conditions as dj, namely Z; 9 = 1, Z1 9, = 0 for
k < 0. Therefore, d; = Zy,.

It follows that the expressions for the n-body partition functions Z(n) and the cluster
coefficients b(n) are identical to the corresponding expressions (9) and (13) for square
lattice walks but now, instead of the spectrum s, one has to consider the diluted spectrum
Sk, k =1,...,2q (but note that Sy, = s, = 0, so the levels effectively end at Sy,—1 = 1)

2q—2n+2 ky kn_1

Z(n) = Z Z -.- Z Skr4+2n—2kat+2n—1" " Skp_142kn

ki1=1 ko=1 kn=1

2q—j+1

bn) = (=)™ Y el ) D S eSS
k=1

l1,l2,...05
composition of n

12



with the same Hofstadter combinatorial factors c(ll, ly,...,1;) given in (14). The corre-

sponding diluted trigonometric sums X qu i+l gl i S o1 It can be expressed as

+j-1"
2q j+1 +oo
l 1 2A7Tp
Z Sk+] 1SS Z COS(
A=—0c0 q
ls Iz l21G-1)/2)+1 20y 213 2[(j—1)/2]+1
( DS 5° ( ao-npn ) g
ks=—ls kr=—l7  ka|_1)/2)41=la|G_1y/2) 41 11+ A+ > (i—3)ki/2 l3—A- > (i-1Dki/2 =5

i=5 i=5

i odd i odd

ls ls l2j/2) 2lo 214 2l3/2) o
SN e ST (w3 YT ()
ke=—1lg kg=—lg kaj/2)=—l215/2) lo+A+ Z (2—4)]@'/2 Iy —A— Z (2—2)]61'/2 Zl;gn v v

(=6 =6

Following the same steps as in Section (2.2) regarding the number Cy,(A) of closed random
walks of length n = 2n enclosing on the honeycomb lattice an algebraic area A, i.e.,
considering on the one hand

Z Ca( ! T

which is the anologous of (10) for the honeycomb Hamiltonian (19) (where the factor 1/q
is replaced by 1/(2¢q) in view of a proper normalisation over the 2q states), and on the
other hand

TrHy, = 2n(—1)"""b(n),
which generalizes (12), the expressions above directly lead to an algebraic area enumera-

tion similar to the square lattice walks enumeration (16).

In the sequel, we will consider d, in terms of the original (undiluted) Hofstadter
spectrum s;. In that case, the g = 2 exclusion interpretation does not hold anymore and
has to be traded for a mixture of g = 2 and g = 1 statistics, as we are going to show in
detail.

3.3 DModified statistics for the spectral function s

If we insist on keeping s, as the spectral function, the first few Z(n) rewrite as

q

Z(1) =) (1+s),

i=1

q—1 3
2)=+>> (1+sim)(1+s)
i=1 j=1
q—1
- Si,
=1

13

2l;

)

lz+k1






Z(5) =+ § XZ: ZJ: Zk: zl: (1 + Sz’+4) (1 + 5j+3) (1 + 3k+2) (1 + $l+1) (1 + Sm)

i=1 j=1 k=1 I=1 m=1

3 3)3) 3 JERIPI(ERIBIEPAEN

i=1 j=1 k=1 I=1

LSS (1 ) (L4 sy (15 )

i=1 j=1 k=1 I=1

— qi Z i i (14 si4a)sj42(1 4 spp1) (1 + 51)

i=1 j=1 k=1 I=1

g4 i J
+ Z Z Z (1 + Sita)Sjsask

i=1 j=1 k=1
i J

—~ iZZing 1+ 840) (14 sp1) (1 + 1)

i=1 j=1 k=1 I=1

=4 i J
+ ZZZSH_g(l + Sj+2)8k

i=1 j=1 k=1

g4 i
+ ZZZSZ‘+3SJ'+1(1 +8k)

i=1 j=1 k=1

We infer that in general the Z(n)’s are combinations of nested multiple sums of products
of (1 + s;) and s, such that

e The rightmost factor is either s or (1 + sk).

e Any factor multiplying s; immediately on its left obeys ¢ = 2 exclusions, i.e.,

Zi Zj §;85 Or ZZ Zj (1 + Si)sj where 1 — 7 > 2.

e Any factor multiplying (1 + s;) immediately on its left obeys g = 1 exclusions, i.e.,
2 Zj Si(l + Sj) or Zj (1 + Sz') (1 + Sj) where 1 — 7 > 1.
(n-1)

e The leftmost factor is either s;,_o or (1 + si+n_1) with summation range » 7_;

e The sign is +(—1)" for even/odd number of factors.

From these rules and the very definition (11) we get the b(n)’s in terms of single sums of
products of s (up to terms involving s, which vanish anyway) with a form a bit more

15



complicated than in the Hofstadter case

q—1 q
b(1) = sk + Z s
k=1 k=1
1 q—1 q—1 14
—b(2) = 5242 sk+§zsg,
k=1 k=1 k=1
q—1 q—1 q—2 q—1 q

=
=
I
Wl =
]
s
_l’_
[\)
(]
N
_l’_
]
w
T
=~
_l’_
wW
]
=
_|_
|
]
2

k=1 k=1 k=1 k=1 k=1
1 q—1 q—1 q—2 q—2
—b(4) = 1 s+ 2 Z Spt D SherSk Z Sk115%
k=1 k=1 k=1 k=1
q—1 q—2
Z i+428k+18k +4Z$k+ Zsk,
k=1
1 &4
b(5) = gz sp+ QZsk+Zsk+lsk+zsk+lsk+zsk+lsk

k=1
g—1

i
sy + 6 E sk+1sk+6 E Sky15s + E Sk+25k+15k

k=1

g1
+1OZsk+IOZsk+1sk+SZsk+ Zsk,

ie.,
q—J .
n j l
b(n) = (—1)"+ > Callilay o L)Y sy sisi
l1,l2,...,l; k=1
composition of n’=0,1,2,...,n
j<min(n/,n—n'+1)

The new combinatorial coefficients ¢, (I1,ls, ..., (;) are labeled by the compositions of
n' =0,1,2,...,n with a number of parts j < min(n’,n—n’'+1) (by convention the unique

composition of n’ = 0 has only one part and the trigonometric sum becomes Y 7_, s7).

Since the number of compositions of an integer n’ with j parts is (Z‘.l__ll), the total number
of such compositions is

n  min(n’;n—n'+1) o —1 [(n+1)/2] n—j+1 1 [(n+1)/2] n-j-'-l
v () 20)- 5 ()

n'=j j=0

Note that the Fibonacci number F,, ;5 is also the number of compositions of (n + 1) with
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only parts 1 and 2. We obtain for the ¢, (I, 1o, ..., 1;)’s

n—l—ll—l
nl = )
enlls) 11(211—1)

min(ly,l2)
_ 1 W\ () (n+h+la—m-1
C’n,(llu 12) - E Z m(m) (m) ( 2(11 + 12) -1 ),

m=0

min(l1,l2) min(l2,l3) min(l;_1,l;) j 1
i i1 n+ Y Li-Y] 1m1—1
enlls,la, .. l) = ” Z Z Z (Hml< )( >)< ;o .
102 m1=0 mo=0 mj,1:0 221:1 T

(23)

We also note that by ignoring the n-dependant binomial ( +21212 zz:—i e 1) in the sums
(23) one recovers the c(ly,ls, ..., 1;) in (14), that is,

min(lq,l2) l1+12

1 I\ (1l ("27)
n (! 7l = - )
¢ ( ! 2) - lllQ Z m(m) (m) ll + l2

and thus by factorization

min(l1,l2) min(l2,l3) min(l;_1,l;) j—1 I1+1s lo+ls L1+
1 l; l; i
Cn(ll,lg,...,lj)—)i E mz< >< +1>_ ( Iy ) 12( 12 ) ljfl( lj—1 )
Lily ...l - i+l “lo+ls L1 +1;

maq 0 m2:0 m]'71:0 =1

We also have
nzcn(l) - F2n+1 + F2n—1 - 1)

where again a Fibonacci counting appears, and

2
n
n Z Cn(ll,lg,...,lj> = (n/) s

1,250l
composition of n’
j<min(n/,n—n'+1)

from which we infer

2n
n Z Cn(llal%---alj):(n)-

l1,l2,..,1;
composition of n'=0,1,2,...,n
j<min(n’,;n—n/+1)
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Again using (17), the counting of closed honeycomb lattice walks of length 2n is recovered

2L+ lL+...+ 1)
NN j
' 11;1» allt j)(l1+l2+...+zj)

composition of n'=0,1,2,...,n
j<min(n’,n—n’+1)

Y 2(ll+l2+...+zj)>
= (Lo ooyl
nZZ:O ! l1;l- C(l ’ ])< l1+l2++lj

composition of n’
j<min(n’,n—n’+1)

B Zn: n\> [(2n/
_nr:() n n
3.4 Algebraic area enumeration on the honeycomb lattice

Remembering that the spectrum of H, is the square of that of the honeycomb Hamiltonian
Hsy,, the generating function for the number Cy,(A) of closed walks of length n = 2n
enclosing an algebraic area A can as well be given in terms of the trace of H; weighted

by 1/q, i.e.,
ZC = —TrH"

where now, following again the steps of Section (2.2),
TrH) = (—1)"*'nb(n).

We arrive at the conclusion that on the honeycomb lattice the Cy(A)’s are

Cu(A) =n S allnla L)

l17127"'7lj
composition of n'=0,1,2,...,n
j<min(n/,n—n’'+1)

IZS lz ilj (zl +A+ ZQZZJ;(Z - 2>ki> <12 —A- 22;2:3(2 - 1)/@) 11 <lz- 2+lk->

ka=—l3 ka=—ls  kj=—

with the ¢, (I1,l2, .. .,1;)’s given in (23) and the algebraic area bounded® by | (n*+3)/12].

IThe sequence OEIS A135711 states that the minimal perimeter of a polyhex with A cells is
2[v/124 — 3]. The maximum A for walks of length 2n is then [(n? + 3)/12].
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A few examples of %TI‘H o are listed below, and the corresponding Cy(A) are listed in
Table 1.

1

-TrH, = 3,
q
1 2
“TeH? = 15,
q
1 2
~TrH? =3 (29 +2cos ﬂ)
q q
1 o
~TrH! =3 (181 + 32 cos —p)
q q
1 o 4
Ty =3 (1181 +360 cos —£ + 10 co Wp) ,
q q q
1 2mp dmp 6
~TrHS =3 (7953 + 3520 cos —L + 242 cos —L + 8 cos ﬂ)
q q q q
1 2mp dr 6 8
“TrH! =3 (54923 + 32032 cos —L 4 3710 cos —L + 266 cos —- + 14 cos — ) .
q q q q q
n=2[4]6] s |10 ] 12 ] 1
A= 0] 3 |15 875433543 | 23859 | 164769
1 6 | 96 | 1080 | 10560 | 96096
12 30 | 726 | 11130
3 24 | 798
I 12
total counting | 3 | 15 | 93 | 639 | 4653 | 35169 | 272835

Table 1: Cy, (A) up to n = 14 for honeycomb lattice walks of length n.
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4 Conclusions

We demonstrated that the area counting of honeycomb walks derives from an exclusion
statistics g = 2 system with a “diluted Hofstadter” spectrum. This fact calls for a more
detailed justification: in previous works [3, 4], two of the authors had shown that lattice
walks that map to exclusion statistics are of the general form

H = f(u)v+v'g(u)

with w,v the quantum torus matrices and f(u), g(u) scalar functions. The honeycomb
Hamiltonian is apparently not of this form. However, the expression of a walk in terms of a
Hamiltonian is not unique: alternative versions corresponding to modular transformations
on the lattice, or, equivalently, alternative realizations of the quantum torus algebra, can
exist. We expect that an alternative realization of the honeycomb Hamiltonian Hy, that
makes its connection to g = 2 statistics and the diluted spectral function S; manifest
does exist, and is related to the form given in Section (3.1) by a unitary transformation.
The identification of this transformation and the alternative form of Hy, is an interesting
open question.

Further, the anisotropic honeycomb Hamiltonian with general transition amplitudes
a, b, ¢, is of physical interest. The corresponding generating function of lattice walks would
depend on these parameters and would “count” the number of moves in the three differ-
ent lattice directions U, V, W separately. The calculation of this generalized generating
function through traces of powers of the Hamiltonian appears to be within reach using the
methods and techniques of this paper and constitutes a subject for further investigation.
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Appendices

A Z(n) for square lattice walks

We denote Z(n) as Z,(n) to include its dependence on g.

lg/2]
Substituting d, = Z(—l)"Zq(n)22” into (8) and equating the coefficient of 22" on
n=0

both sides, we get

Zq(”) = Zq—l(n) + Sq—IZq—2(n - 1)
Zq_g(n) + sq_ng_g(n — 1) + sq_qu_Q(n — 1)

q—2

= Z(n) + > sm1 Zm(n—1).

m=0

Since Z,,(n —1) =0 for n — 1 > |m/2], i.e., m < 2n — 2, we obtain

Zy(n) = Z Sm41Zm(n — 1)

m=2n—2
with Z,(0) = 1.
Thus,

22



= § E E Sm4+15k14+25ks

m=4 k1=1 ko=1
q—5 ki k2

= E E E Sk1+45ky+25ks -

k1=1ko=1k3z=1

The formula (9) can be then proven by mathematical induction, where we check

Zy(n+1) = Z Sm+1Zm(n)
m=2n
qg—2 m—2n+1 ki ko kn—1
= Z Z Z Z T Z Sm41Sk14+2n—2 " " Sk,_1+25k,
m=2n ki=1 ko=1ks=1 knzl
qg—2n—1 k1 ke ks

= g g g g : g Sk14+2nSko+2n—2 Sk 4+2Skp i1

ki=1 ko=1k3=1kys=1 kn4+1=1

B Examples of algebraic area enumeration of random walks on
the square lattice

A few examples of %TrH o and the corresponding Cp(A)’s are listed below and in Table 2

1
aTng =4,

1 2
—TrHj=4<7+2cosip),
q q

1 2mp 4
—TrH§_4<58+36005—+6 Wp),
q q q

1 2 4
—Trﬂg_4<539+504cosﬂ+154cosﬂ+24 05 7 1 4co 8“’),
q q q q q

1 2 4 6 8 10
—TrH;O =4 (5486 + 6580 cos TP + 2770 cos 2P + 780 cos 27p + 210 cos orp + 40 cos s
q q q q q

23

127

p)l



n=2|41| 6 8 10
A= 0 4 28 | 232 | 2156 | 21944
+1 8 | 144 | 2016 | 26320
+2 24 | 616 | 11080

+3 96 | 3120

+4 16 840

+5 160

+6 40
counting 4 36 | 400 | 4900 | 63504

Table 2: Cy, (A) up to n = 10 for square lattice walks of length n.

C Representation of the honeycomb algebra

Define three new operators u, v, o as

o=Q YV2UVW, u=Uo, v=Vo
= U=uo, V=uvo, W=Q"vou.

From the honeycomb algebra (18) we see that o, u and v are all unitary and satisfy

vu = Quu, uo =ou"t, ov ™t =vo, o? =1. (24)

Since U, V and W can be uniquely expressed in terms of o, v and v, it is sufficient to
derive the irreducible representation (“irrep” for short) of u, v and o.

Operators u and v satisfy the quantum torus algebra and have a g-dimensional irrep
if Q = exp(2imp/q). However, o can be embedded within this irrep only for specific values
of the Casimirs u? = ¢! and v? = €', Indeed, assuming ¢ acts within this irrep,

wW=culc=u"1 = €%=¢7

So ¢ can only be 0 or 7 (mod 27), and similarly for . For §,¢ € {0,7} we can show
that the irrep of (24) is unique up to unitary transformations, and up to the algebra
automorphism o — —o, and is given by the action on basis states |n)

uln) = el@t2mn/a|n)y - n=0,1,...,q—1,
vn) = &% n—-1) | |-1)=|¢g—-1),
oln) = eCr=r/a | —n) | rp4 ¢/7 =0 (mod q).
The “pivot” r in the inversion action of ¢ is r = 0, if ¢ = 0, and the primary solution of

the Diophantine equation kq —rp = 1, if ¢ = m. The momenta ¢k, = 6 and gk, = ¢ in
this irrep are quantized as

TNy,

ky = , ky=——= ngn, €. (25)




For either 6 or ¢ ¢ {0,7} the irrep of (24) must decompose into more than one
g-dimensional irreps of the quantum torus algebra w,v with ¢ mixing the irreps. The
minimal irrep of the full algebra (24) involves 2 irreps of the torus algebra, all other

situations being reducible. Representing all operators in block diagonal form in the space

of the two irreps u;, v;, i = 1,2, with Casimirs uf = % v = €%

_ulO _1210 _AB
v= OUQ » U O’U2 » 0% BTC’

and implementing the relations culoc = u™9, ovioc = v=? leads to
(e — e 1) A= (&2 —e2) C = (e'' —e™%?) B =0,
(eiel _ e—iel) A= (i — %) C = (e — e i%2) B =0
Since not both of ¢1, ¢ and of 61, 05 can be 0 or 7, the above relations imply A = C' = 0.

0% = 1 then implies BT B = 1, and the last equalities above require ¢, = —@s, 0; = —0,.
Further, a unitary transformation

;
S = (g (1)) , u— SuS™! v—= SvST!l o = SoS!

eliminates B in o, and ouoc = u™!, ovo = v=! imply u; = uz_l, v = 1)2_1. Altogether,

the irrep of (24) for two arbitrary Casimirs ¢ = ¢ = —¢o, 6 = 01 = —0s, is given by the
2¢g-dimensional matrices

Uo O Vo 0 01
uz(o u) vz(o ) 0—:(1 O), (26)

where u, and v, are the basic g-dimensional quantum torus irrep with Casimirs e'® and
¢, Finally, from (24) we obtain the corresponding irreducible forms for U, V, W

(0 wu, (0 v, SV Y Vot !
U_(uo_lo)’ V_<vo_1 O)’ W=Q (Uo_luo 0 '

We conclude with a demonstration that the above representation becomes reducible
if ¢,0 € {0,7}. In that case, as we demonstrated before in (25), there is a ¢ x ¢ matrix
0, (to be distinguished from the 2¢ x 2¢ matrix o in (26) above) satisfying (24) for the
matrices u, and v,. Performing the unitary transformation

1 1 —0,
S°:ﬁ<ao 1)

on all matrices, and using o,u,0, = u; ! etc., we obtain
" — u, 0O Yy — v, 0 o — o, O
SN0 w7 N0 ) T T \0 —a, )

~ (u,0, 0O ~ (v,0, 0 A2 (vouy o, 0
U_< 0 —Uouo)’ V—( 0 —aovo)’ w=Q < 0 —0,vou; !

reducing to the direct sum of two ¢-dimensional irreps.

1

or
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D Z(n) for honeycomb lattice walks

We denote Z(n) as Z,(n) to include its dependence on gq.

q
Substituting d, = Z(—l)"Zq(n)z2" into (22) and equating the coefficient of 22" on

n=0
both sides, we get

Zy(n) = Zys(n) + (1+ 53) Zys (0 = 1) = 5421 Zya(n — 2)
g—2(n) + (L4 sq=1) Zg—2(n — 1) + (1 + 5¢q) Zg—1(n — 1) — sq—2Zq—3(n — 2) — sq—1Zq—2(n — 2)

q—1
n)+2(1+sm+1 (n—1) ZSerlZ (n—2
m=1

Since Z,,(n) = 0 for n > m, we obtain

q—1
Zy(n) = Z (1 + sm+1) (n—1) Z Sma1Zm(n — 2)
m=n—1 m=n—2
with Z,(0) =1 and Z,(j) =0 for j < 0.
Thus,
q—1
Zy(1) = (1 + Sm+1)Zm(0)
m=0
q
= Z (1 + Skl),
ki=1
q—1 q—2
Zg(2) = Y (14 $m11) Zm(1) = Y $my1Zm(0)
m=1 m=0
1 om -2
= Z 1+ sm+1 1 + Skl Z Sm+1
=1k1=1
q—1 ki
= (1 + Sk1+1) (1 + Sky Z Sk1»
k1=1ko=1 k1=1
q—1 q—2
Zq(3) =) (L4 $m11)Zm(2) = D $ms1Zm(1)
m=2 m=1
q—1 m—1 k1 q—1 m—1 q—2 m
= (1+ Sm+1) (1 + Spy41) (14 sk, Z (14 Sms1) sk, — Z Smt1 (1 + s,)
m=2k1=1 ka=1 m=2 k=1 m=1k;=1
q—2 k1 ko q—2 k1 q—2 k
= D (U sky42) (14 skpr1) (14 k) — (14 spat2) sk — D D sk (14 sp,).
k1=1ko=1ks=1 k1=1ko=1 k1=1ko=1
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